果蝇的三点测交实验
果蝇三点测交试验
14.6
m
36.0
实验步骤
1.选取处女蝇:每组做正、反交各1瓶,正交选野生型
为母本,三隐性雄蝇为父本。反交选三隐性雌蝇为母本, 野生型为父本,将母本旧瓶中的果蝇全部麻醉处死,在 8-12h内收集处女蝇5只,将处女蝇和5只雄蝇转移到新 的杂交瓶中,贴好标签,于25℃培养;
2.7d后,释放杂交亲本;
3.再过4-5天,F1成蝇出现,在处死亲本7d后,集中观 察记录F1表型及性别;
实验原理
•三点测交:是通过一次测交和一次杂交, 同时确定三对等位基因的排列顺序和它们 之间的遗传距离。
什么是测交?
测交:杂合子 F1代和隐性纯合 体亲本交配用以 测定杂种或者杂 种后代的基因型 的方法。
孟德尔测交实验
过程:
三杂合体
测交
F2
分析表现 型及数目
计算三个连锁基 因之间的交换值
只能产生2种配子
m sn3 w
×
+++
m sn3 w
×
+++
m sn3 w
××
+ ++
m sn3 w
m sn3 w
m sn3 w
m++ + sn3 w
m sn + + +w
m+w + sn3 +
+ ++
+ ++
+ ++
根据上图,在连锁的三对基因杂种里,交换可以发生 在m-sn3间(单交换),sn3-w之间(单交换),或者 同时发生在m-sn3间和sn3-w间(双交换), 从而产生 八种不同配子。
果蝇的三点测交试验
果蝇的三点测交试验
果蝇的三点测交试验是一种经典遗传学实验,用于研究性状的遗传方式和遗传规律。
该实验利用果蝇容易繁殖、生命周期短、遗传稳定等特点,通过人工控制交配,可以确定
基因型和表型的关系,从而深入了解遗传现象。
实验步骤:
1.饲养果蝇:首先需培育出足够数量、健康的果蝇,确保其基因型和表型的稳定性。
采用人工饲养的方式,果蝇的饲养环境需控制恒温、恒湿、恒光、无杂质。
2.选取实验材料:选择具有稳定性状的果蝇为实验材料。
例如,选取表现为黑色眼睛、有翅膀、灰色体色的果蝇为正常型(wild type),选取表现为白色眼睛、无翅膀、黄色体色的果蝇为突变型(mutant type)。
3.实验设计:设计交配方案,进行杂交。
将正常型的雌性与突变型的雄性交配,产生
F1代。
将F1代的雌性与F1代的雄性进行三点测交试验。
4.观察表型:观察F1代和F2代的表型。
例如,如果F1代的全部表现为正常型,说明突变型的性状为隐性遗传;如果F1代和F2代都表现为正常型和突变型的混合,则说明突
变型的性状为隐性遗传;如果F1代表现为正常型,F2代表现为正常型和突变型比例为3:1,则说明突变型的性状为显性遗传。
5.计算遗传比例:根据后代表型推断基因型,利用遗传学计算方法计算各基因型在后
代中分布的比例。
三点测交试验是一种重要的遗传学方法,通过该方法可以深入了解不同性状的遗传方式,对基因表达和遗传变异进行研究,为进一步揭示生命现象的本质提供了重要的方法和
思路。
果蝇三点测交实验报告
竭诚为您提供优质文档/双击可除果蝇三点测交实验报告篇一:果蝇三点测交实验实验报告20XX年11月2日—20XX年11月27器编号___摘要:本实验通过白眼、小翅、焦刚毛三隐性雌果蝇与野生型雄果蝇杂交,得到F1代后使其自交,统计F2代各类果蝇数目,进行连锁分析并验证连锁互换定律。
引言:生殖细胞形成过程中,位于同一染色体上的基因是连锁在一起,作为一个单位进行传递,称为连锁律。
在生殖细胞形成时,一对同源染色体上的不同对等位基因之间可以发生交换,称为交换律或互换律。
连锁和互换是生物界的普遍现象,也是造成生物多样性的重要原因之一。
一般而言,两对等位基因相距越远,发生交换的机会越大,即交换率越高;反之,相距越近,交换率越低。
因此,交换率可用来反映同一染色体上两个基因之间的相对距离。
以基因重组率为1%时两个基因间的距离记作1厘摩(centimorgan,cm)。
基因座位很近,只发生一次交换,重组值=交换率基因座位较远,可发生两次交换,重组值<交换率基因图距就是通过重组值的测定而得到的。
如果基因座位相距很近,重祖率与交换率的值相等,可以直接根据重组率的大小作为有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。
如果基因间相距较远,两个基因往往发生两次以上的交换,这是如果简单的把重组率看作交换率,那么交换率就会被低估,图距就会偏小。
这时需要利用试验数据进行校正,以便正确估计图距。
基因在染色体上的相对位置的确定除进行两个基因间的测交外,更常用的是三点测交法,三点测交法就是研究三个基因在染色体上的位置。
如a、b、c三个基因是连锁的,要测定三个基因的相对位置可以用野生型果蝇(+++,表示三个相应的野生型基因)与三隐性果蝇(abc,三个突变型基因)杂交,制成三因子杂种abc/+++,再用三隐性个体对雌性三因子杂种进行测交,以测出三因子杂种在减数分裂中产生的配子类型和相应数目。
由于基因间的交换,除产生亲本类型的两种配子外,还有六种重组型配子,因而在测交后代中有8种不同表型的果蝇出现,这样经过数据的统计和处理,一次试验就可以测出三个连锁基因的距离和顺序,这种方法,就叫三点测交或三点试验。
果蝇三点测交实验_沉睿_2009012372
果蝇三点测交实验生93 沈睿2009012372 同组:敖佳明一.实验目的1.理解和验证基因的连锁和交换定律。
2.通过实验计算在同一染色体上控制三对性状的基因的相对位置和图距。
3.深入了解果蝇生活史、世代周期。
二.实验原理1.三点测交通过一次杂交和一次测交,同时确定三对等位基因的排列顺序和它们之间的图距。
首先用野生型果蝇和带有三个隐性性状的果蝇杂交,获得三个基因均为杂合的子代(F1),再使F1与三隐个体测交,得到的后代中多数个体与亲本个体相同,也存在少量与亲本不同的个体,即重组型。
通过对测交后代表型及其数目的分析,分别计算三个连锁基因之间的交换值,从而确定三个基因在同一染色体上的顺序和距离,并能计算出并发率。
2.完全连锁现象雄性果蝇具有较为罕见的基因完全连锁现象,所以在做测交实验时,需挑出杂交F1代处女蝇与三隐雄蝇进行杂交,如果性别反转,则结果会严重偏离实验目的,得不到三对性状的基因的相对位置和图距。
三.实验器材野生型(wt)果蝇一瓶、三隐(白眼w、小翅m、焦刚毛sn,相关基因均在第三号染色体上)果蝇一瓶、双筒解剖镜、广口瓶、麻醉瓶、毛笔、解剖针、乙醚、果蝇培养基、25℃培养箱。
四.实验步骤1.配制培养基培养基成分如下表所示:成分名量成分名量玉米粉180 g 糖稀80 g大豆粉20 g 麦芽糊精80 g琼脂15 g 对羟基苯甲酸甲酯溶液(防腐剂)2.5 g粉末溶于16 ml 95%的乙醇啤酒酵母37 g表1 果蝇培养基成分表先将1.5 L水烧开,然后将玉米粉在烧杯中溶于额外500 ml水,慢慢搅拌并混匀,再慢慢倒入(边加边搅动,防止结块)已煮沸的1.5 L水中,混匀,煮沸后,保温并调节温度至50度,保持3-4小时。
大约保温3小时左右。
将称量好的大豆粉、琼脂、啤酒酵母、麦芽糊精混合搅匀,一块加入保温的玉米糊中,边加边搅拌至混合均匀,提高温度煮沸。
煮沸后先换成小火,再加入称量好的糖稀,慢加快搅,务必防止糖稀粘锅煮糊。
遗传学实验-三点测交
遗传学实验实验报告果蝇的三点测交杂交实验姓名:刘乐乐班级:生计11.3 学号:201100140084 时间:11月18日一、实验目的:1、学习果蝇三点杂交实验的原理和方法。
2、通过三点测交,验证基因的连锁与交换规律,确定基因在染色体上的位置。
3、掌握果蝇的杂交技术,并学会记录交配结果和数据统计处理的方法。
二、实验原理1、基因的连锁与交换位于同一条染色体上的基因是连锁的,而同源染色体上的基因之间会发生一定频率的交换,使子代中出现一定数量的重组型。
重组型出现的多少反映出基因间发生交换的频率的高低。
而根据基因在染色体上直线排列的原理,基因交换频率的高低与基因间的距离有一定的对应关系。
基因图距就是通过基因间重组值的测定而得到的。
如果基因座位相距很近,重组率与交换率的值相等,直接将重组值作为基因图距;如果基因间相距较远,两个基因间往往发生两次以上的交换,必须进行校正,来求出基因图距。
2、三点测交用野生型纯合体与三隐性个体杂交,获得三因子杂种(F1),再使F1与三隐性基因纯合体测交,通过对测交后(Ft)代表现型及其数目的分析,分别计算三个连锁基因之间的交换值,从而确定这三个基因在同一染色体上的顺序和距离。
通过一次三点测验可以同时确定三个连锁基因的位置,即相当于进行三次两点测验,而且能在试验中检测到所发生的双交换。
如果两个基因间的单交换并不影响邻近两个基因的单交换,那么预期的双交换频率应当等于两个单交换频率的乘积,但实际上观察到的双交换值往往低于预期值,因为每一次发生单交换,它邻近也发生一次交换的机会就减少,这叫干涉。
一般用并发率表示干涉的大小。
3、实验材料♀6(wmsn白眼小翅卷刚毛)×18♂三、实验材料、仪器和用品1、黑腹果蝇(Drosophila melanogaster)18和6品系;2、解剖镜、恒温培养箱、培养瓶、麻醉瓶、毛笔、滤纸、培养皿;3、乙醚等。
四、实验步骤第一周:1、选择2只6号雌果蝇和2只18号雄果蝇放入新的培养管中,并贴上标签,写上杂交组合、实验时间、实验者的姓名等内容。
果蝇的三点测交
三、实验材料与药品
1、材料: 果蝇 野生型(雄):红眼、长翅、直刚毛 突变型(雌):白眼、小翅、焦刚毛 2、试剂:乙醚 3、果蝇培养基 4、实验器材:毛笔,解剖镜,麻醉瓶
四、实验步骤
• 配置果蝇培养基 • 收集野生型和三隐性的果蝇7对(雌蝇一定是处女 蝇)贴上标签,标上亲本类型,收集日期和实验 者姓名,放入25度培养箱中培养。 • 杂交7—8天后当蛹变黑时放飞种蝇,并在随后的 1—8天里每天观察F1,记录F1的性状,收集50只 左右。 • 将F1分两瓶,每瓶装8~10对雌雄果蝇,进行兄妹 交。 • 7—8天后蛹变黑时放飞F1成蝇,并在随后的若干 天里观察F2,记录F2的性状和数目,每瓶收集200 只左右。
46.7 m sn³ 双交换的交换率为: (3+4)/(121+109+31+33+75+42+3+4)=1.7% 两个单交换百分率的乘积为:29.7%*17.0%=5.1% 并发率为:1.7%/5.1%=0.33 干涉值为:1-0.33=0.67
w
• 由计算得到的并发率为0.33,干涉值为0.67, 0<干涉值<1,总体符合实验理论。
具体过程
10月17日晚上收集雄蝇三只 10月18日早晨收集到两只处女蝇 10月19日误以为培养基被污染,转移果蝇 10月20日死一雌一雄 10月22号培养基表面凹凸不平,产生的幼虫在爬动 10月28日放飞亲代 10月29、30日记录F1的性状 10月31日将F1转移到新培养基中,进行兄妹交 11月2日收集F1到新培养基中,做第二瓶兄妹交 11月5日第一瓶F2幼虫出现 11月7日第一瓶大量蛹呈黄色,第二瓶F2幼虫出现 11月9日晚第一瓶中大量蛹变黑,放飞F1 11月12日第二瓶中大量蛹变黑,放飞F1 11月19日两瓶F2性状观察完
遗传学实验报告——果蝇杂交实验
遗传学实验报告果蝇双因子杂交、伴性遗传杂交和三点测交实验目的:学习果蝇杂交方法、遗传学数据统计处理方法;实验验证自由组合规律、伴性遗传规律;通过三点测交学习遗传作图。
实验原理: 1. 双因子杂交本实验使用18号野生型果蝇和14号纯合黑檀体、残翅果蝇进行杂交,其中黑檀体对灰体为隐性,残翅对长翅为隐性,两对基因位于非同源染色体上。
正交 反交18♀×14♂ 14♀ × 18♂双因子杂交遗传图解 2. 伴性遗传杂交本实验使用18号野生型果蝇与纯合白眼果蝇杂交,其中白眼相对于红眼是隐性性状,白眼基因位于X 染色体上。
正交 反交18♀ × w ♂ w ♀ × 18♂伴性遗传图解F 1⊗F 2: 灰长:灰残:黑长:黑残=9:3:3:1P灰长黑残F1⊗ F 2: 灰长:灰残:黑长:黑残=9:3:3:1 灰长P 黑残P X +X + X w YP X w X w X+YF 1: X +X w X +YF 1: X +X w Xw Y⊗ ⊗F 2: X + X + X +X + Y X w Y ♀红眼 ♀红眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1 F 2: X +X w X w X X + Y X w Y ♀红眼 ♀白眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1♀红眼♂白眼 ♂白眼♀红眼3. 三点测交本实验使用6号纯合白眼、卷刚毛、小翅果蝇与18号野生型果蝇杂交,获得F 1代后再自由交配即可获得具有8种表型的测交F 2代。
白眼、卷刚毛、小翅均为X 染色体上的隐性性状。
P 6号♀(wsnm/wsnm ) × 18号♂(+++/Y)白卷小红直实验材料:18号野生型果蝇 ,14号纯合黑檀体、残翅果蝇,白眼果蝇,6号纯合白眼、卷刚毛、小翅果蝇;麻醉瓶、酒精灯、玻璃板、毛笔、培养管、酒精棉球、乙醚、解剖镜 实验步骤:1. 杂交前提前将装有不同表型果蝇培养管中的成年果蝇全部放出,确保8-10小时后培养管中的雌果蝇都是刚刚孵化的处女蝇。
果蝇的三点测交
此组实验与第一组略有不同,从定义上来说,此组实验并不属于三点测交,但由于雄果蝇Y染色体完全连锁,不发生任何交换,对于此组实验,只能通过F2中雄性个体来确定F1雌果蝇产生的配子中发生了怎样的交换(F2中雌果蝇表型都为野生型,所以在此仅记录了数量)。
3.结果
3.1实验结果记录
3.1.1 杂交组合:msnw/msnw×+++/Y和+++/+++×msnw/Y
3.1.2收集处女蝇时间:2011年10月18日 早7点
3.1.3亲本接种时间:11年10月18日;清除时间:2011年10月25日
3.1.4 F1表现型
表1 F1中表现型数量
亲本
数量
表型
msnw/msnw×+++/Y
②收集三隐性突变体的处女蝇,收集的处女蝇单独存放,备用。
③按实验设计,在每个培养瓶中放入至少2对果蝇,接种完毕,贴好标签,注明杂交组合,实验日期,实验者等项目。在接种前几天应观察培养基是否发霉,如发现霉斑,应立即更换培养瓶
第二周
①7-8天后蛹变黑时,将上周接种的亲本蝇清除干净。
②配制足量培养基。
第三周
在实验中我们还注意到以下现象:①三隐性个体的数量明显少于野生型,其原因是三隐性个体的生存力很弱,在幼虫密度较高时易在自然选择中被淘汰;②表型为m + w和+sn+的个体数量最小,甚至没有,这是双交换造成的,而由于双交换频率很低,可以直接判定sn是位于中间的;③本次实验第一组得出双交换频率为1.4%,而根据两个单交换频率17.7%和12.6%计算出来的理论上的双交换值为2.23%,课件实际双交换频率低于理论上双交换频率,可见每发生一次单交换时,它的临近也发生也发生一次交换的机会就要减少一些,这种现象称为干涉。一般用并发率来表示干涉的大小,计算并发率得0.63,则干涉为0.37。并发率越大,干涉越小。说明w或m的交换对对方是有影响的。
三点测交
三点测交一、实验目的1、验证连锁互换定律2、掌握并进行连锁分析,熟悉作染色体图的实验方法3、了解伴性遗传与非伴性遗传的区别,了解伴性遗传在正反交中的差异二、实验原理三点测交是指三个基因包括在一次交配中,那就是用三杂合体abc/+++或ab+/++c跟三隐性个体abc/abc测交。
三点测交实验的优点:①一次三点测交实验即与三次两点测交实验的结果相同。
②一次三点测交实验中得到的三个重组值是在同一基因型背景同一环境条件下得到的,而三次两点测交就不一样了。
事实上,我们知道重组值既受基因背景的影响,也受各种环境条件的影响,所以只有从三点试验所得到的三个重组值才是严格地可以互相比较的。
③通过三点测交实验,还可以得到三次两点测交无法得到的资料,即双交换。
果蝇的白眼,小翅,卷刚毛为X-连锁基因,全部隐性于各自的野生型基因(红眼、长翅、直刚毛),把白眼、小翅、卷刚毛雌蝇(WNSn/WMSn)与野生型雄蝇交配(+++/y)。
F1雌蝇全部为野生型,雄蝇则全表现为三隐性突变型,让F1雌雄蝇互交,在F2中,不管雌雄性别,除了出现双亲类型外,还会出现新的表型种类,这是由于F1雌雄中两个染色体之间发生了互换的结果,根据基因在染色体上线性排列的遗传理论,对F2进行分析即可知不同基因间的连锁距离。
且在F2的雌性当中两条染色体为杂合的,故可以发生交换,所以F2当中还会出现一些发生单交换和双交换的基因型。
因为这三个基因位于性染色体上,所以这个实验也可用来作为伴性遗传实验,当基因位于性染色体上时,它与性别相连系的遗传现象,跟常染色体上的基因的遗传现象有所不同,这种遗传称为伴性遗传。
在果蝇中,性染色体是XY型,即在雌体上有一对X染色体(X,X),在雄体上有一条X染色体一条Y染色体(X,Y),当基因位于X染色体而Y染色体一般不含有相对的基因就产生伴性遗传,在伴性遗传中,正交和反交产生不同的结果,例如,在本实验中三、实验材料野生型果蝇,白眼、小翅、卷刚毛三隐性纯合体的果蝇装有培养基的空培养管,麻醉瓶,镊子,毛笔,乙醚,解剖镜四、实验步骤1、4月12日星期五早上10点至12点之间,在实验室向两瓶新培养基中分别放入5-6对的纯种野生型果蝇和纯种三隐型果蝇。
果蝇三点测交试验
果蝇的三 点测交试
验
202X
2007.3
一、实验原理和目的
本实验通过对同一染色体上的 三个非等位基因的交换行为来 验证基因是在染色体上呈直线 排列的。
先将野生型果蝇与三隐性果蝇 杂交,作为三因子杂种(abc/ +++),再用三隐性个体进行测 交。在测交后代中,因交换可 得到各种类型的组合。与两个 亲本表型不同的称为重组合类 型。
这里雌蝇不一定要是处女蝇(为什么?) 若用反交F1雌蝇一定要选处女蝇(为什么?)
三、实 验 步 骤
7~8天后倒去 亲本。
再过4~5天, F2代成蝇出现。 开始观测。
果蝇倒出麻醉, 放在白瓷板上, 用解剖镜检查 眼色、翅形、 刚毛,各类果 蝇分别计数。 统计过的果蝇 倒掉。
过2天后再检 查第二批。最 多可连续检查 7~8天,即 3~4次。再迟 F3代就出现了。
0 1 果蝇杂合群体中棕身品系的提纯 选育
0 3 试验目的:通过自己设计试验方 案,在果蝇F2代群
0 5 品系选育的基本原理和方法。 0 7 试验设计:根据所学的遗传学理
论知识,设计一个 0 9 蝇F2代杂合群体中选育出一个纯
种的棕
0 2 (设计型试验)
0 4 体中选育出纯种棕身品系,掌握 群体中
用三隐性个体(小翅,白眼,焦刚毛)和野 生型作实验材料。以三隐性为母本,在实 验前收集处女蝇,培养于指管中。
把野生型雄蝇挑出,放到盛有处女蝇的指 管中进行杂交。贴好标签后,在 22~23℃中培养。
7~8天后,倒去亲本。 再4~5天后,子一代成蝇出现,进行观察。
F1雌蝇全部是野生型,雄蝇全部是三隐 性。 从F1代中选6~7对果蝇,放到指管中,在 23℃下培养。
遗传学实验实验七果蝇的三点测交
三点测交实验的预期结果
在三点测交实验中,预期结果是根据基因之间的相互作用关系和遗传规律 来预测的。
通过观察杂交后代的表型和死亡情况,可以推断出基因之间的互作关系, 例如是否为连锁关系、是否为互补关系等。
预期结果也可以用于验证实验假设和理论模型,为进一步的研究提供指导 。
引入先进技术
随着科技的发展,基因编辑、高通量测序等新技术在遗传学领域的 应用越来越广泛,希望未来能够将这些技术引入到实验中。
加强跨学科合作
遗传学与生物信息学、统计学等多个学科密切相关,希望未来能够加 强跨学科合作,推动遗传学研究的深入发展。
07
CATALOGUE
参考文献
参考文献
发表时间:2018年
遗传学实验实验七 果蝇的三点测交
contents
目录
• 实验目的 • 实验原理 • 实验材料 • 实验步骤 • 实验结果与分析 • 实验总结与展望 • 参考文献
01
CATALOGUE
实验目的
理解三点测交实验原理
验证基因的连锁关系
通过三点测交实验,可以验证两个或多个基 因是否连锁在一起,以及它们在染色体上的 排列顺序。
提高实验技能
实验过程中,我们提高了实验操 作技能,学会了使用显微镜、培 养箱等实验器材,以及如何处理 和记录实验数据。
培养团队合作精神
实验需要小组合作完成,通过与 同学协作,我们培养了团队合作 精神和沟通能力。
对未来遗传学实验的展望
探索更多遗传学实验
希望未来能够开展更多遗传学实验,如基因定位、基因克隆等,以 便更深入地了解基因的结构和功能。
得出结论,验证实验原理
7三点测交法测定果蝇基因重组率
7三点测交法测定果蝇基因重组率三点测交法测定果蝇基因重组率摘要通过选取⿊腹果蝇(Drosophila melanogaster) X染⾊体上的三个基因:⽩眼(w)、⼩翅(m)与焦刚⽑(sn)基因进⾏三点测交实验,统计计算⾮等位基因的重组率,并对照标准基因图谱进⾏χ2检测,验证其相关性。
引⾔⼴泛⽤于遗传学研究的果蝇为⿊腹果蝇(Drosophila melanogaster) , 属于果蝇科、果蝇属, 它作为遗传学模式⽣物有如下特点:1)⽣活史长短随温度⽽不同;2)成年雌性蝇类长到12⼩时才成熟,便于确保雌性蝇类是处⼥蝇;3)繁殖能⼒强;4)突变种类多,染⾊体数⽬少。
位于同源染⾊体上的⾮等位基因在形成配⼦时,多数随所在染⾊体⼀起遗传,若发⽣⾮姊妹染⾊单体之间的交换可产⽣少量的重组型配⼦。
位于同⼀条染⾊体上的基因连在⼀起的伴同遗传的现象称为连锁(linkage)。
连锁现象是英国遗传学家(W. Bateson)等⼈于1906年在⾹豌⾖(Lathyrus doratus )杂交过程中发现。
1911年摩尔根⽤果蝇做杂交实验,发现了同类现象,提出了连锁与互换的概念,称之为遗传学第三定律。
基因的交换率反映了两基因之间的相对距离。
1910年,Morgen TH提出假设:假定沿染⾊体长度上交换的发⽣具有同等的⼏率,那么两个基因位点间的距离可以决定减数分裂过程中发⽣重组染⾊体的发⽣率,即重组分数。
⼈们规定同⼀染⾊体上两个位点间在⼀百次减数分裂发⽣⼀次重组的机会时,定义两位点间的相对距离为⼀个cM(centimorgan)。
根据基因在染⾊体上有直线排列的规律,把每条染⾊体上的基因排列顺序(连锁群)制成图称为遗传学图(genetic map),亦称基因连锁图(gene-linkage map )。
三点测交就是通过⼀次杂交和⼀次测交,同时确定三对等位基因(即三个基因位点)的排列顺序和它们之间的遗传距离,是基因定位的常⽤⽅法。
三点测交实验报告 (2)
果蝇翅型、刚毛、复眼基因的三点测交与遗传作图张优(中山大学生命科学院11级1班广州 510275)摘要:目的通过研究果蝇同一染色体上的翅型、刚毛、眼色三对非等位基因的交换行为验证基因在染色体上呈直线排列并进行基因定位。
方法采用黑腹果蝇D.melanogaster品系的6号雌果蝇(白眼、短翅、卷刚毛)与18号雄果蝇(红眼、长翅、直刚毛)杂交,统计F2代各性状数目,分别计算m~sn³、m~w、w~sn³基因间重组值,画出遗传学图。
结果重组值(%)m~sn³为16.50、m~w为35.92、w~sn³为21.36。
校正后m~w间重组值等于w~sn³和m~sn³之和。
结论这三对基因在染色体上呈现直线排列,且顺序为m-sn³-w.关键词:黑腹果蝇;三点测交;遗传作图引言果蝇作为模式生物的优势果蝇是一种体长约3mm 的昆虫,因其常聚集在腐烂的水果周围而得名果蝇。
果蝇作为模式生物的优势主要有体积小、易于操作、饲养简单、成本低廉、生命周期短( 约两周) 、繁殖力强、子代数量多,以及便于进行表型分析、有利于一般实验室使用等[1]。
一百余年的研究积累了很多有关果蝇的知识与信息,制备了大量的分布于数以千计的基因中的突变体,果蝇还有许多携带便于遗传操作的表型标记、分子标记或其他特性的特征染色体,这些工具可以进行大规模基因组筛选分离一系列可见或致死表型,甚至可以分离那些只在突变个体的第二或第三代才表现的表型[2·3]。
三点测交是基因连锁作图的经典方法, 由于其实用性强, 广泛地应用于基因定位的研究工作。
目前尚无一种很精确的计算方法能排除因交叉干涉而引起的双交换率降低所导致的单交换率偏差, 这就使传统经典计算方法存在一些不足之处[4]。
果蝇的表型明显,如翅型、刚毛和复眼等,可对子代进行数目统计。
本文将对果蝇同一染色体上的翅型、刚毛、眼色三对非等位基因的交换行为进行研究,确定基因在染色体上的排列方式。
遗传学实验报告果蝇三点测交实验
遗传学实验报告果蝇三点测交实验2009012337 生92 盛心磊同组组员:李骜飞、张延庆、刘昱、郭泽华、薛静雯、王静楠、周央中一、实验目的1.根据给定的果蝇性状设计出合理的实验方案,并按照预定实验方案设计三点测交试验,进行果蝇麻醉,处女蝇挑选,果蝇转移和杂交等操作,并按时观察和记录果蝇的状态、生理特征等信息。
2.学会运用统计学的方法分析实验结果,判定结果的可信程度,了解统计学的重要意义。
3.熟练运用解剖镜,了解果蝇培养的条件和基本的实验方法。
4. 学会计算图距,并学会绘制基因图谱5. 更好地理解基因重组率和图距的概念,进行基因定位,了解X2检验的应用二、实验原理1. 果蝇生活史普通果蝇(Drosophila melanogaster)是双翅目的昆虫,它的生活史从受精卵开始,精力幼虫、蛹和成虫阶段,是一个完全变态的过程。
果蝇繁殖力强,在适宜的温度下(20°-25°,30°以上不育)每只受精的雌蝇能够产卵400个左右,每两个星期完成一个世代。
成熟的雌蝇在交尾后(2-3d)产卵在培养基的表层,经过一天孵化成幼虫,4-5d之后开始化蛹,附在瓶壁上,最后羽化出成虫。
成虫在羽化出8-12h后开始交配,25°下果蝇的寿命是37d。
2. 果蝇性状特征及判定标准雌蝇雄蝇体型较大体型较小腹部椭圆形末端稍尖腹部末端钝圆腹部背面5条黑纹腹部背面3条黑纹最后一条延伸至腹面成一黑斑无性梳第一对足第一跗节有性梳表1 雌雄果蝇主要差异比较(注:性梳为最可靠的鉴别特征,但观察起来稍费时间。
一般在进行大量计数时,选择观察腹部形状以及条纹数进行判定。
)3. 三点测交为确定三个连锁基因在染色体上的顺序和相对距离所作的一次杂交和一次测交。
染色体上两连锁基因距离越远,在它们之间非姊妹染色单体互换的机会就越多,反之就越少,因此可用这两基因间的互换百分数(一般可用它们之间的重组百分数)的大小来表示它们之间距离的远近,而以1%的互换(或重组)定为一个图距,作为连锁基因的距离单位。
三点测交、伴性遗传、双因子杂交综合大实验
姓名班级同组人科目遗传学实验题目双因子杂交、伴性遗传和三点测交组别第五组一、研究背景果蝇(Drossphila)是遗传学试验中最常用的多年生物之一。
属昆虫纲,双翅目,果蝇科,果蝇属。
果蝇的染色体数目少(仅四对,2n=8),具有许多自然的或诱发的可遗传突变性状,世代周期短(25℃下10~12天一代,个体小易于饲养,培养费用低廉,繁殖能力强,后代数目繁多,故被作为遗传学实验的典型模式生物。
后续实验要作果蝇的杂交实验,需要大量的果蝇,本次实验可以学会识别果蝇的各种形状、区分果蝇的性别以及基本的饲养方法,为后续的实验打下基础。
黑腹果蝇(Drosophila melanogaster),果蝇科(Drosophilidae)果蝇属(Drosophila)昆虫。
因其生活史短(在25℃左右温度下十天左右繁殖一代),繁殖力强(雌性可一次产下400个0.5毫米大小的卵),相对性状明显且可遗传,易于培养,培养成本低(酵母和细菌,腐烂水果),符合上述遗传学实验研究要求,同时因其染色体仅4对,基因组仅约165Mb,并且基因组超过60%的片段同人类疾病基因相似。
故已将其作为一种常见的模式生物(model organism)大量使用在遗传学(genetics)和发育生物学(developmental biology)的研究。
二、研究目的1、通过对果蝇的杂交实验,正确理解分离定律的实质,并验证与加深理解三个的遗传规律。
2、认识伴性遗传的正、反交差别,掌握伴性遗传的特点。
3、掌握绘制遗传学图的原理和方法,加深对重组值、遗传学图、双交换、并发率和干涉等概念的理解。
4、掌握果蝇的杂交技术,并学会记录交配结果和掌握统计处理的方法。
5、尝试设计实验,验证缺刻翅的遗传型三、实验原理本次设计实验就是利用果蝇进行一系列的遗传学验证实验和染色体基因相对顺序和距离的测定,下面简要介绍关于双因子杂交、伴性遗传和三点测交的基本原理。
1、双因子杂交(dual factors hybridize):果蝇的灰体基因(E)与黑檀体基因(e)为一对相对性状,位于ⅢR70.7位置,而长翅(Vg)与残翅(vg)为另一对相对性状,位于ⅡR67.0位置。
果蝇的三点测交
果蝇X染色体上基因相对顺序和距离的测定宋蕊(同组者:张月)200900140103 生科四班摘要本实验用表型为白眼、小翅、焦刚毛(w sn3 m/w sn3 m)雌蝇与红眼、长翅、直刚毛(+++/Y)雄蝇纯合体杂交,产生雌蝇(w sn3 m/+++)和雄蝇(w sn3 m/Y),F1兄妹交即测交,通过统计F2代中各表型的个体数,估算这些基因间的交换值,确定其在X染色体上的相对位置,绘制出连锁遗传图。
1 引言1903年,Sutton 根据减数分裂中染色体的行为与Mendel假设的因子的行为平行,推断基因位于染色体上。
同时认为,一条染色体上必然有多个基因,这些基因在配子形成时不能自由组合而是相互连锁。
Morgan等人实验证实了这个推论,并发现连锁的基因可以通过交换产生重组,连锁强度与染色体上连锁基因的直线距离有关。
1913年,Sturtevant 按上述思路,以重组频率作为基因间的距离尺度。
确定了果蝇X 染色体上几个基因的相对顺序和距离。
绘制了遗传史上第一张遗传学图,并提出了基因在染色体上线性排列的观点。
位于同一条染色体上的基因是连锁的,同源染色体的基因之间会发生一定频率的交换,使子代中出现一定数量的重组型。
重组型出现的多少,即重组值反映基因间发生交换的频率的高低。
根据基因在染色体上直线排列的原理,基因交换频率的高低与基因间的距离有一定的对应关系。
基因图距就是通过基因间重组值的测定而得到的。
如果基因座位相距很近,重组率与交换率的值相等,直接将重组值作为基因图距;如果基因间相距较远,两个基因间往往发生两次以上的交换,必须进行校正。
两个基因间的单交换往往影响邻近两个基因的单交换,使实际观察到的双交换值低于预期值(两个单交换频率的乘积),因为每发生单交换,邻近发生交换的机会减少,这叫干涉。
一般用符合系数表示干涉的程度。
符合系数=观察到的双交换频率/两个单交换频率的乘积研究重组值问题,最容易想到的方法就是研究几个相互连锁的基因间的重组值之间的关系。
果蝇的三点测交实验
果蝇的三点测交实验李国卫131140075一、实验目的验证遗传第三定律——连锁定律掌握连锁分析与计算基因作图的原理和方法了解伴性与非伴性遗传的方式和特点二、实验原理1、三点测交就是把三个基因包括在同一次交配中,那就是用三杂合体abc/+++或者ab+/++c跟三隐性个体abc/abc测交,进行这种试验,一次实验就等于三次“两点实验”,而且带有以下两个优点:1、一次三点测交中得到的三个重组值是在同一基因型背景同一环境条件下得到的,而三次“两点测交实验”就不一定这样,重组值既受基因型背景的影响,也受各种环境条件的影响,所以只有从三点实验所得到的三个重组值才是严格的可以相互比较的。
2、通过三点实验,还可以得到三次两点实验所不能得到的资料,即双交换的资料。
果蝇的白眼,小翅,卷刚毛为X-连锁基因,全部隐性于各自的野生型基因(红眼、长翅、直刚毛),把白眼、小翅、卷刚毛(wmsn/wmsn)与野生型雄果蝇交配(+++/y)。
F1雌果蝇全部为野生型(理论上),雄果蝇则全部表现为三隐突变性,让F1雌雄果蝇互交,在F2中,不管雌雄性别,除了出现双亲类型以为,还会出现新的表形种类,这是由于F1雌果蝇中的两个染色体之间发生了互换的结果,根据基因在染色体上线性排列的遗传理论,对F2进行分析可知不同基因间的连锁距离。
因为这三个基因位于染色体上,所以这个实验也可以用来作为伴性遗传实验,当基因位于性染色体上时,它与性别相联系的遗传现象,跟常染色体上的基因的遗传现象有所不同,这种遗传称为伴性遗传,在果蝇中,性染色体是XY型,就是说,在雌果蝇上有一对染色体XX,在雄果蝇上有一条X染色体一条Y染色体,当基因位于X染色体而Y染色体一般不含有相对的基因就产生伴性遗传,在伴性遗传中,正交和反交产生不同的结果,例如,在本实验中:正交:三隐雌果蝇X野生雄果蝇反交:三隐雄果蝇X野生雌果蝇 x—m—sn/ x—m—sn X +++/Y x—m—sn/Y X +++/+++x—m—sn/Y +++/ x—m—sn +++/Y +++/ x—m—sn 三隐雄野生雌野生雄野生雌2、 1903年,Sutton根据减数分裂中的染色体行为与孟德尔的遗传假设因子行为平行,推测基因位于染色体上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
果蝇的三点测交实验赵子杰 141140054一.实验目的1、验证连锁互换定律,掌握并进行连锁分析,学习绘制遗传学图的原理和方法。
2、了解伴性遗传与非伴性遗传的区别,了解伴性基因在正、反交中的差异。
二.实验原理1、三点测交三点测交把三个基因包括在同一次交配中,即用三杂合体abc/+++或ab+/++c跟三隐性个体abc/abc测交。
进行这种试验,一次就等于三次“两点试验”,而且带有另外两个优点。
一次三点测验得到的三个重组值是在同一基因型背景、同一环境条件下得到的,而三次“两点试验”就不一定这样。
重组值既受基因型背景的影响,也受各种环境条件的影响,所以,只有从三点试验所得到的三个重组值才是严格地可以互相比较的。
通过三点测交试验,可以得到三次两点试验所不能得到的资料,即双交换的资料。
果蝇的白眼、小翅、卷刚毛为X-连锁基因,全部隐性于各自的野生型基因(红眼、长翅、直刚毛),把白眼、小翅、卷刚毛雌蝇(wmsn/wmsn)与野生型雄蝇交配(+++/Y),F1雌蝇全部为野生型,雄蝇则全部表现为三隐性突变型,让F1互交,在F2中,不管雌雄性别,除了出现双亲类型外,还会出现新的表型种类,这是由于F1雌蝇中两个染色体之间发生了互换的结果,根据基因在染色体线性排列的遗传理论,对F2进行分析即可知不同基因间的连锁距离。
因为这三个基因位于性染色体上,所以这个试验也可用来作为伴性遗传试验。
当基因位于X或Y染色体上时,一般不含相对的等位基因,产生伴性遗传,在正交和反交试验中产生不同的结果。
2、连锁率和互换率生殖细胞形成过程中,位于同一染色体上的基因是连锁在一起,作为一个单位进行传递,称为连锁律。
在生殖细胞形成时,一对同源染色体上的不同对等位基因之间可以发生交换,称为交换律或互换律。
连锁和互换是生物界的普遍现象,也是造成生物多样性的重要原因之一。
一般而言,两对等位基因相距越远,发生交换的机会越大,即交换率越高;反之,相距越近,交换率越低。
因此,交换率可用来反映同一染色体上两个基因之间的相对距离。
以基因重组率为 1%时两个基因间的距离记作1厘摩(centimorgan ,cM )。
基因座位很近,只发生一次交换,重组值=交换率。
基因座位较远,可发生两次交换,重组值<交换率。
基因图距就是通过重组值的测定而得到的。
如果基因座位相距很近,重祖率与交换率的值相等,可以直接根据重组率的大小作为有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。
如果基因间相距较远,两个基因往往发生两次以上的交换,这是如果简单的把重组率看作交换率,那么交换率就会被低估,图距就会偏小。
这时需要利用试验数据进行校正,以便正确估计图距。
基因在染色体上的相对位置的确定除进行两个基因间的测交外,更常用的是三点测交法。
3、并发率和干涉如果两个基因间的单交换并不影响邻近两个基因的单交换。
那么预期的双交换频率应等于两个单交换频率的乘积。
但实际上观察到的双交换频率往往低于预期值。
因为每发生一次单交换,它邻近也发生一次交换的机会就减少一些,这叫做干涉。
一般用并发率来表示干涉的大小。
理论双交换值实际双交换值并发率=CC I -1=干扰值三.实验器材与材料黑腹果蝇(Drosophila melanogaster )品系:野生型黑腹果蝇,白眼、小翅、卷刚毛三隐性果蝇、野生型果蝇(+++):红眼,长翅,直刚毛。
器材:.解剖镜、毛笔、麻醉瓶、玻璃板、标签、吸水纸、培养瓶、酒精棉。
药品:.乙醚、75%乙醇。
四.实验步骤1、选三隐性雌性处女蝇(wmsn/wmsn )和野生型雄蝇(+++/Y ) 5~6对置于新鲜培养瓶中作正交,同时选野生型雌性处女蝇(+++/+++)和三隐性雄蝇(wmsn/Y )同置于新鲜培养瓶中,作为反交,贴上标签,注明亲本类型,实验日期,组别及姓名。
2、自始自终进行果蝇生活周期的察看。
写出观察日记:记录看到的果蝇行为,各发育阶段的主要现象及经历的时间等。
3、一周后,在实验室倒去亲本果蝇,一定要倒干净,一只也不能留。
(此时瓶壁上应有黑色蛹)4、二周后,F1蝇长出,实验室内观察F1雌蝇和F1雄蝇的各个性状,并观察正反交不同组合的结果如何。
5、取5-6对F1果蝇放入新鲜培养瓶中,正交放两瓶,反交一瓶。
6、三周后,倒去F1,必须倒干净,一只也不能留。
7、四周后,F2成蝇长出,统计各类果蝇数,2~3天后再统计一次(要求统计数量1000只以上),统计过的果蝇处死。
应该统计的F2果蝇是正交中F2,但如果其数目不多,可借用反交中F2的雄蝇加以统计。
8、记录实验数据。
五.个人实验结果与分析1.遗传图谱分析2.遗传表型数据及重组率计算1.F1代:正交(野生型雄蝇x 三隐型雌蝇),雌蝇全部为红眼长翅直刚毛,雄蝇全部为白眼小翅卷刚毛; 反交(野生型雌蝇x 三隐型雄蝇),雌雄蝇均为红眼长翅直刚毛2.F2代:其统计数据如下表:F2果蝇表型类型 (及基因型) 数目 重组区域 w-sn w-m m-sn 白小卷(wmsn/wmsn,wmsn/y ) 229 557 - - - 红长直(+++/wmsn,+++/y ) 328 白小直(wm+/wmsn,wm+/y )1331+-++ + +m sn 3 wm sn 3 w×m sn 3wm sn 3 wm sn 3 w+ + +×(♂♀(♂♀m sn 3 w+ + +m sn 3 w+ + +m sn 3 w+ + +m sn 3 w m + + + sn 3 w+ + +m sn 3 w m sn 3 + + + w+ + ++ sn 3 +m sn 3 w m + w + + +P :F1:(测交)4.数据分析 重组率计算:125RF(w-sn) = ————— = 15.3% 816 228RF(w-m) = —————— = 28.0% 816 165RF(m-sn) = ————— = 20.2% 816由表型的数据比较可看出,白小直与红长卷为双交换表型,因此可以得出三个基因在染色体上的顺序为:控制直刚毛与卷刚毛的sn 在中间w – sn - m 或者m – sn – w 。
31双交换率 = ———— = 3.8% 816表格中w 与m 间的重组率的计算没有将双交换的值计算在内,实际上它们之间在双交换时发生了两次交换,因此对其重组率的计算校正:RF(w-m) 校正= 28.0% + 3.8% * 2 = 35.6% 由以上数据绘制染色体图:w sn m15.3 20.235.6 5.计算并发系数与干涉3.8%并发系数:C = —————————— = 1.23 15.3% * 20.2%干涉:I = 1 – C = -0.23红长卷(++sn/wmsn,+msn/y ) 18 红小卷(+msn/wmsn,+msn/y ) 46 94 + + - 白长直(w++/wmsn,w++/y ) 48 红小直(+m+/wmsn,+m+/y ) 65 134- + + 白长卷(w+sn/wmsn,w+sn/y ) 69总计 816125228165重组值15.3% 28.0% 20.2%双交换律 3.8%干涉为负值,即染色体一个区段的交换促进了邻近区段的另一次交换。
六.全班实验结果与分析本文选取了拔尖班上18个人的实验数据进行分析,将实验结果绘制如下表:由以上数据绘制染色体图:w sn m15.2 20.635.8 5.计算并发系数与干涉0.9%并发系数:C = —————————— = 0.29 15.2% * 20.6%干涉:I = 1 – C = 0.71说明有71%的双交换被干涉掉了,即染色体一个区段的交换抑制了邻近区段的另一次交换。
而个人数据所得干涉值为负,说明自己的数据存在一定的误差。
八.实验讨论要保证实验的成功,必须要注意以下几点:1、 进行试验的环境条件稳定且相同,因为不同环境条件下的重组值是F2果蝇表型类型(及基因型)数目 重组区域w-sn w-m m-sn 白小卷(wmsn/wmsn,wmsn/y ) 3722 6573 - - - 红长直(+++/wmsn,+++/y ) 2851 白小直(wm+/wmsn,wm+/y ) 527 1437 + - + 红长卷(++sn/wmsn,+msn/y ) 910 红小卷(+msn/wmsn,+msn/y ) 46 94 + + - 白长直(w++/wmsn,w++/y ) 48 红小直(+m+/wmsn,+m+/y ) 956 1982 - + + 白长卷(w+sn/wmsn,w+sn/y ) 972总计 10086 153120763019重组值 15.2% 20.6% 34.0%双交换律0.9%有变化的。
2、尽可能取得较多的果蝇,增加统计数目,以尽可能避免偶然因素而引起的结果误差。
3、处女蝇的投放一定要严格。
避免投放入已经受精的果蝇,影响实验结果。
4、产卵后亲本需在一周后清理干净。
否则一是会影响子代的计数,二是可能会和下一代交配,从而影响实验结果。
影响实验结果的因素有:1、进行试验的环境条件有差异,不同环境条件下的重组值是有变化的2、进行三点测交实验数据越多越精确,若果蝇数目有限,使得偶然因素引起的误差的影响力加大。
3、三隐性个体的生存力很弱,在幼虫密度较高时易在自然选择中被淘汰,在实验中此因素也有可能引起误差。
4、观察果蝇时,有一些观察不到放走的,死掉的或者没有观察清楚的等等。
5、实验可能存在统计错误,在计数的时候长翅断翅有时难以分清。
参考文献[1] Rubin G M, Lewis E B. A brief history of Drosophila’s contributionstogenomeresearch. Science, 2000, 287(5461):2216~2218[2] Adams M D, Sekelsky J J. From sequence to phenotype: reversegeneticsin Drosophila melanogaster. NatRevGenet, 2002, 3(3): 189~198[3] Letsou A, Bohmann D. Small flies-big discoveries: nearly a century of Drosophila geneticsanddevelopment. DevDyn, 2005, 232(3): 526~528[4]李宏.Li Hong 三点测交基因连锁作图计算的新方法[期刊论文]-生物数学学报2000,15(2)[5]杨红彦.温度和相对湿度对果蝇寿命的影响同济大学学报2002 年2 月,第23 卷第1 期:20-22[6] GAO Y-i Zhi. Morgan and the chromosome theory of inherit ance.Hered itas ( Beij ing ) , 2002, 24( 4) : 459~ 462.高翼之. 摩尔根与染色体遗传学说的建立. 遗传, 2002, 24( 4 ) :459~ 462.。