补角与余角的概念

合集下载

人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)

人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)
-举例:判断∠ABC和∠CBD是否互为余角或补角。
-重点二:余角、补角的性质掌握。学生需要熟练掌握互为余角、补角的两个角之间的数量关系,并能运用这些关系进行计算。
-举例:如果∠A和∠B互为余角,且∠A=40°,求∠B的度数。
-重点三:运用余角、补角解决实际问题。培养学生将余角、补角知识应用于实际问题的能力,如平面几何图形的角的求解等。
3.重点难点解析:在讲授过程中,我会特别强调余角和补角的概念以及它们之间的数量关系。对于难点部分,比如两个角的和的关系,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余角、补角相关的实际问题,如直角三角形中的角度关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过剪纸或使用量角器,学生可以直观地观察到余角和补角的形成。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概念。余角是指两个角的和等于90°的两个角,补角是指两个角的和等于180°的两个角。它们在几何图形的求解和平面角度的计算中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。在一个等腰直角三角形中,底角的度数如何求解?通过余角的概念,我们可以轻松找到答案。
人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)
一、教学内容
人教版数学七年级上册4.3.3余角、补角的概念和性质。本节课我们将学习以下内容:
1.余角的概念:两个角的和等于90°时,这两个角互为余角。
2.补角的概念:两个角的和等于180°时,这两个角互为补角。
3.余角、补角的性质:
a.互为余角的两个角的和为90°;
四、教学流程
(一)导入新课(用时5分钟)

2余角与补角(3)

2余角与补角(3)


解:OA=8×3=24(千米) AB=16×1.5=24(千米) 量得B处在O点北偏西30° 量得O、B两点的距离是24千米。
B
16×1.5=24
A
8×3=24
30° 30°
西
南O

练一练5、
看谁量得快
小明从点A出发向北偏西50°方向走了3米,到达点B, 小强从点A出发向南偏西40°方向走了4米,试画图确定出 A、B、C三点的位置(用1厘米表示3米)。 (1)从图上量出B点到C点的实际距离, (2)通过计算,猜想AB2、AC2 、BC2之间有什么关系?
4.3.2余角与补角
一、余角和补角的概念
• 互为余角:如果两个角的和等于90°(直角),就说 这两个角互为余角,其中一个角是另一个角的余角。 • 互为补角:如果两个角的和等于180°(平角),就说 这两个角互为补角,其中一个角是另一个角的补角。
二、提问答疑,理解定义
(1)定义中的“互为”一词如何理解? (2)互补、互余的两角是否一定有公共顶点或公共边? (3)∠1和∠2互补,除用符号语言表示为∠1+∠2= 180°外,用符号语言还可以表示为 ∠1= 180°- ∠2或 ∠2= 180°- ∠1
C.180°
D.140°
看谁答得快
练一练3、
(1)电视塔在学校的东北方向,那么学校在电视塔的 西南 ______ 方向. (2)已知点O在点A的南偏东65 °方向,那么点A应在点O的 ( ) A.南偏东65 °方向; B. 北偏东65 °方向; C.北偏西65 °方向; D.北偏西25 °方向; (3)如图,邮局和商店分别在学校的北偏西方向,邮局又在商 邮局 店的北偏东方向.那么,图中A点应该是________,B点应该 学校 是_______,C点应该是______. 商店

人教版 七年级上册余角、补角的概念和性质 优质课课件

人教版 七年级上册余角、补角的概念和性质 优质课课件

观察可得结论: 同一个锐角的补角比它的余角大___9_0_°___.
典例精析
例1. 若一个角的补角等于它的余角的4 倍, 求这个角的度数.
解:设这个角是x°,则它的补角是(180° -x°),余角是(90°-x°) .
根据题意,得 180°-x°= 4 (90°-x°) 解得 x=60
答:这个角的度数是60 °.
课后作业
见《学练优》本课时练习
A
O
B
解:因为点A,O,B在同一直线上,
所以∠AOC和∠BOC互为补角.
又因为射线OD和射线OE分别平分∠AOC和∠BOC,
所以∠COD+∠COE=1/2∠AOC+1/2∠BOC
=1/2(∠AOC+∠BOC)=90°.
所以∠COD和∠COE互为余角,
同理∠COD和∠BOE,∠AOD和∠COE,
∠AOD和∠BOE也互为余角.
图中给出的各角,那些互为补角?
10o
30o
60o
80o
100o
120o
150o
170o
做一做
∠α 5° 32° 45° 77° 62°23′ x°(x<90)
∠α的余角 85° 58° 45° 13° 27°37′ 90° x°
∠α的补角 175°
148° 135° 103° 117°37′ 180° x°
二 余角和补角的性质
思考: ∠1与∠2,∠3都互为补角, ∠2与∠3的大小有什么关系?
1
2
结论:
∠2=180°-∠1
同角(等角)的补角相等
类似的可以得到:
同角(等角)的余角相等
3 ∠3=180°-∠1
例2 如图,点A,O,B在同一直线 D

初中数学教学课件:4.3.3 余角和补角(人教版七年级上)

初中数学教学课件:4.3.3  余角和补角(人教版七年级上)

(抢答题1)图中给出的各角,哪些互为余角?
10o
30o
50
o
60o
40
o
80
o
再显身手
∠α ∠α的余角
55°
35°
22°
68°
62°5′

27°55′
90°- X°
二、补角的概念
如果两个角的和等于180°(平角),就说这两个角互为 补角,简称两个角互为补角,即其中一个角是另一个角 的补角. 2
解:∠COD和∠COE, 同理,∠AOD和∠BOE, ∠AOD和∠COE, ∠COD和∠BOE也互余
C
D
B
O
A
1.识图填空: 如图所示,O是直线AB上的一点,
OC是∠AOB的平分线. ∠BOD (1)∠AOD的补角是_______.
(2)∠AOD的余角是_________. ∠COD
综 合 检 测
1 1
几何语言表示为: 如果∠1+∠2=180°,那么∠1与∠2互为补角.
∠1=180°-∠2
抢答题2
图中给出的各角,哪些互为补角?
10o 30o
60
o
80o
100o 120o 150o
170o
再显身手
∠α 10° 32°15′ 90° 105° 108° ∠α的补角
170° 锐角的补角是钝角 147°45′ 90° 75° 钝角补角是锐角 72° 180° - X° 直角的补角是直角
今天我们学了什么?
余角、补角的概念:
(1)如果∠1+∠2=90°,那么∠1与∠2互为余角
(2)如果∠1+∠2=180°,那么∠1与∠2互为补角.
余角、补角的性质:

《余角和补角》

《余角和补角》
特殊计算
在计算过程中,如果两个角度相加等于90度或180度,那么他们的补角就是90度或180度。
03
余角和补角的应用
在几何学中的应用
01
02
03
角度计算
在几何学中,余角和补角 的概念被广泛应用于角度 的计算,如证明平行线、 三角形内角和定理等。
三角形内切圆
余角和补角的概念与三角 形内切圆的性质密切相关 ,如内切圆的半径与三角 形各边的关系。
多边形内角和
多边形的内角和与外角和 的计算也涉及到余角和补 角的概念。
在物理学中的应用
光学
在光学中,反射定律、折射定 律等都与余角和补角有关。例 如,反射角等于入射角,入射
角的补角是反射角的余角。
力学
在力学中,余角和补角的概念可以 用于解决一些与角度变化相关的物 理问题,如物体运动的角度、力的 方向等。
计算方法
通过已知的一个角的度数,可以计算出它的余角的度数。方法是做减法,即已 知角减去90度。
例子
如果一个角是45度,则它的余角是90度减去45度,即45度。
余角的特殊情况
• 余角的特殊情况包括:余角的补角相等、余角与补角的和相等 、余角与补角的差相等。这些性质在解决几何问题时非常有用 。
02
补角
《余角和补角》
2023-11-09
目录
• 余角 • 补角 • 余角和补角的应用 • 余角和补角的实验 • 余角和补角的练习与巩固
01
余角
定义与性质
定义
如果两个角的度数之和为90度,则称这两个角互为余角。其 中一个角叫做另一个角的余角。
性质
余角的性质包括:等大、互补、反向延长线相交于一点。
余角的计算
04

余角与补角的概念及性质

余角与补角的概念及性质
理由:
D O
3 4
理由:
3与AOB互为补角 4与AOB互为补角
3 AOB 90
4 AOB 90 3 4
①用一句话概括结论。
①用一句话概括结论。
同角的余角相等
同角的补角相等
3、如图,如果∠1与∠2互为余角, ∠3与∠4互为余角,且∠1=∠4, 那么∠2与∠3相等吗?为什么?请 尝试用几何语言来说理
①用一句话概括结论。
①用一句话概括结论。
等角的余角相等
等角的补角相等
余角的性质结论:
补角的性质结论:
同角的余角相等
同角的补角相等 等角的补角相等
等角的余角相等
总结成一句话:
同角或等角的余角相等;
同角或等角的补角相等。
1、在△ABC中,∠BCA=90°,CD⊥AB,垂足为D。
(1)图中有哪几对互余的角?
∠的补角是(180 °—∠ )
例1
若一个角的补角等于它的余角的
4 倍,求这个角的度数。
解: 设这个角是x °,则它的补角是 ( 180°-x°),余角是(90°-x°) 。 根据题意得:
(180°-x°)= 4 (90°-x°)
解得: x =60
答:这个角的度数是60 °。
2 1
4
若∠1 + ∠2 =180 °, 则 ∠1和∠2互补.(互补定义 ) 若∠1和∠2互补, ° 互补定义) 则∠1 + ∠2 =180 .( 若∠3 + ∠4 =90 °, 则 ∠3和∠4互余 .( 互余定义) 若∠3和∠4互余, ° 互余定义) 则 ∠3 + ∠4 =90 .(
1、如图,∠1和∠AOB互为余角, ∠2和∠AOB也互为余角,请问 ∠1 和∠2有什么数量关系?为 什么?请尝试用简单的几何语言 来说理。 A

余角、补角、对顶角的概念和习题答案

余角、补角、对顶角的概念和习题答案

余角和补角和对顶角余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。

∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。

两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。

两条直线相交,构成两对对顶角。

对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称; 对顶角相等反映的是两个角间的大小关系。

补角的性质:同角的补角相等。

比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。

等角的补角相等。

比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角的性质:同角的余角相等。

比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。

等角的余角相等。

比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。

如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。

只要它们的度数之和等于90°或180°,就一定互为余角或补角。

余角与补角概念认识提示:(1)定义中的“互为”一词如何理解?如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。

数学课件余角和补角

数学课件余角和补角
详细描述
余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。

余角与补角的概念及性质

余角与补角的概念及性质

1
2
3
4
三、余角性质:
同角或等角的余角相等
补角的性质
同角的补角相等
如图∠1 与∠2互补,∠1 与∠3互补 , 那么∠2与∠3相等吗?为什么?
1 3 2 答:∠2与∠3相等。 理由如下: 因为 ∠1 与∠2互补, ∠1 所以 ∠2= 180 °-___ 因为 ∠1与∠3互补 , ∠3 = 180° -∠1 所以___________ 所以________。 ∠2=∠3 。
重要提醒:(如何表示一个角的余角和补角)
锐角∠ X的余角是(90 °—∠ X )
∠ X的补角是(180 °—∠ X )
4、若一个角的补角等于它的余角的4 倍, 求这个角的度数。
解: 设这个角是x度,则它的补角是 ( 180-x)度,余角是(90-x) 度。根据 题意,得:180-x= 4 (90-x)
2
D
B
(2)图中哪几对角是相等的角(直角除外)? 为什么? ∠B=∠2 (同角的余角相等) ∠A=∠1 (同角的余角相等)
今天我们学了什么?
余角、补角的概念:
(1) 和为90°的两个角称互为余角; (2) 和为180°的两个角称互为补角;
余角、补角的性质:
(1) 同角或等角的余角相等; (2) 同角或等角的补角相等;
A
M
N
O
B
D
O
C
余角
你知道一副三角尺中每一个三角尺的角的度数吗? 一个 90°, 两个 45°。 一个 90°, 一个 60°, 一个 30°。
在一副三角尺中,每块都有 一个角是 90°,而其他两个角的 和是 90°. (30°+ 60°= 90°) (45°+ 45°= 90°)

《余角和补角》 讲义

《余角和补角》 讲义

《余角和补角》讲义一、引入在我们的日常生活和数学学习中,角是一个非常重要的概念。

而今天,我们要一起来探讨角的两个特殊关系——余角和补角。

想象一下,你正在观察一个直角三角形,其中一个锐角和另一个锐角之间似乎有着某种特别的联系。

又或者当你把一个角的度数与另一个角的度数相加,会得到一些有趣的结果。

这就是余角和补角所带来的奇妙之处。

二、余角的定义余角,简单来说,如果两个角的和是直角(90 度),那么我们就称这两个角互为余角。

例如,一个角是 30 度,那么它的余角就是 60 度,因为 30 度+ 60 度= 90 度。

为了更好地理解余角,我们可以通过一些实际的例子来感受。

比如在一个直角三角形中,两个锐角就是互为余角的关系。

我们可以用数学式子来表示余角的关系:如果角 A 和角 B 互为余角,那么∠A +∠B = 90°。

三、余角的性质假设角 A 是一个锐角,它的余角是角 B,那么∠A +∠B = 90°。

如果还有一个角 C 也是角 A 的余角,即∠A +∠C = 90°,由此可以得出∠B =∠C,这就说明了同角的余角相等。

2、等角的余角相等如果角 A =角 D,角 B 是角 A 的余角,角 C 是角 D 的余角,因为角 A +角 B = 90°,角 D +角 C = 90°,又因为角 A =角 D,所以角 B =角 C,这就证明了等角的余角相等。

四、补角的定义与余角类似,如果两个角的和是平角(180 度),那么这两个角互为补角。

比如说,一个角是 120 度,那么它的补角就是 60 度,因为 120 度+ 60 度= 180 度。

同样可以用数学式子来表示:如果角 M 和角 N 互为补角,那么∠M +∠N = 180°。

五、补角的性质1、同角的补角相等若角 P 有补角角 Q,且∠P +∠Q = 180°,另有角 R 也是角 P 的补角,即∠P +∠R = 180°,则可推出∠Q =∠R,证明了同角的补角相等。

余角与补角

余角与补角

想一想:1、钝角有余角吗? 没有
2、直角有余角吗?
没有
3、同一个角的补角比它的余角大多少度?
90°
例1、如图,∠AOC=∠BOD= ∠AOB=90°,
问有哪两个锐角相等?
D
C
B
解:∠AOB=90°-∠COB, ∠DOC=90°-∠COB, ∴∠AOB=∠COD
O
A
1与2互余,1=(6x 8) , 2 (4 x 8) ,
1、90度的角叫余角,180度的角叫补角。 ( 3、如果一个角有补角,那么这个角一定是钝角。(


4、互补的两个角不可能相等。

5、钝角没有余角,但一定有补角。(
) )
6、互余的两个角一定都是锐角,两个锐角一定互余.( )
7、若∠1+∠2+∠3=90°,那么∠1、∠2、∠3 互为余角. ( )
补角的概念
如果两个锐角的和是一个平角,就称这两 个角互为补角,简称互补.也可以说其中一个角 是另一个角的补角.
∠A+∠B= 180°
∠B的补角是∠A
∠A与∠B互补
∠A与∠B互补
∠A的补角是∠B
2、补角的性质。 ∠
的补角=180°- ∠
若∠
∠ 的余角=180°- ∠
则180°- ∠ =180°- ∠ 即∠

则1 _____, 2 _____.
解: 1与2互余
(6 x 8) (4 x 8) 90 x9
1=6 9+8=62

2=4 9 8=28
已知:一个角的补角是它的余角的4倍。 求:这个角是多少度。
分析:可设这个角为x°,则它的补角可表示为 180 x , 它的余角可表示为 90 x ,它们之间有怎么样的等量关系?

人教版七年级上册数学4.余角和补角的概念与性质课件

人教版七年级上册数学4.余角和补角的概念与性质课件

41 5 ∠4= ∠ 5
理由:∵∠1与∠4互补 ∴∠4=180o-∠1 ∵∠1与∠5互补 ∴∠5=90o-∠1 ∴∠4=∠5
延伸 1与2互余,3与4互余,如果2=4, 那么1与3相等吗?为什么?
1 2
理由:∵∠1与∠2互余 ∴∠1=90o-∠2 ∵∠3与∠4互余 ∴∠3=90o-∠4
又∵∠2=∠4 ∴∠1=∠3
∠1 、∠2、 ∠3 互余(互补)吗?
不能,互余或互补是两个角之间的数量关系。
练习:
1、帮 找朋友: 的余角 的补角
80
10
100
45
70 39'
45
19 21'
90
135
109 21'
180
练习:
2、一个角的补角是它的余角的4倍,求这个 角的余角是多少度?
解:设这个角的余角的度数为 x ,
一定互余.
(×)
(5)如果∠1=30°,∠2=25°,∠3=35°,那么 ∠1、∠2、∠3这三个角互为余角. ( ×)
巩固练习
2、如图,已知∠AOB=90°, ∠AOC= ∠BOD,
则与∠AOC互余的角为__B_O__C_和____A_O__D.
AC
解: AOC+BOC AOB=90
AOC与BOC互余
∠A=∠1 (同角的余角相等)
性质的应用
例3 如图,A,O,B在同一直线上,射线OD和射线
OE分别平分∠AOC和 ∠BOC,图中哪些角互为余角?
解:因为A,O,B在同一直线上, 所以∠AOC和∠BOC互Байду номын сангаас补角.
又因为射线OD和射线OE
分别平分∠AOC∠BOC,
1

余角和补角的性质

余角和补角的性质

余角和补角的性质
余角的性质是同角或者等角的余角相等。

补角的性质是同角或者等角的补角相等。

在平面几何的证明题的时候,一般用余角的性质或者补角的性质来证明两个角相等。

比如如果角1+角2=90度,角2+角3=90度,那么角1=角3。

再比如如果角a+角B=180度,角B+角C=180度,那么角a=角C。

余角和补角的概念
如果两个角的和等于90°(直角),就说这两个角互为余角,即其中每一个角是另一个角的余角。

如果两个角的和等干180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角。

这是角里面两个特殊的性质。

是数学界永恒不变的。

所以补角和余角的性质只差一个90度。

因为直角与平角也是有概念的,所以余角和补角的概念是由直角与平角延伸出来的。

因为两个直角相加在一起,就等于平角。

余角、补角、对顶角的概念和习题答案

余角、补角、对顶角的概念和习题答案

余角和补角和对顶角令狐采学余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。

∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A 的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。

两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。

两条直线相交,构成两对对顶角。

对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称;对顶角相等反映的是两个角间的大小关系。

补角的性质:同角的补角相等。

比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。

等角的补角相等。

比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。

余角的性质:同角的余角相等。

比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。

等角的余角相等。

比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。

注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。

如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。

只要它们的度数之和等于90°或180°,就一定互为余角或补角。

余角与补角概念认识提示:(1)定义中的“互为”一词如何理解?如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。

余角与补角ppt

余角与补角ppt
逆补角也是余角
补角的定义与性质
补角是两个角的度数和为180度 补角的性质:互补两角之和为180度,两角互补为补角
逆余角也是补角
余角与补角的关系
互余角和互补角是 余角和补角的延伸
两角互余和两角互 补可以相互转化
余角和补角的区别 在于角度和位置不 同
02
余角和补角的性质和运用
余角和补角的性质
余角
余角和补角在建筑中的运用
建筑结构
在建筑结构中,利用余角和补角可以形成优美的几何图形。例如,古罗马的 万神庙穹顶采用了120度的补角,形成了完美的穹顶结构。
光学设计
在光学设计中,利用余角和补角可以制造出具有特定反射和折射效果的材料 。例如,某些玻璃窗在阳光下会产生一定角度的反射光线,形成特定的视觉 效果。
如果两个角的和等于90度,则 这两个角互为余角。
补角
如果两个角的和等于180度,则 这两个角互为补角。
性质总结
余角和补角是一对互为补角的 关系,即一个角的余角是90度 减去这个角的度数,而一个角 的补角是180度减去这个角的度
数。
余角和补角的运用
1 2
余角的运用
在几何中,可以通过将一个角分成两个相加等 于90度的角来计算角度。
06
复习与回顾
余角与补角的定义及性质回顾
总结词:重要基础
详细描述:回顾余角和补角的定义,以及余角和补角的基本性质。重点强调余角 和补角的表示方法,以及它们在数学和几何中的应用。
余角与补角的计算回顾
总结词:核心技能
详细描述:全面梳理余角和补角的计算规则,包括余角的度 数等于90度减去另一个角的度数,补角的度数等于180度减 去另一个角的度数。同时,强调在计算中需要注意的事项和 易错点。

余角与补角

余角与补角

个角的余角(1)互为余角是对两个角而言的.(2)互为余角仅仅表明了两个角的数量关系,而没有限制角的位置关系:如果两个角的和是平角,那么称这两个角互为补角(supplementary angle).小结:同角或等角的余角相等.同角或等角的补角相等.. 这样的两个角叫对顶角(1)对顶角的本质特征是:两个角有公共顶点,两个角的两边互为反向延长线.(2)对顶角总是成对出现的,它们是互为对顶角;一个角的对顶角只有一个.要在图形中准确地找出对顶角,需两看:(1)看是不是两条直线相交所得的角;(2)看是不是有公共顶点而没有公共边(或不相邻)的两个角.12、如图 .如果∠1与∠ 2互余,∠1与∠3互余,那么∠2与∠3相等吗?为什么?同角或等角的余角相等,同角或等角的补角相等3、阅读理解:两直线交于O。

如图示。

因为∠1+∠3=180o,∠2+∠3=180o①所以∠1=∠2。

② 1 O 2(1)步骤①的理解是____平角的定义_________。

3 步骤②的理解是____等量代换(或同角的补角相等)_______。

(2)由此可以得出一个重要的结论是____对顶角相等_______。

对顶角相等.4、练一练1. 如图1,点A 、O 、B 在一条直线上,1,=∠∠=∠BOC AOC 则图中互余的角共有____4____对.2. 若1∠与2∠互为余角,且︒=∠371 ,则2∠=____530___3. 如果∠A =35°18′,那么∠A 的余角等于__54°42′___;4. 若1∠与2∠互为补角,︒=∠1201 ,则2∠=___600________5. 如果一个角的补角是150°,那么这个角的余角的度数是( 600 )6. 锐角的补角是__钝___角,直角的补角是___直____角,钝角的补角是_锐_角.7. 已知α∠与β∠互补,且α∠与β∠是对顶角,则α∠=__900_8. 如图2直线L 1与L 2 相交于点O ,1L OM ⊥,若︒=∠44α,则____46____0=∠β9. 如图3,直线AB 与CD 相交于点O, E 是AOD ∠内一点,已知,AB OE ⊥,45︒=∠BOD 则___135___0=∠COE8、已知,24︒=∠α且α∠与β∠互补,β∠与γ∠互补,则γ∠的余角和补角的度数分别为_____240____.9、如图4,已知直线AB 、CD 相交与点O ,OA 平分︒=∠∠70,EOC EOC ,则A BCD 45oOE图3图2MO L 1L 2α β○1角的静态定义具有公共端点的两条不重合的射线组成的图形叫做角(angle)。

余角和补角

余角和补角

B ∠BO AOD的补角是∠BO 的补角是_____ 1)∠AOD的补角是_____D __ ∠COD 2)∠AOD的余角是__ OD AOD的余角是__ ____ 的余角是 ∠C BOD的补角是∠AOD 的补角是______ 3)∠BOD的补角是∠AOD ______
牛刀小试
1、若∠1+∠2= 90 °,∠1+∠3=90°, ∠2= ∠3 则_____________。 2、若∠1+∠2=90°,∠3+∠4=90° ∠2= ∠4 且∠1=∠3,则___________。 3、若∠A=∠B,且∠A+∠1=180°, ∠1= ∠2 ∠B+∠2=180°,则____________。 4、∵∠1+∠2=180°,∠1 +∠3= 180° ∴____________。 ∠2= ∠3

● ●
B B
40° 40° 40° 40° 70° 70°
B
西


A
65° 65°
●B


B

如图.货轮O在航行过程中,发现灯塔A在它南偏东60 60° 例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60°的方 向上,同时,在它北偏东40 40° 南偏西10 10° 西北(即北偏西45 45° 向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°) 方向上又分别发现了客轮B,货轮C和海岛D B,货轮 方向上又分别发现了客轮 B, 货轮 C 和海岛 D. 仿照表示灯塔方位 的方法,画出表示客轮B,货轮C和海岛D方向的射线. B,货轮 的方法,画出表示客轮B,货轮C和海岛D方向的射线. 所以: 射线OA OA的方向就是南偏 所以 : 射线 OA 的方向就是南偏 东 60° , 即灯塔A 所在的方向。 60° 即灯塔 A 所在的方向 。 射线OB的方向就是北偏东40° 射线OB的方向就是北偏东40°, OB的方向就是北偏东40 即客轮B所在的方向。 即客轮B所在的方向。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档