课标双基到四基
从双基到四基从两能到四能
归纳推理:从小到大,特殊到一般,结果或然; 已知 a 推断 A:归纳(代数); 已知 A 推断 A+B:类比(几何)。
归纳教学的例子:尝试。 为得到公式 a2 – b2 = (a-b)(a+b)
首先进行化简,令 b=1。变化 a 可以得到: 22 – 1 = 4 - 1 = 3 32 – 1 = 9 - 1 = 8 42 – 1 = 16 - 1 = 15 52 – 1 = 25 - 1 = 24 62 – 1 = 36 - 1 = 35
命题:可以进行判断的话语 推理:一个命题判断到另一个命题判断的思维过程 命题 + 判断的四种形式:是是、是否、非是、非否
逻辑推理:命题主词的内涵之间具有传递性 有逻辑:凡人都有死,苏格拉底是人,所以苏格拉底有死。 无逻辑:苹果是酸的,酸是一种味道。所以苹果是一种味道。
逻辑推理 = 演绎推理 + 归纳推理
因为 8 = 2× 4,15 = 3× 5,24 = 4× 6 ,35 = 5× 7, 可以想到 a2–1 = (a-1)(a+1),然后考虑一般的 b。
从自然数的前 n 项和公式出发,得到平方和、立方和公式。
模型:构建数学与外部世界的桥梁。\数学的应用\
叙述的是一个用数学语言表达的实际故事。
方程、不等式、函数、递推(时间序列)等是语言工具。 比如,方程叙述的是量相等的故事。\距离=速度×时间\
因此,可以认为:
统计学是一门收集和分析数据的科学与艺术。 科学:基础是假说。验证与时间、地点、个性无关。 艺术:基础是标准。因人而异,因价值观而异。
对现有的学科大体可以分类: 自然学科:科学。\物理,化学,生物,地质\ 人文学科:艺术。\文学,历史,绘画,音乐\ 社会学科:科学与艺术。\经济,统计,心理,社会\
从“双基”到“四基”-南秀全
1、教师在课堂教学的安排上就应该有意识地给数学思想的 教学预留适当的时间; 2、但是数学思想的教学不能空洞地进行,一定要以数学知 识为载体进行,并且应该注意将数学知识与数学思想融为一 体,因势利导,水到渠成,画龙点睛; 3、教师在讲解数学思想时,应该避免“两层皮”,避免生 硬牵强,避免长篇大论.
4、在课堂数学活动的时间安排上,大量的应该是教师启发式 传授和学生在教师指导下独立思考、自主探究的时间;其他 形式的数学活动也应安排适当的时间.
• “双基”为什么要发展为“四基”
• 1、因为“双基”仅仅涉及上述三维目标中的一个目标— —“知识与技能”.新增加的两条则还涉及三维目标的另 外两个目标——过程与方法、态度情感与价值观. • 2、因为有些教师有时片面地理解“双基”,往往在实施 中“以本为本”,见物不见人,而教育必须以人为本,新 增加的“数学思想”和“活动经验”就直接与人相关,也 符合“素质教育”的理念. • 3、因为仅有“双基”还难以培养创新性人才,“双基” 只是培养创新性人才的一个基础,“双基”已经不能符合 我国当前经济与社会发展的要求更不能应对未来发展的需 求,必须有所改变.
1.获得适应社会生活和进一步发展所必需的数学的基础知 识、基本技能、基本思想、基本活动经验。
2.体会数学知识之间、数学与其他学科之间、数学与生活 之间的联系,运用数学的思维方式进行思考,增强发现和提 出问题的能力、分析和解决问题的能力。 3.了解数学的价值,提高学习数学的兴趣,增强学好数学的 信心,养成良好的学习习惯,具有初步的创新意识和科学态 度。其中,前两条被简称为获得“四基”、提高“四能”, 第三条则是发展情感态度价值观。
5、“基本思想”是指在数学发展历程中,对数学发 展起到关键作用的那些思想,数学发展所依赖的 核心思想. 6、主要表现为:数学抽象的思想、数学推理的思想、 数学模型的思想、数学审美的思想.
从双基发展到四基
如何理解课程目标由双基增加为四基?扬子学校:张玉平新课标中把数学教学中的“双基”发展为“四基”,过去的“双基”指的是基础知识与基本技能;现在新课标指的“四基”包括基础知识、基本技能、基本思想和基本活动经验。
即通过数学教学达到以下要求:掌握数学基础知识;训练数学基本技能;领悟数学基本思想;积累数学基本活动经验。
四基对老师的要求更高,整个课程改革的推进过程,对教师各方面的要求都会很高,教师需要不断学习不断更新才会有创新和发展。
数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。
“基本活动经验”是指“在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。
”基本活动经验建立在生活经验基础上,帮助学生建立自己的数学现实和数学学习的直觉,学会运用数学的思维方式进行思考。
“基本思想’主要是指演绎和归纳,这是整个数学教学的主线,是最上位的思想。
”具体的问题中,涉及数学抽象、数学模型、等量替换、数形结合等数学思想,但最重要的思想还是演绎和归纳。
回顾自己以前比较熟悉双基教学的操作程序,基础知识和基本技能的教学大部分可以得到落实。
欠缺的是对基本思想和基本活动经验进行理论和实际操作程序相结合的研究和实践,我将不断学习、研究,吸取别人的有益经验,争取早日适应社会时代的新要求。
如何理解《课程标准》中的10个核心概念?《课程标准》以全新的观点将小学数学内容归纳为“数与代数”“图形与几何”“统计与概率”“综合与实践”四个学习领域,特别突出地强调了10个学习内容的核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
1、数感。
一是关于数与数量。
在小学低段,儿童对数的感悟是从数数学习辨认各组实物对象的多少开始建立的,学习用数表示多少的第一步就是数数,随着学习年级的增高,学生经历了更多的对数意义的感悟,如对分数、负数、有理数……的感悟,并形成对数的各种表征方式的理解,这是一个逐渐展开的过程。
从“双基”向“四基”的华丽转身
从“双基”向“四基”的华丽转身打开文本图片集《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。
以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。
现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。
那么,如何在课堂教学中落实“四基”精神,提高儿童的数学素养呢?下面结合自己平时教学的体会谈谈自己的体会。
先讲一个教学小故事:苏教版小学数学六年级上册第一单元有这样一条练习题:本班61名学生,竟然有27名同学计算3月1日到9月1日有几个月时写出了这样的算式:9-3+1=7(个),正确率仅为55.73%,我有点诧异,六年级学生怎么会出现这样的错误。
晚上回家后,看到儿子在写数学作业(他今年三年级)。
我灵机一动,何不让他试一试。
于是,我问:“蛋蛋,从3月1号到9月1号经过了几个月啊?”(我故意省去2021年这个干扰条件)。
他稍微思考了一下说:“6个月”。
我问:“你是怎么想的啊?”他说:“三月到四月是1个月,三月到五月是2个月,三月到六月是3个月,所以三月到九月应该是6个月”。
我郁闷了,三年级学生会的题目,六年级学生怎么会做错。
为了进一步深入了解原因,我邀请了今年教三年级的张老师对他们班57名学生进行了问卷调查,结果只有4名学生做错,正确率为92.98%。
于是我分别从六年级做错的学生和三年级做对的学生中随机各选出10名学生进行了面谈交流,希以了解学生的真实想法。
下面是三年级几个有代表性的想法:师:这道题目你做的非常好,能说说你是怎么想的吗?生1:我是扳手指数出来的,从三月开始,三月不算,就数四月、五月、六月、七月、八月、九月,一共是6各月。
从“双基”到“四基”如何落实(顾沛)
根据修订后印发的各学科课程标准,组织教科书的修订和审查工作。今年 秋季将在所有起始年级使用新教材。其他年级也要依据新课程标准组织教 学,改进评价方法。
加强组织领导,统筹规划,全面部署新课程标准的学习、宣传、培训和教
研工作,确保新课程标准的全面落实。
( 教基二司[2011]9号文,2011年12月28日 《中国教育报》 2012年2月8日 CCTV 1 新闻直通车 2月12日 )
本定理、基本作图、基本推理、基本语言、基本方法、基本 操作、基本技巧,等等。
11
许多年来,“双基”概念一直在发展中深化。至2000年, 中华人民共和国教育部制定的《九年义务教育全日制初级 中学数学教学大纲(试验修订版)》中的表述,数学“基 础知识是指:数学中的概念、法则、性质、公式、公理、 定理以及由其内容所反映出来的数学思想和方法。基本技 能是指:能够按照一定的程序与步骤进行运算、作图或画 图、进行简单的推理。” 并且,“双基”在此已经是与 思维能力、运算能力、空间观念等相互联系表述的。
重要的是让学生在学习这些结论的过程中获得数学思想。 数学思想是数学科学发生、发展的根本,也是数学课程教 学的精髓。
但是,《课标》在这里并没有展开阐述“数学的基本思想
” ,这就给我们留下了讨论的空间。而且由于它过去并
没有被充分地讨论过,所以可能仁者见仁,智者见智,不 同的学者可能会有不完全一样的说法。我这里也谈谈自己 不成熟的观点,与大家交流。 14
“活动经验”与“活动”密不可分,所说的“活动”,当 然要有“动”,手动、口动和脑动。
它们既包括学生在课堂上学习数学时的探究性学习活动, 也包括与数学课程相联系的学生实践活动;
既包括生活、生产中实际进行的数学活动,也包括数学课 程教学中特意设计的活动。
数学教学如何从“双基”到“四基”的转变
数学教学如何从“双基”到“四基”的转变新课标中把数学教学中的“双基”发展为“四基”,过去的“双基”指的是基础知识与基本技能;现在新课标指的“四基”包括基础知识、基本技能、基本思想和基本活动经验。
即通过数学教学达到以下要求:掌握数学基础知识;训练数学基本技能;领悟数学基本思想;积累数学基本活动经验。
这表明“以传授系统的数学知识”为基本目标的:学科体系为本的数学课程结构,将让位于“以促进学生整体发展”为基本目标的数学课程结构。
并进一步在基本理念中指出:“人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展。
”过往的数学课程重视基础知识、基本技能,这亦是我国数学课程的一大优点,但以学科为中心的价值取向,使数学课程过于重视知识的系统、严谨,而忽视了学生观察、探索、猜想的意识与能力,忽视应用能力、创新意识与创新能力的培养,忽视数学作为文化的重要组成部分对人的素质的提高所发挥的巨大作用。
“双基”变“四基”,更是对教师教学水平、教学能力的一大考验。
重视知识的生成过程,重视学生的实践活动经验,重视学生在活动过程中的猜想、推理、验证,这是“四基”里面蕴涵的精神。
如何在数学课堂中更好地实现“四基”的达成,也成为我们当下数学老师需要积极思考的问题。
下面我就新人教版八年级下册《平行线的性质》这一课,来说说我在数学教学从“双基”到“四基”的转变过程中所作的尝试。
“学起于思,思源于疑”。
探究源于问题,教学过程需要问题来活化,教学对象需要问题来触动,因此,新知的生长点往往来自于一些能突出认知矛盾,激发探究欲望的问题——探究点。
通过探究点的引领,借助于情境的支持,引发认知冲突,在原有知识经验不能同化新知识下,迫使学生及时地调整,以适应新知的学习。
这节课我设计三个环节,其中第一个环节就是复习引入,打下铺垫。
我首先复习全等三角形的性质,然后复习平行线的性质。
初步的打算是不但让学生复习上节课的内容,同时过渡到下面环节。
从“双基”到“四基”从“两能”到“四能”解读
一、概述
《修订稿》在总目标中规定,通过义务教育阶段的数 学学习,学生能: 1.获得适应社会生活和进一步发展所必需的数学的 基础知识、基本技能、基本思想、基本活动经验。 2.体会数学知识之间、数学与其他学科之间、数学 与生活之间的联系,运用数学的思维方式进行思考,增 强发现和提出问题的能力、分析和解决问题的能力。 3.了解数学的价值,提高学习数学的兴趣,增强学 好数学的信心,养成良好的学习习惯,具有初步的创新 意识和科学态度。 其中,前两条被简称为获得“四基”、提高“四 能”,第三条则是发展情感态度价值观。
二、2011版的数学课程标准与2001版的数学课程 标准的不同之处 5. 课程总目标 这次课程目标的改动非常大。从1953年提出,数学教 学强调的“双基”:“基础知识和基本技能”。到1956年 写出来之后,到现在有六十年了,一直是我国基础数学教 育的核心。我国数学基础教育在世界上的影响非常大,基 础知识和基本技能功不可没。学生掌握的基础知识和基本 技能非常扎实。但是我国的学生缺少创造性的东西。因此 这次修订加了两个,一个是基本思想,另一个是基本活动 经验。就成为数学中的“四基”。
二、2011版的数学课程标准与2001版的数学课程 标准的不同之处 4.课程内容 数学主要有三方面的知识内容:“数量关系”、“几何 关系”、“随机关系”,所以,这次课程标准还是叫“数与 代数、图形与几何”、 “统计与概率”。还有,“综合与 实践”,因为在大学里,也把建模作为一门课程。“综合与 实践”与“数与代数”放在一起,就有了“四个方面的内 容”。
二、同之处
8.实施建议 实施建议这次修也较大。2001版关于编写建议、教学建议、评价建 议是按学段写。修订专家组发现这样编不够合适,这次基本上是重新 编写的。按前面基本的思想、紧扣基本理念来编写。 比如: 第一,受到良好数学教育的问题,基本根据理念来写。 第二,重视学生在学习中的主体地位。 第三,注重学生对基础知识、基本拔能的掌握。 第四,如何帮助学生积累数学活动经验,感悟数学思想。 第五,注意如何在教学中,关注学生情感态度的培养、发展、变化。 第六,教学应该注意的问题,预设和生成,事先备课备得怎么样, 讲课时遇到情况如何处理。 第七,如何面对全体学生和个别学生的关系。如何处理课内与课外 的关系,如何使用教学技术与教学方法的关系。
从双基到四基
符号化思想
有限无限思想 ……
三、从“双基”到“四基”的变化
(二)基本思想
抽象
无限只能通过有限而存在,但它不能归结为有限的简单 的量的总和,而有限中则包含着无限 。
案例1:长城长?
分类思想 集合思想 对应思想 变中有不变思想
符号化思想
有限无限思想 ……
案例2:直线有多长?怎么画直线? 案例3:0.999……=1?
案例1:“底乘高”可类比吗?
逐步逼近思想
演绎思想 化归思想
案例2:阴影部分的面积是多少?
运筹思想
公理化思想 ……
三、从“双基”到“四基”的变化
(二)基本思想
推理
归纳思想 类比思想 数形结合思想 数形结合是指把抽象的数学语言、数量关系等与 直观的几何图形、位置关系等结合起来。
逐步逼近思想
演绎思想 化归思想
三、从“双基”到“四基”的变化
(二)基本思想
推理
归纳思想 类比思想 数形结合思想 指面对特定数学问题时,通过某种(些)手段不 断将问题简化,进而解决的思想。
案例1:4.2×6=?
逐步逼近思想
演绎思想 化归思想
案例2:同圆中相等的弧所对的圆周角等
于圆心角的一半。
运筹思想
公理化思想 ……
三、从“双基”到“四基”的变化
(二)基本思想
推理
归纳思想 类比思想 数形结合思想 演绎是从一些假设的命题或已有认识出发,运用 逻辑的规则,导出另一命题的推理形式。
案例1:质数有无穷个? 案例2:正多面体只有如下五种!
逐步逼近思想
演绎思想 化归思想
运筹思想
公理化思想 ……
柏拉图将其朋友特埃特图斯告诉他的五种正多面体写在《 蒂迈欧篇》(Timaeus)内。欧几里得将正多面体的作法收录 于《几何原本》,并给出了几何证明。其证明有很多种!
新课改中由“双基”变为“四基”的必要性——结合小学数学实例
新课改中由“双基”变为“四基”的必要性——结合小学数学实例课程名称小学数学课程标准与教材分析年级 2 0 1 1 级专业小学教育姓名赵美佳学号03完成时间2013年4月29日目录摘要 (2)关键词 (2)一、“双基”与“四基”的简述 (3)二、“双基”发展为“四基”的原因 (3)(一)时代背景 (3)(二)与课程目标不同步 (4)(三)以人为本的素质教育理念 (4)(四)中外教育对比研究结果 (4)(五)数学素养的要求 (4)三、结合自身学习及实例探讨“四基”的优越性 (4)(一)基本思想 (5)1.抽象的思想 (5)2.推理的思想 (7)3.模型的思想 (7)(二)基本活动经验 (8)四、小结 (8)五、参考文献 (9)新课改中由“双基”变为“四基”的必要性——结合小学数学实例摘要:《义务教育数学课程标准(2011年版》中的课程目标在“双基”的基础上增加了“基本思想和基本活动经验”,确定为“四基”,这其中有深刻的原因,尤其是“基本思想”、“基本活动经验”的提出有利于提高学生数学素养,培养学生创新能力,增加教学有效性,培养全面发展的综合型人才。
关键词:双基;四基;基本思想;基本活动经验;启示新课改中由“双基”变为“四基”的必要性——结合小学数学实例一、“双基”与“四基”的简述所谓双基,指的是基础教学中的基本技能和基础知识,讲究精讲多练,其主要的教学目标是使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力,起源于20世纪50年代,在我国数学教学中应用广泛。
“四基”是指在原有基础知识和基本技能的基础上又加入了基本思想和基本活动经验,这是数学素养的重要标志。
“四基”是由《国家数学课程标准》制定组组长、东北师范大学的史宁中教授于2006年在厦门演讲时提出的,引起了数学教育界的广泛关注,适应时代发展的需求。
二、“双基”发展为“四基”的原因由“双基”发展而来的“四基”,在《课标》中的表述为:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
谈谈您对新课标中的双基到四基
>谈谈您对新课标中的“四基”的认识,从“双基”到“四基”的发展,关键是什么?
过去的“双基”指的是基础知识与基本技能。
新课标提到的“四基”指的是基础知识、基本技能、基本思想、和基本活动经验。
即通过数学教学达到以下要求:掌握数学基础知识;训练数学基本技能;领悟数学思想;积累数学基本活动经验。
双基教学的的操作程序,基础知识和基本技能的教学大部分可以得到落实。
欠缺的是对基本技能和基本观念态度进行理论和实际操作程序相结合的研究和实践,但是如何找到中间的平衡点,是个关键。
只有将理论体现在课堂上,用理论来驾驭合适的教学方式,才能使两者得到平衡。
"双基"到"四基"的过渡内涵
育人 为先 ” , 为学生提供 “ 数学 的基 础知 识 、 基本技能、 基本 分体现教 学耍 以“ 让 学 生智 慧得 到提 升 、 人格 思想 、基 本 活动经 验 是 一个有机 的 整 个 性化教 育 ,
体, 是互相 联 系 、 互相促 进 的 。基 础知识
得 到完善 , 为学 生未来学 习和终身发展培
养 良好 的 习惯 。
和基 本 技能 是 数 学教 学 的主 要载 体 , 需
( 上接 第 2 9 4页)
排过忧 、 解过难 。 学生们都很信 上一切美好 的东西 ,激发他 们扬帆前进 。 们 做过事 , 比如 。 我班 崔 延鹏做 过腰 穿 刺手 术 , 需 要 任我 , 尊重我 。 把 班级 当成 了温暖的家。 看
生能 “ 获得 适应社会 生活和进 一步发展所 个 目标 , 就是知识 与技能 , 而增加 这两条 ,
就是 数学 知识 为载 体 ,并 且应该 注意 将数 学 必 需 的数学 的基础知识 、 基 本技 能 、 基 本 则还 涉及三维 目标 的另外两个 目标 ,
思想 和基本活动经验” 。 不可 否认 , 过去 的数学 课程 , 非 常强
《 课程标 准实验稿= 》在 几年实验研 究 应社 会 生活和 进一 步发 展所 必需 的数学 要 花费较 多的课 堂 时 间 ;数 学思想 则是 基本技能 、 基本 思想 、 基本活 数学教学的精髓 ,是统领课堂教学的主 的基础上 , 《 课 程标 准> 对课 程 目标 进行 了 的基础知识 、
接与人相关。 三是因 为虽然双 基是 培养创 养心灵 , 生 命呵护 生命的事业 。我想 , 。 双
新性人才 的基 础 。 但是 创新性人 才不能仅 基 ” 到“ 四基 ” 的过 渡内涵就 是我们必须树
数学课堂从“双基”到“四基”
数学教学从“双基”到“四基”的转变大连博雅中学------孙迎春随着数学新课程标准的逐渐完善,“数学‘四基’”这个新名词已经为我们所熟悉,我们数学课堂也在悄然变化,教师们已经开始关注数学“四基”。
在接近两年的摸索学习过程中,我发现我们注重“四基”的课堂,少了一些喧闹和花俏,多了一些朴实,更加突出数学本质。
这些利于学生发展的课堂改变,证实了落实“四基”已不再是口号,而是数学教育改革需要。
“双基”作为最重要的教学目标,基础知识和基本技能是每个学生都必须掌握的内容。
新课改把原来的“双基”目标修改成“四基”目标,在原有基础上又增加了基本思想、基本活动经验两项。
在数学教学中,强调数学“双基”和“数学思想方法”已成为共识,如何在数学课堂中更好地实现“四基”的达成,也成为我们当下数学老师需要积极思考的问题。
下面我就新人教版七年级下册《平行线的判定》这一课,来说说我在数学教学从“双基”到“四基”的转变过程中所作的尝试。
“学起于思,思源于疑”。
探究源于问题,教学过程需要问题来活化,教学对象需要问题来触动,因此,新知的生长点往往来自于一些能突出认知矛盾,激发探究欲望的问题——探究点。
通过探究点的引领,借助于情境的支持,引发认知冲突,在原有知识经验不能同化新知识下,迫使学生及时地调整,以适应新知的学习。
这节课我设计六个环节,其中第一个环节就是复习引入,创设情境。
我首先复习上节课的平行线的概念的三个相关问题,然后复习“三线八角”图中三对角的位置关系,然后由用什么方法来检验一块玻璃板上下两边是否平行的问题引入到本节课的内容。
设计这样的环节大约需要10分来完成。
初步的打算是不但让学生复习上节课的内容,同时过渡到下面环节。
但我忽略了情境的目的,情境设置不仅仅要起到“敲门砖”的作用,而且还应当随思维过程中自始自终地发挥重要的导向作用,即应当成为相关学习活动的“认识基础”。
鉴于以上原因我在这节课的教学过程中,把问题情境修改为:(1)复习平行线的概念,你现在有什么方法来检验两条线是否平行?(2)老师现在手里有一块刚刚裁好的纸条你如何来帮老师来检验纸条的上下两边是否平行?我把问题(2)完全的抛给学生,给他们足够的时间去研究,同学们的生活经验不同,背景不同,从各自阅历出发,都能得到不同的方法,虽然方法有对有错,但通过动手做及互相交流,实现了他们对有必要探索如何来判断两条直线平行的迫切性。
从“双基”到“四基”,从“两能”到“四能”-双基教学到四基
从“双基”到“四基”,从“两能”到“四能”:双基教学到四基《义务教育数学课程标准(2011年版)》(以下简称《标准(2011年版)》)在“总目标”中明确提出学生能“获得适应社会生活和进一步发展所需的数学基础知识、基本技能、基本思想、基本活动经验”“增强发现和提出问题的能力、分析和解决问题的能力”,与《全日制义务教育数学课程标准(实验稿)》(以下简称《标准(实验稿)》)相比,对义务教育数学课程总目标的表述从“双基”到“四基”,从“两能”到“四能”,可以说是《标准(2011年版)》与《标准(实验稿)》之间最显著的区别.它的意义何在?对初中数学教学将会提出哪些要求?对此我们可以从以下几个方面来认识.一、时代的需求《标准(实验稿)》的修订是以《国家中长期教育改革和发展规划纲要(2010-2020)》为指导的.课程理念、目标的设定必须根据从2010到2020这一时代国家经济发展、社会变革的需要.在未来的十年中我国的经济将平稳较快地发展、社会和谐持续进步,与此同时国际竞争日益激烈,我们必须应对未来的挑战,为此教育就必须为国家培养高素质的劳动者和各类人才.数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养,作为促进学生全面发展教育的重要组成部分,数学教育不仅要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用.从这一层意义来说,让学生获得“基本思想”与“基本活动经验”更具有深远的意义.同样从培养人的思维能力和创新能力这一意义上来说,数学课程在培养学生能力方面的目标设定也需要进一步的完善.传统的提法“增强分析和解决问题的能力”的前提是已经给出了“问题”,然后让学生去分析,去解决.但人们在现代生活和生产中遇到的往往是变化万千的现实,甚至是困惑,并没有现成的“问题”,更没有像课本中那样已经抽像、概括好了的数学问题,所以人们首先要做的是从纷繁的现实中去发现问题,并通过抽象概括用语言把所发现的问题正确地表述出来,也就是提出问题.发现问题、提出问题是进一步分析问题和解决问题的必须准备.发现问题、提出问题的能力也是培养学生创新能力所必需的.二、要辩证地、整体地看待“四基”和“四能”“基础知识”和“基本技能”就是传统数学一直被人们所关注的“双基”,在新学课程中它们有着重要的地位.它既是学生发展的基础性目标,又是课程总目标的另外三个方面:“数学思考”“问题解决”“情感态度”得到落实的重要载体.“基本数学思想”是对数学知识和方法在更高层次上的抽象和概括.初中阶段涉及的基本数学思想主要有等量代换、数形结合、分类、归纳、类比、演绎、化归、模型等.这些数学思想蕴涵在数学知识的发生、应用和发展的过程中.比如用代入法解二元一次方程组的过程中就蕴涵“等量代换”的数学思想.“代入消元”只是一种具体的方法和技能.它抽象、概括成“等量代换”的数学思想后,它的意义就更广泛了,它告诉人们,数学模式中相等的量是可以互相替换的,这种替换能使数学模式得以改变,改变成使问题易于解决.案例1已知+=3,求代数式的值.解:由已知,得y2+x2=3xy,∴===6.掌握了“等量替换”的数学思想,就会演绎出更多、更精彩的方法和技巧,比如上例中的整体代换,解方程中的换元法等.数学思想区别于知识与技能的意义在于,它给人们的指导更广泛、更一般、更长远.落实“双基”则是掌握基本数学思想的根本途径.“基本活动经验”的获得是提高学生数学素养的重要标志.“基本活动”主要是指观察、猜想、实验、计算、作图、验证、证明等.各种活动的经验都是在“做”和“思”的过程中积淀,在数学学习过程中逐步积累的.比如从抛硬币、摸球、旋转转盘等大量实验活动中我们获取了用事件发生的频率来估计概率的经验.从大量的几何证明活动中我们获取了有关辅助线添法的经验、用反例证明一个命题为假的经验等等.“基本活动经验”的积累将使我们的数学学习和应用变得更有效.“四能”是《标准(2011年版)》对课程目标在能力培养方面的高度概括,它涵盖了推理能力、运算能力和空间想象能力.增强“发现和提出问题的能力”对于学生创造能力的培养有着特别重要的意义,另外应当注意,“四能”与“四基”是密切相关的,没有扎实的“四基”,增强“四能”就是一句空话.三、落实“四基”、增强“四能”还需要我们做点什么从“双基”到“四基”,从“两能”到“四能”,对教师、对数学教学提出了更高的要求,我们可以从以下几方面做起。
义务教育数学课程标准深度解读之一:从“双基”到“四基”(201311 四川泸州)
原课标削弱的内容:
控制计算的难度和速度,初中有理数的混合运算不超过3步; 淡化单纯的公式记忆,降低了多项式计算、乘法公式和因式分解的要求; 降低对论证过程形式化和证明技巧的要求; ……
(三)原课标的主要特点
2、原课标的主要特点
主要理念:以人为本。
基本目标: 提高学生的数学素养。
课程内容: 四大学习领域。
1999年初,国家正式启动基础教育课程改革。 1999年3月11-12日,国家数学课程研制工作小组成立大会在北京 师范大学新松公寓召开。
1999年10月8-10日,在北京召开了“国家数学课程标准研制工作 研讨会”。特别邀请了姜伯驹院士、严士健教授、梁国平研究员、 张尧庭教授,以及数学教育家张孝达、张奠宙、王长沛等先生。
(2011年3月28-31日):形成标准专家个人审读意见
第二环节 通讯审议 (2011年4月 1日- 3日):形成第一轮审议修改意见 (2011年4月 4日- 6日):形成第二轮审议修改意见 (2011年4月16日-18日):审议结论及专家个人投票
第三环节 国家审定
(2011年5月-11月):教育部和国务院审定通过、颁布
原因3(诱因)—— 争鸣的促进
2005年3月初的“两会”:数学课改引起争论
“这个‘新课标’改革的方向有重大偏差,课程体系 完全另起炉灶,在实践中已引起教学上的混乱。”
—— 姜伯驹.新课标让数学课失去了什么 光明日报, 2005-3-16
“ 课程改革对教材的处理不外乎两种类型:一是体系几乎不 变,内容修修补补;二是在保持原来基本内容的基础上,重新构 建新体系。……既然第一种方式仍存在着那么多问题,我们为什 么不可以“另起炉灶”呢?”
三、从“双基”到“四基”的发展变化
小学数学课堂教学中如何落实“四基”
小学数学课堂教学中如何落实“四基”2011年版新课标在课程总目标的阐述中将“双基”(基础知识、基本技能)变成“四基”(基础知识、基本技能、基本思想、基本活动经验),两能变成四能,使小学数学教学目标更加全面和立体。
一、如何理解“双基”变成“四基”1、“双基”变成“四基”的原因双基只涉及三维目标的第一目标:知识与技能,另外两维目标:过程与方法、情感、态度与价值观都没有涉及;有些教师片面地理解双基,只追求知识技能单一目标,教学中不是以人为本,是以本为本。
新增加的两基是以人为本,是符合素质教育的;双基是培养创新型人才、实践型人才的一个基础,但是仅仅靠熟练掌握已有的知识和技能来培养创新型、实践型人才是不行的。
更重要的是让学生在学习知识形成技能的过程中,去学习感悟数学思想,积累数学活动经验,学会数学思考,自己能够发现问题、提出问题、分析问题和解决问题。
2、“双基”内涵的变化随着社会的进步,科学技术的发展,课程改革的实施,新课标“双基”的内涵也发生了一些变化:课程内容中的基础知识不仅包括基本概念、性质、公式等,还包括这些基础知识形成的过程和蕴含的思想方法。
课程内容发生变化,直接删去了一些过难的内容,降低了对部分知识点的学习要求,这从一年级新教材已经开始实施了。
课程内容将十个核心概念作为教学目标,强调应该注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识、创新意识等。
(每一个核心概念的内涵课程标准在课程内容里都有解释)基本技能不仅要使学生形成运算、推理、图形处理技能,还增添了数据处理技能(从复杂的数据信息背后探寻数据规律的技能)、数学交流技能(数学表达、谈论数学的技能)、运用信息技术技能等。
(运用计算器、计算机进行计算或数据处理;运用计算机软件作图)“双基”在方法上更强调学生掌握数学知识不能依赖死记硬背,必须以理解为基础,在知识的应用中不断巩固和深化。
3、基本思想和基本活动经验“双基”是基础,基本思想和基本活动经验是在“双基”的基础上形成的,是“双基”的发展。
第一个大的变化是由双基变四基。双基是指基础知识基本
第一个大的变化是由双基变四基。
双基是指基础知识、基本技能,现在增加了两个,就是基本思想方法、基本活动经验。
现在的四基是指:基础知识、基本技能、基本思想、基本活动经验。
并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。
第二个大的变化是由双能变四能。
过去仅仅强调的分析和解决问题双能,现在增加了两个,就是增强发现问题和提出问题的能力。
现在的四能是指:分析问题的能力、解决问题的能力、发现问题的能力、提出问题的能力。
《课标》修订中在继承我国数学教育注重“双基”传统的同时,突出了培养学生创新精神和实践能力,提出了使学生理解和掌握“基本的数学思想和方法”,获得“基本的数学活动经验”。
在强调发展学生分析和解决问题能力的基础之上,增加了发现和提出问题能力的课程目标。
现代教学论研究指出,产生学习的根本原因是问题,没有问题就难以诱发和激起感觉不到问题的存在,学生也就不会去深入思考,那么学习也就只能是表层和形式的。
求知欲,而一旦学生有了问题意识,就会产生解决问题的需要和强烈的内驱力。
因此,将问题贯穿教育过程,让问题成为知识的纽带,培养学生发现问题和解决问题的能力,是新课程的目标,也是现代教育追求的理想。
爱因斯坦说:“只有善于发现问题和提出问题的人,才能产生创新的的冲动。
”在培养创造性人才越来越受到国人关注的今天,培养学生发现问题与解决问题的能力引起广大教育工作者的重视,孩子开始学会说话时,总是围着大人问:“这是什么?”、“那是什么?”、“为什么会这样?”无穷无尽的问题充满了对未知世界的好奇。
但为什么随着年龄的增长,学生的问题意识却逐渐淡薄呢?有些学生只会机械地、模仿性地解决问题,原因何在呢?一、学生的问题意识逐渐淡薄的原因分析传统课堂教学主要是靠“灌输——接受”的模式来完成。
忽视了学生发现问题和解决问题的能力的培养,学生普遍不能或不善于发现问题,不敢或不愿意解决问题。
初中数学教学目标从“双基”到“四基”的转变策略-最新教育文档
初中数学教学目标从“双基”到“四基”的转变策略《义务教育数学课程标准(2011年版)》提出的“四基”课程目标,将“数学的基础知识、基本技能”的“双基”目标,发展为“数学的基础知识、基本技能、基本思想、基本活动经验”的“四基”目标.但在日常教研交流中,笔者发现有两个现象,一个是很多老师对何谓“四基”还不甚了解,另一个是部分老师认为“四基”的提出就是完全否定过去的“双基”目标导向.换句话说,我们很多老师并没有真正了解:为什么要把“双基”发展成“四基”?“四基”对学生的基础教育培养又有何意义?基于此,就如何继承“双基”中的优良做法,以及如何把握数学基础教育发展的方向,归纳了如下几点看法,希望有助于摆正我们数学基础教育教学的前进方向.一、继承“双基”教学中的优良传统在数学的课堂教学中,加强基本知识和基本技能的教学,是我们数学课堂长期的实践中总结下的精华,启发式教学是我们初中教师最擅长使用,也是最得心应手的教学方式之一,这都是值得我们继承的.那么在实际的教学中,有哪些具体的做法是我们要弘扬与发展的呢?1.温故而知新学生对于未知领域的知识内容是很感兴趣的,我觉得把新知识的学习建立在旧知识的基础上,既方便于学生对新知识的理解和掌握,也方便老师更好地组织教学.比如在教《锐角三角函数(1)》(人教版九下)时,为了更好地温故知新,我就改变了背景陌生且叙述冗长引例,先让每个学生拿出一副三角板来研究边、角关系,并复习已学的旧知识:(1)三角板的各内角度数;(2)直角三角形两锐角互余;(3)直角三角形30°角所对的边是斜边的一半;(4)等腰三角形两腰相等;(5)勾股定理.“温故而知新”的教育原则,正是我们数学课堂教学所要传承的典型方法,也是我们数学教师最为精心设计的一个部分.因为它符合学生的认知规律,使学生由旧知中产生困惑,形成一个情境来激发探求新知的欲望,从而能很好地让学生经历了新知识的发生和发展过程,学生在这样子的环境中学习,会感到既轻松又有效.这无疑是“双基”教学中一个精华的、有效的做法.2.加强变式教学我觉得加强例题的变式教学也是继承“双基”教学的一个优良传统.变式教学作为课堂教学活动的一个重要环节,可以将一道题目进行变化或适当地拓展,给学生提供一个发展思维的阶梯.这不仅拓展整个课堂教学的空间,也避免了题海战术,真正起到事半功倍的效果.比如我发现学生对公式的记忆大多很机械,若我能在授课时让学生在有限的时间内看到尽量多的公式变形形式,并在各种形式中寻找不变的规律,这样不仅能帮助学生记忆公式应用公式,也能培养学生化归能力.在教《平方差公式》(人教版八上)时,我举了如下例子:下列式子能否用平方差公式计算,并指出公式中的a、b分别是什么?(1)(2m+n)(2m-n);(-2m-n)(2m-n);(-2m+n)(-2m-n);(-2m-n)(2m+n).(2)(2m+n+3)(2m-n-3);(-2m-n-3)(2m-n+3);(-2m-n-3)(2m+n+3).通过上述形式的变化能够加深学生对公式的理解,在变化的式子中让学生发现并掌握公式的本质特征:平方差公式应用时公式中的a,b与顺序无关,相同项即公式中的a,相反项即公式中的b.学生只要找出相同项和相反项,然后把相同项的平方减相反项的平方,问题就解决了.变式教学注重知识间内在的关联,强调学科知识的系统构建.因此,例题的变式教学当然是“双基”教学中又一个优良的做法.但要让它发挥更大作用,还要通过学生逐步地体验与积累,比如尽可能通过学生的合作交流,在解题后还要进行归纳和反思,以挖掘问题的本质,并揭示规律,这样才能形成学生自己的基本技能.3.注重课堂教学小结刚接触新的数学知识,学生难免没有方法,若老师只是用大量的练习来训练,让学生在不断地碰壁与失误中总结经验,那代价未免太大了.如果我们老师能充分利用课堂小结环节的作用,帮助学生梳理知识脉络,进而与其它知识融会贯通,势必会产生事半功倍的效果.比如充分利用图表、口诀、框架等记忆方法进行课堂小结,有效地做到了巩固复习、记忆和反馈功能,这在数学教学的实践证明是行之有效的.所以注重课堂小结是“双基”教学中又一具体表现.另外,注重课堂练习巩固也是我们“双基”教学的突出特色之一,比如在每节数学课堂中,当新知识建立后,我们就会趁热打铁地安排巩固训练.因为数学的概念、命题、公式、法则的理解与应用,都需要通过各层次题目的反复训练达到的,所以这种夯实基本功的做法收到的效果是有目共睹的.其实双基教学就是我们课堂中最为基本、最应当要强调的东西,如:温故知新、加强课堂练习巩固、加强变式教学、注重巩固小结等.注重基本教学是我国现在数学教育鲜明的特色,也是我国千百年来所提倡的优良传统. 二、实现“双基”教学到“四基”教学的转变1.“双基”为什么要发展为“四基”数学基础教育中,“双基”教学的作用和其历史贡献值得肯定的.2001年颁发的《基础教育课程改革纲要(试行)》规定课程应达三维目标:知识与技能、过程与方法、情感态度与价值观.而新《义务教育数学课程标准(2011版)》提出了四维目标:知识与技能、数学思考、问题解决、情感态度.不管是三维还是四维目标,“双基”仅仅涉及到“知识与技能”的目标,而新增加的“两个基础”则涉及另外的目标――过程方法、数学思考和情感态度等.可以说,发展成“四基”是多维数学教育目标的要求.“双基”在实施过程中往往出现“见物不见人”的现象,而教育必须以人为本.所以我们在教学中,除了要让学生掌握必备的基本的数学知识和技能外,还要在课内注重渗透数学的基本思想,积累数学活动经验.新增加的“两个基础”就直接与人相关,也符合“素质教育”的理念,所以发展成“四基”也是提高学生数学素养的基本要求.2.实现从“双基”到“四基”的发展性转变①达成启发式教学与探究式教学的有效融合启发式教学是我们教师在讲解中永远应该弘扬的传统,现实的数学课堂,以发问方式启发、引导学生学习知识和发展能力,已成为数学教师主流的教学行为.但也出现重形式提问,重结果启发,重外在情境启发等现象.随着新课标对数学探究教学的强调,特别是新教材中,几乎每个课时都创设了探究活动,这对我们现行的课堂教学触动很大.所以,如何达成启发式教学与探究教学间有效的融合,是摆在当前课堂教学的一大问题.我觉得要做好两个方面的工作:一是创设好有启发作用的问题情境,可以用生活中实例来构建数学模型,也可以用纯数学的旧知来引导学生;二是充分利用学生资源做好探究活动,如引导学生经历观察、试验、猜测、验证、推理概括等过程.比如:在学习八年级数学《13.2画轴对称图形(2)》时,我先让学生在平面直角坐标系中画出点A(2,3)、点B(-4,-1)关于x轴的对称点,然后引导学生观察点A与、点B与这两对对称点间横、纵坐标的关系,并归纳出关于x轴对称点的坐标特点.接着让学生用类比的方法画出点A、B关于y轴的对称点,并自行归纳出关于y轴对称点坐标的特点.最后让每个小组在讨论中总结了点(x,y)关于x轴、y轴对称的一般规律,并用这一规律完成练习:已知点P(2a+b,-3a)与点(8,b+2),若点P与关于x轴对称,求a、b的值;若点P与关于y轴对称,求a、b的值.在我的引导和启发下,学生自己去探索、合作,并获得结论,从中探究一条“从特殊例子得出一般结论,再用结论去解决特殊问题”解决数学问题的方法.达成启发式与探究式在教学上的有效融合,我们需要关注操作层面上求同存异和互为补充,力求趋于一致.课堂上我们要提倡教师善于启发、引导,与学生“合作”,也要关注学生自主或合作交流完成对数学问题的主动探索.②积累基本活动经验,感悟基本思想数学活动经验是学生经历了具体的活动而形成的,既有感知的内容,也可以是反思后的经验.比如:在九年级数学《24.1.4圆周角(1)》中,由于圆心角的位置固定不变,而圆周角随顶点的位置变化而变化,要探究同弧所对圆周角与圆心角的三种位置关系,要先让学生经历动手画图、操作、体验等具体的数学活动,在感知的基础上学生发现二者的数量关系.接着再引导学生利用三角形及等腰三角形的性质加以证明.在这个过程中我们应鼓励学生去自己探索,自己获得结论.在学生积累一定的数学基本活动经验的基础上,就可以“悟出”一些数学思想,比如分类讨论思想、化归转化思想.数学是思维的科学,发展学生的数学思维能力是中小学数学教学的重要任务.我们数学教学在发展数学思维能力方面有两个特色:一是数学思想方法的渗透,二是解题教学的变式训练.数学思想在课堂教学中的渗透,首先是将数学思想是融于数学知识、技能和方法之中的,正如上面的教学;其次,数学思想的获得是通过理解、提炼、总结、再理解、应用等循环过程,让学生逐步“悟”出数学思想.③强调基本的概念教学基本的概念教学,是数学课程教学的主要内容之一.学生如果没有掌握好数学基本概念及其内在联系,常常会造成数学运用能力不强,也就造成学习成绩无法提高的现象.所以我们要强调基本的概念教学,在教学中我们要充分地挖掘概念的内在联系,并从中寻找解题的思路.比如函数概念的学习,如果直接要求学生从之前的静态问题转变为运动变化问题,这对学生而言是有困难的.所以我们要做好各方面的联系,比如函数图像是让学生体会数形结合的思想方法;基本初等函数的二维空间的思考模式,使学生的数学思维更为活跃;三角函数成为学生研究三角形以及周期变化的重要工具.我们老师要做的是让学生的大脑扩充或提升新数学知识体系,并重新认识已学内容的观点.开启学生的思想智慧,发展学生的创新意识与创造力,是数学教育的根本目标。
双基到四基的教学实践(2篇)
第1篇摘要:本文从双基教学到四基教学的转变出发,结合我国教育现状,探讨了在教学实践中如何实现这一转变,并分析了四基教学的优势和实施策略。
一、引言随着我国教育事业的不断发展,教学理念也在不断更新。
从传统的“双基”(基础知识、基本技能)教学到“四基”(基础知识、基本技能、基本方法、基本态度)教学的转变,是我国教育教学改革的重要方向。
本文将从教学实践的角度,探讨如何实现这一转变,并分析四基教学的优势和实施策略。
二、双基教学到四基教学的转变1. 双基教学的特点双基教学是指在教学过程中,注重基础知识的传授和基本技能的培养。
这种教学模式强调知识传授的系统性、全面性和针对性,注重学生的基础知识和基本技能的培养。
2. 四基教学的特点四基教学是在双基教学的基础上,进一步强调基本方法和基本态度的培养。
这种教学模式注重培养学生的创新精神和实践能力,强调学生主动参与、自主探究的学习过程。
3. 双基教学到四基教学的转变原因(1)时代发展需求:随着科技的飞速发展,社会对人才的需求越来越高,要求学生具备更强的创新能力和实践能力。
(2)教育改革趋势:我国教育改革不断深化,从应试教育向素质教育转变,四基教学正是素质教育的重要组成部分。
(3)学生发展需求:学生需要适应未来社会的发展,具备较强的综合素质,以应对各种挑战。
三、四基教学的优势1. 培养学生的创新精神和实践能力四基教学强调学生主动参与、自主探究的学习过程,有助于培养学生的创新精神和实践能力。
2. 提高学生的综合素质四基教学注重学生基本方法、基本态度的培养,有助于提高学生的综合素质。
3. 促进学生的全面发展四基教学关注学生的个性化发展,有助于促进学生全面发展。
四、四基教学的实施策略1. 教师转变观念教师应树立正确的教育观念,关注学生的全面发展,将四基教学理念融入教学实践。
2. 改革教学方法教师应采用多种教学方法,如探究式教学、合作学习等,激发学生的学习兴趣,培养学生的创新精神和实践能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原来的课标双基:基础知识、基本技能,现在的四基:基础知识、基本技能、基本思想方法、基本活动经验。
教学中要让学生学会知识、形成技能,更要让学生学会思想方法、学会做人、学会了对学科知识的爱。
后增加的双基比原来的双基更为大气、更为重要,这也是我们平时所说的做人比做学问更重要。
基本的思想方法和基本的活动经验都是看不见的。
知识技能是看得见的。
但是如果没有基本的思想方法,我们给孩子们的基本的知识与技能只能应付考试。
但应付不了未来。
2011版小学数学新课标之双基变四基解读(小学数学)—汪冬梅
2012年11月07日
汪冬梅
2011版新课标把原来的“双基”变成“四基”。
“双基”既基础知识、基本技能;“四基”包括基础知识、基本技能、基本思想、基本活动经验。
“四基”与数学素养:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。
其实也就是两种能力变成四种能力。
史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。
”关于基本思想方法,数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。
小学阶段涉及到的数学思想方法,比如分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、极限等数学思想方法。
《课标》修订中在继承我国数学教育注重“双基”传统的同时,突出了培养学生创新精神和实践能力,提出了使学生理解和掌握“基本的数学思想和方法”,获得“基本的数学活动经验”。
在强调发展学生分析和解决问题能力的基础之上,增加了发现和提出问题能力的课程目标。
我赞成这样的补充。
数学思想方法是学生认识事物、学习数学的基本依据,是学生数学素养的核心。
数学思想方法是处理数学问题的指导思想和基本策略,是数学学习的灵魂。
数学思想方法是伴随学生知识、思维的发展逐渐被理解的,数学思想方法的感悟是在学生数学活动中积累的。
教学中渗透数学思想方法可以使学生自觉地将数学知识转化为数学能力,最终通过自身的学习转化为创造能力。
这对于学习数学、发展能力、开发智力、培养创新能力都是至关重要的。
如何帮助学生在数学学习中感悟数学思想,积累数学活动经验呢?我们从《课标》中新增加的一个案例的讨论说起。
案例:鸡兔同笼问题
“一个房间里有四条腿的椅子和三条腿的凳子共16个,如果椅子腿数和凳子腿数加起来共有60个,那么有几个椅子和几个凳子?”
此题目老师们似乎也很熟悉,有人把它称为“鸡兔同笼”的变型。
这是在过去的奥数培训中是不可缺少的训练内容。
今天的《课标》中又增加了这样的案
例,为什么?该案例的数学教育价值何在?面对着同样的教学内容,今天该怎样进行教学?我们不妨将两种教学方法做一个比较。
过去教学此内容教师通常采用假设法,一开始就将自己明白的道理讲给学生,比如“我们把所有的椅子都假设成有三条腿计算时,求出来的就是四条腿的椅子数;我们再把所有的椅子都假设成有四条腿计算时,求出来的就是三条腿的凳子数;”接着一下子就把算式给出来了。
(60-16×3)÷(4-3)=12(四条腿的椅子数)
(60×4-60)÷(4-3)=4(三条腿的凳子数)
学生死记硬背公式,照猫画虎完成任务,没有经历公式数学化的学习过程。
这样的教学事实上正像东北师大史宁中校长所说“老师讲课不能太聪明了,老师虽然知道结果,但要引发学生思考。
教师一下子把算式给出来了,学生还探讨什么?”在这样的课堂里学生已经没有了探索的空间。
《课标》教学建议中让学生在解决问题的过程中“感悟数学思想,积累数学活动经验”在此已经成为了一句空话!
我们一起来看看《课标》在案例的解读中给出了怎样的建议?这样的教学又会给学生继续学习数学带来怎样的后劲儿?
教师首先引导学生在对题目理解的基础上进行观察与猜想,并进行大胆尝试,让每一位学生亲自做一做,运用尝试的方法探索规律,得出结果。
并记录计算的过程,引发新的思考。
如:
椅子数凳子数腿的总数
16 0 4×16=64
15 1 4×15+3×1=63
14 2 4×14+3×2=62
启发学生观察,“每减少一个椅子就要增加一个凳子,腿的总数就要减少4-3=1。
”如果继续尝试下去会有怎样的情况发生?学生带着观察结果,继续探究……
13 3 4×13+3×3=61
12 4 4×12+3×4=60
至此得到椅子数12,凳子数4时,腿数恰好为60。
通过引导学观察发现:腿的总数为60时,需要减少的椅子数是64-60=4,于是椅子数是16-4=12,凳子数是0+4=4。
最后验证:12×4+3×4=60,是正确的。
当然,也可以引导学生从凳子数的变化思考,即:“每减少一个凳子就要增加一个椅子,腿的总数就要增加4-3=1。
”
教学中教师通过引导学生以常见的“四条腿的椅子、三条腿的凳子”简单背景为研究素材,通过学生的观察、猜想、实验、发现“每减少一个椅子就要增
加一个凳子,腿的总数就要减少4-3=1。
”学生在尝试中不断地归纳出数学规律,抽象出数学模型,并在此基础上推广到其他同类问题的研究中。
学生在解决问题的实践中感悟数学思想,积累数学活动经验,这是培养学生数学能力的重要途径。
对于学有余力的学生,教师可以鼓励他们用字母代替椅子数与凳子数,得到计算腿的总数的数学模型。
学生经历了观察、实验、猜测、计算、推理、验证等活动,得出数学结论。
学生经历了数学化的学习过程,体会到从特殊到一般的数学思想归纳法。
归纳是人们认识事物的基本的思想方法,学生在数学活动中感悟数学思想方法,同时学会逐步积累利数学活动经验,为后续学习数学作好准备。
“双基变四基,双能变四能”又一次为学生出发,教育要从孩子出发,帮助学生在数学学习中感悟数学思想,积累数学活动经验。
不仅要求教师在课堂上要给学生静心再读、再品、再思考的空间,更要求教师与学生大家对话、交流、研讨,甚至反复研读讨论。
整体把握教材,该放的放,该收的收。
经验因人而异,对“基本的活动经验”应如何理解?
对此,可以从每类基本活动经验的具体类别中加以专门培养。
如,直接的活动经验可以通过诸如购买物品、校园设计等活动获得;而间接的、作为创设实际情景、构建数学模型中所获得的数学经验,可以在诸如鸡兔同笼、顺水行舟等问题的解决获得。
设计的活动经验是单纯的数学活动中所获得的经验,在随机摸球、地面拼图等活动中可获得;而思考活动经验则通过分析、归纳等方法获得数学经验,如预测结果、探究成因。
培养学生自主性的几个原则:给学生一个空间,让他们自己往前走;给学生一个条件,让他们自己去锻炼;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案;给学生一个机遇,让他们自己去抓住;给学生一个冲突,让他们自己去讨论;给学生一个权利,让他们自己去选择;给学生一个题目,让他们自己去创造。
想成为一个出类拔萃的教师更需要付出;让我们用朴实的勤奋宣战功利,用无言的沉默压制浮躁,用无悔的坚持对待教育,用快乐的心态精彩人生。