等差数列的判定与证明-前n项和公式法

合集下载

等差数列公式

等差数列公式

分享到等差数列求助编辑百科名片等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:an=a1+(n-1)d (1)前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 注意:以上n 均属于正整数。

目录多项式数列等差数列的基本公式通项公式(第n项)前n项和公式推论等差中项等差数列小故事等差数列的基本性质r次等差数列一次数列的性质等差数列的判定一道例题等差数列前n项和公式S 的基本性质等差数列的特殊性质多项式数列等差数列的基本公式通项公式(第n项)前n项和公式推论等差中项等差数列小故事等差数列的基本性质r次等差数列一次数列的性质等差数列的判定一道例题等差数列前n项和公式S 的基本性质等差数列的特殊性质展开编辑本段多项式数列等差数列是多项式数列的一种简称:A.P (arithmetic progression)多项式数列:p(n)=b(0)+b(1)*n+...+b(k)*n^k多项式数列的和可以用一个矩阵来转换。

令这个转换矩阵为A,做向量b=[b0,b1,...,bk]令向量c=A*b',c就是和公式的向量。

和项S(n)=c(1)*n+..+c(k)*n^k+c(k+1)*n^(k+1)。

3阶多项式数列的A=A有专门的算法,可以用于matlab中。

function p=leeqi(r)format ratp=zeros(r,r);for k=1:r,w=2:k; p(1,k)=1-sum(p(w,k));for n=2:r-k+1,p(n,n+k-1)=(n+k-2)/n*p(n-1,n+k-2);end等差数列是多项式数列的一次形式b(0)+b(1)*n,在这里把多项式数列的一次形式简称为(一次数列)。

一次数列的通项公式为:p(n)=b(0)+b(1)*n;前n项和的公式为:S(n)=[n,n^2]*[1,1/2;0,1/2]*[b(0);b(1)].编辑本段等差数列的基本公式通项公式(第n项)a(n)=a(1)+(n-1)×d ,注意:n是正整数即第n项=首项+第n-1项×公差前n项和公式S(n)=n*a(1)+n*(n-1)*d/2或S(n)=n*(a(1)+a(n))/2注意:n是正整数(相当于n个等差中项之和)等差数列前N项求和,实际就是梯形公式的妙用:上底为:a1首项,下底为a1+(n-1)d,高为n.即[a1+a1+(n-1)d]* n/2=a1 n+ n (n-1)d /2.推论一.从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

数学(文)一轮教学案:第六章第2讲 等差数列及前n项和 Word版含解析

第2讲 等差数列及前n 项和考纲展示 命题探究1 等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,定义的表达式为a n +1-a n =d ,d 为常数.2 等差中项如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,且A =a +b 2.3 等差数列的通项公式及其变形通项公式:a n =a 1+(n -1)d ,其中a 1是首项,d 是公差.通项公式的变形:a n =a m +(n -m )d ,m ,n ∈N *.4 等差数列的前n 项和等差数列的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . 5 等差数列的单调性当d >0时,数列{a n }为递增数列;当d <0时,数列{a n }为递减数列;当d =0时,数列{a n }为常数列.注意点 定义法证明等差数列时的注意事项(1)证明等差数列时,切忌只通过计算数列的a 2-a 1,a 3-a 2,a 4-a 3等有限的几个项的差后,发现它们都等于同一个常数,就断言数列{a n }为等差数列.(2)用定义法证明等差数列时,常采用a n +1-a n =d ,若采用a n -a n -1=d ,则n ≥2,否则n =1时无意义.1.思维辨析(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(5)等差数列的前n 项和公式是常数项为0的二次函数.( ) 答案 (1)× (2)√ (3)√ (4)× (5)×2.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于( )A .1 B.53 C .2D .3答案 C解析 因为S 3=(a 1+a 3)×32=6,而a 3=4.所以a 1=0,所以d =a 3-a 12=2.3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C解析 ∵S 3=3(a 1+a 3)2=3a 2=12,∴a 2=4. ∵a 1=2,∴d =a 2-a 1=4-2=2.∴a 6=a 1+5d =12.故选C.[考法综述] 等差数列的定义,通项公式及前n 项和公式是高考中常考内容,用定义判断或证明等差数列,由n ,a n ,S n ,a 1,d 五个量之间的关系考查基本运算能力.命题法1 等差数列的基本运算典例1 等差数列{a n }的前n 项和记为S n .已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .[解] (1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30,a 1+19d =50. 解得a 1=12,d =2.所以a n =2n +10;(2)由S n =na 1+n (n -1)2d ,S n =242,得方程12n +n (n -1)2×2=242,解得n =11或n =-22(舍去).【解题法】 等差数列计算中的两个技巧(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.命题法2 等差数列的判定与证明典例2 数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明{b n }是等差数列;(2)求{a n }的通项公式.[解] (1)证明:∵a n +2=2a n +1-a n +2,∴b n +1-b n =a n +2-a n +1-(a n +1-a n )=2a n +1-a n +2-2a n +1+a n =2.∴{b n }是以1为首项,2为公差的等差数列.(2)由(1)得b n =1+2(n -1),即a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,a 4-a 3=5,…,a n -a n -1=2n -3,累加法可得a n -a 1=1+3+5+…+(2n -3)=(n -1)2,∴a n =n 2-2n +2.【解题法】 等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数.(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立.(3)通项公式法:验证a n =pn +q .(4)前n 项和公式法:验证S n =An 2+Bn .1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6答案 B解析 设数列{a n }的公差为d ,由a 4=a 2+2d ,a 2=4,a 4=2,得2=4+2d ,d =-1,∴a 6=a 4+2d =0.故选B.2.已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )扫一扫·听名师解题A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0答案 B解析 由a 24=a 3a 8,得(a 1+2d )(a 1+7d )=(a 1+3d )2,整理得d (5d +3a 1)=0,又d ≠0,∴a 1=-53d ,则a 1d =-53d 2<0,又∵S 4=4a 1+6d =-23d ,∴dS 4=-23d 2<0,故选B.3.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析由已知得S1=a1,S2=a1+a2=2a1-1,S4=4a1+4×32×(-1)=4a1-6,而S1,S2,S4成等比数列,所以(2a1-1)2=a1(4a1-6),整理得2a1+1=0,解得a1=-1 2.4.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)证明:由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.等差数列及其前n项和的性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)有穷等差数列中与首末两项等距离的两项的和相等,即a1+a n=a2+a n-1=a3+a n-2=…=a k+a n-k+1=….(2)等差数列{a n}中,当m+n=p+q时,a m+a n=a p+a q(m,n,p,q∈N*).特别地,若m+n=2p,则2a p=a m+a n(m,n,p∈N*).(3)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为md(k,m∈N*).(4)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为n2d.(5)⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(6)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a n a n +1. ②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1. (7)若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. (8)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.注意点 前n 项和性质的理解等差数列{a n }中,设前n 项和为S n ,则S n ,S 2n ,S 3n 的关系为2(S 2n -S n )=S n +(S 3n -S 2n )不要理解为2S 2n =S n +S 3n .1.思维辨析(1)等差数列{a n }中,有a 1+a 7=a 2+a 6.( )(2)若已知四个数成等差数列,则这四个数可设为a -2d ,a -d ,a +d ,a +2d .( )(3)若三个数成等差数列,则这三个数可设为:a -d ,a ,a +d .( )(4)求等差数列的前n 项和的最值时,只需将它的前n 项和进行配方,即得顶点为其最值处.( )答案 (1)√ (2)× (3)√ (4)×2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44答案 C 解析 由题可知S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22,故选C.3.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=90,则a 10-13a 14的值为( )A .12B .14C .16D .18答案 A解析 由题意知5a 8=90,a 8=18,a 10-13a 14=a 1+9d -13(a 1+13d )=23a 8=12,选A 项.[考法综述] 等差数列的性质是高考中的常考内容,灵活应用由概念推导出的重要性质,在解题过程中可以达到避繁就简的目的.命题法1 等差数列性质的应用典例1 等差数列{a n }中,如果a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和为( )A .297B .144C .99D .66[解析] 由a 1+a 4+a 7=39,得3a 4=39,a 4=13.由a 3+a 6+a 9=27,得3a 6=27,a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×(13+9)2=9×11=99,故选C.[答案] C【解题法】 应用等差数列性质应注意(1)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n=a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. (2)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q ( m ,n ,p ,q ∈N *).一般地,a m +a n ≠a m +n ,必须是两项相加,当然也可以是a m -n +a m +n =2a m .因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件.命题法2 与等差数列前n 项和有关的最值问题典例2 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?[解] 解法一:由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d=-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大.解法二:由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由解法一可知a =-a 113<0,故当n =7时,S n 最大.解法三:由解法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0, 即⎩⎪⎨⎪⎧ a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,≤n ≤n =7时,S n 最大.解法四:由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.【解题法】 求等差数列前n 项和的最值的方法(1)二次函数法:用求二次函数最值的方法(配方法)求其前n 项和的最值,但要注意n ∈N *.(2)图象法:利用二次函数图象的对称性来确定n 的值,使S n 取得最值.(3)项的符号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0a n +1≤0的项数n ,使S n 取最大值;当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1 ≥0的项数n ,使S n 取最小值,即正项变负项处最大,负项变正项处最小,若有零项,则使S n 取最值的n 有两个.1.设{a n }是等差数列.下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案 C解析 若{a n }是递减的等差数列,则选项A 、B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确.2.在等差数列{a n }中,a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,则使S n >0成立的最大自然数n 是( )A .4025B .4024C .4023D .4022答案 B解析 ∵等差数列{a n }的首项a 1>0,a 2012+a 2013>0,a 2012·a 2013<0,假设a 2012<0<a 2013,则d >0,而a 1>0,可得a 2012=a 1+2011d >0,矛盾,故不可能.∴a 2012>0,a 2013<0.再根据S 4024=4024(a 1+a 4024)2=2012(a 2012+a 2013)>0, 而S 4025=4025a 2013<0,因此使前n 项和S n >0成立的最大自然数n 为4024.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n=2n 3n +1,则a n b n=( ) A.23B.2n -13n -1C.2n +13n +1D.2n -13n +4 答案 B解析 a n b n =2a n 2b n=2n -12(a 1+a 2n -1)2n -12(b 1+b 2n -1)=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.故选B.4.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.答案 10解析 由a 3+a 4+a 5+a 6+a 7=25,得5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.5.中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________.答案 5解析 设等差数列的首项为a 1,根据等差数列的性质可得,a 1+2015=2×1010,解得a 1=5.6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取得最大值,则d 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫-1,-78 解析 由题意知d <0且⎩⎪⎨⎪⎧ a 8>0,a 9<0,即⎩⎪⎨⎪⎧7+7d >0,7+8d <0,解得-1<d <-78.7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大.8.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)因为数列{a n }为等差数列, 所以a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4.所以通项a n =4n -3. (2)由(1)知a 1=1,d =4.所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18.所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c , 所以2c 2+c =0,所以c =-12或c =0(舍去), 故c =-12.已知等差数列{a n }的前n 项和为S n ,且a 5=9,S 5=15,则使其前n 项和S n 取得最小值时的n =________.[错解][错因分析] 等差数列的前n 项和最值问题,可以通过找对称轴来确定,本题只关注到n ∈N *,并未关注到n =1与n =2时,S 1=S 2,导致错误.[正解] ∵a 5=9,S 5=15,∴a 1=-3,d =3. ∴a n =3n -6,S n =32n 2-92n .把S n 看作是关于n 的二次函数,其对称轴为n =32. ∴当n =1或n =2时,S 1=S 2且最小. [心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·冀州中学猜题]已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是( )A .15B .30C .31D .64答案 A解析 由题意可知2a 8=a 7+a 9=16⇒a 8=8,S 11=11(a 1+a 11)2=11×2a 62=11a 6=992,a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15,故选A.2.[2016·武邑中学仿真]已知S n 表示数列{a n }的前n 项和,若对任意的n ∈N *满足a n +1=a n +a 2,且a 3=2,则S 2014=( )A .1006×2013B .1006×2014C .1007×2013D .1007×2014答案 C解析 在a n +1=a n +a 2中,令n =1,则a 2=a 1+a 2,a 1=0,令n =2,则a 3=2=2a 2,a 2=1,于是a n +1-a n =1,故数列{a n }是首项为0,公差为1的等差数列,S 2014=2014×20132=1007×2013.故选C. 3.[2016·冀州中学期末]在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1n B .a n =2n +1C .a n =2n +2D .a n =3n答案 A 解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n .4.[2016·衡水中学预测]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27答案 B解析 S 3=9,S 6-S 3=36-9=27,根据S 3,S 6-S 3,S 9-S 6成等差数列,S 9-S 6=45,S 9-S 6=a 7+a 8+a 9=45,故选B.5.[2016·衡水二中期中]已知等差数列{a n }中,前四项和为60,最后四项和为260,且S n =520,则a 7=( )A .20B .40C .60D .80答案 B解析 前四项的和是60,后四项的和是260,若有偶数项,则中间两项的和是(60+260)÷4=80.S n =520,520÷80不能整除,说明没有偶数项,有奇数项,则中间项是(60+260)÷8=40.所以共有520÷40=13项,因此a 7是中间项,所以a 7=40.6.[2016·枣强中学模拟]已知等差数列{a n }的前n 项和为S n ,且S 4S2=4,则S 6S 4=( )A.94B.32C.53 D .4答案 A解析 由S 4S 2=4,可设S 2=x ,S 4=4x .∵S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4).则S 6=3S 4-3S 2=12x -3x =9x ,因此,S 6S 4=9x 4x =94.7.[2016·衡水二中热身]设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =______.答案 13解析 由S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝ ⎛⎭⎪⎫-3+322=-212,解得k =13.8.[2016·武邑中学期末]设正项数列{a n }的前n 项和是S n ,若{a n }和{S n }都是等差数列,且公差相等,则a 1=________.答案 14解析 设等差数列{a n }的公差为d , 则S n =d 2n 2+(a 1-d2)n , ∴S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,数列{S n }是等差数列,则S n 是关于n 的一次函数(或者是常数),则a 1-d2=0,S n =d2n ,从而数列{S n }的公差是d2,那么有d 2=d ,d =0(舍去)或d =12,故a 1=14.9.[2016·衡水中学周测]已知等差数列{a n }的前n 项和为S n ,若S 2=10,S 5=55,则a 10=________.答案 39解析 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+(a 1+d )=10,5a 1+5×42d =55,即⎩⎪⎨⎪⎧2a 1+d =10,a 1+2d =11,解得a 1=3,d =4,a 10=a 1+(10-1)d =39.10.[2016·冀州中学月考]设数列{a n }为等差数列,数列{b n }为等比数列.若a 1<a 2,b 1<b 2,且b i =a 2i (i =1,2,3),则数列{b n }的公比为________.答案 3+2 2解析 设a 1,a 2,a 3分别为a -d ,a ,a +d ,因为a 1<a 2,所以d >0,又b 22=b 1b 3,所以a 4=(a -d )2(a +d )2=(a 2-d 2)2,则a 2=d 2-a 2或a 2=a 2-d 2(舍),则d =±2a .若d =-2a ,则q =b 2b 1=⎝ ⎛⎭⎪⎫a 2a 12=(1-2)2=3-22<1,舍去;若d =2a ,则q =⎝ ⎛⎭⎪⎫a 2a 12=3+2 2.11.[2016·衡水中学模拟]等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .解 (1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数,又S n ≤S 4,故a 4≥0,a 5≤0,于是10+3d ≥0,10+4d ≤0.解得-103≤d ≤-52.因此d =-3.数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝ ⎛⎭⎪⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n=13⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫17-110+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛ 110-3n -⎭⎪⎫113-3n =13⎝ ⎛⎭⎪⎫110-3n -110=n 10(10-3n ). 12.[2016·冀州中学期中]已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.解 数列{a n }不是等差数列,a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, ∴S n -S n -1+2S n S n -1=0(n ≥2), ∴1S n-1S n -1=2(n ≥2),又S 1=a 1=12,∴⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列. ∴1S n=2+(n -1)×2=2n ,故S n =12n .∴当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),∴a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1). ∴当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.能力组13.[2016·衡水中学猜题]已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ≥2),则a 6等于( )A .16B .8C .2 2D .4答案 D解析 由2a 2n =a 2n +1+a 2n -1(n ≥2)可得,数列{a 2n }是首项为a 21=1,公差为a 22-a 21=3的等差数列,由此可得a 2n =1+3(n -1)=3n -2,即得a n =3n -2,∴a 6=3×6-2=4,故应选D.14.[2016·衡水中学一轮检测]已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( )A .11B .19C .20D .21答案 B解析 ∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0, ∴S 19=19(a 1+a 19)2=19·a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0, 故使得S n >0的n 的最大值为19.15.[2016·武邑中学猜题]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解 (1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n (20-2n +22)2=(21-n )n ;当n >11时,S n =S 11+2+4+…+(2n -22)=110+(n -11)(2+2n -22)2=n 2-21n +220. 综上所述,S n =⎩⎪⎨⎪⎧(21-n )n ,n ≤11n 2-21n +220,n >11.16.[2016·冀州中学仿真]已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4.(1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解 (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1, 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2.。

等差数列前n项和的性质及应用

等差数列前n项和的性质及应用

密码学:等差数列 前n项和公式可用于 设计密码算法和加 密方案
计算机图形学:等差数 列前n项和公式可用于 生成等差数列曲线,用 于计算机图形学中的渲 染和动画制作
定义:等差数 列中,任意两 项的差为常数
公式: Sn=n/2*(a1+a
n)
推导:利用等 差数列的定义, 将前n项和展开,
得到 Sn=na1+n(n-
算法优化:通过减少重复计算和利用已知值来加速计算过程,从而提高了算法的效率。
应用场景:等差数列前n项和的优化算法在数学、物理、工程等领域有广泛的应用, 尤其在处理大规模数据时具有显著优势。
计算等差数列前n项和的最小 值
求解等差数列中项的近似值
判断等差数列是否存在特定性 质
优化等差数列前n项和的计算 过程
,a click to unlimited possibilities
汇报人:
01
02
03
04
05
06
等差数列前n项和 是数列中前n个数 的和,记作Sn。
等差数列前n项和的 公式为:Sn = n/2 * (a1 + an),其中a1为 首项,an为第n项。
等差数列前n项和 的性质包括对称性、 奇偶性、线性关系 等。
等差数列前n项和的定义:一个数列, 从第二项起,每一项与它的前一项的 差都等于同一个常数,这个数列就叫 做等差数列。
等差数列前n项和的性质1:若 m+n=p+q,则S_m+S_n=S_p+S_q。
添加标题
添加标题
添加标题
添加标题
等差数列前n项和的公式: S_n=n/2*(2a_1+(n-1)d),其中a_1 是首项,d是公差。

4.2.2等差数列的前n项和公式

4.2.2等差数列的前n项和公式
( − 1)
= 1 +
.
2
作用:已知 a1,d和 n,求 Sn.
典型例题
例1已知数列{an}是等差数列.
(1)若a1=7,a50=101,求 S50;
5
(2)若a1=2,a2= ,求S10;
2
1
1
(3)若a1= ,d= − ,Sn=−5,求n.
2
6
解:(1)∵a1=7,a50=101,
当n=6时,an=0;
所以 an+1<an .所以{an}是递减数列.
当n>6时,an<0.
由 a1=10,dБайду номын сангаас=-2,
得 an=10+(n-1)×(-2) =-2n+12.
所以 , S1<S2<…<S5=S6> S7>…
令 an>0,解得 n <6.
所以,当n=5或6时,Sn最大.
因为5 = 5 × 10
2

= + (1 − ).
2
2
Sn=Sn-1+an(n≥2)
函数思想
课后作业
1.某市一家商场的新年最高促销奖设立了两种领奖方式:第一种,
所以2 = (1 + ) + (1 + ) + ⋯ + (1 + )
= (1 + ).
(1 + )
=
.
2
等差数列的前n项和公式
等差数列{an}的前n项和Sn公式:
(1 + )
=
.
2
作用:已知 a1,an 和 n,求 Sn.
an=a1+(n-1)d,(n∈N*)
,有
2
101 + 45 = 310,

(完整版)等差数列的前n项和与首项、末项之间的关系总结

(完整版)等差数列的前n项和与首项、末项之间的关系总结

(完整版)等差数列的前n项和与首项、末
项之间的关系总结
一、定义:
等差数列是指数列中的相邻两项之差为常数的数列。

它的一般
形式可以表示为:a₁, a₁+d, a₁+2d, ...,其中a₁为首项,d为公差。

二、前n项和的计算:
等差数列的前n项和可以通过以下公式求得:
Sn = (n/2)(a₁ + an)
其中,Sn表示前n项和,a₁为首项,an为末项(第n项)。

三、首项、末项与前n项和的关系:
1. 首项和末项的关系:
首项a₁和末项an之间的关系可以表示为:
an = a₁ + (n-1)d
其中,d为公差。

2. 前n项和与首项、末项之间的关系:
根据前n项和的计算公式,可以得出以下关系:
Sn = (n/2)(a₁ + a₁ + (n-1)d)
= (n/2)(2a₁ + (n-1)d)
= (n/2)(2a₁ + nd - d)
= n(a₁ + (n-1)d)/2
四、应用示例:
假设有等差数列{2, 5, 8, 11, ...},其中首项a₁=2,公差d=3。

计算该数列前n项和的步骤如下:
1. 根据首项和公差,确定该数列的末项计算公式:an = 2 + (n-
1)3。

2. 根据前n项和的计算公式,将首项a₁、末项an代入计算:Sn = n(2 + (n-1)3)/2。

以上就是对等差数列的前n项和与首项、末项之间的关系进行总结的内容。

注意:本文档的内容仅供参考,不涉及法律问题。

各有千秋,难分伯仲——等差数列前n项和公式的五种形式及应用

各有千秋,难分伯仲——等差数列前n项和公式的五种形式及应用

各有千秋,难分伯仲——等差数列前n项和公式的五种
形式及应用
一、定义:
等差数列(Arithmetic Sequence)是指一组数满足相邻两项之差均为常数的数列。

它是有序数列中最为常见的类型,而且它在数学中有着重要的应用。

二、公式:
等差数列的前n项和公式有五种形式,即:
1. 极差法:Sn = n*a + [(n-1)*d]/2;
2. 等比数列的和公式:Sn = a*(1-rn) / (1-r);
3. 通项法:Sn = n/2(a+l);
4. 等差前n项和公式:Sn = n/2(2a+(n-1)d);
5. 首项和末项乘积法:Sn = n/2(a×l)。

三、应用:
1. 等差数列可以用于说明几何形体的对称性,如三角形、正方形和正多边形。

2. 等差数列可以用于推断和解决实际问题,如求解时间与距离的关系等。

3. 等差数列可以用于衡量某一事物的递增规律或趋势,如检测股价的波动趋势、记账的收入支出趋势等。

4. 等差数列可以用于估算一组数据的平均值,如计算某一时间段内股票的平均价格、计算某一地区的平均气温等。

5. 等差数列可以用于表达函数的性质,如线性函数y=ax+b、抛物线函数y=ax2+bx+c等。

等差数列及其前n项和

等差数列及其前n项和

等差数列及其前n 项和知识梳理1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b 2,其中A 叫做a ,b 的等差中项. 2.等差数列的有关公式(1)通项公式:___________________________________(2)前n 项和公式:____________________________________3.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和.(1)通项公式的推广:(2)若k +l =m +n (k ,l ,m ,n ∈N *),则_________________________________(3)若{a n }的公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.课堂练习1.(2015·高考全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .112. 小于20的所有正奇数的和为( )A .64B .81C .100D .1213.(2016·高考江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 4.(2015·高考安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________. 典例分析 等差数列的基本运算高考对等差数列基本量计算的考查常有以下三个命题角度:(1)求公差d 、项数n 或首项a 1;(2)求通项或特定项;(3)求前n 项和.(1)(2015·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10D .12 (2)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5.①求数列{a n }的通项公式;②若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值.[题点通关]角度一 求公差d 、项数n 或首项a 11.已知等差数列{a n }的前n 项和为S n ,a 4=15,S 5=55,则数列{a n }的公差是( ) A.14B .4C .-4D .-3 角度二 求通项或特定项2.已知正项等差数列{a n }的前n 项和为S n ,且满足a 1+a 5=27a 23,S 7=63.求数列{a n }的通项公式.角度三 求前n 项和3.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.等差数列的判定与证明已知数列{a n }的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[通关练习]1.若数列{a n}的各项均为正数,前n项和为S n,且a1=1,S n+1+S n=1a n+1(n∈N*),则a25=________.2.已知数列{a n}中,a1=2,a n=2-1a n-1(n≥2,n∈N*).设b n=1a n-1(n∈N*),求证:数列{b n}是等差数列.等差数列的性质及最值(1)等差数列{a n}中,a1+a7=26,a3+a9=18,则数列{a n}的前9项和为()A.66B.99C.144 D.297(2)在等差数列{a n}中,已知a1=10,前n项和为S n,若S9=S12,则S n取得最大值时,n=________,S n的最大值为________.注意:(1)等差数列和的性质在等差数列{a n }中,S n 为其前n 项和,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1).②S 2n -1=(2n -1)a n .③当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1).(2)求等差数列前n 项和S n 最值的两种方法①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解.②邻项变号法:〈1〉当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ; 〈2〉当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m . [通关练习]1.(2016·高考全国卷乙)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .972.在等差数列{a n }中,若S 4=1,S 8=4,则a 17+a 18+a 19+a 20的值为( )A .9B .12C .16D .17整体代换在等差数列中的应用在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.变式训练 1.若两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于( ) A .7 B.23C.278 D.214 2.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,S n =324,最后6项和为180(n >6),则数列的项数n =________.课后练习1.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .142.已知等差数列{a n },且3(a 3+a 5)+2(a 7+a 10+a 13)=48,则数列{a n }的前13项之和为( )A .24B .39C .104D .523.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11=( ) A .24 B .48C .66 D .1324.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( )A .22B .21C .24D .235.(2017·重庆第一次适应性测试)在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =( )A .n (3n -1) B.n (n +3)2C .n (n +1) D.n (3n +1)26.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .67.(2016·高考北京卷)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.8.已知正项数列{a n }满足a 1=2,a 2=1,且a n a n +1+a n a n -1=2,则a 12=________. 9.(2017·重庆适应性测试(二))设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________.10.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________.11.已知数列{a n }满足:a 3=-13,a n =a n -1+4(n >1,n ∈N *).(1)求a 1,a 2及通项a n ;(2)设S n 为数列{a n }的前n 项和,则数列S 1,S 2,S 3,…中哪一项最小?12.已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.13.下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中真命题为( ) A .p 1,p 2B .p 3,p 4C .p 2,p 3D .p 1,p 414.已知等差数列{a n }中,S n 是前n 项的和,a 1=-2 017,S 2 0172 017-S 2 0152 015=2,则S 2 019的值为________. 15.已知数列{a n }前n 项和为n 2+pn ,数列{b n }前n 项和为3n 2-2n .(1)若a 10=b 10,求p 的值;(2)取{b n }的第1,3,5,…项作为新数列{c n },求其通项公式.。

等差数列及其前n项和知识点讲解+例题讲解(含解析)

等差数列及其前n项和知识点讲解+例题讲解(含解析)

等差数列及其前n 项和一、知识梳理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 小结:1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)× (4)×2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A.31B.32C.33D.34解析 由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30, 解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 答案 B3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4 解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4.答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中,∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5.答案 S 5考点一 等差数列基本量的运算【例1】 (1)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8 (2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A.9B.10C.11D.15 解析 (1)法一 设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4.法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.答案 (1)C (2)B【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于()A.3B.4C.log 318D.log 324(2)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318,∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)A (2)30考点二 等差数列的判定与证明【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23. =2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.考点三 等差数列的性质及应用角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A.6B.12C.24D.48 解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27 解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.1914C.3929D.43 解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质,∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8.∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0,因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2).所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2n λ.(2)当a 1>0,λ=100时,由(1)知,a n =2n 100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n =2-n lg 2, 所以数列{b n }是单调递减的等差数列,公差为-lg 2,所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( ) A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎨⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S n n =na 1+n (n -1)2d n =-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4. (2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110三、课后练习1.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269.答案 B2.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( )A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1), 所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0, ∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 1304.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81, ∴⎩⎨⎧2a 7=26,9a 5=81,解得⎩⎨⎧a 7=13,a 5=9,∴d =a 7-a 57-5=13-92=2, ∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.。

2.3等差数列的n项和公式

2.3等差数列的n项和公式
复习
1.等差数列{an}
核心知识点
(1)定义式:an+1-an=d 或 an-an-1=d (n>1,d 为常数). (2)通项公式:an=a1+(n-1)d . (3)等差中项公式:2an=an-1+an+1(n∈N+,n≥2). (4)性质:①an=am+ (n-m)d
ab 若a,A,b成等差数列, 2 A a b或A 则 2
一般地,我们称a1 a2 a3 an为数列an 的前n项和.
数列的前n项和
记作:Sn a1 a2 a3 an
如:S5 a1 a2 a3 a4 a5 S10 a1 a2 a3 a10 Sn-1 a1 a2 a3 an(n>1) -1
高斯(1777---1855), 德 国数学家、物理学家和天文学 家。他和牛顿、阿基米德,被 誉为有史以来的三大数学家。 有“数学王子”之称。
求 S=1+2+3+···+100=? ··· 高斯算法:
首项与末项的和:
第2项与倒数第2项的和:
你知道是怎么 计算的吗?
1+100=101,
2+99 =101,
17 (1)d , n 27 13 (2)a1 11, an 23
例3 等差数列-10,-6,-2,2, …的前多少项的 和为54?
解:设题中的等差数列是{an},前n项和为Sn.
则a1=-10,d=-6-(-10)=4,Sn=54.
由等差数列前n项和公式,得
n(n 1) 10 n 4 54. 2
结论:知 三 求 二
举例
例1:根据题中的条件,求相应的等差数列{an}的Sn
(1)a1 5, an 95, n 10;

等差数列前n项和课件

等差数列前n项和课件

即Sn=a+n an-1+an-2+…+a3+ a2 +a1,
+得: 2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1).
由等差数列的性质:当m+n=p+q时,am+an=ap+aq 知: a1+an=a2+an-1=a3+an-2=…=an+a1,所以式可化为: 2Sn=(a1+an)+(a1+an)+ … +(a1+an) = n(a1+an).
an = Sn - Sn-1
= n2 + 1 n -[(n - 1)2 + 1(n - 1)]= 2n - 1 .
2
2
2
当n = 1时,
a1
=
S1
=
12
+
1×1 2
=
3 ,也满足上式. 2
所以数列an 的通项公式为an
=
2n
-
1. 2
由此可知,数列an
是一个首项为3 2
,公差为2的等差数列.
技巧方法:
下面来看1+2+3+…+98+99+100的高斯算法.
设S100=1 + 2 + 3 +…+98+99+100 作
+ +++
+ + +加
反序S100=100+99+98+…+ 3+ 2 + 1 法

等差数列及其前n项和Word版含答案

等差数列及其前n项和Word版含答案

等差数列及其前n 项和【课前回顾】1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.【课前快练】1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.3.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 4.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:55.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.【典型例题】1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72考点二 等差数列的判定与证明等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n -a n -1=1(n ≥3)的数列{a n }而言并不能判定其为等差数列,因为不能确定起始项a 2-a 1是否等于1.【典型例题】(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .【针对训练】1.(2018·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R)且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n =an 2+bn (a ,b ∈R)可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2), ∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及前n 项和的最值1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.【典型例题】1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.【针对训练】1.(2018·岳阳模拟)在等差数列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=() A.95B.100C.135 D.80解析:选B由等差数列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差数列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为()A.6 B.7C.12 D.13解析:选C因为a1>0,a6a7<0,所以a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,所以S12>0,S13<0,所以满足S n>0的最大自然数n的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18【课后演练】1.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.在数列{a n }中,a 1=3,a n +1=3a na n +3,则a 4=( ) A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A .9 B .15 C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________.解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:1011.已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( ) A .72 B .88 C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 12.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0, 解得n =9(负值舍去),故选B.13.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.14.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧ d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧ d <0,7+7d >0,7+8d <0,解得-1<d <-78. 答案:⎝⎛⎭⎫-1,-78 15.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0, 解得m =5.答案:516.已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1, ∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12, ∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 17.已知递增等差数列{a n }的前n 项和为S n ,且a 2a 3=15,S 4=16.(1)求数列{a n }的通项公式以及S n 的表达式;(2)若数列{b n }满足:b 1=1,b n +1-b n =1a n a n +1,求数列{b n }的通项公式. 解:(1)设数列{a n }的公差为d (d >0), 则⎩⎪⎨⎪⎧ a 2a 3=(a 1+d )(a 1+2d )=15,S 4=4a 1+6d =16, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去), ∴a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,n ∈N *. (2)由(1)知,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎛⎭⎫12n -1-12n +1, b n -b 1=(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -3-12n -1=12⎝⎛⎭⎫1-12n -1=n -12n -1(n ≥2),∴b n =3n -22n -1. 当n =1时,b 1=1也符合上式, ∴b n =3n -22n -1(n ∈N *). 18.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得a 1+nd +a 1+(n -1)d =4n -3, ∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=1,∴a 1=-12. (2)由题意知,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n 2. 综上,S n =⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n 2,n 为偶数.。

(人教版)数学必修五:2.3《等差数列的前n项和》

(人教版)数学必修五:2.3《等差数列的前n项和》
等差数列的前n项 和
单击此处添加副标题
汇报人:
目录
等差数列的前n项和的定义 等差数列的前n项和的性质 等差数列的前n项和的应用
等差数列的前n项和的推导 等差数列的前n项和的特例
01
等差数列的前n项 和的定义
等差数列的定义
等差数列:数列中的每一项与前一项的差值相等 前n项和:数列中前n项的和 公式:Sn=n/2(1+n)其中Sn表示前n项和1表示首项n表示第n项 应用:等差数列的前n项和常用于计算数列的和如求数列的和、求数列的平均值等
等差数列的前n项和的公式:Sn=n/2(1+n)其中Sn表示等差数列 的前n项和1表示首项n表示第n项。
02
等差数列的前n项 和的推导
等差数列的通项公式
通项公式: n=1+(n-1)d
1为首项d为公差
通项公式的推导: 利用数学归纳法
通项公式的应用: 求解等差数列的 前n项和
等差数列的前n项和的推导过程
等差数列前n项和在实际生活中的应用
计算利息:等差数列的前n项和可 以用来计算贷款或存款的利息。
计算股票价格:等差数列的前n项 和可以用来计算股票的价格。
添加标题
添加标题
添加标题
添加标题
计算工资:等差数列的前n项和可 以用来计算员工的工资。
计算保险费用:等差数列的前n项 和可以用来计算保险的费用。
等差数列前n项和的应用实例
04
等差数列的前n项 和的特例
等差数列前n项和的特例
特例1:当n=1时前n项和为1 特例2:当n=2时前n项和为21 特例3:当n=3时前n项和为31
特例4:当n=4时前n项和为41 特例5:当n=5时前n项和为51 特例6:当n=6时前n项和为61

等差数列的判定与证明-前n项和公式法

等差数列的判定与证明-前n项和公式法
解:易得an=Sn-Sn-1=11-2n,(n≥2),又a1=S1=9, ∴an=11-2n,(n∈N*)∵a5>0,a6<0,∴当n≤5时,bn=an, Tn=Sn=10n-n2,当n>5时,bn=-an,,Tn=2S5-Sn=50-(10n- n2)=n2-10n+50
即Tn

ቤተ መጻሕፍቲ ባይዱ
10n n2

n2

10n

50
(n 5) (n 5)
4.等差数列前 n 项和公式中涉及五个量 a1,d,n,an,Sn, 已知其中任意三个就可以列方程组求另外两个(简称“知三求
二”),它是方程思想在数列中的体现.
当n为奇数时,Sn的一些性质
1)Sn n an1 (项数与中间项的积)
2
2)S奇
S偶

a
n
(中间项)
1
2
3)S奇 n 1 (项数加1比项数减1) S偶 n 1
项数加比项数减当n为偶数时中间两项的比来确定可由不等式组最小为何值时来确定可由不等式组最大为何值时例题1已知项数为奇数的等差数列a奇数项之和为44偶数项之和为33求项数n77117711334460且an13则这个数列前多少项之和最小
等差数列的判定与证明-前n项和公式法
复习回顾
1.等差数列的{an}的通项公式
例题1 已知项数为奇数的等差数列{an},奇数项
之和为44,偶数项之和为33,求项数n
解:由题意, S奇 44,S偶 33
S奇 S偶 an1 11
2
又 Sn n an1 S奇 S偶 77
2
11n 77, n 7
例2 数列{an}中,a1=-60,且an+1=an+3,则这个数列前 多少项之和最小?

专题6.2 等差数列及其前n项和(讲)(解析版)

专题6.2 等差数列及其前n项和(讲)(解析版)

专题6.2 等差数列及其前n 项和1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系.知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N *). (2)等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项).知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)S 2n -1=(2n -1)a n .(6)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项).知识点四 等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 【必会结论】等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .若m +n =2p (m ,n ,p ∈N *),则a m +a n =2a p .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d, 则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)等差数列{a n }的前n 项和为S n, 则S n ,S 2n -S n ,S 3n -S 2n 仍成等差数列,其公差为n 2d.考点一 等差数列基本量的运算 【典例1】【2019年高考全国I 卷理数】记nS 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( )A .25n a n =- B .310n a n =-C .228n S n n=- D .2122n S n n =-【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。

等差数列的前n项求和公式ppt课件

等差数列的前n项求和公式ppt课件

由等差数列的性质 即
a1+an=a2+an-1=a3+an-2=…
2Sn=(a1+an)+(a1+an)+(a1+an)+..
Sn=n(a1+an)/2
5
如果代入等差数列的通项公式an=a1+(n-1)d,Sn也可 以用首项a1和公差d表示,即 Sn=na1+n(n-1)d/2 所以,等差数列的前n项求和公式是
-------方程、函数思想 3.公式中五个量a1, d, an, n, sn, 已知 其中三个量,可以求其余两个 -------知三求二
15
A组2、4、5
16
谢谢观赏
17
S
n

n a1 a n 2

S
n
n a1
n n 1 d 2
6
例题
例1
54?
等差数列-10,-6,-2, 2,…前多少项的和是
例2
已知一个等差数列{an}的前10项的和是310,前 20项的和是1220 .求等差数列的前n项和的公式
例3
求集合M={m|m=7n, n是正整数, 且m<100}的元素 个数, 并求这些元素的和.
8a 52 d n 2 14n nn 1 d S na d
a
n 1
13 d 0 d 0 2
2
2
解2: S3 S11
即 n=7
a1 0
由等差数列构成的函数图象,可知 n=(3+11)/2=7时,Sn最大
12
an 例8.等差数列 的前项n和S n,且a3 12 ,S12 0, S13 0

等差数列的前n项和公式的性质

等差数列的前n项和公式的性质
2
例 3. 项数为奇数的等差数列{an },奇数项之和为 44,偶数项之和为
33,求这个数列的中间项及项数.
解:设等差数列{an}共有(2n+1)项,则奇数项有(n+1)项,偶数项
有 n 项,中间项是第(n+1)项,即 an+1,
1
S奇 2a1+a2n+1n+1 n+1an+1 n+1 44 4
解法1: 由S3=S11, 得
1
1
3 13 3 2 d 1113 1110 d
2
2
∴ d=-2
1
Sn 13n n(n 1) (2)
2
n2 14n
( n 7)2 49
故当n=7时, Sn取最大值49.
解法2: 由S3=S11, 得d=-2<0
=
5+2

,则
+3

10n 3
67
7
=_______;
=_______;
2n 2
18
8
课堂小结
等差数列的前n项和公式的性质
性质1:数列{an}是等差数列⟺Sn=An2+Bn (A,B为常数)
Sn

性质2: 若数列{an}是公差为d的等差数列, 则数列 也
d
n
是等差数列, 且公差为 2 .
当m=n时,公式变化?
an S 2 n 1

bn T2 n1
例 4.已知{an},{bn}均为等差数列,其前 n 项和分别为 Sn,
5
a5
Sn 2n+2
Tn,且T =
,则b =________.
3
n
5
n+3
变式1. 若

等差数列及其前n项和(解析版)

等差数列及其前n项和(解析版)

等差数列及其前n 项和一、学习目标1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 二、知识讲解知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n = 通项公式的推广:a n = (2)等差数列的前n 项和公式 S n =知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 知识点四 等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 三、例题辨析考点一 等差数列基本量的运算【典例1】记nS 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( )A .25n a n =-B .310n a n =-C .228n S n n=- D .2122n S n n =-【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。

数列证明与判断

数列证明与判断

2023届高考数学复习讲义5.6数列的证明及判定1.等差数列通项公式:a n ==.2.等差数列前n 项和公式:nd a n d d n n na aa n S n )2(22)1(2)(12121-+=-+=+=3.等比数列通项公式:a n ==..4.等比数列前n 项和公式:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q q q a q naS n n 一.判定一个数列为等差数列的常见方法:(1)定义法:若d a a n n =-+1(d 是定值),则数列{a n }是等差数列;(2)等差中项法:若n n n a a a 211=++-(2≥n ),则数列{a n }是等比数列;(3)通项公式法:若a n =pn +q (p ,q 为常数)对任意的正整数n 都成立,则数列{a n }是等差数列.(4)前n 项和公式法:若S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立,则{a n }是等差数列二、判定一个数列为等比数列的常见方法:(1)定义法:若a n +1a n=q (q 是非零常数),则数列{a n }是等比数列;(2)等比中项法:若a 2n +1=a n a n +2(n ∈N *,a n ≠0),则数列{a n }是等比数列;(3)通项公式法:若a n =Aq n (A ,q 为非零常数),则数列{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列考向一等差数列的判定与证明例1若数列{a n }的前n 项和为S n ,a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.思维升华判断数列{a n }是等差数列的常用方法方法解读定义法对于任意自然数n (n ≥2),a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列等差中项法2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列前n 项和公式法验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列【举一反三】1、已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n .(1)求a 2,a 3;(2)证明数列⎭⎫⎩⎨⎧n a n 是等差数列,并求{a n }的通项公式.2、(2021·台州模拟)已知数列{a n }满足a 1=2,a n +1=2a n -1a n .(1)求证:数列⎭⎬⎫⎩⎨⎧-11n a 是等差数列;(2)求数列{a n }的通项公式.考向二等比数列的判定与证明例2已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=a n n .(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.感悟升华等比数列的4种常用判定方法定义法若a n+1a n=q(q为非零常数,n∈N*)或a na n-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列中项公式法若数列{a n}中,a n≠0且a2n+1=a n·a n+2(n∈N*),则数列{a n}是等比数列通项公式法若数列通项公式可写成a n=c·q n-1(c,q均是不为0的常数,n∈N*),则{a n}是等比数列前n项和公式法若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列【举一反三】1、(2022·威海模拟)记数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+1.设b n=a n+1-2a n.求证:数列{b n}为等比数列;2、已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n .(1)证明:数列{a n +a n-1}为等比数列;(2)若a 1=12,a 2=32{a n }的通项公式.A 组1、(2022届河南调研,18)已知数列{a n }满足a 1=4,a n+1=2a n +2n+1(n ∈N *),设数列{a n }的前n 项和为S n .(1)证明:数列⎭⎬⎫⎩⎨⎧n n a 2是等差数列.(2)求S n .2、已知数列{a n }中,a 1=1,a n ·a n +1=n⎪⎭⎫ ⎝⎛21,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *.判断数列{b n }是否为等比数列,并求出b n ;3、(2022届哈尔滨期中,20)在数列{a n }中,a 1=4,na n+1-(n+1)a n =2n 2+2n.(1)求证:;(2)n 项和S n .4、(2020哈尔滨香坊月考,17)已知数列{a n }的前n 项和为S n ,且S n =2a n -n(n ∈N *).证明:数列{a n +1}是等比数列,并求数列{a n }的通项公式;B 组5、(2022届陕西宝鸡月考,18)已知正项数列{a n }的前n 项和为S n ,且S n =14(a n +1)2(n ∈N *).(1)求a 1,a 2;(2)求证:数列{a n }是等差数列.6、(2021·全国统一考试模拟演练)已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n .(1)证明:数列{a n +a n +1}为等比数列;(2)若a 1=12,a 2=32{a n }的通项公式.7、(2021吉林白山第三次联考,19)在数列{a n }中,已知a 1=1,且a n+1a n =2n+1a n -2n a n +1.,并求出{a n }的通项公式;8、(2017课标Ⅰ,17,12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=-6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.9、(2021·全国甲卷)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{S n}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.10、(2021全国百强名校联考,18)已知数列{a n}满足a1=2,a n+1=12a n-12×3,b n=a n-13t1.求证:数列{b n}是等比数列;11、(2022·烟台模拟)已知在数列{a n}中,a1=1,a n=2a n1+1(n≥2,n∈N*),记b n=log2(a n+1).-(1)判断{b n}是否为等差数列,并说明理由;(2)求数列{a n}的通项公式.12、(2021全国甲,18,12分)记S n 为数列{a n }的前n 项和,已知a n >0,a 2=3a 1,且数列{}是等差数列.证明:{a n }是等差数列.13、(2021·全国乙卷)记S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2S n +1b n=2,证明:数列{b n }是等差数列;14、(2020河南名校联盟调研)已知首项为2的正项数列{a n }的前n 项和为S n ,且当n ≥2时,3S n -2=2-3S n-1.证明:数列{a n }是等差数列;C 组15、(2021·温州调研)已知数列{a n },{b n }满足a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *.求证:数列{b n }是等差数列,并求出数列{a n }的通项公式.16、已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n1=λS n-1,其中λ为常数.+(1)证明:a n2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.+17、若S n为等比数列{a n}的前n项和,已知a4=9a2,S3=13,且公比q>0.(1)求a n及S n;(2)是否存在常数λ,使得数列{S n+λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.方法与技巧。

等差数列的前n项和公式课件-高二数学人教A版(2019)选择性必修第二册

等差数列的前n项和公式课件-高二数学人教A版(2019)选择性必修第二册
(2) S10 10 2

2
2 2
n n(n 1)
1
(3) S n
( ) 5
2
2
6
整理得 n 2 7n 60 0
解得n 12或 5(舍)
(−1)
(2)可以先利用1和2的值求出,再利用公式=1 +
求和;
2
(3)已知公式=1 +
(2)结合等差数列的性质解题:等差数列的常用性质:

若+=+(,,, ∈ ),则+=+,常与求和公
( + )
式=
结合使用.

10(a1 a10 ) 10 (5 95)
(1) S10

5 100 500;
2
2
50 49

S

10
p 10q 310
10 p q 31
10

, 即
,
2

S 20 20 p 20q 1220 20 p q 61
联立得10 p 30, p 3, q 1.
前n项和S n 3n 2 n
方程思想,知三求二
[练习2](P23) 在等差数列 {an }中, S n为其前 n项的和,若 S 4 6, S8 = 20,求 S16 .
的前n项和吗?
目的:把不同的数求和转化为n个相同的数求和
倒序
n个相同的数(n+1)
倒序相加法
探究:等差数列前n项和的推导
类似地,对于任意等差数列{an},不妨用以下两种方式表示Sn:
S n 1 2 ( n 1) n
S n a1 a2 an 1 an ①

等差数列的前n项和

等差数列的前n项和

等差数列的前n项和等差数列是一种常见的数列,其特点是每一项与前一项之差都相等。

求等差数列的前n项和是一个常见的数学问题。

本文将着重介绍等差数列的概念、求解前n项和的公式以及实际应用。

一、等差数列的概念等差数列又称为等差数列,是指数列中的每一项与前一项之差都相等的数列。

通常用字母a表示首项,字母d表示公差,n表示项数。

等差数列的通项公式为:an = a + (n-1)d其中an表示第n项,a表示首项,d表示公差。

举个例子,如果一个等差数列的首项为1,公差为2,那么该数列的前几项分别为1, 3, 5, 7, 9...二、等差数列前n项和的求解求解等差数列的前n项和是一个常见的数学问题。

对于首项为a、公差为d的等差数列,前n项和Sn可以通过以下公式来计算:Sn = (n/2)(a + an) = (n/2)(2a + (n-1)d)其中Sn表示前n项和,n表示项数,a表示首项,d表示公差。

例如,求解等差数列1, 3, 5, 7, 9的前3项和,可以使用上述公式进行计算:Sn = (3/2)(1 + 5) = 3*(6/2) = 9因此,等差数列1, 3, 5的前3项和为9。

三、等差数列前n项和的实际应用等差数列的前n项和在实际应用中有着广泛的用途。

以下是几个常见的应用场景:1. 金融投资:在金融投资中,等差数列的前n项和可以用来计算投资利息或回报。

假设每年的回报率为r%,首次投资金额为a元,那么第n年的总金额为Sn = a*(1+r)^n。

其中,(1+r)^n是一个公差为r的等比数列,可以将其转换为等差数列,并使用前n项和公式进行计算。

2. 资源分配:在资源分配问题中,等差数列的前n项和可以用来计算每个参与者的分配数量。

假设有n个参与者,资源总量为Sn,按比例进行分配,那么每个参与者的分配数量为an = Sn*(a1/a)。

其中a1为首项,a为总和。

3. 时间管理:在时间管理中,等差数列的前n项和可以用来计算每个任务的时间分配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:由已知可得通项公 式an 60 3(n 1) 3n 63
3n 3(n
63 0 1) 63
, 解得n 0

21
数列的前21项和最小
例3 已知数列{an}的前n项和Sn=10n-n2 (n∈N*),又 bn=│an│(n∈N*),求{bn}的前n项和Tn
3) S奇
an
2
(中间两项的比)
S偶
a n 1
2
前n项和Sn最大(最小)
1)在a1 0, d 0,求n为何值时Sn最大, 可由不等式组 aann100来确定n 2)在a1 0, d 0,求n为何值时Sn最小, 可由不等式组 aann100来确定n
例题1 已知项数为奇数的等差数列{an},奇数项

n2

10n

50
(n 5) (n 5)
当n为奇数时,Sn的一些性质
1)Sn n an1 (项数与中间项的积)
2
2)S奇
S偶

a
n
(中间项)
1
2
3)S奇 n 1 (项数加1比项数减1) S偶 n 1
当n为偶数时
an an1
1)Sn n
2
2
2
(项数与中间两项平均数 的积)
2)S偶ຫໍສະໝຸດ S奇n 2
d
关于 Sn 的关系式求通项时主要应用此关系式.应用此关系式 时,莫忘对 a1=S1 是否满足 an 的表达式进行检验.若满足则合 并在一块表达,若不满足,则分段表达.
4.等差数列前 n 项和公式中涉及五个量 a1,d,n,an,Sn, 已知其中任意三个就可以列方程组求另外两个(简称“知三求
二”),它是方程思想在数列中的体现.
解:易得an=Sn-Sn-1=11-2n,(n≥2),又a1=S1=9, ∴an=11-2n,(n∈N*)∵a5>0,a6<0,∴当n≤5时,bn=an, Tn=Sn=10n-n2,当n>5时,bn=-an,,Tn=2S5-Sn=50-(10n- n2)=n2-10n+50
即Tn

10n n2
等差数列的判定与证明-前n项和公式法
复习回顾
1.等差数列的{an}的通项公式
an=a1+(n-1)d
2.等差数列的{an}前n项和的公式
Sn

n(a1 2
an )
Sn

na1

n(n 1) 2
d
3.数列{an}的前 n 项和为 Sn,则 an=
S1 Sn-Sn-1
n=1 n≥2且n∈N* ,当已知数列前 n 项和 Sn 或
之和为44,偶数项之和为33,求项数n
解:由题意, S奇 44,S偶 33
S奇 S偶 an1 11
2
又 Sn n an1 S奇 S偶 77
2
11n 77, n 7
例2 数列{an}中,a1=-60,且an+1=an+3,则这个数列前 多少项之和最小?
相关文档
最新文档