函数解析的充要条件

合集下载

函数解析的充要条件

函数解析的充要条件

函数解析的充要条件函数解析是研究函数的定义域和值域的一种方法,用于确定函数的限制条件和特性。

在数学中,函数解析的充要条件对于理解和推导函数的性质至关重要。

本文将介绍函数解析的充要条件及其应用。

一、函数解析的定义和概念在开始讨论函数解析的充要条件之前,我们先来了解一下函数解析的定义和概念。

函数解析是指确定函数的定义域和值域的过程。

函数的定义域是指使函数有意义的自变量的取值范围,而值域则是函数在定义域内所有可能的函数值的集合。

二、函数解析的充要条件函数解析的充要条件有以下几个要点:1. 定义域的确定:函数的定义域是使函数有意义的自变量的取值范围。

在确定定义域时,需要避免出现分母为零、负数开偶次方根、负数的对数等不合法的情况。

2. 垂直渐近线的存在性:如果函数在某个点x=a的左右极限存在且相等,那么该点x=a处就存在着一个垂直渐近线。

3. 水平渐近线的存在性:如果函数在无穷远处的左右极限存在且相等,那么函数就存在一个水平渐近线。

4. 每一个分段函数段的解析条件:对于分段函数,每一个分段函数段都要满足解析条件。

也就是说,每一个函数段都需要符合函数解析的充要条件。

三、函数解析的应用函数解析的充要条件在解析函数性质和求解问题中有着广泛的应用。

1. 确定函数的定义域:通过函数解析的充要条件,我们可以确定函数的定义域,从而确定函数的取值范围。

2. 求解极限:函数的垂直渐近线和水平渐近线的存在性可以帮助我们求解函数的极限。

3. 分段函数的分析:分段函数的每一个函数段都需要满足解析条件,通过函数解析的充要条件,我们可以分析每一个函数段的性质。

4. 函数的图像绘制:根据函数解析的充要条件,我们可以确定函数的特性,从而绘制出函数的图像。

四、总结函数解析的充要条件是确定函数的定义域和值域的重要方法,对于理解和推导函数的性质具有重要意义。

本文介绍了函数解析的定义和概念,以及函数解析的充要条件及其应用。

通过了解和应用函数解析的充要条件,我们可以更加深入地研究和理解函数的性质。

解析函数的充要条件

解析函数的充要条件

那么在曲线的交点处,i)uy、 vy 均不为零时, 那么在曲线的交点处, 、 均不为零时, 由隐函数求导法则知曲线族 u(x, y)=C1, v(x, y)=C2中任一条曲线的斜率分别为
k1 = − u x / u y
k2 = −v x / v y
利用C-R方程 ux=vy, uy=-vx 有 方程 利用 k1k2=(-ux/uy)(-vx/vy)= -1,即:两族曲线互相正交 两族曲线互相正交. ,
∂u ∂v = ∂x ∂y
上述条件满足时,有 上述条件满足时 有
∂v ∂u =− ∂x ∂y
f ' ( z ) = ux + iv x = ux − iu y = v y − iu y = v y + iv x
证明 " ⇒ " 方程满足上面已证! (由f (z)的可导⇒ C-R方程满足上面已证!只须证 的可导 方程满足上面已证 f (z)的可导 ⇒ 函数 u(x, y)、v(x, y)可微)。 的可导 、 可微 可导, ∵函数 w =f (z)点 z可导,即 点 可导
定理2 函数f 定理 函数 (z)=u(x, y)+iv(x, y)在D内解析充要 在 内解析充要 条件是 u(x, y) 和 v(x, y)在D内可微,且 在 内可微, 满足Cauchy-Riemann方程 方程 满足
∂u ∂v = ∂x ∂y ∂v ∂u =− ∂x ∂y
֠
由此可以看出可导函数的实部与虚部有密切 的联系.当一个函数可导时, 的联系.当一个函数可导时,仅由其实部或虚部就可 以求出导数来. 以求出导数来.
例3 若 f ' ( z ) ≡ 0 , z ∈ D ⇒ f ( z ) = C , z ∈ D

函数解析的充要条件概述

函数解析的充要条件概述

v 0, x
v 1. y
上一节是由 解析定义判断 处处不解析
不满足柯西-黎曼方程, 故 w z 在复平面内处处不可导,处处不解析.
盐城工学院基础部应用数学课程组
(2) f ( z) e x (cos y i sin y)
u e x cos y, v e y y x
u 常数, v 常数,
因此 f ( z) 在区域 D 内为一常数.
盐城工学院基础部应用数学课程组
例4 问常数 a, b, c, d 取何值时, f ( z ) 在复平面内处处
设 f ( z ) x 2 axy by 2 i (cx 2 dxy y 2 ),
盐城工学院基础部应用数学课程组
(3) w z Re( z) x xyi,
2
u x , v xy,
2
u 2 x, x
u 0, y
v y, x
v x. y
四个偏导数均连续
仅当 x y 0 时, 满足柯西-黎曼方程, 故函数 w z Re( z) 仅在 z 0 处可导,
u u x e cos y, e x sin y, x y v v x e sin y, e x cos y, x y u v u v 即 , . x y y x
由于四个偏导 数均连续
故 f ( z) 在复平面内处处可导, 处处解析.
f ( z) e x (cos y i sin y) f ( z). 指数函数
解析? u u 解 2 x ay , ax 2by, x y v v 2cx dy , dx 2 y , x y u v u v 欲使 , , x y y x

复变函数22函数解析充要条件

复变函数22函数解析充要条件

黎曼介绍
课件
2
证 (1) 必要性. 设 f(z)u(x,y)iv (x,y)定义在 D 内 , 区域 且 f(z)在 D 内一 zx点 y可 i ,导 则对于充 z分 xi小 y的 0,
有 f ( z z ) f ( z ) f ( z ) z ( z ) z ,
其l中 im ( z)0, z 0
令 f ( z z ) f ( z ) u i v ,
f(z)aib , ( z )1 i2 ,
课件
3
所 u 以 i v
(aib)(xiy)(1i2)(xiy)
(a x b y1 x2 y) i(b xa y2 x1 y)
于 u a x 是 b y 1 x 2 y ,
[证毕]
课件
8
根据 ,可 定得 理 f(z)函 一 u (x ,y 数 )i(v x ,y)在 点 zxy处 i 的导 : 数公式
f(z)uiv1uv. x x iy y
函数在区 D内域解析的充要条件 定理二 函数 f(z)u(x,y)iv(x,y)在其定义 域D内解析的充:要 u(x条 ,y)与 件 v(x是 ,y)在 D内可,并 微且满足柯西 程.-黎曼方
课件
11
(2 )f(z) ex (cy o issiy )n 指数函数
u exco y, s v exsiy,n
uexcoy,suexsiyn ,
x
y
四个偏导数
vexsiyn, vexcoy,s 均连续
x
y
即uv, uv. x y y x
故f(z)在复平面内处 ,处处 处可 解 . 导 析
且 f ( z ) e x (c y i s o y ) i s n f ( z ).

复变函数2-2函数解析的充要条件

复变函数2-2函数解析的充要条件

证 因为 f (z) 2xy , 所以 u 2xy , v 0,
ux
(0,0)
lim
x0
u(
x,0) x
u(0,0) 0
0
vy
(0,0),
uy (0,0)
lim
y0
u(0,
y) y
u(0,0) 0
0
vx (0,0),
柯西-黎曼方程在点 z 0 成立.
25
但在点 z 0 , f (z) f (0) 2xy
黎曼方程
u v , u v . x y y x
掌握并能灵活应用柯西—黎曼方程.
27
思考题
用柯西-黎曼条件判断 f (z) u( x, y) iv( x, y) 解析时应注意什么?
28
思考题答案
首先判断 u( x, y) 和 v( x, y) 在 D内是否可微; 其次再看是否满足C - R条件 : u v , u v ;
z
x iy
因为 lim f (z) f (0) 2 ,
xy00
z
1 i
lim f (z) f (0) 0,
x0,y0
z
故函数 f (z) 在点 z 0 不可微.
26
三、小结与思考
在本课中我们得到了一个重要结论—函数
解析的充要条件:
u( x, y)与 v( x, y) 在D内可微, 并且满足柯西-
z0
令 f (z z) f (z) u iv,
f (z) a ib, (z) 1 i2 ,
3
所以 u iv
(a ib) (x iy) (1 i2 ) (x iy) (ax by 1x 2y)
i(bx ay 2x 1y)

复变函数第三讲解析函数的充要条件初等函数

复变函数第三讲解析函数的充要条件初等函数
u v 1 u v iii) 求导数: f' ( z ) i x x i y y

前面我们常把复变函数看成是两个实函数拼 成的, 但是求复变函数的导数时要注意, 并不是两个 实函数分别关于x,y求导简单拼凑成的.
二. 举例
例1 判定下列函数在何处可导,在何处解析:
若沿平行于实轴的方式 zቤተ መጻሕፍቲ ባይዱz z ( y0 )
f(z z)f(z) f(z)lim z 0 z [u (x x ,y )iv (x x ,y )] [u (x ,y )iv (x ,y )] lim x 0 x u (x x ,y )u (x ,y ) v (x x ,y )v (x ,y ) lim i lim x 0 x 0 x x
1 u v v u i i y y y y
f ' ( z ) 存在 u v v u i i x x y y u v x y
定义 方程

u x v x
记忆
v u x y
u y v y
Cauchy-Riemann方程
u v v u x y x y
上述条件满足时,有
f ' ( z ) u iv u iu v iu v iv x x x y y y y x
定理2 函数f (z)=u(x, y)+iv(x, y)在D内解析充要 条件是 u(x, y) 和 v(x, y)在D内可微,且 满足Cauchy-Riemann方程
第三讲 解析函数的充要条件 初等函数
§2.2 解析函数的充要条件

1. 解析函数的充要条件

2-2 函数解析的充要条件

2-2 函数解析的充要条件

u=0 v=10
x 0 y 0
x 0 y 0
u ax by 1x 2 y , v bx ay 2 x 1y
当 y 0 时,
0
当 x 0 时,
u u u u lim b lim 2 b lim a lim 1 a y 0 y y 0 y x 0 x x 0 x
z 0
令 f z a ib , z 1 i 2 其中 lim 1 0 , lim 2 0

ax by 1x 2 y i bx ay 2 x 1y
u iv a ibx iy 1 i 2 x iy
u e x cos y
[解] w x yi 故 u =x ,v =-y
[解 ]
v e x sin y
u v 1 1 x y u v 00 y x
不满足C-R方程
u v x e cos y x y
u v x e sin y y x
0 0
v v v v lim a lim 1 a lim b lim 2 b y 0 y y 0 y x 0 x x 0 x
u v 因此 u(x,y)和v(x,y)在(x,y)可微, 且 x y
0
u v y x
u v v u i i y 1 i 3 x 2 i 4 y x x y x y
x0 y0
根据柯西-黎曼方程得
f z z f z u v x y i 1 i 3 2 i 4 所以 z x x z z

第2节:函数解析的充要条件

第2节:函数解析的充要条件

vx=2cx+dy, vy=dx+2y 则由ux=vy, uyvx, 得
2x+ay=dx+2y, 2cx+dyax2by
a=2, b1, c1, d=2
故此时函数在复平面内处处解析, 且
f(z)=x2+2xyy2+i(x2+2xy+y2) =(1i)(x+iy)2=(1i)z2
例3. 求证 f '(z)≡0, z∈D f(z)≡C, z∈D
证 ) 显然 ) f (z) u i v v i u 0 x x y y
故 u u v v 0 x y x y
所以u=常数, v=常数, 因而 f(z)在D内是常数.
例4. 设函数 w=f(z)=u(x,y)+ iv(x,y)在区域D内解析, 并 满足下列条件之一,那么 f(z)是常数: [书P67: 10]
u v , u v
(*)
x y y x
这时f (z) u i v 1 u v x x i y y
定理二: 函数 f(z)=u(x,y)+iv(x,y)在区域D内解析(可导) 的充要条件是: (1) u(x,y)与v(x,y)在D内可微, 并且(2)
在D内满足柯西-黎曼方程(*)式.
注: (1) 如函数 f(z)在区域D内不满足C-R方程, 则 f(z) 在D内不解析;
r r r r
例1. 判断下列函数在何处可导, 在何处解析:
1) f (z) x 2iy; 2) w z 2 ;
3) f (z) x2 y2 x i(2xy y2 ).
4) f (z) ex (cos y i sin y).
解. 1) 因为 u=x, v=2y,

解析的充要条件

解析的充要条件

解析的充要条件
函数解析的充要条件:
1、f'(z)=df/dz唯一存在。

f'(z)=(∂u/∂x)+(∂v/∂x)i=(∂v/∂y)-(∂u/∂y)i。

2、满足C-R方程(柯西黎曼方程)—(∂u/∂x)=(∂v/∂y)(∂v/∂x)=-(∂u/∂y)。

同部偏导相等,异部偏导相反。

区域上处处可微的复函数称为单演函数,后人又把它们称为全纯函数、解析函数。

B.黎曼从这一定义出发对复函数的微分作了深入的研究,后来,就把上述的偏微分方程组称为柯西-黎曼方程,或柯西-黎曼条件。

由于解析函数概念可推广为广义解析函数(基于把解析函数的实部、虚部所满足的柯西-黎曼方程组推广为较一般的一阶偏微分方程组),因此解析函数边值问题也可推广为广义解析函数边值问题,这是把函数论与偏微分方程结合起来的一个方向。

第二章3解析函数的充要条件

第二章3解析函数的充要条件
Δ→0
设( + Δ) − () = Δ + Δ, ′ = + ,
(Δ) = 1 + 2
所以Δ + Δ = ( + )(Δ + Δ) + (1 + 2 )(Δ + Δ)
= Δ − Δ + 1 Δ − 2 Δ
+(Δ + Δ + 2 Δ + 1 Δ)

=



= −.
充分性
由于 + Δ −
= ( + Δ, + Δ) − (, ) + [( + Δ, + Δ) − (, )]
= Δ + Δ
由(, ), (, )在点(, )可微,可知




Δ =
Δ +


( + ∆) − ()
1 ( ∆ ) + 2 ( ∆ )

=
+
+
Δ



′ ()

( + ∆) − ()
=
+
= lim
∆→0


Δ
即 在 = + 处可导.
注:函数 = , + , 在一点可导的一个充分条件:


=− .


证明:必要性
( + Δ) − ()
()在 = + 处可导, ⇒ () = lim
存在
Δ→0
Δ
∀ > 0, ∃ > 0, 当0 < Δ < 时,有

第2节:函数解析的充要条件

第2节:函数解析的充要条件
今后将知道这个函数就是指数函数ez.
例2. 设函数 f(z)=x2+axy+by2+i(cx2+dxy+y2), 问 常数a,b,c,d 取何值时, f(z)在复平面内处处解析?
解. 由于 ux=2x+ay, uy=ax+2by, vx=2cx+dy, vy=dx+2y 则由ux=vy, uyvx, 得 2x+ay=dx+2y, 2cx+dyax2by
a=2, b1, c1, d=2
故此时函数在复平面内处处解析, 且 f(z)=x2+2xyy2+i(x2+2xy+y2)
=(1i)(x+iy)2=(1i)z2
例3. 求证 f '(z)≡0, z∈D f(z)≡C, z∈D 证 ) 显然
)
u v v u f ( z ) i i 0 x x y y
(4) C-R方程在极坐标下的形式为[书P67:9]:
u 1 v v 1 u , r r r r
例1. 判断下列函数在何处可导, 在何处解析:
1) f ( z
2
3) f ( z ) x y x i(2 xy y ). 4) f ( z ) ex (cos y i sin y ).
u v u v , x y y x u v 1 u v 这时f ( z ) i x x i y y
(*)
定理二: 函数 f(z)=u(x,y)+iv(x,y)在区域D内解析(可导) 的充要条件是: (1) u(x,y)与v(x,y)在D内可微, 并且(2) 在D内满足柯西-黎曼方程(*)式.
注: (1) 如函数 f(z)在区域D内不满足C-R方程, 则 f(z) 在D内不解析;

函数在一点解析的充要条件

函数在一点解析的充要条件

函数在一点解析的充要条件篇一:函数在一点解析的充要条件是指在一个点上,函数的值与其自变量的取值必须满足一定的关系。

在数学中,这个关系通常被称为函数的零点或者函数的极值。

下面介绍一些函数在一点解析的充要条件:1. 函数在一点处的函数值等于其自变量的取值之和:这个条件被称为函数在该点的“一次函数条件”。

如果函数是单调递增或单调递减的,那么这个条件是成立的。

如果函数是凸凹的,那么函数在一点处的函数值必须是其自变量的取值之和的相反数。

2. 函数在一点处的函数值等于其自变量的取值中最小值或最大值:这个条件被称为函数在该点的“最小值条件”或“最大值条件”。

如果函数是单调递增的,那么函数在一点处的函数值必须是在其自变量取值中的最小值。

如果函数是单调递减的,那么函数在一点处的函数值必须是在其自变量取值中的最大值。

3. 函数在一点处的函数值与该点的横坐标或纵坐标相等:这个条件被称为函数在该点的“横坐标或纵坐标条件”。

如果函数是单调递增的,那么函数在一点处的横坐标或纵坐标必须是其自变量的取值之一。

如果函数是单调递减的,那么函数在一点处的横坐标或纵坐标必须是其自变量的取值的相反数。

4. 函数在一点处的函数值与该点的坐标在函数图像上对应点处相等:这个条件被称为函数在该点的“坐标对应条件”。

如果函数是单调递增的,那么函数在一点处的坐标对应点必须在其图像上对应于其自变量的取值中的最小值或最大值。

如果函数是单调递减的,那么函数在一点处的坐标对应点必须在其图像上对应于其自变量的取值中的最大值。

这些条件是函数在一点解析中非常重要的一部分,可以帮助我们确定函数在该点处的取值,并理解函数在该点的性质。

了解这些条件可以帮助我们更好地理解函数的图像、零点和极值等概念。

篇二:函数在一点解析的充要条件是指在数学中,一个函数在某一点处取到的解析式可以表示为该点的坐标与一个常量(通常是函数的自变量或因变量)之间的关系。

具体来说,一个函数在一点处的解析式必须满足以下条件:1. 函数在该点处可导:这意味着函数在该点处的导数必须存在。

2.2 解析函数的充要条件

2.2 解析函数的充要条件

解 析
记 f (z) a i b, 由 w u i v , z x i y 有

u i v (a b i)( x i y) o(|z|),

u ax - b y o(|z|),
v bx a y o(|z|),
故 u( x, y) 和 v( x, y) 在点 ( x, y) 处可微,且
§2.2 解析函数的充要条件
§2.2 解析函数的充要条件
第 二
一、点可导的充要条件
章 二、区域解析的充要条件
解 析 函 数
1
§2.2 解析函数的充要条件
§2.2 解定理 函数 w f (z) u( x, y) i v( x, y) 在点 z x i y 处可导

数 推论 若函数 u( x, y) 和 v( x, y) 的四个偏导数 ux , uy , vx , vy
在区域 D内存在且连续,并满足 C - R方程,则函数
w f (z) u( x, y) i v( x, y) 在区域 D 内解析。
6
§2.2 解析函数的充要条件
例 讨论函数 w z 的可导性与解析性。
解 析
v vy y vx x o (| z |) ,
函 数
又由 u 和 v 满足 C - R 方程:ux vy , uy -vx , 得
u ux x - uvxy y o (| z |) ,
v uvyx y vx x o (| z |) ,
z
w u i v (ux i vx ) ( x i y) o(|z|), 即 f (z) 在 z x i y 处可微(可导),且 f (z) ux i vx .
5
§2.2 解析函数的充要条件
§2.2 解析函数的充要条件

函数解析的充要条件

函数解析的充要条件

lim [u(x, y y) iv(x, y y)] [u(x, y) iv(x, y)]
y0
iy
lim u(x, y y) u(x, y) i lim v(x, y y) v(x, y)
y0
iy
y0
iy
1 u v v i u i y y y y
f 0
y v 1
u v x y
x
y
w z 在全平面不可导,不解析。
解 (2) ∵ f (z) = ex(cosy +isiny) 则 u = excosy, v = exsiny
u ex cos y x v ex sin y x
u ex sin y y v ex cos y y
ii) 验证C-R条件,
iii)求导数:
2. 举例
例1 判定下列函数在何处可导,在何处解析:
(1)w z; (2) f (z) ex (cos y i sin y);(3)w z 2
解 (1) 设 z = x + iy w = x - iy u = x, v = - y 则
u 1 u 0
i i x x y y
定义 方程
u v v u x y x y
称为Cauchy-Riemann方程(简称C-R方程).
定理1 设 f(z) = u(x, y)+ iv(x, y)在D内有定义,则 f(z)在点z = x+iy ∈D处可导的充要条件是 u(x, y) 和 v(x, y) 在点(x, y )可微,且满足 Cauchy-Riemann方程 u v v u x y x y
上述条件满足时,有
定理2 函数f (z) = u(x, y) + iv(x, y) 在D内解析充要条件 是u(x, y)和v(x, y)在D内可微,且满足 Cauchy-Riemann方程 u v v u x y x y 定理提供了判别函数解析性的方法及如何

工程数学-复变函数 2-2 函数解析的充要条件

工程数学-复变函数 2-2 函数解析的充要条件

x y
y x
第 条件的充分性 由于w u iv , 而u( x, y)、v( x, y)
二 章
在点 ( x, y)
处可微, 则
解 析 函
u

u x
x

u y
y


1x


2y

v

v x
x

v y
y


3x


4y
在这里 lim x0

k
u C2 ,v C3 , f (z) C2 iC3
- 11 -
y0




其中 lim x0 y0
(x)2 (y)2
0 ,但
显然不满足此式。
所以函数在原点不可导。
- 10 -
第二节 解析函数的充要条件
例4 设函数 w f (z) 在区域 D 解析,且 | f (z) |
为常数,证明: f (z) 在区域 D 为常数函数。
证 由于 | f (z) | C1 ,因此 u2 v2 C, 即
u v , u v
得 wu(xuxuxiyxxv)yzuy(y1x1ix3 )x2(y2 i4 )y

由于
xv z
1, xvyz x1
v , y
故y

3x


4y
liz m0(1
v bx ay 2x 2y
由于 lim (z) 0 , z0
所以
lim
x0
1

0,
lim
x0
2


0
,因此

复变函数的解析函数性质

复变函数的解析函数性质

复变函数的解析函数性质复变函数是数学中的一个基本分支,它将实数域扩展到了复数域。

复变函数的解析性质是研究复变函数的核心内容之一。

在本文中,我们将介绍复变函数的解析函数性质。

一、解析函数的定义解析函数是指在某个区域内处处可导的复函数。

具体来说,设函数f(z)在复平面上的区域D内有定义,如果对于D内的每个点z0,f(z)在z0的某个邻域内处处可导,那么称f(z)在D内是解析函数。

二、解析函数的必要条件解析函数的必要条件是可微。

如果在领域内发现实部和虚部的一阶偏导数不连续,那么不满足解析函数的必要条件。

三、解析函数的充分条件解析函数的充分条件为柯西—黎曼方程式。

如果在一个区域内,解析函数f(z)同时具有以下两个条件:(1)f(z)在区域内可导;(2)f(z)的实部和虚部都满足柯西—黎曼方程式,则f(z)在该区域内解析。

柯西—黎曼方程式如下:∂u/∂x = ∂v/∂y ∂u/∂y = −∂v/∂x其中u(x,y)和v(x,y)分别表示解析函数f(x+iy)的实部和虚部。

四、解析函数的特征解析函数具有以下特征:(1)自由度:对于解析函数f(z),在其定义域D内的每个点z处,它的复值仅由z的自变量确定。

(2)局部性:如果f(z)在某个区域内解析,则它在这个区域内处处解析。

(3)解析函数的导数:解析函数f(z)的导数可以直接用求偏导的方式求得。

(4)零点与奇点:如果f(z)在某个点z0处为零,则称z0为f(z)的零点。

如果f(z)在某个点z0处不解析,则称z0为f(z)的奇点。

五、解析函数的应用1. 解析函数在物理学中的应用在物理学领域,解析函数是很重要的工具。

特别是在热物理、电磁学、流体力学等领域,解析函数有广泛的应用。

例如,解析函数在热传导中的应用,可以用来描述一个材料中热能的传导方式。

2. 解析函数在工程学中的应用在工程学中,解析函数也是一个重要的工具。

解析函数在电路分析、控制系统、信号处理等领域有广泛的应用。

复变函数课件2-2函数解析的充要条件

复变函数课件2-2函数解析的充要条件

(1) w z; ( 2) f ( z ) e x (cos y i sin y ); ( 3) w z Re( z ).
解 (1) w z ,
u x, v y,
u u v v 1, 0, 0, 1. x y x y 不满足柯西-黎曼方程,
5
由于 k 的任意性,
z 1 ki 不趋于一个确定的值 . z 1 ki
h( z0 z ) h( z0 ) lim 不存在. z 0 z
因此 h( z ) z 仅在 z 0 处可导, 而在其他点都 不可导, 根据定义, 它在复平面内处处不解 析.
2
6
例2 解
函数 f ( z ) xy 在点 z 0 不可导.
18
例5 设 f ( z ) u( x , y ) iv( x , y ) 在区域 D 内解
析, 并且 v u , 求 f ( z ).
2

u v u 2u , x y y u v u 2 u , y x x
2 2
2
4
z ( z0 z )( z0 z ) z0 z0 z0 z z0 , z z h( z0 z ) h( z0 ) lim 0. (1) z0 0, z 0 z
( 2) z0 0,
令 z0 z 沿直线 y y0 k ( x x0 ) 趋于 z0 , y 1 i 1 ik z x i y x z x iy 1 i y 1 ik x
所以 u 常数, v 常数,
因此 f ( z ) 在区域 D 内为一常数.
21
参照以上例题可进一步证明:
如果 f ( z ) 在区域 D 内解析, 则以下条件彼此等价 . (1) f ( z ) 恒取实值;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一条是铅直的, 它们仍互相正交。

(1) w=f(z)在D内解析
在D内可导。
(2) w=f(z)在z0点解析与在z0点可导不等价。 函数f (z)在z0点可导,未必在z0点解析。
若沿// 实轴的方式 z z z(y 0)
f ( z z ) f ( z ) f ( z ) lim z 0 z [u( x x , y ) iv( x x , y )] [u( x , y ) iv( x , y )] lim x 0 x u( x x , y ) u( x , y ) v ( x x , y ) v ( x , y ) lim i lim x 0 x 0 x x
w z 仅在0点可导,但处处不解析 。
2
x y w u( x , y ) iv ( x , y ) 2 i 2 2 x y x y2 dw 在z x iy 0处 解 析 , 并 求 . dz
证明 由于在z≠0处,u(x,y)及v(x,y)都是可微函数, 且满足C-R条件:
u v i x x
若沿// 虚轴的方式 z z z(x 0)
f ( z z ) f ( z ) f ( z ) lim z 0 z [u( x , y y ) iv ( x , y y )] [u( x , y ) iv ( x , y )] lim y 0 i y u( x , y y ) u( x , y ) v ( x , y y ) v ( x , y ) lim i lim y 0 y 0 的充要条件

2. 举例
如果复变函数w=f (z)=u(x, y)+iv(x, y)在定义 域D内处处可导,则函数w=f (z)在D内解析。 问题 如何判断函数的解析性呢?
本节从函数u (x , y)及v (x , y)的可微性,探求 函数w=f (z) 的可微性,从而导出判别函数解析的 一个充分必要条件,并给出解析函数的求导方法。
v v v x y 3 x 4 y x y
x 0 y 0
其中 lim k 0, ( k 1, ...,4)
f ( z z ) f ( z ) u iv u v u v ( i )x ( i )y ( 1 i 3 )x ( 2 i 4 )y x x y y
u e x cos y x v e x si n y x
u e x si n y y v e x cos y y
u v x y v u x y
故 f ( z ) e x (cos y i si n y )在 全 平 面 可 导 , 解 析 。
所以u(x, y),v(x, y)在点(x, y)处可微.
" "(由函数u(x,y) ,v (x,y)在点(x,y)处可微及满足
C-R方程 f (z)在点z=x+iy处可导)
∵u(x,y),v(x,y)在(x,y)点可微,即: u u u x y 1x 2 y x y
u v x y
v u x y
称为Cauchy-Riemann方程(简称C-R方程).
定理1 设f(z)=u(x, y)+iv(x, y)在D内有定义,则 f(z)在点z=x+iy ∈D处可导的充要条件是
u(x, y)和v(x, y)在点(x, y )可微,且满足
Cauchy-Riemann方程
f ( z z ) f ( z ) u v f ( z ) l i m i z 0 z x x
定理2 函数f (z)=u(x, y)+iv(x, y)在D内解析充要条件
是u(x, y)和v(x, y)在D内可微,且满足
Cauchy-Riemann方程
u v v u x y x y 定理提供了判别函数解析性的方法及如何 求f (z)的导数值. 使用时: i)判别u(x, y),v (x, y)偏导数的连续性,
1. 函数解析的充要条件
设w f ( x ) u( x, y ) iv( x, y )在点 z x iy可导
f ( z z ) f ( z ) 又 z
[u( x x, y y ) iv( x x, y y )] [u( x, y ) iv( x, y )] x iy
例4
如果f (z)=u(x, y)+i v(x, y)是一解析函数, 且f (z)≠0,那么曲线族u(x, y)=C1, v(x, y)=C2必互相正交,这里C1 、 C2常数. u v 1 u v 0 0 与 不全为 解 f '(z) y y i y y 那么在曲线的交点处,i)uy、 vy 均不为零时, 由隐函数求导法则知曲线族 u(x, y)=C1, v(x, y)=C2中任一条曲线的斜率分别为
u v x y
上述条件满足时,有
v u x y
f ' ( z ) ux iv x ux iuy v y iuy v y iv x
证明 " " (由f (z)的可导 C-R方程满足上面已证!只须证 f (z)的可导 函数 u(x, y)、v(x, y)可微)。 ∵函数 w =f (z)点 z可导,即
u v y2 x2 u v 2 xy 2 , 2 2 2 x y ( x y ) y x ( x y 2 )2
例2 求证函数
故函数w=f (z)在z≠0处解析,其导数为
w u v y x 2 xy i 2 i 2 2 2 z x x ( x y ) ( x y 2 )2
k1 ux / uy
k2 v x / v y
利用C-R方程 ux=vy, uy=-vx 有 k1k2=(-ux/uy)(-vx/vy)= -1,即:两族曲线互相正交.
ii) uy,vy中有一为零时,不妨设uy=0,则k1=∞, k2=0(由C-R方程)
即:两族曲线在交点处的切线一条是水平的,另
2 2
( x iy ) 2 1 2 2 2 2 (x y ) z
例3 若f ' ( z ) 0 z D f ( z ) C
zD
1 证明 f ' ( z ) ux iv x u y v y 0 i ux v x u y v y 0 u C1 v C 2 f ( z ) C1 iC 2 C (复 常 数 )
lim 1 lim 2 0 lim ( z ) 0 x0 x 0
z 0
y 0 y 0
1 x 2 y 2 x 1 y lim 0 lim 0 x 0 x 0 z z y 0 y 0
1 u v v u ( i ) i i y y y y
f ' ( z ) u v i x x u v x y
定义 方程
v u i y y v u x y

u x v x
记忆
u y v y
由C R方 程

u v ( i )z ( 1 i 3 )x ( 2 i 4 )y x x
f ( z z ) f ( z ) u u x y i ( 1 i 3 ) ( 2 i 4 ) z z x z z x y x | | 1, | | 1 ( 1 i 3 ) 0 z z z
ii) 验证C-R条件. u v 1 u v iii)求导数: f ' ( z ) x i x i y y
2. 举例
例1 判定下列函数在何处可导,在何处解析:
(1)w z; (2) f ( z ) e (cos y i sin y ); (3)w z
x
2
解(1) 设z=x+iy w=x-iy u=x, v=-y 则
u 1 x v 0 x u 0 u v y v x y 1 y
故 w z在 全 平 面 不 可 导 , 不 析 解。
解(2)∵ f (z)=ex(cosy +isiny) 则 u=excosy, v= exsiny
f ( z z ) f ( z ) f ' ( z0 ) lim z 0 z f ( z z ) f ( z ) 设 ( z ) f '(z) z 则 f (z+ Δz)-f(z)=f (z)Δz+(Δz)Δz (1), 且
z 0
lim ( z ) 0
u v f '(z) i e x cos y ie x sin y f ( z ) x x
解(3) 设z=x+iy w=x2+y2 u= x2+y2 , v=0 则
u 2x x
u 2y y
v 0 x
v 0 y
仅在点z = 0处满足C-R条件,故
令:f (z+Δz) f (z)=Δu+iΔv,f (z)= a+ib, (Δz)=1+i2 故(1)式可写为 Δu+iΔv = (a+ib)(Δx+iΔy)+(1+i2)(Δx+iΔy) =(aΔxbΔy+1Δx2Δy)
+i(bΔx+aΔy+2Δx+1Δy) 因此 Δu=aΔxbΔy+1Δx2Δy , Δv=bΔx+aΔy+2Δx1Δy
相关文档
最新文档