从双基发展到四基
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何理解课程目标由双基增加为四基?
扬子学校:张玉平新课标中把数学教学中的“双基”发展为“四基”,过去的“双基”指的
是基础知识与基本技能;现在新课标指的“四基”包括基础知识、基本技能、基本思想和基本活动经验。即通过数学教学达到以下要求:掌握数学基础知识;训练数学基本技能;领悟数学基本思想;积累数学基本活动经验。
四基对老师的要求更高,整个课程改革的推进过程,对教师各方面的要求都会很高,教师需要不断学习不断更新才会有创新和发展。数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。
“基本活动经验”是指“在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。”基本活动经验建立在生活经验基础上,帮助学生建立自己的数学现实和数学学习的直觉,学会运用数学的思维方式进行思考。
“基本思想’主要是指演绎和归纳,这是整个数学教学的主线,是最上位的思想。”具体的问题中,涉及数学抽象、数学模型、等量替换、数形结合等数学思想,但最重要的思想还是演绎和归纳。
回顾自己以前比较熟悉双基教学的操作程序,基础知识和基本技能的教学大部分可以得到落实。欠缺的是对基本思想和基本活动经验进行理论和实际操作程序相结合的研究和实践,我将不断学习、研究,吸取别人的有益经验,争取早日适应社会时代的新要求。
如何理解《课程标准》中的10个核心概念?
《课程标准》以全新的观点将小学数学内容归纳为“数与代数”“图形与几何”“统计与概率”“综合与实践”四个学习领域,特别突出地强调了10个学习内容的核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。
1、数感。
一是关于数与数量。在小学低段,儿童对数的感悟是从数数学习辨认各组实物对象的多少开始建立的,学习用数表示多少的第一步就是数数,随着学习年级的增高,学生经历了更多的对数意义的感悟,如对分数、负数、有理数……的感悟,并形成对数的各种表征方式的理解,这是一个逐渐展开的过程。
二是关于数量关系。它是培养学生数感的另一个层次,即不同年龄段的学生在理解了所学数的意义及表征后,他就具备了理解一定数量关系的基础,如学生在学习分数概念后,就建立起整体与部分之间关系的感悟,依赖于具体情境或图形,会分辨两个分数的大小。随着他们数感的增强,学生年级的升高和数系的扩充,学生对数量关系的感悟也会逐步提升,最后达到对具体问题所涉及的数量关系的整体把握。
三是关于运算结果估计。它是数学课程中所占学时较多的内容,过去更多关注运算法则的掌握和运算技能的训练,其实通过运算培养学生的估算意识和能力,对运算结果的估计反映的是学生对数学对象更为综合的数感。
2、符号意识。
一,能够理解并且运用符号表示数、数量关系和变化规律,即能够理解符号所表示的意义与能够运用符号去表示数学对象(数、数量关系和变化规律等)。
二,知道使用符号可以进行运算和推理,得到的结论具有一般性。这一要求的核心是基于运算和推理的符号“操作”意识,要求学生在各学段的学习中,要加强他们在逻辑法则下使用符号进行运算、推理的训练等。
三,使学生理解符号的使用是数学表达和进行数学思考的重要形式。数学表达是学生在解决具体问题时必须采用的方式,数学表达实质上就是以数学符号作为媒介的一种语言表达,通过培养学生的符号意识,发展学生的数学表达能力已成为当今课堂关注的目标。而发展符号意识最重要的是运用符号进行数学思考,这种思考是数学抽象、数学推理、数学模型等基本数学思想的集中反映,是最具数学特色的思维方式。
3、空间观念。空间观念的含义,也可理解为空间想象力。主要体现在对诸如一维、二维、三维空间中方向、方位、形状、大小等空间概念的理解水平及其几何特征的内化水平上,体现在对简单形体空间位置的想象和变换(平移、旋转以及分割、割补和叠合等)上,以及对抽象的数学式子(算式或代数式等)给予具体几何意义的想象解释或表象能力上。
4、几何直观。《课程标准》中强调几何变换不仅是内容上的变化,也是设计几何课程指导思想上变化,这将是几何课程发展的方向。让图形“动起来”,在“运动或变换”中来研究、揭示、学习图形的性质,这样,一方面,加深了对图形性质的本质认识;另一方面,对几何直观能力也是一种提升。因此,在义
务教育阶段教学和指导学生学习时,认识和理解几何直观,能帮助学生直观地理解数学,在整个数学学习过程中教师不仅在几何内容教学中要重视几何直观,在整个数学教学中都应该重视几何直观,培养几何直观能力应该贯穿义务教育数学课程的始终。
5、数据分析观念。在《课程标准》中,将数据分析观念解释为:“了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面,对于同样的事情每次收集到的数据可能不同;另一方面,只要有足够的数据就可能从中发现规律。数据分析是统计的核心。”
6、运算能力。运算是数学的重要内容,在义务教育阶段的数学课程的各个学段中,运算都占有很大的比重。学生在学习数学的过程中,要花费较多的时间和精力去学习和掌握关于各种运算的知识及技能。因此运算是数学课程中不可或缺的内容。运算能力的培养:一,由具体到抽象。二,由法则到算理。三,由单向思维到逆向、多向思维。
7、推理能力。推理在数学中具有重要的地位。《课程标准》指出:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。”学习数学就是要学习推理。具有一步的推理能力是培养学生数学素养的重要内容,也是数学课程和课堂教学的重要目标。
在教学中教师应该从以下几个方面培养学生的推理能力。一是在整个数学的学习过程中应注重学生推理能力的发展,即贯穿于整个数学课程的各个学习