《物理化学简明教程》(第四版)印永嘉 第八章 表面现象与分散系统资料
物理化学简明教程第四版(印永嘉)ppt课件

作业
Page 12:习题3;习题6
体积功的计算
• 基本公式:
•
W=-p外dV
• 注意: 体积功是系统反抗外压所作的功;
•
或者是环境施加于系统所作的功。
• W的数值不仅仅与系统的始末态有关,还与具体经历的途径 有关。
• 在计算体积功时,首先要弄清反抗的压力与系统体积的关系。
.
系统分类
• 热力学上因系统与环境间的关系不同而将其分为三种不同
的类型:
• 开放系统 : 系统与环境之间既有能量,又有物质的交换; • 封闭系统: 系统与环境间只有能量的交换没有物质的交换;
• 隔离系统: 系统与环境间既无能量又无物质的交换 。 • 注意:系统+环境=孤立系统。
.
举例:暖水瓶
.
状态和性质
.
平衡态?稳态?
一金属棒分别与两个恒温热源相接触,经过一定时间后,金属 棒上各指定点的温度不再随时间而变化,此时金属棒是否处于 热力学平衡态?
T2
T1
.
过程和途径
• 热力学系统发生的任何状态变化称为过程。 • 完成某一过程的具体步骤称为途径。
如: pVT变化过程、相变化过程、化学变化过程
几种主要的p,V,T变化过程
只能求出它的变化值。
.
热力学第一定律的数学表达式
• 对于封闭系统,系统与环境之间的能量交换形式只有热与功两 种,故有: U =Q+W (封闭系统)
• 对于微小的变化过程: dU=W+Q (封闭系统)
• 根据热力学第一定律,孤立系统的热力学能不变. 即U=常数 或 ⊿U=0(孤立系统)
• 上述三式均为热力学第一定律的数学表达式。 • 注意式中注明的条件 !
《物理化学简明教程》(第四版)印永嘉 第八章 表面现象与分散系统

下一内容
回主目录
返回
2016/2/26
第八章 表面现象与分散系统
上一内容
下一内容
回主目录
返回
2016/2/26
第八章 表面现象与分散系统
上一内容
下一内容
回主目录
返回
2016/2/26
第八章 表面现象与分散系统
上一内容
下一内容
回主目录
返回
2016/2/26
(一) 表面现象
• 吸附热为负值。吸附过程是一个放热过程。
上一内容
下一内容
回主目录
返回
2016/2/26
8.3 气体在固体表面上的吸附
• ③ 吸附等温线
• 图8.8 几种类型的吸附等温线
上一内容 下一内容 回主目录
返回
2016/2/26
2 朗格缪尔单分子层吸附等温式
• 1916年,朗格缪尔(Langmuir)提出个气固吸 附理论。其基本假定是: • l.吸附是单分子层的。 • 2.吸附分子之间无相互作用力。
8.1 表面吉布斯函数与表面张力 界面是指两相接触的约几个分子厚度的过渡区, 若其中一相为气体,这种界面通常称为表面。 严格讲表面应是液体和固体与其饱和蒸气之间
的界面,但习惯上把液体或固体与空气的界面称为
液体或固体的表面。
上一内容
下一内容
回主目录
返回
2016/2/26
8.1 表面吉布斯函数与表面张力
上一内容 下一内容 回主目录
返回
2016/2/26
3 BET多分子层吸附等温式
• 在朗格缪尔吸附理论的基础上,1938年勃劳纳 尔(Brunauer)、爱密特(Emmett)和泰勒 (Te11er)三人提出了多分子层的气固吸附理 论,导出了BET公式:
物理化学第8章 表面物理化学

如果要制造防水材料,就要在表面涂憎水的 表面活性剂,使接触角大于90°。
2.增溶作用
定义:非极性有机物如苯在水中溶解度很小, 加入油酸钠等表面活性剂后,苯在水中的溶解度 大大增加,这称为增溶作用。
增溶作用与普通的溶解概念是不同的,增溶 的苯不是均匀分散在水中,而是分散在油酸根分 子形成的胶束中。
2、公式 (1)形式: ⊿p=2ϭ/r
(2)结论: ①凸液面: r >0,则 ⊿p > 0。
液滴越小,附加压力越大
②凹液面 : r< 0,⊿p<0。
③水平液面:r为无穷大, ⊿p= 0。
④对于液泡(如肥皂泡):
⊿p =
4ϭ r
因为肥皂泡有两个气液界面,且两个球形界面的
半径几乎相等,方向均指向液泡中心。
①液体能润湿毛细管(如水能润湿玻璃): 呈凹形曲面,且液面上升一定高度。
p'
p ''
p0
M H2O
N Hg
r g h =⊿ p = 2 ϭ
r
曲率半径 r与毛细管半径R的关系:
R´ = R
cosq
联立以上二式,可得:
2ϭcosq
h=
r gR
②液体不能能润湿毛细管(如汞不能润湿玻璃): 呈凹形曲面,且液面下降一定高度。
可见光的波长约在400~750 nm之间。
二、溶胶的力学性质
主要指: Brown 运动
扩散
沉降和沉降平衡
1、Brown运动(Brownian motion)
通过超显微镜,可以看到胶体粒子不断地 作不规则的“之”字形运动,这就叫布朗运 动。
产生原因:分散介质分子以不同大小和方向 的力对胶体粒子不断撞击而产生的。
物理化学简明教程习题答案

第七章电化学7.1 用铂电极电解溶液。
通过的电流为20 A,经过15 min后,问:(1)在阴极上能析出多少质量的?(2) 在的27 ℃,100 kPa下的?解:电极反应为电极反应的反应进度为因此:7.2 用Pb(s)电极电解Pb(NO3)2溶液,已知溶液浓度为每1g水中含有Pb(NO3)21.66×10-2g。
7.3 用银电极电解溶液。
通电一定时间后,测知在阴极上析出的,并知阴极区溶液中的总量减少了。
求溶液中的和。
解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。
显然阴极区溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差:7.4 已知25 ℃时溶液的电导率为。
一电导池中充以此溶液,在25 ℃时测得其电阻为。
在同一电导池中装入同样体积的质量浓度为的溶液,测得电阻为。
计算(1)电导池系数;(2)溶液的电导率;(3)溶液的摩尔电导率。
解:(1)电导池系数为(2)溶液的电导率(3)溶液的摩尔电导率7.5 25 ℃时将电导率为的溶液装入一电导池中,测得其电阻为。
在同一电导池中装入的溶液,测得电阻为。
利用表7.3.2中的数据计算的解离度及解离常熟。
解:查表知无限稀释摩尔电导率为因此,7.7 已知25 ℃时水的离子积,、和的分别等于,和。
求25 ℃时纯水的电导率。
解:水的无限稀释摩尔电导率为纯水的电导率7.10 电池电动势与温度的关系为(1)写出电池反应;(2)计算25 ℃时该反应的以及电池恒温可逆放电时该反应过程的。
解:(1)电池反应为(2)25 ℃时因此,7.20 在电池中,进行如下两个电池反应:应用表7.7.1的数据计算两个电池反应的。
解:电池的电动势与电池反应的计量式无关,因此7.13 写出下列各电池的电池反应。
应用表7.7.1的数据计算25 ℃时各电池的电动势、各电池反应的摩尔Gibbs函数变及标准平衡常数,并指明的电池反应能否自发进行。
解:(1)电池反应根据Nernst方程(2)电池反应(3)电池反应7.14 应用表7.4.1的数据计算下列电池在25 ℃时的电动势。
物化第8章

首页
上一页
下一页
末页
15
§8.2 纯液体的表面现象
例:(1)人工降雨:高空如果没有灰尘,水蒸气可以达到相当高的过饱和程度 而不致凝结成水,因为此时小水滴难以形成。若向空中撒入凝结核心,使凝聚
水滴的初始曲率半径加大,其相应的饱和蒸气压可小于高空中已有的水 蒸气压力,因此蒸气会迅速凝结成水。
(2)液体暴沸:对液体中有小气泡pr<p,即液体的小气泡中的饱和蒸压 小于平面液体的饱和蒸气压,且气泡半径越小,泡内饱和蒸压越 小。在沸点时,平面的饱和蒸气压等于外压,在外压的压迫下, 小气泡难以形成,致使液体不易沸腾而形成过热液体。过热较多时,容 易暴沸。如果加热时在液体中加入沸石,则可避免暴沸现象。这是 因为沸石表面多孔,其中已有曲率半径较大的气泡存在,因此泡内蒸
对空气中的液滴(凸液面)来说,液体的压力 p’ = p + ∆p;
对液体中的气泡(凹液面)来说,液体的压力则是 p = p’ + ∆p;
对于液泡,如肥皂泡,因为液膜有内、外两个表面, 其半径几乎相同,则泡内气体的压力比泡外压力大, 其差值为
p 4
r
对于水平液面,半径可认为是无限大,因此附加压力∆p=0。
自的表面积。如果液滴达到平衡,液滴保持一定的形状:
(s-g) – (s-l) – (l-g)cos = 0 (1)润湿
co s(s g( l) g()s l)
< 90°,润湿; > 90°,不润湿; = 0°,完全润湿; = 180°,完全不润湿。
首页
上一页
下一页
末页
18
§8.2 纯液体的表面现象
§8.10 溶胶的制备与净化 §8.11 高分子溶液
首页
物理化学简明教程(印永嘉) 表面现象与分散系统

巨大表面系统的表面吉布斯函数
例 20℃,p下,将1kg水分散成10-9m半径的小水滴 需做功多少?已知 =0.0728 Nm-1, =1000 kgm-3 解: Wr’ = A = (A2 – A1) A2 = n 4 r 2 而 1kg = n × ( 4/3 r3 ) n = 2.4 1023个 Wr’ =310-3 /r =218 kJ
24
第八章 表面现象和分散系统
返回目录
退出
1.气固吸附的一般常识
吸附质:(被吸附的)气体;吸附剂:(吸附气体的)固体 (1) 吸附类型
物理吸附
吸附力 吸附 分子层 吸附 选择性 吸附热 吸附 速度
25
化学吸附
化学键力
范德华力
被吸附分子可以形成单分子 被吸附分子只能形成单分 层也可形成多分子层 子层 无选择性,任何固体皆能吸 有选择性,指定吸附剂只 附任何气体,易液化者易被 对某些气体有吸附作用 吸附 较小,与气体凝聚热相近, 较大,近于化学反应热, 约为2×104至4×104 J· l 约为4×104至4×105 J· l mol mol 较快,速率少受温度影响。 较慢,升温速率加快,不 易达平衡,较易脱附 易达平衡,较难脱附
物理化学简明教程(印永嘉)
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 第九节 第十节 第十一节
第八章 表面现象与分散系 统
1
§8.1 表面吉布斯函数与表面张力
表面吉布斯函数
表面张力
影响表面张力的因素 巨大表面系统的表面吉布斯函数
2
第八章 表面现象和分散系统
返回目录
退出
单组分密闭系统的基本公式为:
19
第八章 表面现象和分散系统
物理化学简明教程第四版课件07-0

主要参考书
印永嘉 王学琳 奚正楷 张树永等编《物理化学简 明教程》例题与习题,高等教育1996.6 孙德坤,沈文霞,姚天杨,《物理化学解题指导》, 江苏教育出版社,1998.8. 王文清,高宏成,沈兴海编著,物理化学习题精解, 上下册,科学出版社,1999. 傅玉普主编,物理化学重点热点导引与解题训练, 大连理工大学出版社,2001. 李支敏,王保怀,高盘良编写,物理化学解题思路 和方法,北京大学出版社,2002.11. 朱文涛编著,物理化学中的公式与概念,清华大学 出版社,1998.
(2)多做习题,学会解题方法。很多东西只有通过解 题才能学到,不会解题,就不可能掌握物理化学。
(3)物理化学中出现的定理公式较多,学习时重要的 定理(定律)、公式及其使用条件、适用范围、 物理意义要牢记。抓住重点,自己动手推导公式。
(4)抓住每章重点,基本概念,基本公式;注意章节 之间的联系,做到融会贯通。
(4)有机物蒸馏时加沸石或废瓷石以防止暴沸?
(5)夏天将室内电冰箱门打开可以降低室温吗? (6)硅胶为何能作干燥剂?人工降雨有何原理?
(7)为什么食品通常采用低温保藏法?
对我的要求和意见?
Email: liuwenping11@ 没有规矩,不成方圆
我的要求和想法
考试和分数
学期总评成绩=平时×30%+期末×70% 平时成绩包括: 1.出勤10%,
物理化学主要研究对象
一)化学变化的方向与限度问题----化学热力学
举例:(1)碳 ? 金刚石 2NH3 2H2O
(2)N2 + 3H2 (--化学动力学
举例:当代三大环境问题:“遮阳伞”破了,“棉 被”太 厚了,雨水变酸了。解决的关键:机 理
§0.1 物理化学的研究对象及其重要意义
物理化学简明教程第四版课件

B
§9.2 反应速率和速率方程
1. 反应速率的表示法 反应速率:化学反应进行的快慢 dnB J B dt
§9.2 反应速率和速率方程
1. 反应速率的表示法 对于体积一定的密闭体系,常用单位体积的反应 速率r表示 J 1 1 dn 1 dC 1 d B
5.基元反应具有简单的级数。
6.不同反应若具有相同级数形式,一定具有相同的 反应机理。
7.某化学反应式为A+B=C,则该反应为双分子反应。
§9.3 简单级数反应的动力学规律
r kA B
凡是反应速率只与反应物浓度有关,而且反应
级数,无论α、β、…或n都只是零或正整数的反应, 通称为“简单级数反应”。 简单反应都是简单级数反应,但简单级数反应 不一定就是简单反应。具有相同级数的简单级数反 应的速率遵循某些简单规律,本节将分析这类反应 速率公式的微分形式、积分形式及其特征。
热力学与动力学的关系
动力学和热力学的关系是相辅相成的。 经热力学研究认为是可能的,但实际进行时反 应速率太小,则可以通过动力学研究,降低其反应
阻力,缩短达到平衡的时间。
经热力学研究认为是不可能进行的反应,则没 有必要再去研究如何提高反应速率的问题了。过程 的可能性与条件有关,有时改变条件可使原条件下 热力学上不可能的过程成为可能。
2. 化学动力学发展简史 •19世纪后半叶,宏观反应动力学阶段。主要成就是 质量作用定律和Arrhenius公式的确立,提出了活化能 的概念。 •20世纪前叶,宏观反应动力学向微观反应动力学过 渡阶段。 •20世纪50年代,微观反应动力学阶段。对反应速率 从理论上进行了探讨,提出了碰撞理论和过渡态理论, 建立了势能面。发现了链反应,从总包反应向基元反 应过渡。由于分子束和激光技术的发展,开创了分子 反应动态学。 1960年,交叉分子束反应,李远哲等人1986年获诺 贝尔化学奖。
第八章 表面现象与分散系统(物理化学-印永嘉)资料

d (70 50) 103
p' p p即p p' p
p 8 rdr 2 4 r 2dr r
(拉普拉斯公式)
p 2
r
图 8.2 附加压力与曲率 半径的关系
空气中的液滴(凸液面): p' p p 液体中的气泡(凹液面): p' p p
液泡(有内外两个表面):p 4
一定温度下,吸附分子在固体表面上所占面积占表面总 面积的分数称为覆盖度,用θ表示。
吸附速率 rads k1(1 ) p
脱附速率 rd k2
吸附平衡时, k1(1 ) p k2
k1 p bp , 其中b 源自k1k2 k1 p 1 bp
k2
a k kbp (朗格缪尔单分子层吸附 等温式)
溶质在表面层浓度小于本 体浓度,称为负吸附;溶质在 表面层浓度大于本体浓度,称 为正吸附。
图8.8 溶液浓度对表面张力的影响
2. 吉布斯吸附公式
c d
RT dc
式中称为 表面吸附量。定义:单位面积的表面层所含溶质物
质的量比同量溶剂在本体溶液中所含溶质的物质的量的超出值。
当 d 0;则 0,发生负吸附
r
2. 曲率对蒸气压的影响
小液滴内液体的压力 pr p p
图8.3 平面液体与小液滴
G r Vm ( pr p)
Vmp
r
RT
ln(
p' r
)
p
RT ln( p' )
p
r
RT
ln(
pr' p'
)
2023年大学_物理化学简明教程(邵谦著)课后答案下载

2023年物理化学简明教程(邵谦著)课后答案下载2023年物理化学简明教程(邵谦著)课后答案下载绪论0.1 物理化学的研究对象及其重要意义0.2 物理化学的研究方法0.3 学习物理化学的方法第一章热力学第一定律(一)热力学概论1.1 热力学的研究对象1.2 几个基本概念(二)热力学第一定律1.3 能量守恒--热力学第一定律1.4 体积功1.5 定容及定压下的热1.6 理想气体的热力学能和焓1.7 热容1.8 理想气体的绝热过程1.9 实际气体的节流膨胀(三)热化学1.10 化学反应的热效应1.11 生成焓及燃烧焓1.12 反应焓与温度的关系--基尔霍夫方程思考题第二章热力学第二定律2.1 自发过程的共同特征2.2 热力学第二定律的经典表述2.3 卡诺循环与卡诺定理2.4 熵的概念2.5 熵变的计算及其应用2.6 熵的物理意义及规定熵的计算2.7 亥姆霍兹函数与吉布斯函数2.8 热力学函数的?些重要关系式2.9 厶C的计算__2.10 非平衡态热力学简介思考题第三章化学势3.1 偏摩尔量3.2 化学势3.3 气体物质的化学势3.4 理想液态混合物中物质的化学势 3.5 理想稀溶液中物质的化学势3.6 不挥发性溶质理想稀溶液的依数性 3.7 非理想多组分系统中物质的化学势思考题第四章化学平衡4.1 化学反应的方向和限度4.2 反应的标准吉布斯函数变化4.3 平衡常数的各种表示法4.4 平衡常数的实验测定4.5 温度对平衡常数的影响4.6 其他因素对化学平衡的影响思考题第五章多相平衡5.1 相律(一)单组分系统5.2 克劳修斯一克拉佩龙方程5.3 水的相图(二)二组分系统5.4 完全互溶的双液系统__5.5 部分互溶的双液系统__5.6 完全不互溶的双液系统5.7 简单低共熔混合物的固一液系统 5.8 有化合物生成的固一液系统__5.9 有固溶体生成的固一液系统(三)三组分系统5.10 三角坐标图组成表示法__5.11 二盐一水系统__5.12 部分互溶的三组分系统思考题第六章统计热力学初步6.1 引言6.2 玻耳兹曼分布6.3 分子配分函数6.4 分子配分函数的求算及应用第七章电化学(一)电解质溶液7.1 离子的迁移7.2 电解质溶液的电导7.3 电导测定的应用示例7.4 强电解质的活度和活度系数__7.5 强电解质溶液理论简介(二)可逆电池电动势7.6 可逆电池7.7 可逆电池热力学7.8 电极电势7.9 由电极电势计算电池电动势7.10 电极电势及电池电动势的应用(三)不可逆电极过程7.11 电极的.极化7.12 电解时的电极反应7.13 金属的腐蚀与防护__7.14 化学?源简介第八章表面现象与分散系统(一)表面现象8.1 表面吉布斯函数与表面张力 8.2 纯液体的表面现象8.3 气体在固体表面上的吸附 8.4 溶液的表面吸附8.5 表面活性剂及其作用(二)分散系统8.6 分散系统的分类8.7 溶胶的光学及力学性质8.8 溶胶的电性质8.9 溶胶的聚沉和絮凝8.10 溶胶的制备与净化__8.11 高分子溶液思考题第九章化学动力学基本原理9.1 引言9.2 反应速率和速率方程9.3 简单级数反应的动力学规律9.4 反应级数的测定9.5 温度对反应速率的影响9.6 双分子反应的简单碰撞理论9.7 基元反应的过渡态理论大意__9.8 单分子反应理论简介思考题第十章复合反应动力学10.1 典型复合反应动力学10.2 复合反应近似处理方法10.3 链反应__10.4 反应机理的探索和确定示例10.5 催化反应10.6 光化学概要__10.7 快速反应与分子反应动力学研究方法简介思考题附录Ⅰ.某些单质、化合物的摩尔热容、标准摩尔生成焓、标准摩尔生成吉布斯函数及标准摩尔熵Ⅱ.某些有机化合物的标准摩尔燃烧焓(298K)Ⅲ.不同能量单位的换算关系Ⅳ.元素的相对原子质量表Ⅴ.常用数学公式Ⅵ.常见物理和化学常数物理化学简明教程(邵谦著):内容简介本教材自8月出版以来,受到了广大读者,特别是相关高校师生的厚爱,并被许多高校选作教材。
《物理化学》08 表面现象与分散系统PPT课件

WWWWWWWWWWWW 222222222222
17
§8.1 表面自由能与表面张力
如果在活动边框上挂一重物,使
重物质量W2与边框质量W1所产生的 重力F与总的表面张力大小相等方向
相反,则金属丝不再滑动。
F=(W1W2)g
= 2 l
FW 1W 22l
dGT,P = δW’ dGT,P = σdA δW’ = FdX FdX=σdA=σ(2 l)dX σ= F/ 2 l
(3)温度的影响
温度升高,表面张力下降。因为升高温 度时液体分子间引力减弱。
22
§8.1 表面吉布斯函数与表面张力
由上可知,由于表面分子与相内部分子性质 不同,严格说来完全均匀一致的相是不存在的。 通常情况下可以不考虑这一点,是因为一个物系 如果表面分子在所有分子中所占比例不大,系统 的表面能对系统总吉布斯函数值的影响很小,可 以忽略不计。
属线框架放在肥皂液中,然后取出悬
挂,活动边在下面。由于金属框上的
肥皂膜表面张力作用,可滑动的边会
被向上拉,直至顶部。
16
由于金属框上的肥皂膜的表面张力作用, 可滑动的边会被向上拉,直至顶部。
2222222222222222 llllllllllllllll
F=(W1W2)g
= 2 l 22222222222 lllllllllllW 1
13
§8.1 表面吉布斯函数与表面张力
由于表面层分子受力情况与本体中不同,因此如 要把分子从内部移到界面,或可逆地增加表面积,就 必须克服体系内部分子之间的作用力,对体系做功。
温度、压力和组成恒定时,可逆地使表面积增加 dA所需要对体系作的非膨胀功,称为表面功:
W' dA
物理化学知识点总结[物理化学知识点归纳]
![物理化学知识点总结[物理化学知识点归纳]](https://img.taocdn.com/s3/m/ea35e0ce227916888586d7c1.png)
物理化学知识点总结[物理化学知识点归纳]热力学第一定律...............................................................................(1)第二章热力学第二定律. (3)第三章化学势 (7)第四章化学平衡 (10)第五章多相平衡 (12)第六章统计热力学基础 (14)第七章电化学 (16)第八章表面现象与分散系统 (20)第九章化学动力学基本原理 (24)第十章复合反应动力学 (27)物理化学知识点归纳根据印永嘉物理化学简明教程第四版编写,红色的公式要求重点掌握,蓝色的公式掌握。
第一章热力学第一定律本章讨论能量的转换和守恒,其目的主要解决变化过程的热量,求功的目的也是为了求热。
1. 热力学第一定律热力学第一定律的本质是能量守恒定律,对于封闭系统,其数学表达式为∆U =Q +W 微小过程变化:d U =δQ +δW只作体积功:d U =δQ −p e d V 理想气体的内能只是温度的函数。
2. 体积功的计算:δW V =−p 外d VW V =−∫p 外d VV 1V 2外压为0(向真空膨胀,向真空蒸发):W V =0;恒容过程:W V =0恒外压过程:W V =−p 外(V 2−V 1) 恒压过程:W V =−p (V 2−V 1) 可逆过程:W V =−∫V 2V 1p d V (主要计算理想气体等温可逆、绝热可逆过程的功)3. 焓和热容由于大多数化学反应是在等压下进行的,为了方便,定义一个新的函数焓:H =U +pV焓是状态函数,是广度性质,具有能量,本身没有物理意义,在等压下没有非体积功的热效应等于焓的改变量。
等容热容:C V = δQ V⎛∂U ⎛=⎛⎛ d T ⎛∂T ⎛V等压热容:C p =δQ p⎛∂H ⎛=⎛⎛ d T ⎛∂T ⎛p对于理想气体:C p −C V =nR4. 理想气体各基本过程中W 、Q 、∆U 、∆H 的计算5. 焦耳-汤姆逊系数µ=⎛⎛∂T ⎛1⎛∂H ⎛=−⎛⎛⎛,用于判断气体节流膨胀时的温度变化。
第八章 表面现象与分散系统(物理化学-印永嘉)

§8.8 溶胶的电性质
1. 电动现象
在外电场作用下,分散相和分散介质发生相对移动的现象称 为溶胶的电动现象。它包括电泳和电渗两种。 电泳:在电场作用下,固体的分散相粒子在液体介质中做定向 移动。
图8.11 电泳仪
图8.12 电渗
电渗:与电泳相反,使固体胶粒不动而液体介质在电场中发生 定向移动的现象。
聚沉值:使溶胶发生明显聚沉所需电解质的最低浓度。聚
沉值越小,聚沉能力越强,反之亦然;
(2)电解质使溶胶发生聚沉,主要起作用的是与胶粒带相反电荷
的离子(称为反离子)。反离子价数越高,聚沉能力越强,聚沉值 越小; (3)同价反离子的聚沉能力虽然相近,但依离子大小不同其聚沉
能力也略有不同,例如:
对于负溶胶,有下列顺序:Cs+>Rb+>K+>Na+>Li+; 对于正溶胶,有下列顺序:Cl->Br->NO3->I-。
2. 胶束和临界胶束浓度
图8.10 各种形状的胶束
表面活性剂在水溶液中形成胶束所需的最低浓度称为 临界胶束浓度(用cmc表示)。
cmc -- critical micelle concentration
3. 表面活性剂的作用 (a)润湿作用; (b)增溶作用; (c)乳化作用;
(d)起泡作用;
(e)洗涤作用。
d b dc ac
b c RT ac
b 温度一定时, 为常数,令其为 K, RT
Kc 则 ac
c d RT dc
例4 教材303页例4
解:以对c作图。
在c 1.5 g kg水-1处作切线, 求得曲线在该点的斜率为:
d (70 50) 103 dc 4.0 0.0 5.0 103 N m1 g 1 kg水-1
物理化学简明教程第四版复习资料

第九章 化学动力学基本原理质量作用定律r = k[A]a [B]b ;质量作用定律只适用于基元反应。
(简单反应和复合反应中的各基元反应)简单反应都是简单级数反应,但是简单级数反应不一定是简单反应一级反应:xx a a c c t k -=-==11lnln ln01;c c k t 01ln 1= 1)k1单位:s-12)半衰期t1/2:当c=1/2c0时所需时间110012/16932.02ln 2/ln 1k k c c k t ===;t ½ 与起始浓度c0无关。
阿累尼乌斯公式⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=1212211211)()(ln T T T T R E T T R E T k T k a a ; 26.20/106.12ln ln 3+⨯-=+-=KT A RT E k aEa =12.6 ×10^3×R=104.8kJ · mol-1 lnA=20.26A = e^20.26 = 6.29 ×10^8 mol-1·dm3·s-1第八章 表面现象与分散系统 表面张力σ 单位:N/m物理意义:表面紧缩力定义:在相表面的切面上,垂直作用于表面任意单位长度上的紧缩力。
影响表面张力的因素:1. 物质的种类及共存相的种类(性质);2. 温度影响:前者<0,即温度升高,表面张力变小拉普拉斯公式:rp σ2=∆ r :曲率半径。
r 越大,Δp 越小;平面时r 趋近于无穷大,Δp=01.不管是凸液面,还是凹液面,附加压力的方向总是指向球心,即球内的压力一定大于球外的压力;2. 液膜(肥皂泡)Δp=4σ/rKelvin 公式:(液相) P'=P+2σ/r ;(气相) pr 凹(液中气泡):r 取负值,pr < p ;凸(小液滴):r 取正值,pr > p人工降雨(过饱和蒸气)高空中没有灰尘,水蒸汽可达到相当高的过饱和程度而不致凝结成水。
物理化学简明教程第四版(印永嘉)

体积功的计算
• 基本公式:
•
W=-p外dV
• 注意: 体积功是系统反抗外压所作的功;•源自或者是环境施加于系统所作的功。
• W的数值不仅仅与系统的始末态有关,还与具体经历的途径 有关。
• 强度性质: 数值取决于系统自身的特点,与系统的数量无关, 不具有加和性,如温度、压力等。它在数学上是零次齐函数。
• 一般而言, 两个广度量的比值是一强度量,如
密 度: = m/V
摩尔体积:Vm = V/n • 指定了物质的量的容量性质即成为强度性质,如摩尔热容。
-
6
p,压力或者压强, N/m2(帕斯卡), Pa; 1pø=0.1MPa,热力学标准压力;常压101325 Pa T,温度,K , T/K= t/℃+273.15; V,体积,m3;
-
10
平衡态?稳态?
一金属棒分别与两个恒温热源相接触,经过一定时间后,金属 棒上各指定点的温度不再随时间而变化,此时金属棒是否处于 热力学平衡态?
T2
T1
-
11
过程和途径
• 热力学系统发生的任何状态变化称为过程。 • 完成某一过程的具体步骤称为途径。
如: pVT变化过程、相变化过程、化学变化过程
个量符合上述三个特征之一,可以判定有某一状态函数的存在。
-
9
热力学平衡态
• 系统与环境间必须同时达到以下四个条件时, 才可认为系统达 热力学平衡, 此时系统的状态称为热力学平衡态.
• 1.热平衡: 系统处处温度(T) 相等; • 2.力学平衡: 系统处处压力(p) 相等; • 3.相平衡:多相共存时,各相的组成和数量不随时间而改变; • 4.化学平衡: 系统内各化学反应达平衡.
-
物理化学简明教程(第4版)例题PPT全套课件

退出
20
例7 25℃、p下,使1mol水电解变成p下的H2和
O2,做电功424.6kJ, 放热139.0kJ。求Q, W, U, H
和fHm(H2O, l) 解 H2O(l) H2(g) + O2(g)
Vg=V(H2)+V(O2)
定温、定压的化学反应,当有电功时
Qp= – 139.0 kJ H
设 m克冰融化, H=H(冰)+H(水)=( m335-16.7103)J=0 m = 49.9 g 平衡后的状态为49.9g冰和150.1g水的0℃的冰水混合 物,此过程的H =0J。
热力学第一定律 例题
退出
6
例4 已知某实际气体的Cp,m 和J-T ,该气体经一定温
变压(p1p2)过程后的H=?
例1 例2 例3 例4 例5 例6 例7 例8
高等教育出版社 高等教育电子音像出版社
第一章 热力学第一定律
例1 某理想气体从始态1经下列三个途径到达终态 2,求Q, W, U的表达式。已知CV , Cp 为常数
p 1 (p1 , V1 , T1)
(1) 1 →A →2 (2) 1 →B →2
(3) 1 →C →2
(2) 498K H2(g) + O2(g) H2O( g)
根据基尔霍夫公式
498
H (T2 ) H (T1) 298 CpdT
其中rHm(298K) = 241.8 kJmol-1
Cp= (33.6 27.2) JK-1mol-1 = 7.2 J K-1
H(T2) = H(T1)+Cp T rHm (498K)
T V
热力学第一定律 例题
退出
11
焦耳系数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一内容 下一内容 回主目录
返回
2020/9/9
8.1 表面吉布斯函数与表面张力
上一内容 下一内容 回主目录
返回
2020/9/9
8.2 纯液体的表面现象
1 附加压力
对活塞加压,使液滴体积增加dV, 其表面积增加dA。环境所作功与可 逆增加表面积的吉布斯函数增加应
该相等。
p dV dA; p dA
分子层或形成多分子层 分子层
吸附选择性 无选择性
有选择性
吸附热 吸附速率
较小,与气体凝聚热相 较大,近于化学反应热
近,约为2×104至
,约为4×104至4×105
4×104 J·moll
J·moll
较快,速率少受温度影 较慢,升温速率加快,
响。易达平衡,较易脱 不易达平衡,较难脱附
附
上一内容 下一内容 回主目录
• 吸附气体的固体称为“吸附剂”,被吸附的气 体称为“吸附质”。
• (1) 吸附的类型 • 物理吸附和化学吸附
上一内容 下一内容 回主目录
返回
2020/9/9
8.3 气体在固体表面上的吸附
物理吸附
化学吸附
吸附力 • 表8范.3德物华理力吸附与化学吸化附学特键征力之比较
吸附分子层 被吸附分子可以形成单 被吸附分子只能形成单
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
上一内容 下一内容 回主目录
返回
2020/9/9
8.3 气体在固体表面上的吸附
• ① 吸附等压线
• 图8.7 CO在Pt上的吸附等压线
上一内容 下一内容 回主目录
返回
2020/9/9
8.3 气体在固体表面上的吸附
• ② 吸附等量线
• NH3 在炭上的吸附等量线
上一内容 下一内容 回主目录
返回
2020/9/9
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
(一) 表面现象
8.1 表面吉布斯函数与表面张力 界面是指两相接触的约几个分子厚度的过渡区,
上一内容 下一内容 回主目录
返回
2020/9/9
4 毛细管现象
p
2
R'
gh
R R' cos
h 2 cos R g
上一内容 下一内容 回主目录
返回
2020/9/9
8.3 气体在固体表面上的吸附
• 1 气固吸附的一般常识
• 气体分子在固体表面上相对聚集的现象称为气 体在固体表面上的吸附,简称“气固吸附”。
2 曲率对蒸气压的影响
Vm (l)( pl,r
pl
)
RT
ln
pr p
pl,r pl
p 2
r
RT ln( pr ) 2 Vm (l) 2 M
p
r
r
这就是Kelvin公式,式中为密度,M 为摩尔质量。
上一内容 下一内容 回主目录
返回
2020/9/9
2 曲率对蒸气压的影响
• Kelvin公式可以说明许多现象,例如: • 人工降雨,天空中的水蒸气对小液滴没有饱和 • 毛细管凝聚现象 • 加热液体时的爆沸现象
上一内容 下一内容 回主目录
返回
2020/9/9
3 液体的润湿与铺展
(s g) (s l) (l g) cos 0
cos (s g) (s l) • 此式称为杨氏方程。 (l g)
上一内容 下一内容 回主目录
返回
2020/9/9
3 液体的润湿与铺展
• 某些有机液体滴在水面上或固体表面能自动形 成一层极薄的液膜,这种现象称为液体的铺展 现象。
返回
2020/9/9
8.3 气体在固体表面上的吸附
• (2) 吸附平衡与吸附量
• 达到吸附平衡时,单位质量吸附剂所能吸附的 气体的物质的量或这些气体在标准状况下所占 的体积,称为吸附量,以a表示。
• 即a=n/m或a=V/m,其中m为吸附剂的质量。
• (3) 吸附曲线
• 在a,T、p三个因素中固定其一而反映另外两 者关系的曲线,称为吸附曲线,共分三种:
若其中一相为气体,这种界面通常称为表面。
严格讲表面应是液体和固体与其饱和蒸气之间 的界面,但习惯上把液体或固体与空气的界面称为 液体或固体的表面。
上一内容 下一内容 回主目录
返回
2020/9/9
8.1 表面吉布斯函数与表面张力
扩展表面所做的功δW’
与增加的表面积dA成正
比
δW’=σdA
可逆过程
δW’ = dGT,p
上一内容 下一内容 回主目录
返回
2020/9/9
2 曲率对蒸气压的影响
Gm (l) Gm (g)
Gm (l) pl
T
dpl
Gm (g) pg
T
dpg
Vm (l)dpl Vm (g)dpg
Vm(l)
dp pl,r
pl,
l
RT
pr p
d
ln
pg
上一内容 下一内容 回主目录
返回
20/9/9
8.3 气体在固体表面上的吸附
• T与p的关系类似于克劳修斯-克拉贝龙方程, 可用来求算吸附热
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
第八章 表面现象与分散系统
上一内容 下一内容 回主目录
返回
2020/9/9
故
dGT ,p dA 或
=
G A
T
,p
上一内容 下一内容 回主目录
σ为比表面吉
布斯函数或表
面张力。
返回
2020/9/9
8.1 表面吉布斯函数与表面张力
• 表面张力与下列因素有关 • (1) 物质种类 • (2) 接触相的性质 • (3) 温度 一般是温度升高,σ下降 • (4) 压力 一般是压力增加,液体的σ下降。
dV
V 4r3
3
dV 4 r2dr
A 4 r2 dA 8 rdr
代入得: p
p p
2 r
上一内容 下一内容 回主目录
返回
2020/9/9
8.2 纯液体的表面现象
•
对于气泡,则
p
4
r
• 2 液曲体率(对T,蒸pl)气压的饱影和响蒸汽(T, pg)
对小液滴与蒸汽的平衡,应有相同形式,设 气体为理想气体。当恒温,压力改变时