.. 菱形(第课时) 优秀课特等奖 课件

合集下载

菱形的性质(第一课时)经典完整ppt课件

菱形的性质(第一课时)经典完整ppt课件

F D
C
E
A
B 可编辑课件
21
教学反思
▲你对菱形知多少?请你谈一谈.
★从概念上来谈;
●从性质上来谈; ※从计算上来
谈.
可编辑课件
22
从概念上来谈——有一组邻 边相等的平行四边形是菱形.
从性质上来谈—— ①菱形的对边平行且相等,对角相
等,对角 线互相平分.
可编辑课件
23
②菱形的四边都相等;
③菱形的对角线互相垂直,且每一 条对角线平分一组对角。 从计算上来谈——
菱形的面积等于它的对角线长的 乘积的一半。设菱形的两对角线长
分别为a,b,则它的面积S= 1 ab.
2
可编辑课件
24
可编辑课件
25
你能做吗?
如图,菱形ABCD中,∠B=60°,点 E、F分别在AB、AD上,且BE=AF. 求△ECF是等边三角形吗?
AF
D
E
B
C 可编辑课件
26
你能做吗?
如图,矩形ABCD对角 线相交于点O,DE∥AC, D CE∥DB, CE、DE交于 A E,求四边形DOCE是菱形
可编辑课件
10
我们已经知道矩形和菱形是特殊的平行四边形, 因此矩形菱形都是中心对称图形,想一想 矩 形、菱形是不是轴对称图形?如果是轴对称图 形,对称轴各几条?
矩形是轴对称图形,对称轴有两条。
菱形既是轴对称图形又是中心对称图形, 对称轴
有两条,是菱形两条对角线所在的直线.对称中心
是对角线的交点。 可编辑课件
A
⑵求菱形ABCD的面
积.
O
B
D
可编辑课件
C
18
拓展提高
7.菱形ABCD中,点E、F分别是BC、CD 的中点. EF与AC有什么关系?为什么?

1.菱形的性质与判定第1课时菱形的性质PPT课件(北师大版)

1.菱形的性质与判定第1课时菱形的性质PPT课件(北师大版)

新知导航
2.如图,菱形ABCD的边长为4 cm,对角线AC,BD 交于O,∠BAD=60°.求对角线AC,BD的长.
解:∵四边形ABCD是菱形, ∴AB=AD,∵∠BAD=60°, ∴△ABD是等边三角形, ∴BD=AB=4 cm ∴BO=2 cm,∴AO=2 3 cm,∴AC=4 3 cm
第1课时 菱形的性质
第1课时 菱形的性质
新知导航
知识点3:对角线平分对角
【例3】如图,菱形ABCD中,O是对角线AC上一点,
连接OB,OD,求证:OB=OD.
【例3】证明:∵四边形ABCD是菱形,
∴AD=AB,∠DAO=∠BAO AD=AB
在△ADO和△ABO中, ∠DAO=∠BAO , AO=AO
∴△ADO≌△ABO(SAS),∴OB=OD.
第1课时 菱形的性质
新知导航
(一)基础呈现 菱形的定义:有一组邻边 相等 的 平行四边形 叫做 菱形. 菱形的性质 (1)菱形具有平行四边形的所有性质; (2)菱形不同于一般平行四边形的性质: ①四条边都 相等 ; ②两条对角线 垂直平分 ,并且每条对角线平分对角. ③菱形是轴对称图形,有 2 条对称轴.
(2)平行四边形的对角
相等
.
(3)平行四边形的对角线 互相平分 .
第1课时 菱形的性质
知识回顾
几何语言 ∵四边形ABCD是平行四边形 ∴(边)__如__A__B_=__C_D_________________________; (角)____∠__A__=__∠__C_________________________; (对角线)__O_A__=__O_C_,__O__B_=__O_D__等______________.
第1课时 菱形的性质

初中八年级下册数学1822 菱形(第1课时)课件q

初中八年级下册数学1822 菱形(第1课时)课件q

B
C 第4题图
4.如图,菱形ABCD的周长为48cm,对角线AC , BD相交于O点,
E是AD的中点,连接OE,则线段OE的长为___6_cm___.
18.2 特殊的平行四边形/
5.如图,在菱形ABCD中,点O为对角线AC与BD的交点,且在 △AOB中,OA=5,OB=12.求菱形ABCD两对边的距离h.
A
D
O
B
C
∴∠ABC= ×180°=60°,∴∠ABO= ×∠ABC=30°.
∴△ABC是等边三角形.
18.2 特殊的平行四边形/
∵菱形ABCD的周长是8cm. ∴AB=2cm. ∴OA= AB=1cm,AC=AB=2cm.

.
∴BD=2OB= 2 3cm;
(2)S菱形ABCD =
1 AC•BD
2
A.24m
B.12m
C.96m
D.48m
18.2 特殊的平行四边形/
知识点 3 菱形对角线的性质 观察:将一张长方形的纸对折、再对折,然后沿图中的虚 线剪下,打开即得一个菱形.
操作:在自己剪出的菱形上画出两条折痕,折叠手中的图 形(如图),并回答以下问题:
18.2 特殊的平行四边形/
问题1 菱形是轴对称图形吗?如果是,指出它的对称轴. 是,两条对角线所在直线都是它的对称轴.
对边相等
对边相等
四边相等
对角相等 四个角都是直角 对角相等
对角线互相平分
对角线互 相平分且 相等
两条对角线互相 垂直平分,并且 每一条对角线平 分一组对角
18.2 特殊的平行四边形/
考点 1 利用菱形的性质求线段的长 如图,在菱形ABCD中,对角线AC,BD相交于点O,BD=12cm, AC=6cm,求菱形的周长. 解:∵四边形ABCD是菱形, ∴AC⊥BD,AO= AC,BO= BD. ∵AC=6cm,BD=12cm, ∴AO=3cm,BO=6cm. 在Rt△ABO中,由勾股定理,得

北师大版九年级上册1.1菱形的性质与判定(第1课时)课件

北师大版九年级上册1.1菱形的性质与判定(第1课时)课件


定理(对角线的性质): 菱形的对角线互相
垂直.
所有对角线互相垂直的四边形的面积都 等于其两条对角线乘积的一半.
教学过程
分层作业

第一层:第4页习题1、2题.


第二层:第4页习题1、2、3、4题.

教学过程
结 束
感谢聆听


定理(对角线的性质): 菱形的对角线互相垂直. 有两条对称轴,它们互相垂直.
将△ABO沿点A到点C的方向平移, 通过上面的折纸活动,我们可以发现:
已知:如图 ,在菱形 ABCD 中,AB = AD,对角线 AC 与 BD 相交于点O.
精 得到△A'B'O'.当点A'与点C重合 定理(边的性质): 菱形的四条边相等. 析 时,点A与点B'之间的距离为 如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.
A
授 (2)AC⊥BD.
B
O
C
D
教学过程
证一证
用菱形纸片折一折,回答下列问题:
你能列举一些这样的性质吗?
菱形的四条边相等,对角线互相垂直.
证明:(1)∵四边形 ABCD 是菱形, 定理(边的性质): 菱形的四条边相等.
通过上面的折纸活动和证明,菱形有如下的性质: (2)菱形中有哪些相等的线段?
新 ∴AB=CD,AD=BC(菱形的对边相等). 定理(边的性质): 菱形的四条边相等.
新 对称图形.

定理(边的性质): 菱形的四条边相等.
定理(对角线的性质): 菱形的对角线互相
垂直.

菱形的判定PPT课件

菱形的判定PPT课件

四条边相等的四边形是菱形.
B
O
A
C
D
∴△AOB≌△COB,∴BA=BC.
∴四边形ABCD是菱形(菱形的定义).
新知导入 课程讲授 随堂练习 课堂小结
菱形的判定
归纳:菱形的判定定理:
对角线互相垂直的平行四边形是菱形
几何语言: 在平行四边形ABCD中, ∵AC⊥BD,
B
O
A
C
∴平行四边形ABCD是菱形.
D
新知导入 课程讲授 随堂练习 课堂小结
新知导入 课程讲授 随堂练习 课堂小结
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,∠FAE=∠BDE,
∵E是AD的中点,∴AE=DE,
∴△AFE≌△DBE.
∵AD是BC边上的中线,∴BD=CD,
∴AF=BD,∴AF=DC.
(2)解:四边形ADCF是菱形,理由如下:
由(1)知AF∥BC,AF=DC,
新知导入 课程讲授 随堂练习 课堂小结
菱形的判定
归纳:判定一个四边形是菱形的方法与思路是: 有四条边相等 菱形
四边形 对角线互相垂直平分 菱形 对角线互相垂直 菱形
平行四边形 一组邻边相等 菱形
新知导入 课程讲授 随堂练习 课堂小结
菱形的判定
练一练:下列条件中,能判定四边形是菱形的是( D ) A. 对角线互相垂直 B. 对角线互相平分 C. 对角线相等 D. 对角线互相垂直平分
新知导入 课程讲授 随堂练习 课堂小结
菱形的判定
归纳:菱形的判定定理: 四条边相等的四边形是菱形 几何语言: 在四边形ABCD中, ∵ AB=BC=CD=AD, ∴四边形ABCD是菱形.
B
A
C

菱形的性质与判定_第课时_-课件()

菱形的性质与判定_第课时_-课件()
第一章 特殊平行四边形
第1节 菱形的性质与判定
精品模版-助您成长
图片中有你熟悉的图形吗?
与左图相比较,这种平行 四边形特殊在哪里?你能给 菱形下定义吗? 一组邻边相等的平行四边形叫做菱形。
想一想
菱形是特殊的平行四边形, 它具有一般平行四边形的所有性质。你 能列举一些这样的性质吗?
菱形的对边平行且相等,对角相 等,对角线互相平分。
---
已知:如图1-1,在菱形ABCD中, AB=AD, 对角线AC与BD相交于点O.
求证:(1)AB=BC=CD=AD; (2)AC⊥BD.
证明: (1)∵四边形ABCD是菱形,
∴AB = CD,AD= BC(菱形的对边相等) 又∵AB=AD
∴AB=BC=CD=AD
(2)∵AB=AD ∴△ABD是等腰三角形
菱形还具有哪些特殊的性质?请 你与同伴交流。
做一做
请同学们用菱形纸片折 一折,回答下列问题:
(1)菱形是轴对称图形吗?如果是,它有几 条对称轴?对称轴之间有什么位置关系?
(2)菱形中有哪些相等的线段?
结论
• 菱形是轴对称图形,有两条对称轴,是菱 形领条对角线所在的直线。两条对称轴互 相垂直。
• 菱形的邻边相等,对边相等,பைடு நூலகம்条边都相 等。
随堂练习
如图,在菱形ABCD中,对角 线AC与BD 相交于点O. 已知 AB=5cm,AO=4cm ,求 BD的 长.
课堂小结
1、菱形的定义:一组邻边相等的平行四边形 是菱形。
2、菱形的性质:①菱形是轴对称图形,对称轴 是两条对角线所在的直线;②菱形的四条边都 相等;③菱形的对角线互相垂直平分。
又∵四边形ABCD是菱形 ∴OB=OD(菱形的对角线互相平分)

浙教版数学八年级下册 5.2.1 菱形 说课课件(共27张PPT)

浙教版数学八年级下册 5.2.1 菱形 说课课件(共27张PPT)

关系.
2.探索并证明菱形的性质定理: 符号语言).
2.探索并证明菱形的性质 菱形的四条边相等.
2.学生能说出菱形的四条边相等,并
定理:菱形的四条边相等, 3.探索并证明菱形的性质定理: 给出证明.
对角线互相垂直.
对角线互相垂直,并每条对角 3. 猜想、验证、证明、归纳出菱形
3.探索菱形的轴对称性. 线平分一组对角.
对角线互相垂直,并每条对角线平分
4.探索菱形的轴对称性.
一组对角.
4.学生通过折、剪、拼明确菱形是轴
对称图形,并能说出它的对称轴.
03 教 学 问 题 诊 断 分 析
已经具备的基础
三角形的分类 和特殊三角形
的性质
平行四边形和 矩形的性质、 判定、应用
能够从边和角 考虑图形的特 殊化,知道从 边、角、对角 线和对称性研 究图形性质.
线平分一组对角.
分一组对角.
4.探索菱形的轴对称性.
菱形轴对称性难以理解
课时目标
1.理解菱形的概念, 以及菱形与平行四边 形的关系.
2.探索并证明菱形的 性质定理:菱形的四 条边相等.
3.探索并证明菱形的 性质定理:对角线互 相垂直,并且每条对 角线平分一组对角.
可能问题
教师引导
忽视菱形作为平 行四边形所具备 的一般性质.
Байду номын сангаас定性判 应 义质定 用
菱形
本节课的教学重点:探索并证明菱形的性质
02目标及目标解析
对照 课标 要求
目标确定
课标要求
课时目标
目标解析
1.理解菱形的概念,以及 1.理解菱形的概念,以及菱形 1.学生能说出菱形与平行四边形的关
菱形与平行四边形之间的 与平行四边形的关系.

菱形的性质(第一课时)经典课件

菱形的性质(第一课时)经典课件

关于中垂线对称
菱形的两条中垂线分别垂直平分两条对角线,并且相交于 中心。
菱形中的任意一点关于其中一条中垂线对称,意味着该点 到中垂线的距离相等且与相对的边的中点连线与中垂线垂 直。
05
菱形在实际生活中的应用
建筑设计中的应用
窗户设计
菱形图案的窗户在建筑设计中经常被使用,它能够 增加建筑物的艺术感和视觉效果。
菱形的性质(第一课时)经典课 件

CONTENCT

• 菱形的定义与性质 • 菱形的边长性质 • 菱形的角度性质 • 菱形的对称性 • 菱形在实际生活中的应用
01
菱形的定义与性质
菱形的定义

菱形的性质
对角线互相垂直
四边相等
对角相等
邻边互相垂直
科学实验
在某些科学实验中,菱形形状 的装置或实验器材可以提高实 验的准确性和可靠性。
THANK YOU
感谢聆听
菱形的两条对角线互相 垂直,并且平分对方。
菱形的四条边长度相等。
菱形的对角相等,即相 对的两个角大小相等。
菱形相邻的两边互相垂 直。
菱形与平行四边形的关系
01
菱形是平行四边形的一种特殊情 况,当平行四边形的所有边都相 等时,它就变成了菱形。
02
平行四边形不一定是菱形,但菱 形一定是平行四边形。
02
菱形的对角线互相垂直平分,这 一性质在几何证明中经常被使用 。
80%
角度和边的关系
通过菱形的性质,可以推导出角 度和边的关系,进而证明其他几 何命题。
其他领域中的应用
时尚界
菱形图案在时尚界中广泛流行 ,如服装、饰品和鞋履的设计 中经常出现菱形元素。
艺术创作

人教版八年级下册18.2.2 菱形 课件(共30张PPT)

人教版八年级下册18.2.2 菱形 课件(共30张PPT)

D
∴ AB2=OA2+OB2,
∴△AOB是直角三角形, A
O
C
即AC⊥BD,
B
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、 BC分别交于点E、F,求证:四边形AFCE是菱形.
证明:∵四边形ABCD是矩形,
∴AE∥FC,∴∠1=∠2.
证明:连接AC、BD.
A
E
D
∵四边形ABCD是矩形,
F
H
∴AC=BD.
∵点E、F、G、H为各边中点, B
G
C
E F G H 1B D , F G E H 1A C ,
2
2
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
【变式题】 如图,顺次连接对角线相等的四边形 ABCD各边中点,得到四边形EFGH是什么四边形?
拓展1 如图,顺次连接平行四边形ABCD各
边中点,得到四边形EFGH是什么四边形?
解:连接AC、BD.
E
B
A
∵点E、F、G、H为各边中点,
F
E F G H 1 2 B D , F G E H 1 2A C , D
小刚的作法对吗? 猜想:四条边相等的四边形是菱形.
证一证 已知:如图,四边形ABCD中,AB=BC=CD=AD.
求证:四边形ABCD是菱形.
证明:∵AB=BC=CD=AD;
B
∴AB=CD , BC=AD.
A
∴四边形ABCD是平行四边形.
C D
又∵AB=BC,
∴四边形ABCD是菱形.
归纳总结 菱形的判定定理:
解:四边形EFGH是菱形.

最新人教版数学初中八年级下册18.2.2《菱形》公开课课件

最新人教版数学初中八年级下册18.2.2《菱形》公开课课件

求证:(1)AB=BC=CD=DA.
(2)AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ADC和 ∠ABC. 证明: (2) ∵四边形ABCD是平行四边形,
∴OB=OD,
又∵AB=AD, ∴AO⊥BD,∠1=∠2.
即AC⊥BD,AC平分∠BAD.
同理可证,AC平分∠DCB,BD平分∠ADC和∠ABC.
二、折纸实验 研究性 质:
2. 猜想菱形性质并推理证明: 从菱形的边、角、对角线等方面进行研究,菱形还有以下性质: 性质1:菱形的四条边都相等. 符号语言: ∵四边形ABCD是菱形, ∴AB=BC=CD=DA.
二、折纸实验 研究性 质:
2. 猜想菱形性质并推理证明: 性质2:菱形的两条对角线互相垂直,并且每一条对角线平分一 组对角. 符号语言: ∵四边形ABCD是菱形, ∴AC⊥BD,AO=CO,BO=DO, ∠ABD=∠CBD,∠ADB=∠CDB, ∠BAC=∠DAC,∠BCA=∠DCA.
二、折纸实验 研究性 质:
3. 应用性质探究菱形的面积. 方法一:利用平行四边形的面积公式 S菱形=BC·AE.
方法二:把菱形的面积看成四个小直角三角形的面
1 1 1 1 1 4 OA OB 4 AC BD AC BD 2 2 2 2 2 S菱形ABCD=4S△AOB=
积,
二、折纸实验 研究性 质:
3. 应用性质探究菱形的面积.
你有什么发现? 菱形的面积等于两条对角线乘积的一半, 数学语言表示:
1 1 1 1 1 4 = OA OB 4 AC BD AC BD S菱形ABCD 2 2 2 2 2
二、折纸实验 研究性 质:
例1
[教材P56例3] 如图,菱形花坛ABCD的边长为20

人教版八下数学课件第18章18.2.2第1课时菱形的性质

人教版八下数学课件第18章18.2.2第1课时菱形的性质
灿若寒星
解 : 当 四 边 形 EDD′F 为 菱 形 时 , △A′DE 是 等 腰 三 角 形 , △A′DE≌△EFC′.理由:∵△BCA 是直角三角形,∠ACB=90°,AD=
DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=
∠A , ∠DEA′ = ∠DCA , ∴∠DA′E = ∠DEA′ , ∴DA′ = DE ,
7.如图,AC、BD 是菱形 ABCD 的对角线,那么下列结论一定正确的是( B ) A.△ABD 与△ABC 的周长相等 B.△ABD 与△ABC 的面积相等 C.菱形的周长等于两条对角线之和的两倍 D.菱形的面积等于两条对角线之积的两倍
灿若寒星
8.如图,在菱形 ABCD 中,∠BAD=120°,AB=4.
初中数学课件
灿若寒星*****整理制作
八年级数学(下册)·人教版
第十八章 平行四边形
18.2.2 菱形 第1课时 菱形的性质
灿若寒星
1.定义:四条边相等的四边形 叫做菱形.菱形是轴对称图形,它的对称 轴是 两条对角线所在的直线 . 2.性质:①菱形的四条边 相等 ;②菱形的对角线 互相垂直平分 ,并且 每条对角线 平分 一组对角. 3.菱形的面积等于两对角线长的乘积的 一半 .
解:∵四边形 ABCD 为菱形,∴AC⊥BD,OA=12AC=8cm,OD=21BD= 6cm.∴AD= 62+82=10,∴C 菱形=4AD=40cm.由 S 菱形=AB×DE=12 ×AC×BD,即 10×DE=12×16×12,∴DE=9.6cm.
灿若寒星
5.如图,将一张直角三角形 ABC 纸片沿斜边 AB 上的中线 CD 剪开,得到 △ACD,再将△ACD 沿 DB 方向平移到△A′C′D′的位置,若平移开始后 点 D′,未到达点 B 时,A′C′交 CD 于 E,D′C′交 CB 于点 F,连接 EF,当四边形 EDD′F 为菱形时,试探究△A′DE 的形状,并判断△A′DE 与△EFC′是否全等?请说明理由.

《菱形》PPT课件

《菱形》PPT课件
阅读课本140---141页内容,自己总结菱形的性质
活动:把下面的图形折一折、转一转,你有什么发现?请总结出来。
元素
平行四边形的性质
菱形的性质
内角
对角相等,邻角互补
对角相等,邻角互补

对边平行且相等
对角线
对角线互相平分
对边平行且四条边相等
对角线互相垂直且每一条平分一组对角
已知:如图四边形ABCD是菱形
有同学是这样做的:将一张长方形的纸对折、再对折,然后沿图中的虚线剪下,打开即可.你知道其中的道理吗?
如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?
这堂课你学到了什么?
回味无穷
当堂达标:一展身手
二.菱形ABCD中,O是两条对角线的交点,已知AB=5cm,AO=3cm,则对角线AC的长为____,BD的长为_____。
菱形是中心对称图形,对称中心是两条对角线的交点。
菱形是轴对称图形,有2条对称轴,是两条对角线所在的直线。
1
2
4
3
5
7
6
8
学以致用
1.已知菱形的周长是12cm,那么它的边长是______.
2.菱形ABCD中∠ABC=60°,则∠BAC=_______.
m
60°
3、菱形的两条对角线长分别为6cm和8cm,则菱形的边长是( )
平行四边形
邻边相等
菱形
在平行四边形中,如果内角大小保持不变,仅改变边的长度,请仔细观察和思考,在这变化过程中,哪些关系没变?哪些关系变了?
如果改变了边的长度,使两邻边相等,那么这个平行四边形成为怎样的四边形?
相信你能解释 !
AB=BC
四边形ABCD是菱形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
学一学
D
菱形的性质
A
O
C
菱形是轴对称图形,它的对角线 就是它的对称轴 菱形具有平行四边形的所有性质. 菱形的四条边都相等。 两条对角线互相垂直平分。 每一条对角线平分一组对角.
B
学一学
几何语言
∵四边形ABCD是菱形, ∴AD∥BC,AB∥CD, AB=BC=CD=DA, OA=OC,OB=OD, AC⊥BD, ∠DAC=∠BAC=∠DCA=∠BCA=
AE
1 1 BD 10 5cm . 2 2 AD 2 DE 2 13 2 5 2 12cm .
D
C ∴AC=2AE=2×12=24(cm). (2)菱形ABCD的面积=△ABD的面积+△CBD的面积 =2×△ABD的面积
1 2 BD AE 2 1 2 10 12 120 cm 2 . 2
A B D O C
1 ∠DAB= 2 1 ∠ADB=∠CDB=∠ABD=∠CBD= ∠ADC= 2
1 ∠DCB 2 1 ∠ABC 2
菱形性质的应用
A
已知:如图,四边形ABCD是边长为13cm 的菱形,其中对角线BD长10cm. 求:(1).对角线AC的长度; (2).菱形的面积 E B 解:(1)∵四边形ABCD是菱形, ∴∠AED=900, DE
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出 解决办法。
上海 2006 高考 理科 状元-武亦 文
武亦文 格致中学理科班学生 班级职务:学习委员 高考志愿:复旦经济 高考成绩:语文127分 数学142分 英语144分 物理145分 综合27分 总分585分
“一分也不能少”
“我坚持做好每天的预习、复习,每 天放学回家看半小时报纸,晚上10: 30休息,感觉很轻松地度过了三年 高中学习。”当得知自己的高考成 绩后,格致中学的武亦文遗憾地说 道,“平时模拟考试时,自己总有 一门满分,这次高考却没有出现, 有些遗憾。”
18.2特殊的你熟悉的吗?
读一读
越王勾践剑,一把在地下埋藏了 2000多年的古剑,出土时依然寒气逼人, 毫无锈蚀,锋利无比,稍一用力,便可 将多层白纸划破,剑身上整齐排列的黑 色菱形暗花纹。
Shuxue
平行四边形再认识
一组邻边相等的平行四边形叫做菱形


木工在做菱形的窗格时,总是保证四条边框 一样长,你能说出是为什么吗?与同伴交流。
四条边都相等 的四边形是菱 形。
学习了本节课你有 哪些收获?
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法


高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
想一想
将一张长方形的纸对折、再对折,然后 沿图中的虚线剪下,打开即得一个菱形.
菱形是轴对称图形吗?如果是,那么它有几条对 称轴?对称轴之间有什么位置关系?
议一议
D A O C
B 如图,在菱形ABCD中,对角线AC、BD相交于点O. (1)图中有哪些线段是相等的?哪些角是相等的?
(2)图中有哪些等腰三角形、直角三角形?
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试 成绩就否定自己。高三的几次模拟考试中,她的 成绩一直稳定在年级前5名左右。
坚持做好每个学习步骤
武亦文的高考高分来自于她日常严谨的学习 态度,坚持认真做好每天的预习、复习。 “高中三年,从来没有熬夜,上课跟着老师 走,保证课堂效率。”武亦文介绍,“班主 任王老师对我的成长起了很大引导作用,王 老师办事很认真,凡事都会投入自己所有精 力,看重做事的过程而不重结果。每当学生 没有取得好结果,王老师也会淡然一笑,鼓 励学生注重学习的过程。”
相关文档
最新文档