分式的性质
分式的基本性质
“同号得正,异号得负” 分式符号变换有依据么?是什么呢?
两个整式相除所得的分式的符号法则与有理 数除法的符号法则相类似,也遵循“同号得 正,异号得负”.
x x x 解( 1 ) 2 2 2 1 x ( x 1) x 1
y y ( y y) y y (2) 2 2 2 y y y y y y
B×M = A÷M B÷M (M是不等于0的整式)
为什么所乘(或除)的 整式不能为0呢?
分式的基本性质与分数的基本性质 最大区别是什么?
分数的基本性质中的分子分母都是数。
分式基本性质式子中的A,B,M表示的 是整式 ,且M≠0。但M是一个含有字 母的代数式,由于字母的取值可以是 任意的,所以就有等于零的可能性 。 所以,要特别注意M ≠0
例 1、 填空(要注意隐含条件)
b ab (1) a a 2
(2)
1 2 2 2 2 a b a 2b 2 ab 2a 2b
a 1 1 、 2b 2a b
填空(要注意分析题目中的隐 含条件噢!)
3ac 3a 2 、 4b 4bc 2 a-b a b
3a 1、将 a b中的a、b都变为原来的2倍, y
而y缩小到原来的一半,则分式的值( C ) A. 不变 B. 扩大2倍 C. 扩大4倍 D.是原 来的一半
小结与收获
分式的分子与分母都乘(或除以)同一个不等 于零的整式,分式的值不变,即:
A A M AM B BM BM
不改变分式的值,把下列各式的 分子与分母的各项系数都化为整数。
1 0 .2 x y 2 1 、 1 1 x 3 4
答案:
1 1 x y 3 5 2、 1 2x y 6
5.2分式的基本性质
(1) 0.01x 0.5 0.3x 0.04
2a 3 b
(2)
2 2ab
3
当系数是小数时:一般情况下,分式的分子、分母都乘
以10的倍数。
当系数是分数时:分式的分子、分母都乘以每一项系数 的分母的最小公倍数;
分式基本性质应用(3)约分
4a3b2 (2a3bc)
9 x 2 2x 2 6x
(2)(9a2 6ab b2)
解:1原式= 4x2 9
3 2x
2x 32x 3
= 3 2x
(92a2原b 式b=3)9. a92 a26babb3 3a b2
=
b 3a b3a b
b2
2x 3
3a b 3a b
1把两个多项式相除表示成分式形式2把分子分母分别进行因式分解3约分用最简分式或整式表示所求的商
银湖中学 刘少丰
分式的基本性质:
分式的分子与分母都乘以或除以同一个不等于零 的整式,分式的值不变.
A AM , A AM B BM B BM
(M 是不等于0的整式)
分式基本性质应用(1)处理符号
x2 2xy
3x2 y2 40 y2
9
4 3
y
2
2
4 3
y
3
4 3
y
2
y2
40
y
3 16 y2 8 y2 93 3 16 y2 y2
9
39 y2 39
9
分式基本性质应用(5)多项式相除
课本P120 例3 计算:
(1)(4x2 9) (3 2x).
分式的基本性质
再见
2.当 x 取何值时,下列分式的值为零。
x2 3x 2 (1) ( x 2)
我们已经知道:
2 3 16 36
= =
25 3 5
=
10 15
;
4 9
16 4 36 4
=
这是根据分数的基本性质:
分数的分子与分母都乘以或除以同 一个不等于零的数,分数的值不变.
分式 分数的基本性质 分式 分数的分子与分 母都乘以(或除以)同一个不等于零的 整式 数 , 分式 分数的值不变.
2
归纳:
分式的约分:把一个分式的分子和分母的公 因式约去,这种变形称为分式的约分。
最简分式:分子和分母没有公因式的分式叫 最简分式。
(化简分式时,通常要使结果成为 最简分式或者整式)
补充练习:
b 5 ab 1、已知 ,则 的值是( ) a 13 ab 2 3 9 4 A. B. C. D. 3 2 4 9
x y z 2、已知 0, 求代数式 2 3 4 2x y z 的值. x yz
3、已知x 3 1, y 3 1, 求 x 2 xy y 的值. 2 2 x y
2 2
1﹑分式的基本性质。 2﹑分式基本性质的应用。 3﹑化简分式,通常要使结果 成为最简分式或者整式。
阶一席窗 下杯间外 辰未花日 牌尽影光 又笙坐弹 报歌前指 时送移过
1.分式的概念
①分子分母都是整式 ②分母中含有字母 ③分母不能为零
2. 分式无意义的条件:分母等于零
分式有意义的条件:分母不等于零 分式的值为零的条件:分子等于零且 分母不等于零
1.求使下列分式有意义的 x 的取值范围.
2x 2 x 3x 4
分式的基本概念及性质
分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1 t ,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+【例2】代数式22221131321223x x x a b a b abm n xyx x y+--++++,,,,,,,中分式有()A.1个B.1个C.1个D.1个分式的基本概念及性质二、分式有意义的条件【例3】求下列分式有意义的条件:⑴1x⑵33x+⑶2a ba b+--⑷21nm+⑸22x yx y++⑹2128x x--⑺293xx-+【例4】x为何值时,分式2141xx++无意义?【例5】x为何值时,分式2132x x-+有意义?【例6】x为何值时,分式211xx-+有意义?【例7】要使分式23xx-有意义,则x须满足的条件为.【例8】x为何值时,分式1111x++有意义?【例9】要使分式241312aaa-++没有意义,求a的值.【例10】x为何值时,分式1122x++有意义?【例11】x为何值时,分式1122xx+-+有意义?【例12】若分式25011250xx-++有意义,则x;若分式25011250x x-++无意义,则x ;【例13】 若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例14】 x 为何值时,分式29113x x-++有意义?【例15】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例16】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +--⑹2242x x x-+【例17】 当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288xx + ⑹2225(5)x x -- ⑺(8)(1)1x x x -+-【例18】 若分式41x x +-的值为0,则x 的值为 .【例19】 若分241++x x 的值为零,则x 的值为________________________.【例20】 若分式242x x --的值为0,则x 的值为 .【例21】 若分式 242a a -+ 的值为0,则a 的值为 .【例22】 若分式221x x -+的值为0,则x = .【例23】 (2级)(2010房山二模)9. 若分式221x xx +-的值为0,则x 的值为 .【例24】 若分式231x x ++的值为零,则x = ________________.【例25】 (2级)(2010平谷二模)已知分式11x x -+的值是零,那么x 的值是( ) A .1 B. 0 C. 1- D. 1±【例26】 若分式2532x x -+的值为0,则x 的值为 .【例27】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【例28】 若分式()()321x x x +-+的值不为零,求x 的取值范围.【例29】 若22x x a-+的值为0,则x = .【例30】 x 为何值时,分式29113x x-++分式值为零?【例31】 若22032x xx x +=++,求21(1)x -的值.【例32】 x 为何值时,分式23455x xx x ++-+值为零?【例33】 若分式2160(3)(4)x x x -=-+,则x ;【例34】 若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .【例35】 若2(1)(3)032m m m m --=-+,求m 的值.四、分式的基本性质【例36】 填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++=(4)()222x y x y x xy y +=--+【例37】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y +- ⑵xy x y - ⑶22x y x y -+【例38】 把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y ++ (2)22923x x y +【例39】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴2222x y x y +-⑵3323x y⑶223x y xy-【例40】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数. ⑴1.030.023.20.5x y x y +- ⑵32431532x yx y -+【例41】 不改变分式的值,把下列各式分子与分母的各项系数都化为整数。
分式的基本性质——通分
2x3 y 2 z 12 x3 y 4 z
1
2x2z
4x2 y3 12x3 y 4 z
6xy 4 12 x3 y 4 z
1、8 , 4 , y 的最简公分母是: 42x3
3x 7x2 2x3
8 8 •14x2
112 x 2
3x 3x •14x2 42x3
4 4 • 6x 24x
2、通分的关键是确定最简公分母,包括 系数、因式和因式的指数;分母是多项式 的要先分解因式;
3 、分式通分的依据是分式的基本性质, 每一步变形综合性都较强,计算时要步步 细心;
4、分式通分的基本步骤:
(1)、将各分母分解因式(没有拉倒)
(2)、寻找最简公分母(方法要记牢)
(3)、根据分式的基本性质,把各分式的分 子分母乘以同一个整式,化异分母为最简 公分母。(分子运算很重要)
(1)将各个分式的分母分解因式;(2)取 各分母系数的最小公倍数(3)凡是出现的
所有字母或因式都要取;(4)相同字母 (或含字母的式子)的幂取指数最大的; (5)将上述所得系数的最小公倍数与各字 母(或因式)的最高次幂全都乘起来,就
得到了最简公分母
解:(2)最简公分母是 (x 5)(x 5)
2x x5
2x(x 5) (x 5)( x 5)
2x2 x2
10 x 25
3x x5
3x(x 5) (x 5)( x 5)
3x2 x2
15 x 25
(3) 1 与 x x2 4 4 2x
解:(2)最简公分母是 2(x 2)(x 2)
和分数通分类似,把几个异分母的分式化成与原 来的分式相等的同分母的分式叫做分式的通分。
(1)求分式
2
分式的基本性质
解分式方程 $\frac{x}{2} - \frac{3x}{4} = 1$
解
将方程两边同时乘以4,得 $2x + 3 = 7$,解得 $x = 2$。
解
将方程两边同时乘以4,得 $2x - 3x = 4$,解得程的步骤 • 整理方程:将方程中的分式转化为整式,通过通分、约分等方式简化方程。 • 确定未知数的值或取值范围:根据简化后的方程,确定未知数的值或取值范围。 • 检验:将求得的未知数的值代入原方程进行检验,确保方程的根的正确性。 • 注意事项 • 在解分式方程时,需要注意方程的化简和约分,避免出现计算错误。 • 在求出未知数的值或取值范围后,需要进行检验,确保根的正确性。 • 当方程的根的个数多于1个时,需要注意解的取舍,确保得到正确的解。
分式除法是指一个分式除以另一 个分式。在进行分式除法时,需 要将除数的分子和分母颠倒,然 后将颠倒后的除数与被除数相乘 。
分式的运算性质应用举例
求解分式方程
通过使用代入消元法或加减消元法,可以将分式方程转化为整式方程,从而求解出未知数的值。
简化分式
通过使用分式的加法、减法、乘法和除法,可以将一个复杂的分式简化成一个简单的分式。
分数的定义可以扩展到复数范围, 但在高中数学中通常只涉及有理数 分式的讨论。
分式的形式
1 2
最简分式
分子和分母没有公共因子,且分子和分母的最 高次数相同。
真分式
分子和分母都是多项式,且分子和分母的次数 不同。
3
假分式
分子和分母的次数相同,或分子和分母有公共 因子。
分式的基本性质
分式的值不等于零
分式的值是分子与分母相除的结果,当分母为零时,分式 的值不存在,即分式不等于零。
分式的基本性质
分式性质应用1
例:1:
ab ( 2a b ( ) ) (1) , 2 2 2 ab a b a a b
x xy x y x ( ) (2) 2 , 2 x ( x 2 x x 2 )
2
观察
×
a
×
a b (a 2 ab ) (1) 2 ab a b
分式性质应用2
不改变分式的值,使下列分子与分 母都不含“-”号 2x 3a 10m 2x 3a 10m , , , , 5y 7b 3n 5y 7b 3n
有什么发现? 变号的规则是怎样 的?
a a b b
a a a a b b b b a a a a b b b b
分母: ab
a
2b a
a b (a 2 2a b (2ab b 2) ab ) , (1) 2 2 2 ab a b a a b
÷x
2
×
b
x xy x y x ( 1) (2) 2 , 2 x ( x 2 x x 2 x) ÷x
八年级
上册
15.1 分式 基本性质
• 学习目标: 1.了解分式的基本性质,体会类比的思想方法. 2.掌握分式的约分,了解最简分式的概念. • 学习重点: 分式的基本性质和分式的约分.
问题1、什么是分式?
果除式B中含有字母,那么称
A 整式A除以整式B,可以表示成 B 的形式。如 A
为分式,
其中A称为分式的分子,B为分式的分母。 问题2、在分式的概念中我们尤其要注意什么? 对于任意一个分式,分母都不能为零。 问题3、当x取什么值时,下列分式有意义:
分式的分子、分母和分式本身的 符号,同时改变其中任意两个,分式 的值不变。
分式的基本性质分式的变形
1 2 a a (1) ( 2 ) 1 a a1 2 a a2 ( 3) 2 1 a
练习
不改变分式的值,使下列各式的分子与 分母的最高次项系数是正数,然后再约分
1- a - a ⑴ 2 3 1+a - a
⑶
2
x +1 ⑵ 2 1- x
1- a - 2 a - a +3
2
结
分式性质应用
(2a -
解:原式 =
2 ( a + b) ? 6 3
2
b) ? 6
12a 9b 4a 6b
巩固练习
y 的 x和 y 都扩大两倍,则分式的值( B ) 1.若把分式 x+y
A.扩大两倍 C.缩小两倍 B.不变 D.缩小四倍
xy 2.若把分式 中的 x+y 的值( A ).
A.扩大3倍 C.扩大4倍
12 xy 的最简公分母是
的最简公分母
2 ;
是
1 2x , , (3)分式 最简公分母 2 2 2 6 x 3 x x 4 2 x 4 ) 2 ( 是 12 x ( x + 2) ( x - 2) ;
10a b c
x
2 2 2
4a 3c 5b , 2 , 2 2 5b c 10a b - 2ac
;
分式性质应用
不改变分式的值,把下列各式的分 子与分母的各项系数都化为整数。
0.01x 0.5 ( 1) 0.3xБайду номын сангаас 0.04
(0.01x 0.5) 100 解:原式 (0.3 x 0.04) 100
x 50 30 x 4
3 2a - b 2 ( 2) 2 a +b 3 3
分式的基本性质通分
梳理
1、分式的基本性质。
2、分式的约分,最简分式。
3、分式的通分,最简公分母。
再见
25a bc (1) 约分: 2 15ab c
2
示范
3
x 9 ( 2) 2 x 6x 9
2
分析:为约分要先找出分子和分母的公因式。
5ac2 25a 2 bc3 5abc 5ac2 解: (1) 2 3b 15ab c 5abc 3b
x2 9 ( x 3)( x 3) x3 ( 2) 2 2 x 6x 9 ( x 3) x3
1 1 解: 与 的最简公 分母为( x y )( x y ), x y x y 即 x 2 y 2 , 所以
1 1 ( x y) x y 2 , 2 x y ( x y )( x y ) x y
1 1 ( x y) x y 2 . 2 x y ( x y )( x y ) x y
分式的基本性质
分式的分子与分母同乘(或除以)一个 不等于0的整式,分式的值不变。
用式子表示为:
C , C C .(C 0) C
其中A,B,C是整式。
分式的约分
把一个分式的分子和分母的公因式 约去,不改变分式的值,这种变形叫做分 式的约分。 1.约分的依据是:分式的基本性质 2.约分的基本方法是: 先找出分式的分子、分母公因式,再约 去公因式. 3.约分的结果是: 整式或最简分式
(3)
1 x²-y² ,
1 x²+xy
(x+y)(x-y) ∵ x²-y²=________________,
x(x+y) x²+xy=_____________,
先把分母
分式的基本性质
如果nt 行驶ns km,那么汽车 如果nt h行驶ns km,那么汽车 n s km/h。 km/h。 的速度为
3s 如果3t 行驶3s km,那么汽车的速度为 km/h。 如果3t h行驶3s km,那么汽车的速度为 km/h。 3t
nt
这些分式相等 这些分式相等吗?为什么? 分式相等吗 为什么?
(1) 1 2 x+ y 2 3 1 2 x− y 2 3
(2)
0.3a + 0.5b 0.2a − b
1 2 1 x+2 y×6 x+ y 2 3 = 2 3 = 3x+4y 解 ( :1 ) 1 2 1 2 3x−4y x− y x− y×6 2 3 2 3
4 b c
a-b) = a + b a - b
(a 3、
、 a
2
− b ) 2 − b
2
(
a -b 4、 a + b
2
=
( 1)
2 ( 2xy ) 5. = 2 2 xy x y
3x 15 x( x + y ) 6. = x + y ( 5(x+y)2)
例2 不改变分式的值,把下列各式的分 不改变分式的值, 子与分母中各项的系数都化为整数 各项的系数都化为整数。 子与分母中各项的系数都化为整数。
例2 不改变分式的值,把下列各式的分 不改变分式的值, 子与分母中各项的系数都化为整数 各项的系数都化为整数。 子与分母中各项的系数都化为整数。
(1) 1 2 x+ y 2 3 1 2 x− y 2 3
(2)
0.3a + 0.5b 0.2a − b
0.3a + 0.5b ( 0.3a + 0.5b) ×10 3a + 5b 2 = = () 0.2a − b ( 0.2a −b) ×10 2a −10b
《分式的基本性质》 知识清单
《分式的基本性质》知识清单一、分式的概念形如\(\frac{A}{B}\)(\(A\)、\(B\)是整式,且\(B\)中含有字母,\(B≠0\))的式子叫做分式。
其中\(A\)叫做分子,\(B\)叫做分母。
例如:\(\frac{x}{y}\),\(\frac{1}{x + 2}\),\(\frac{m 1}{m^2 + 1}\)等都是分式。
需要注意的是:1、分式的分母中必须含有字母。
2、分母的值不能为零,否则分式无意义。
二、分式有意义的条件分式有意义的条件是分母不为零。
例如,对于分式\(\frac{x}{y}\),当\(y≠0\)时,分式有意义。
对于分式\(\frac{1}{x + 2}\),当\(x +2≠0\),即\(x≠ 2\)时,分式有意义。
三、分式的值为零的条件分式的值为零,需要同时满足两个条件:1、分子为零。
2、分母不为零。
例如,对于分式\(\frac{x 1}{x + 1}\),当\(x 1 = 0\)且\(x +1≠0\)时,分式的值为零。
解得\(x = 1\)。
四、分式的基本性质分式的基本性质:分式的分子与分母乘(或除以)同一个不等于\(0\)的整式,分式的值不变。
用式子表示为:\(\frac{A}{B} =\frac{A×C}{B×C}\),\(\frac{A}{B} =\frac{A÷C}{B÷C}\)(\(C≠0\))例如:\(\frac{x}{y} =\frac{x×2}{y×2} =\frac{2x}{2y}\)五、约分约分是把一个分式的分子与分母的公因式约去。
约分的关键是确定分子和分母的公因式。
找公因式的方法:1、系数:取分子和分母系数的最大公因数。
2、字母:取相同字母的最低次幂。
例如:对分式\(\frac{6xy}{9x^2}\)进行约分。
先确定系数的最大公因数为\(3\),字母\(x\)的最低次幂为\(1\),\(y\)的最低次幂为\(1\)。
分式分式的基本性质
2023-11-04CATALOGUE目录•分式的定义与概念•分式的基本性质•分式的运算•分式方程•分式的简化与化简•分式在实际生活中的应用01分式的定义与概念分式的定义分子在分式$\frac{A}{B}$中,A叫做分式的分子。
分母在分式$\frac{A}{B}$中,B叫做分式的分母。
定义如果A、B表示两个整式,并且B中含有字母,那么式子$\frac{A}{B}$叫做分式。
分式值为0的条件当分母为0,而分子不为0时,分式的值无意义。
分式通分将异分母的分式化为同分母的分式的过程。
分式约分将分子和分母同时除以它们的公因式,将分式化简。
分式的基本概念分式的重要性分式是数学中一个重要的概念,是连接整式与分数的桥梁。
分式的运算是数学中的基本运算之一,掌握好分式的性质和运算法则是学习数学的基础。
02分式的基本性质03约分后结果约分后的结果是分子、分母没有公因式的分式或整式。
分式的约分01约分定义约分是分式的一种恒等变形,其目的是将一个分式化简成最简分式或整式。
02约分步骤首先将分子、分母的公因式提取出来,然后约去分子、分母的公因式。
分式的通分通分定义通分是将几个异分母的分式化为同分母的分式的一种恒等变形。
通分步骤首先确定每个分式的最简公分母,然后将每个分式的分子、分母同时乘以同一个不等于零的整式,化为同分母的分式。
通分后结果通分后的结果是同分母的分式。
分式的相等与不相等分式相等如果两个分式的值相等,那么这两个分式是相等的。
分式不相等如果两个分式的值不相等,那么这两个分式是不相等的。
03分式的运算1分式的加减法23将异分母分式转化为同分母分式,然后进行加减运算。
异分母分式相加减通过通分,将异分母分式转化为同分母分式。
通分分母不变,分子相加减得到结果。
分母不变,分子相加减将分子和分母进行因式分解,找到公因式并约分。
约分将分子和分母同时乘以一个不为零的数或式子,使得分母相同。
通分按照分数的乘除法规则进行计算。
分式的乘除法分式的乘除法按照运算顺序进行先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。
第一讲 分式的基本性质
第一讲 分式的基本性质学习目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件3. 理解分式的基本性质.4.会用分式的基本性质进行通分、约分、化简一、知识回顾知识点1、与分式有关的条件①分式有意义:分母≠0②分式无意义:分母=0③分式值为0:⎩⎨⎧≠=00分母分子) ④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A )知识点2分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:C B C ∙∙=A B A ,CB C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:BB A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意C ≠0这个限制条件和隐含条件B ≠0。
知识点3、分式的约分◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式. 3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.知识点5、分式的通分◆通分时,最简公分母的确定方法:1.系数取各个分母系数的最小公倍数作为最简公分母的系数.2、取各个公因式的最高次幂作为最简公分母的因式课前热身.1.用式子表示分式的基本性质:____________________________.2.对于分式122x x -+(1)当________时,分式的值为0(2)当________时,分式的值为1(3)当________时,分式无意义(4)当________时,分式有意义3.填充分子,使等式成立;2)2()(22+=+-a a a4.x x x 3222+= ()3+x5.化简:233812a b c a bc =_______。
分式的基本性质(课件)八年级数学下册(苏科版)
2x
x
2
5x
2
,
25
3x
x
2
2
5x
25
.
典型例题
a
b
与 2
例题6 通分: 2
2
x y
x xy
(x+y)(x-y)
x(x+y)
解:最简公分母是x(x+y)(x-y)
a
x
2
y
2
b
x
2
a
( x y)( x y)
b
xy
x( x y )
ax
x( x y)( x y)
b( x y )
x( x y)( x y )
探究新知
分式的基本性质:
分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值
不变.
上述性质可以用式子表示为:
A
AC A
AC
,
(C 0)
.
B
BC B
B C
其中A,B,C是整式.
典型例题
例题1 填空:
看分母如何变化,想分子如何变化.
看分子如何变化,想分母如何变化.
3
x
()
1
D. 3
5 −2+3
−0.2−1
5.不改变分式的值,将分式
中的分子与分母的各项系数化为整数,且第一项系
−0.3+0.5
数都是最小的正整数,正确的是( A )
A.
2+1
3−5
2−10
3+5
B.
2+10
3+5
C.
D.
2+10
分式的基本性质
a
分子: 2b
×
a
2ab
例2:在下面的括号内填上适当的整式,使等式成立:
×
a b a ab (2) 2 ab ab
2
a
分母: ab
×
a ×a
2 ab
分式的基本性质
分式的分子与分母都乘以(或除以)同一个不为零的整式,分式 的值不变。
式子表达: = =
(其中,M是不等于零的整式)
• 练习1、说出下列等式的右边是怎样从左边得到的?
×
a
÷2b
• ( 1)
(2)
×
•
a
×12
a
(3)
÷2b
×12
a
不改变分式的值,把下列各式的分子与分母中 的各项的系数都化为整数。
0.01x 30x 4 y
例1、不改变分式的值,把下列各式的分子与分母中的 各项的系数都化为整数。
( x 2) 2 ( x 3)
x2 2 x 3
• 练习:不改变分式的值,使下列分式的分子与分母的最高次项的 系数是正数。
• (1)
2x 1 x 3 2x
2
x 2x 1 2x 3
2
• (3)
x 3x 1 2 2 x
2
x 3x 1 2 x2
分式的符号法则
• 分式的分子、分母和分式本身的符号,改变其中任何两个, 分式的值不变。
• 练习:不改变分式的值,使下列分式的分子与分母中都不含“ - ” 号。
(1 )
2a 5b
(2)
2x (3) 7y
x 3y
2
例1、不改变分式的值,使下列分式的分子与分母的最 高次项的系数是正数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的性质
一、分式的定义
(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式.
(2)因为0不能做除数,所以分式的分母不能为0.
(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.
(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看符合分式概念的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.
二、分式有意义的条件
(1)分式有意义的条件是分母不等于零.
(2)分式无意义的条件是分母等于零.
(3)分式的值为正数的条件是分子、分母同号.
(4)分式的值为负数的条件是分子、分母异号.
三、分式的值为零的条件
分式值为零的条件是分子等于零且分母不等于零.
注意:“分母不为零”这个条件不能少.
四、分式的值
分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.
五、分式的基本性质
(1)分式的基本性质:
分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
(2)分式中的符号法则:
分子、分母、分式本身同时改变两处的符号,分式的值不变.
【方法技巧】利用分式的基本性质可解决的问题
1.分式中的系数化整问题:当分子、分母的系数为分数或小数时,应用分数的性质将分式的分子、分母中的系数化为整数.
2.解决分式中的变号问题:分式的分子、分母及分式本身的三个符号,改变其中的任何两个,分式的值不变,注意分子、分母是多项式时,分子、分母应为一个整体,改变符号是指改变分子、分母中各项的符号.
3.处理分式中的恒等变形问题:分式的约分、通分都是利用分式的基本性质变形的.
六、最简分式
最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.和分数不能化简一样,叫最简分数.
七、约分
(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.
(2)确定公因式要分为系数、字母、字母的指数来分别确定.
①分式约分的结果可能是最简分式,也可能是整式.
②当分子与分母含有负号时,一般把负号提到分式本身的前面.
③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.
(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.。