二次函数思维导图1
2.2 常见函数(附思维导图)
2.2常见函数一、一次函数和常函数:思维导图:(一) 、一次函数 (二)、常函数 定义域:(- ∞,+ ∞) 定义域: (- ∞,+ ∞) 值 域:(- ∞,+ ∞) 正 k=0 反 值 域:{ b }解析式:y = kx + b ( k ≠ 0 ) 解析式:y = b ( b 为常数)图 像:一条与x 轴、y 轴相交的直线 图 像:一条与x 轴平行或重合的直线b>0 b=0 b<0 K > 0 k < 0单调性: k > 0 ,在(- ∞,+ ∞)↑ 单调性:在(- ∞,+ ∞)上不单调 k < 0 ,在(- ∞,+ ∞)↓奇偶性:奇函数⇔=0b 奇偶性: 偶函数 非奇非偶⇔≠0b周期性: 非周期函数 周期性:周期函数,周期为任意非零实数 反函数:在(- ∞,+ ∞)上有反函数 反函数:在(- ∞,+ ∞)上没有反函数 反函数仍是一次函数例题:二、二次函数1、定义域:(- ∞,+ ∞)2、值 域: ),44[,02+∞-∈>ab ac y a]44,(,02ab ac y a --∞∈<3、解析式:)0(2≠++=a c bx ax y4、图 像:一条开口向上或向下的抛物线开口向下,开口向上;正负:增大,开口缩小绝对值:随着,00<>a a a a正半轴相交与负半轴相交与y c y c c,0,0><对称轴:ab x 2-=对称轴: ;)44,2(2ab ac ab --顶点: 轴交点个数图像与x ac b →-=∆42:与x 轴交点的个数。
两个交点,0>∆一个交点,0=∆无交点,0<∆5、单调性:↑+∞-↓--∞>),2[]2,(,0ab ab a↓+∞-↑--∞<),2[]2,(,0ab ab a6、奇偶性:偶函数⇔=0b7、周期性:非周期函数8、反函数:在(- ∞,+ ∞)上无反函数,上及其子集上有反函数或在),2[]2,(+∞---∞ab ab例题:三、反比例函数和重要的分式函数(一)、反比例函数 (二)、分式函数bax dcx y ++= 定义域:(- ∞,0)∪(0,+ ∞) 定义域:),(),(+∞---∞aba b Y 值 域:(- ∞,0)∪(0,+ ∞) 值 域: ),(),(+∞-∞a c a c Y解析式:)0()(≠=k xk x f 解析式:)(a bx b ax d cx y -≠++=图 像:以x 轴、y 轴为渐进线的双曲线 图 像:以a b x -=和acy =为渐近线的双曲线y y0 x 0 xk > 0 k < 0单调性: k>0,(- ∞,0)↓,(0,+ ∞)↓ 单调性:在),(a b --∞和),(+∞-ab上 k<0,(- ∞,0)↑,(0,+ ∞)↑ 单调性相同 奇偶性:奇函数 奇偶性:非奇非偶 对称性:关于原点对称 对称性:关于点),(aca b -成中心对称 周期性:非周期函数 周期性:非周期函数反函数:在定义域上有反函数, 反函数:在定义域有反函数, 反函数是其本身。
二次函数思维导图
四、二次函数与的比较五、二次函数图象的画法六、二次函数的性质二次函数的结构特征(是常数,)的函数,,而可以为零.二次函数的定的二次式,的是常数,是二次项系数,是一次项系数,是二次函数基本形式:的性质的符号标轴时,随的增大而增大;随的增大而减小;时,有最小值.轴时,随的增大而减小;随的增大而增大;时,有最大值.2. 的性质的符号标轴时,随的增大而增大;随的增大而减小;时,有最小值.轴时,随的增大而减小;随的增大而增大;时,有最大值.3. 的性质的符号时,随的增大而增大;随的增大而减小;时,有最小值.时,随的增大而减小;随的增大而增大;时,有最大值.4.的性质的符号时,随的增大而增大;随的增大而减小;时,有最小值.时,随的增大而减小;随的增大而增大;时,有最大值.,确定其顶点坐标的形状“值正右移,负左移;值正上移,负沿轴平移个单位,变成(或)沿轴平移:向左(右)平移个单变成(或)四、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.五、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的六、二次函数的性质当时,抛物线开口向上,对称轴为,顶点坐标为当时,随的增大而减小;当时,随的增大而增大;当时,有最小值当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值一般式:(,,为常数,)顶点式:(,,为常数,)两根式:(,,是抛物线与轴两交点的横坐标)点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析中,时,抛物线开口向上,时,抛物线开口向下,在的前提下时,,即抛物线的对称轴在轴左侧时,,即抛物线的对称轴就是轴时,,即抛物线对称轴在轴的右侧在的前提下,结论刚好与上述相反,即时,,即抛物线的对称轴在轴右侧时,,即抛物线的对称轴就是轴时,,即抛物线对称轴在轴的左侧总结起来,在确定的前提下,决定了抛物线对称轴的位置.ab的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是当时,抛物线与当时,抛物线与当时,抛物线与轴的两个交点的横坐标,一般选用两根式关于轴对称后,得到的解析式是关于轴对称后,得到的解析式是关于轴对称后,得到的解析式是关于轴对称后,得到的解析式是关于原点对称后,得到的解析式是关于原点对称后,得到的解析式是关于顶点对称后,得到的解析式是关于顶点对称后,得到的解析式是关于点(m,n)系(二次函数与轴交点情况)一元二次方程是二次函数当函数值时的特殊图象与轴的交点个数时,图象与轴交于两点是一元二次方程的两根.这两点间的.时,图象与轴只有一个交点时,图象与轴没有交点时,图象落在轴的上方,无论为任何实数,都有时,图象落在轴的下方,无论为任何实数,都有抛物线的图象与轴一定相交,交点坐标为,⑴ 求二次函数的图象与轴的交点坐标,需转化为一元二次方程⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式⑶ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标⑸ 与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系。
初中数学各章节知识图解思维导图(共9张PPT)
应用
特例
定理
勾股定理
证明 内容
文字.符号图形
互逆命题
内容
文字.符号图形
直角三角形
逆定理
全等
证明
应用
知三边定形状
锐角三角函数
有关线段
定义
三角 形
解直角三角形
锐角三角函数
定义
计算
三边关系锐角关 系边角关系
应用
坡度 仰.俯角 方位角
正弦
余弦
符号.几何意义. 特殊角的值
特殊值的运算
正切
作对称轴 作一点到两点距离相等 离相等(外心)
作等腰三角形 作一点到三点距
翻折后与 另一图形重 合
到两点距离相等的 点
点到两点 的距离 相等
性质
判定
应用
垂直平分线
定义
对称点
关于轴对称
基本 图形
对称 轴
特征
要素
利用轴对称制作图案
用
坐
作:关于x轴、
标
y轴的对称点
表
示
轴
对
解决几何中的
称
极值问题
基本图形
一条直线
翻折后与 两部分 重合
对称轴 定义
轴对称图形 静
与y轴交点位置 c>0.
对应角相等, 尺规作角 对应边成比例,
二次函数与 一元二次方程
对称轴垂直平分对称点的连线
作对直称线公轴理
直线
作等腰三角形
磁道问题
利润问题 拱桥问题
在表示原与点画法 c<0.
到寻三找射边线方的法 距离相射等线 在三角形内直线.射线.线段
一次函数与反比例函数
表示与画法
线段
计算与比较
七年级数学下册思维导图(超全)
七年级数学下册思维导图(超全)第一章:实数1. 实数的概念2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数3. 实数的运算加法减法乘法除法乘方开方第二章:代数式1. 代数式的概念2. 代数式的分类单项式多项式3. 代数式的运算减法乘法除法乘方第三章:方程与不等式1. 方程的概念2. 一元一次方程求解方法3. 不等式的概念4. 一元一次不等式求解方法第四章:函数1. 函数的概念2. 函数的表示方法解析式法图象法3. 一次函数定义图象性质4. 二次函数定义图象第五章:几何图形1. 点、线、面2. 线段3. 角锐角、直角、钝角、平角、周角4. 三角形定义分类性质5. 四边形定义分类性质6. 圆定义性质第六章:概率与统计1. 概率的概念2. 概率的计算方法3. 统计的概念4. 数据的收集与整理5. 数据的表示方法表格法6. 数据的分析方法七年级数学下册思维导图(超全)第一章:实数1. 实数的概念实数是包括有理数和无理数在内的所有数的集合。
2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数不能表示为两个整数比例的数,如根号2、π等。
3. 实数的运算加法将两个实数相加得到一个新的实数。
减法将一个实数减去另一个实数得到一个新的实数。
乘法将两个实数相乘得到一个新的实数。
除法将一个实数除以另一个非零实数得到一个新的实数。
乘方将一个实数乘以自身多次得到一个新的实数。
开方求一个实数的平方根或立方根等。
第二章:代数式1. 代数式的概念代数式是由数、字母和运算符号组成的表达式。
2. 代数式的分类单项式只有一个项的代数式。
多项式由多个项组成的代数式。
3. 代数式的运算加法将两个代数式相加得到一个新的代数式。
减法将一个代数式减去另一个代数式得到一个新的代数式。
乘法将两个代数式相乘得到一个新的代数式。
除法将一个代数式除以另一个非零代数式得到一个新的代数式。
乘方将一个代数式乘以自身多次得到一个新的代数式。
函数思维导图
1.一次函数:在某个变化过程中,设有变量x和y,将其写成y=kx+b(k是一
次项系数,且不等于零,b是常数),则y是x的一次函数,并且x是自变量,y是因变量。
2.二次函数:二次函数的基本形式是:y=ax²+bx+c,二次函数的图像是一条
对称轴平行或者是重合于y轴的抛物线。
3.指数函数:形如y=a^x(a>0且a≠1)(x∈R)的函数称为指数函数。
4.对数函数:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数。
5.幂函数:形如y=xa(a为常数)的函数。
6.三角函数:三角函数是以角度为自变量,角度对应任意两边的比值为因变
量的函数叫三角函数,常见的三角函数包括正弦函数、余弦函数和正切函数。
九上数学二次函数思维导图
九上数学二次函数思维导图二次函数是九年级学数学的一个重要知识点,对于这个知识点的学习,我们可以通过一些思维导图来进行。
下面小编精心整理了九上数学二次函数思维导图,供大家参考,希望你们喜欢!九上数学二次函数思维导图欣赏九上数学二次函数:对称关系对于一般式:①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称③y=ax2+bx+c与y=-ax2+bx+c-b2/2a关于顶点对称④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。
(即绕原点旋转180度后得到的图形)对于顶点式:①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h, k)和(-h, k)关于y轴对称,横坐标相反、纵坐标相同。
②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h, k)和(h, -k)关于x轴对称,横坐标相同、纵坐标相反。
③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h, k)和(h, k)相同,开口方向相反。
④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h, k)和(-h, -k)关于原点对称,横坐标、纵坐标都相反。
(其实①③④就是对f(x)来说f(-x),-f(x),-f(-x)的情况)九上数学二次函数:位置决定因素一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b 要同号当a>0,与b异号时(即ab<0),对称轴在y轴右。
因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a<0,b<0);当对称轴在y轴右时,a与b异号(即a0或a>0,b<0)(ab<0)。
初中数学《二次函数》课程教学设计以及思维导图
初中数学《二次函数》课程教学设计以及思维导图一、教学设计1. 教学目标- 理解二次函数的定义及性质;- 掌握二次函数的图像特征和基本变换;- 能够求解二次函数的零点和最值;- 运用二次函数解决实际问题。
2. 教学内容- 二次函数的定义及性质;- 二次函数的图像特征和基本变换;- 二次函数的零点和最值;- 二次函数在实际问题中的应用。
3. 教学方法- 组织讲解:通过讲解二次函数的定义和性质,介绍二次函数的图像特征和基本变换;- 案例分析:通过具体案例分析,引导学生探索二次函数的零点和最值的求解方法;- 实际应用:引导学生运用二次函数解决实际问题,提高他们的数学建模能力。
4. 教学步骤第一步:导入- 通过引入一个与学生生活相关的问题,激发学生对二次函数的兴趣和思考,如:小明从家里出发骑自行车去学校,他的行程可以用二次函数表示吗?第二步:讲解- 介绍二次函数的定义和性质,包括二次函数的标准形式、顶点形式和描点法;- 解释二次函数的图像特征,包括开口方向、顶点坐标和对称轴;- 讲解二次函数的基本变换,包括平移、伸缩和翻转。
第三步:案例分析- 通过具体案例分析,引导学生探索二次函数的零点和最值的求解方法,包括利用图像、代数方法和函数性质等;- 给学生一些练习题,让他们独立思考和解决问题。
第四步:实际应用- 引导学生运用二次函数解决一些实际问题,如:抛物线的应用、物体的抛射运动等;- 鼓励学生分组合作,进行数学建模和实际问题求解。
第五步:总结与拓展- 对本节课所学内容进行总结,强调关键概念和解题方法;- 提供一些拓展性问题,让学生进一步思考和探索。
5. 教学评价- 通过学生课堂表现、小组讨论、个人作业等方式进行评价;- 评估学生对二次函数定义及性质的理解程度;- 评估学生对二次函数图像特征和基本变换的掌握程度;- 评估学生对二次函数零点和最值求解方法的应用能力;- 评估学生在实际问题中运用二次函数解决问题的数学建模能力。
初中数学《二次函数》单元教学设计以及思维导图
数
出示反比例函数的图象,提问:这是什么函数的图像? 反比例函
数
2、画函数图象的基本方法与步骤是什么?
列表——描点——连线
3、研究函数时,主要用什么来了解函数的性质呢?
主要工具是函数的图象
活动二、实践、观察、对比、归纳 1、实践 (1)画二次函数 y=x2 的图象:(同学们可参照已展示的画反比例函 数的方法和步骤) 解:列表
抛物线
y= x2
顶点坐标 对称轴 开口方向 增减性 增减性 最值
y= -x2
通过列表的对比可以使学生更直接的找出两个函数的相同点和不同 点,能比较容易的归纳和理解函数 y=ax2 的性质,降低学生对函数性 质的理解难度
4、归纳:二次函数 y=ax2 的性质
(1)抛物线 y=ax2 的顶点是原点(0,0),对称轴是 y 轴。
适用年 九年级
级
二次函数
所 需 时 9 课时(说明:课内共用 7 课时,每周 5 课时;课外共用
间
2 课时)
主题单元学习概述
本章内容属于《全日制义务教育数学课程标准》中的“数与代数”领 域,是在已学习了平面直角坐标系,一次函数,反比例函数的基础上, 又一次进入函数领域,让学生进一步探索函数的内涵,并且感受现实 世界中存在的各种函数及如何应用函数来解决实际的问题。二次函数 是基本函数之一,是学习后续的各类函数的基础。它不同于一次函数, 却又建立在一次函数之上,且为今后更高层次的函数学习,函数、方 程、不等式之间的关系的处理奠定了基础。是衔接初,高中函数知识 的最主要的一类函数。函数本身就是数学的学习中重要内容,而二次 函数又是基础函数,因此,本章内容有着举足轻重的地位。由于九年 级学生是首次接触抛物线,因此在教学时要注意引导学生抓住二次函 数图象的各种特征,让学生对二次函数有一个直观形象的认识