图像位置变换

合集下载

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换

三种图象变换:平移变换、对称变换和伸缩变换①平移变换:(h>0)Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;1)y=f(x)h 左移→y=f(x+h);2)y=f(x) h 右移→y=f(x -h);Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到;1)y=f(x) h 上移→y=f(x)+h ;2)y=f(x) h下移→y=f(x)-h 。

②对称变换:Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y=f(x) 轴y →y=f(-x)Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到;y=f(x) 轴x →y= -f(x)Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到;y=f(x) 原点→y= -f(-x)Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。

y=f(x) x y =→直线x=f(y)Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到;y=f(x) a x =→直线y=f(2a -x)。

③翻折变换:Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到④伸缩变换:Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y=f(x)ay ⨯→y=af(x)Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标压缩(1)a >或伸长(01a <<)为原来的1a倍得到。

图象平移的概念

图象平移的概念

图象平移的概念图象平移是图像处理中的一个基本概念,指的是将一个图像中的所有像素点沿着指定的方向和距离移动,从而改变图像在平面上的位置。

平移变换是图像处理中最简单的几何变换之一,它对于图像的位置、移动、对齐和配准具有重要的作用。

下面详细介绍图像平移的概念、原理和应用。

图像平移的概念:图像平移是指将一个图像的每个像素点按照指定的距离和方向进行移动,移动后的像素点的位置发生改变,从而得到一个新的平移后的图像。

平移操作并不改变图像的形状和大小,只是改变了图像在平面上的位置。

图像平移的原理:图像平移的原理是对每个像素点进行坐标变换。

假设需要将一个图像平移(x,y)个单位,则原始图像上的像素(i,j)在平移后的位置为(i+x,j+y)。

即将原始图像上的每个像素点的坐标都加上平移的距离,得到平移后的图像。

图像平移的步骤如下:1. 读取原始图像,获取图像的宽度和高度。

2. 创建一个新的图像,用于存储平移后的结果。

3. 遍历原始图像的每个像素点。

4. 对于每个像素点,计算它在平移后的位置,并将原始图像上的像素值赋给相应的位置。

5. 完成遍历后,保存平移后的图像。

图像平移的应用:1. 视觉效果增强:通过平移图像,可以实现一些视觉效果的增强,例如移动背景、改变图像的位置和朝向等,从而使图像更加生动和有趣。

2. 物体配准:图像平移可以用于物体配准,即将两个或多个图像的特征点对齐,从而实现图像的融合和比较,例如医学影像中的图像对准、遥感图像中的图像注册等。

3. 图像拼接:图像平移可以用于图像拼接,即将多个图像拼接在一起,从而实现全景图像的生成。

拼接过程中,需要对每个图像进行平移操作,将它们的重叠区域对齐,从而得到一个完整的全景图像。

4. 图像重建:图像平移可以用于图像重建,即根据已知的一部分图像信息,推测出缺失的部分。

通过平移已有的图像像素,可以填补图像中的空洞,从而还原缺失的图像信息。

5. 目标跟踪:图像平移可以用于目标的跟踪,即通过一系列平移变换,跟踪目标在图像序列中的位置和运动轨迹。

函数图像的三种变换平移变换

函数图像的三种变换平移变换

函数图像的三种变换一 、平移变换函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 沿水平方向左右平行移动比如函数()y f x =与函数()(0)y f x a a =->,由于两函数的对应法则相同,x a -与x 取值范围一样,函数的值域一样。

以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数()y f x =的图象水平移动才能得到函数()y f x =的图象呢?因为对于函数()y f x =上的任意一点(11,x y ),在()y f x a =-上对应的点为11(,)x a y +,因此若将()y f x =沿水平方向向右平移a 个单位即可得到()(0)y f x a a =->的图象。

同样,将()y f x =沿水平方向向左平移a 个单位即可得到()(0)y f x a a =+>的图象。

沿竖直方向上下平行移动比如函数()y f x =与函数()(0)y f x b b =+>,由于函数()y f x =函数()(0)y b f x b -=>中函数y 与y b -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数()y f x =的图象上下移动得到函数()y b f x -=的图象呢?因为对于函数()y f x =上的任意一点(11,x y ),在()(0)y b f x b -=>上对应的点为11(,)x y b +,因此若将()y f x =沿竖直方向向上平移a 个单位即可得到()(0)y b f x b -=>的图象。

同样,将()y f x =沿竖直方向向下平移a 个单位即可得到()(0)y b f x b +=>的图象。

据此,可以推断()y f x a b =±±(0,0)a b >>为水平方向移动a 个单位,“左加右减”,竖直方向移动b 个单位,“上加下减”。

数字图像处理---图像的几何变换

数字图像处理---图像的几何变换

数字图像处理---图像的⼏何变换图像的⼏何变换图像的⼏何变换包括了图像的形状变换和图像的位置变换图像的形状变换图像的形状变换是指图像的放⼤、缩⼩与错切图像缩⼩图像的缩⼩是对原有的数据进⾏挑选或处理,获得期望缩⼩尺⼨的数据,并尽量保持原有的特征不消失分为按⽐例缩⼩和不按⽐例缩⼩两种最简单的⽅法是等间隔地选取数据图像缩⼩实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1<1,K 2<1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像放⼤图像放⼤时对多出的空位填⼊适当的值,是信息的估计最简单的思想是将原图像中的每个像素放⼤为k ∗k 的⼦块图像放⼤实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1>1,K 2>1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像错切图像错切变换实际上是平⾯景物在投影平⾯上的⾮垂直投影效果图像错切的数学模型x ′=x +d x y y ′=y(x ⽅向的错切,dx =tan θ)x ′=x y ′=y +d y x(y ⽅向的错切,dy =tan θ)图像的位置变换图像的位置变换是指图像的平移、镜像与旋转,即图像的⼤⼩和形状不发⽣变化主要⽤于⽬标识别中的⽬标配准图像平移公式:{{x ′=x +Δx y ′=y +Δy图像镜像图像镜像分为⽔平镜像和垂直镜像,即左右颠倒和上下颠倒公式:图像⼤⼩为M*Nx ′=x y ′=−y (⽔平镜像)x ′=−x y ′=y(垂直镜像)由于不能为负,因此需要再进⾏⼀次平移x ′=x y ′=N +1−y (⽔平镜像)x ′=M +1−xy ′=y(垂直镜像)图像旋转公式:x ′=xcos θ−ysin θy ′=xsin θ+ycos θ由于计算结果值所在范围与原有值不同,因此需要在进⾏扩⼤画布、取整、平移等处理画布扩⼤原则:以最⼩的⾯积承载全部的画⾯信息⽅法:根据公式x ′=xcos θ−ysin θy ′=xsin θ+ycos θ计算x ′min ,x ′max ,y ′min ,y ′max旋转后可能导致像素之间相邻连接不再连续,因此需要通过增加分辨率的⽅式填充空洞插值最简单的⽅式就是⾏插值(列插值)⽅法1. 找出当前⾏的最⼩和最⼤的⾮背景点坐标,记作:(i,k1)、(i,k2)2. 在(k1,k2)范围内进⾏插值,插值⽅法为空点的像素值等于前⼀点的像素值3. 重复上述操作直⾄没有空洞图像的仿射变换图像的仿射变换即通过通⽤的仿射变换公式,表⽰⼏何变换{{{{{{{齐次坐标原坐标为(x,y),定义齐次坐标为(wx,wy,w)实质上是通过增加坐标量来解决问题仿射变换通式通过齐次坐标定义仿射变换通式为x ′=ax +by +Δx y ′=cx +dy +Δy⇒x ′y ′=a b Δx c dΔyx y⼏何变换表⽰1. 平移x ′y ′1=10Δx 01Δy 001x y12. 旋转x ′y ′1=cos θ−sin θ0sin θcos θ0001x y 13. ⽔平镜像x ′y ′1=−10001001x y14. 垂直镜像x ′y ′1=1000−10001x y15. 垂直错切x ′y ′1=1d x 00−10001x y16. ⽔平错切x ′y ′1=100d y −10001x y1图像的⼏何校正由于图像成像系统的问题,导致拍摄的图⽚存在⼀定的⼏何失真⼏何失真分为{[][][][][][][][][][][][][][][][][][][][][]1. 系统失真:有规律的、可预测的2. ⾮系统失真:随机的⼏何校正的基本⽅法是先建⽴⼏何校正的数学模型,其次利⽤已知条件确定模型参数,最后根据模型对图像进⾏⼏何校正步骤:1. 图像空间坐标的变换2. 确定校正空间各像素的灰度值(灰度内插)途径:1. 根据畸变原因,建⽴数学模型2. 参考点校正法,根据⾜够多的参考点推算全图变形函数空间坐标变换实际⼯作中利⽤⼀幅基准图像f(x,y),来校正失真图像g(x′,y′)根据⼀些控制点对,建⽴两幅图像之间的函数关系,通过坐标变换,以实现失真图像的⼏何校正两幅图像上的f(x,y)=g(x′,y′)时,称其为对应像素(同名像素)通过表达式x′=h1(x,y)y′=h2(x,y)表⽰两幅图像之间的函数关系通常⽤多项式x′=n∑i=0n−i∑j=0a ij x i y jy′=n∑i=0n−i∑j=0b ij x i y j来近似h1(x,y)、h2(x,y)当多项式系数n=1时,畸变关系为线性变换x′=a00+a10x+a01yy′=b00+b10x+b01y六个未知数需要⾄少三个已知点来建⽴⽅程式当多项式系数n=2时,畸变关系式为x′=a00+a10x+a01y+a20x2+a11xy+a02y2y′=b00+b10x+b01y+b20x2+b11xy+b02y2 12个未知数需要⾄少6个已知点来建⽴⽅程式当超过已知点数⽬超过要求时,通过最⼩⼆乘法求解n=2时多项式通式为B2∗n=H2∗6A6∗n(n为待求点数)B2∗n=x′1x′2⋯x′n y′1y′2⋯y′n{ []H 2∗6=a 00a 10a 01a 20a 11a 02b 00b 10b 01b 20b 11b 02A 6∗n =11⋯1x 1x 2⋯x n y 1y 2⋯y n x 21x 22⋯x 2n x 1y 1x 2y 2⋯x n y ny 21y 22⋯y 2n同名点对要求1. 数量多且分散2. 优先选择特征点直接法利⽤已知点坐标,根据x ′=h 1(x ,y )y ′=h 2(x ,y )⇒x =h ′1(x ′,y ′)y =h ′2(x ′,y ′)x =n ∑i =0n −i∑j =0a ′ij x ′i y′jy =n ∑i =0n −i∑j =0b ′ijx ′i y ′j解求未知参数;然后从畸变图像出发,根据上述关系依次计算每个像素的校正坐标,同时把像素灰度值赋予对应像素,⽣成校正图像由于像素分布的不规则,导致出现像素挤压、疏密不均等现象,因此最后还需要进⾏灰度内插,⽣成规则图像间接法间接法通过假定⽣成图像的⽹格交叉点,从⽹格交叉点(x,y)出发,借助已知点求取未知参数,根据x ′=n ∑i =0n −i∑j =0a ij x i y jy ′=n ∑i =0n −i∑j =0b ij x i y j推算⽹格交叉点(x,y)对应畸变图像坐标(x',y'),由于对应坐标⼀般不为整数,因此需要通过畸变图像坐标周围点的灰度值内插求解,作为⽹格交叉点(x,y)的灰度值间接法相对直接法内插较为简单,因此常采⽤间接法作为⼏何校正⽅法像素灰度内插最近邻元法最近邻元法即根据四邻域中最近的相邻像素灰度决定待定点灰度值该⽅法效果较佳,算法简单,但是校正后图像存在明显锯齿,即存在灰度不连续性双线性内插法[][]{{双线性内插法是利⽤待求点四个邻像素的灰度在两个⽅向上作线性内插该⽅法相较最近邻元法更复杂,计算量更⼤,但是没有灰度不连续的缺点,且具有低通滤波性质,图像轮廓较为模糊三次内插法三次内插法利⽤三次多项式S(x)来逼近理论最佳插值函数sin(x)/xS(x)=1−2|x|2+|x|30≤|x|<1 4−8|x|+5|x|2−|x|31≤|x|<20|x|≥2该算法计算量最⼤,但是内插效果最好,精度最⾼{Processing math: 100%。

医学图像处理4几何变换

医学图像处理4几何变换
函数a(x, y)和b(x, y)唯一地描述了空间变换 。
Medical Image Processing
5
一、图像的位置变换
图像的平移(translation):是将图像中所有的点 都按照指定的平移量水平、垂直移动。
x' x x

y'

y

y
Medical Image Processing
Medical Image Processing
22
图像的插值
最简单的方法:行插值或是列插值方法:
» 找出当前行的最小和最大的非空白点的坐标,记作: (i,k1)、(i,k2)。
»在(k1,k2)范围内进行插值,插值的方法是:空 点的像素值等于前一点的像素值。
»同样的操作重复到所有行。
经过插值处理之后,图像效果就变得自然。
Medical Image Processing
3
图像的几何变换
几何变换的需求
受成像系统拍摄角度 及失真的影响 几何变换不改变像素 值,而是改变像素所 在的位置 又称几何校正
主要内容及要点
图像的位置变换
» 平移、镜像、旋转、 插值等
图像的形状变换
» 缩小、放大、错切变 换、几何畸变的校正 等
Medical Image Processing

y'

0.5x

0.866y
x'min 0.866 0.5*3 0.634
x'max 0.866 *3 0.5 2.098
y'min 0.866 0.5 1.366 y'max 0.866 *3 0.5*3 4.098

重要 图像的几何变换

重要 图像的几何变换

图像的几何变换,是指使用户获得或设计的原始图像,按照需要产生大小、形状和位置的变化。

从变换的性质分,图像的几何变换有位置变换(平移、镜像、旋转)、形状变换(比例缩放、错切)和复合变换等。

1. 图像的位置变换主要包括图像平移变换、图像镜像变换和图像旋转变换等,下面针对这三个主要的位置变换进行分析。

平移变换的几点说明:(1)平移后图像上的每一点都可以在原图像中找到对应的点。

对于不在原图像中的点,可以直接将它的像素值统一设置为0或者255(对于灰度图就是黑色或白色)。

(2)若图像平移后图像不放大,说明移出的部分被截断。

(3) 若不想丢失被移出的部分图像,将新生成的图像扩大.图像镜像变换图像的镜像变换不改变图像的形状。

图像的镜像(Mirror)变换分为三种:水平镜像,垂直镜像和对角镜像。

1. 图像水平镜像图像的水平镜像操作是将图像左半部分和右半部分以图像垂直中轴线为中心进行镜像对换。

2. 图像垂直镜像图像的垂直镜像操作是将图像上半部分和下半部分以图像水平中轴线为中心进行镜像对换。

3. 图像对角镜像图像的对角镜像操作是将图像以图像水平中轴线和垂直中轴线的交点为中心进行镜像对换。

相当于将图像先后进行水平镜像和垂直镜像。

图像旋转变换旋转(rotation)有一个绕着什么转的问题,通常的做法是以图像的中心为圆心旋转,将图像上的所有像素都旋转一个相同的角度。

图像的旋转变换是图像的位置变换,但旋转后,图像的大小一般会改变。

和图像平移一样,在图像旋转变换中既可以把转出显示区域的图像截去,旋转后也可以扩大图像范围以显示所有的图像。

2. 图像形状变换图像比例缩放变换图像比例缩放是指将给定的图像在x轴方向按比例缩放fx倍,在y轴方向按比例缩放fy倍,从而获得一幅新的图像。

(1). 图像的比例缩小变换从数码技术的角度来说,图像的缩小是将通过减少像素个数来实现的,因此,需要根据所期望缩小的尺寸数据,从原图像中选择合适的像素点,使图像缩小之后可以尽可能保持原有图像的概貌特征不丢失,下面介绍两种简单的图像缩小变换。

初中数学 二次函数的图像的平移变换如何影响图像的位置

初中数学  二次函数的图像的平移变换如何影响图像的位置

初中数学二次函数的图像的平移变换如何影响图像的位置
二次函数的图像的平移变换是通过改变二次函数的参数来实现的,其中包括改变顶点的横坐标和纵坐标以及改变二次函数的平移方向。

以下是对二次函数图像的平移变换如何影响图像位置的详细解释:
1. 改变顶点的横坐标:将二次函数的顶点从原点(0, 0) 平移到其他位置,可以通过改变顶点的横坐标实现。

如果我们将顶点的横坐标加上一个正数a,那么图像会向右平移 a 个单位;如果我们将顶点的横坐标减去一个正数a,那么图像会向左平移 a 个单位。

2. 改变顶点的纵坐标:将二次函数的顶点的纵坐标从原点(0, 0) 平移到其他位置,可以通过改变顶点的纵坐标实现。

如果我们将顶点的纵坐标加上一个正数b,那么图像会向上平移b 个单位;如果我们将顶点的纵坐标减去一个正数b,那么图像会向下平移b 个单位。

3. 改变平移方向:除了改变顶点的横坐标和纵坐标,我们还可以通过改变二次函数的平移方向来实现图像的平移变换。

当a 的值为正数时,二次函数图像向右平移;当 a 的值为负数时,二次函数图像向左平移。

同样地,当b 的值为正数时,二次函数图像向上平移;当b 的值为负数时,二次函数图像向下平移。

通过改变顶点的横坐标和纵坐标以及改变平移方向,我们可以实现二次函数图像的平移变换。

这些变换会影响图像的位置,使图像在坐标平面上移动到新的位置。

理解和运用平移变换的概念和方法,有助于我们分析和解释二次函数图像的位置和变化。

需要注意的是,平移变换只会改变二次函数图像的位置,而不会改变图像的形状。

图像的形状由二次函数的系数决定。

平移变换是一种基本的图像变换,也是了解和应用二次函数图像的重要工具之一。

图像变换

图像变换
w 可以取不同值,同一点齐次坐标不唯一。
如普通坐标系的点(2,3)的齐次坐标可以是:
(1,1.5,0.5),(4,6,2),(6,9,3)等。
普通坐标与齐次坐标的关系为“一对多”
普通坐标w =>齐次坐标 齐次坐标/w =>普通坐标 当w = 1时产生的齐次坐标称为“规格化坐标”
f(x,y) 减去背景图像b(x,y) g(x,y) 添加蓝色背景
图像的错切效果
在这个错切变换中,蒙娜丽莎的图像被变形,但是中心的 纵轴在变换下保持不变。(注意:角落在右边的图像中被 裁掉了。)蓝色的向量,从胸部到肩膀,其方向改变了, 但是红色的向量,从胸部到下巴,其方向不变。因此红色 向量是该变换的一个特征向量,而蓝色的不是。因为红色 向量既没有被拉伸又没有被压缩,其特征值为1。所有沿着 垂直线的向量也都是特征向量,它们的特征值相等。它们 构成这个特征值的特征空间。

=
图像的或运算
模板运算:提取感兴趣的子图像

=
图像的与运算
0 1=0 1 0=0 0 0=0 求两个子图像的相交子图
1 1=1
^
= 模板运算:提取感兴趣的图像^=图像加法运算举例


图像加法运算举例
图像加法运算举例
图像加法运算举例
图像减法运算举例
=
图像减法运算举例
因为前n个坐标是普通坐标系下的n维坐标。
图像的仿射变换
—— 齐次坐标的特点
(x,y)点的齐次坐标为(xw,yw,w) xw=wx,yw=wy,w≠0
(x,y)点对应的齐次坐标为三维空间的一条直线 :

xw yw

wx wy

zw

第四章--图像的几何变换

第四章--图像的几何变换

7 9 10 11 12 13 15 16 17 18 25 27 28 29 30 31 33 34 35 36
i=[1,6], j=[1,6]. x=[1,6*06]=[1,4], y=[1,6*0.75=[1,5]. x=[1/0.6,2/0.6,3/0.6,4/0.6]=[i2,i3,i5,i6], y=[1/0.75,2/0.75,3/0.75,4/0.75,5/0.75]=[j1,j3,j4,j5,j6].
素值的填充是不连续的。 因此可以采用插值填充的方法来解决。
4.1.3.3 图像旋转的后处理
最简单的方法是行插值(列插值)方法
1. 找出当前行的最小和最大的 非背景点的坐标,记作:
(i,k1)、(i,k2)。
4.1.3.3 图像旋转的后处理
2. 在(k1,k2)范围内进行插值, 插值的方法是:空点的像素 值等于前一点的像素值。
•注意:平移后的景物与原图像相同,但“画 布”一定是扩大了。否则就会丢失信息。
4.1.2 图像的镜像
镜像分为水平镜像和垂直镜像
水平镜像计算公式如下(图像大小为M*N):
x' y'
x
(水平镜#39; x
平移:
y
''
y '
N
1
N
1
y
123 1
2
3
-1 -2 -3 1
2
3
N 3
图像的旋转计算公式如下: x' x cos y sin y' x sin y cos
• 这个计算公式计算出的值为小数,而坐标值为正整数。 • 这个计算公式计算的结果值所在范围与原来的值所在 的范围不同。
• 因此需要前期处理:扩大画布,取整处理,平移处理

图像变换原理

图像变换原理

图像变换原理图像变换是一种通过改变图像的像素值或空间关系,以得到新的视觉效果或数据表示的技术。

它在计算机图形学、计算机视觉、图像处理等领域中具有重要的应用。

图像变换可以分为两类:几何变换和像素变换。

几何变换是通过改变图像的形状、位置、大小或者方向来实现的。

常见的几何变换包括平移、旋转、缩放和错切等操作。

平移是通过将图像在水平和垂直方向上的像素值进行移动来实现的,旋转是将图像绕着某个中心点旋转一定角度,缩放是通过改变图像的像素间距来改变图像的大小,而错切是通过改变图像像素之间的相对位置来改变图像的形状。

像素变换是通过改变图像的像素值来实现的。

常见的像素变换包括亮度调整、对比度调整、颜色空间转换和直方图均衡化等操作。

亮度调整是通过改变图像的亮度值来调整图像的明暗程度,对比度调整是通过改变图像的像素值范围来调整图像的清晰程度,颜色空间转换是将图像从一个颜色空间转换到另一个颜色空间,而直方图均衡化是通过改变图像的像素分布来增强图像的对比度和细节。

图像变换的原理主要包括以下几个方面:1. 像素级处理:图像变换是在图像的每个像素上进行的,通过改变每个像素的数值或颜色来实现图像的变换。

2. 空间转换:图像变换可以在图像的整个空间范围内进行,也可以只在图像的局部区域进行。

3. 插值方式:在对图像进行变换时,需要对新像素的像素值进行估计。

插值是一种常用的方法,通过对周围已知像素的像素值进行加权平均或其他数学处理来估计新像素的像素值。

4. 变换模型:不同的图像变换可以使用不同的数学模型来描述。

常见的变换模型包括仿射变换、透视变换和非线性变换等。

图像变换的原理和方法是计算机图形学和图像处理领域的基础知识,它为我们理解图像的特征提取、目标识别、图像增强和图像生成等问题提供了重要的工具和思路。

随着计算机技术的不断发展,图像变换的应用和研究也在不断深入和扩展,为我们实现更加丰富多样的图像处理和图像生成效果提供了可能。

图像的几何变换(一)

图像的几何变换(一)

图像的⼏何变换(⼀)图像的⼏何变换是指改变图像的⼏何位置、⼏何形状、⼏何尺⼨等⼏何特征。

⼀.图像的平移图像平移是将⼀幅图像中所有的点都按照指定的平移量在⽔平、垂直⽅向移动,平移后的图像与原图像相同。

利⽤齐次坐标,变换前后图像上的点P0(x0,y0)和P(x,y)之间的关系可以⽤如下的矩阵变换表⽰为平移变换的⼏点说明:①平移后图像上的每⼀点都可以在原图像中找到对应的点。

对于不在原图像中的点,可以直接将它的像素值统⼀设置为0或这255(对于灰度图就是⿊⾊或者⽩⾊);②若图像平移后并没被放⼤,说明移出的部分被截断,原图像中有像素点被移出显⽰区域。

③若不想丢失被移出的部分图像,则将新⽣成的图像扩⼤。

代码如下:clear all;close all;I = imread('lenna.jpg');delta_x = 10; % ⽔平⽅向的偏移量delta_y = 10; % 垂直⽅向的偏移量[M N] = size(I); % 原图像的宽度和⾼度I2 = zeros(M, N);for x = 1 : Mif x + delta_x <= Mfor y = 1 : Nif y + delta_y <= NI2(x + delta_x, y + delta_y) = I(x, y);endendendendsubplot(1, 2, 1), imshow(I);subplot(1, 2, 2), imshow(uint8(I2));平移后的图像显⽰如下:⼆.图像的旋转⼀般图像的旋转是以图像的中⼼为原点,旋转⼀定的⾓度,即将图像上的所有像素都旋转⼀个相同的⾓度。

图像的旋转变换也可以⽤矩阵变换表⽰。

设点P0(x0, y0)旋转θ⾓后的对应点为P(x, y),则变换公式为:或者是利⽤公式进⾏图像旋转变换时,需要注意如下两点:①为了避免图像信息的丢失,图像旋转后必须进⾏平移变换。

②图像旋转之后,会出现许多空洞点,我们必须对这些空洞点进⾏填充处理,否则图像旋转后的效果不好,⼀般也将这种操作称作为插值处理。

函数图像变换的四种情况

函数图像变换的四种情况

函数图像的变换有四种主要情况,它们分别是平移、缩放、翻转和旋转。

1. 平移(Translation):平移是指将函数图像沿着坐标轴的方向移动一定的距离。

平移可以分为水平平移和垂直平移两种情况。

水平平移表示在x 轴方向上移动函数图像,垂直平移表示在y 轴方向上移动函数图像。

平移可以使函数图像的位置发生变化,但不改变其形状。

2. 缩放(Scaling):缩放是指根据比例因子将函数图像在x 轴和y 轴方向上进行拉伸或压缩。

缩放可以分为水平缩放和垂直缩放两种情况。

水平缩放会改变函数图像在x 轴上的横向长度,垂直缩放会改变函数图像在y 轴上的纵向长度。

缩放会改变函数图像的形状和大小。

3. 翻转(Reflection):翻转是指将函数图像关于某个轴进行对称操作。

常见的翻转有关于x 轴的翻转和关于y 轴的翻转。

关于x 轴的翻转会使函数图像在x 轴上下翻转,而关于y 轴的翻转会使函数图像在y 轴左右翻转。

翻转会改变函数图像的对称性和方向。

4. 旋转(Rotation):旋转是指将函数图像绕一个旋转中心点
进行旋转角度的变换。

旋转可以使函数图像在平面上发生旋转,改变其角度和位置。

旋转可以是顺时针旋转或逆时针旋转。

这些函数图像变换情况可以单独或组合使用,可以通过改变函数的参数或对函数表达式进行修改来实现。

它们在数学和图形学中被广泛应用,用于研究和描述函数的性质和图像的变化。

几何变换算法

几何变换算法

几何变换算法几何变换算法是一种广泛用于图像处理、图形学和计算机视觉等领域的数学算法。

几何变换也称为图像变换,是一种改变图像几何结构的技术。

它有助于改变任意给定的图像的位置、大小、方向和形状,以满足特定的应用要求。

几何变换算法可以分为四类:平移、旋转、缩放和错切变换。

平移变换是图像从其原始位置移动到另一位置的一种变换。

它是由一对对应的坐标来实现的,每个坐标都有一个相对应的移动距离,使图像发生改变。

旋转变换是指把图像围绕一个中心点旋转一定角度的运算。

它可以使图像看起来像在空间中围绕一个中心点旋转一个角度一样。

旋转变换可以通过几何变换算法来实现,也可以通过一些数学函数来实现。

缩放变换是指把图像变换为其原来尺寸的一半或两倍的大小。

它可以把图像放大,也可以把图像缩小。

它的实现也是由一对对应的坐标来实现的,每个坐标都有一个相对应的缩放尺寸,使图像发生改变。

错切变换是把图像偏移一定角度的变换。

它是由一对对应的坐标来实现的,每个坐标都有一个相对应的错切角度,使图像发生改变。

几何变换算法有助于改变图像的大小、方向和形状,从而使图像更加清晰、更加符合需求。

几何变换算法可以在多个不同的应用中使用,如图像处理、图形学、机器视觉、数学建模、计算机辅助设计等。

几何变换算法可以实现特定的任务,例如图像分割、标记和特征提取等,但是,它们还可以用于实现许多其他任务,如图像压缩、图像去噪、图像矫正和图像滤波等。

几何变换算法也可以用于三维重建和三维物体检测,可以使用几何变换来获取背景信息,可以使用几何变换来检测物体的轮廓,以及提取特征等。

此外,几何变换算法还可以用于自然语言处理、语音识别、计算机辅助诊断和计算机控制等领域。

几何变换算法在某些应用中可能会出现误差,如图像处理和图形学中的几何变换算法可能会导致图像的像素失真、噪声增加等问题。

为了改善几何变换算法的性能,可以采用多项式模型、插值方法、抗锯齿滤波和其他技术来改善变换模型。

总之,几何变换算法是一种广泛用于多个领域的数学算法,它可以用于改变图像的几何结构,有助于更好地实现特定的任务。

图像几何变换的原理及应用

图像几何变换的原理及应用

图像几何变换的原理及应用1. 引言图像几何变换是指通过对图像进行旋转、平移、缩放和仿射变换等操作,改变图像的位置、大小和形状,以达到特定的目的。

在计算机视觉、图像处理和计算机图形学等领域中,图像几何变换被广泛应用于图像的校正、增强、变换和特征提取等任务。

2. 原理图像几何变换的原理基于几何学的相关理论。

对于二维图像来说,可以通过变换矩阵对图像进行坐标变换,从而实现图像的几何变换。

以下是常见的图像几何变换操作及其原理:2.1 旋转旋转是指将图像按一定角度绕某个中心点进行旋转变换。

旋转操作可以通过变换矩阵实现,变换矩阵如下所示:cosθ -sinθ 0sinθ cosθ 00 0 1其中,θ表示旋转的角度。

通过对每个像素进行坐标变换,可以实现图像的旋转。

2.2 平移平移是指将图像沿着水平或垂直方向进行平移操作,即改变图像的位置。

平移操作可以通过变换矩阵实现,变换矩阵如下所示:1 0 tx0 1 ty0 0 1其中,tx和ty分别表示在x轴和y轴上的平移距离。

通过对每个像素进行坐标变换,可以实现图像的平移。

2.3 缩放缩放是指改变图像的尺寸大小。

缩放操作可以通过变换矩阵实现,变换矩阵如下所示:sx 0 00 sy 00 0 1其中,sx和sy分别表示在x轴和y轴上的缩放比例。

通过对每个像素进行坐标变换,并根据缩放比例进行采样,可以实现图像的缩放。

2.4 仿射变换仿射变换是指通过线性变换和平移来对图像进行变换。

仿射变换可以通过变换矩阵实现,变换矩阵如下所示:a11 a12 txa21 a22 ty0 0 1其中,a11、a12、a21和a22分别表示仿射变换的线性变换部分,tx和ty分别表示平移部分。

通过对每个像素进行坐标变换,并根据变换矩阵进行计算,可以实现图像的仿射变换。

3. 应用图像几何变换在各个领域中有着广泛的应用,以下列举了一些常见的应用场景:3.1 图像校正在图像处理中,由于各种因素的影响,例如相机畸变、透视变换等,图像可能会出现失真或畸变。

10、图像的几何变换——平移、镜像、缩放、旋转、仿射变换

10、图像的几何变换——平移、镜像、缩放、旋转、仿射变换

10、图像的⼏何变换——平移、镜像、缩放、旋转、仿射变换1.⼏何变换的基本概念 图像⼏何变换⼜称为图像空间变换,它将⼀副图像中的坐标位置映射到另⼀幅图像中的新坐标位置。

我们学习⼏何变换就是确定这种空间映射关系,以及映射过程中的变化参数。

图像的⼏何变换改变了像素的空间位置,建⽴⼀种原图像像素与变换后图像像素之间的映射关系,通过这种映射关系能够实现下⾯两种计算:原图像任意像素计算该像素在变换后图像的坐标位置变换后图像的任意像素在原图像的坐标位置对于第⼀种计算,只要给出原图像上的任意像素坐标,都能通过对应的映射关系获得到该像素在变换后图像的坐标位置。

将这种输⼊图像坐标映射到输出的过程称为“向前映射”。

反过来,知道任意变换后图像上的像素坐标,计算其在原图像的像素坐标,将输出图像映射到输⼊的过程称为“向后映射”。

但是,在使⽤向前映射处理⼏何变换时却有⼀些不⾜,通常会产⽣两个问题:映射不完全,映射重叠映射不完全输⼊图像的像素总数⼩于输出图像,这样输出图像中的⼀些像素找不到在原图像中的映射。

上图只有(0,0),(0,2),(2,0),(2,2)四个坐标根据映射关系在原图像中找到了相对应的像素,其余的12个坐标没有有效值。

映射重叠根据映射关系,输⼊图像的多个像素映射到输出图像的同⼀个像素上。

上图左上⾓的四个像素(0,0),(0,1),(1,0),(1,1)都会映射到输出图像的(0,0)上,那么(0,0)究竟取那个像素值呢?要解决上述两个问题可以使⽤“向后映射”,使⽤输出图像的坐标反过来推算改坐标对应于原图像中的坐标位置。

这样,输出图像的每个像素都可以通过映射关系在原图像找到唯⼀对应的像素,⽽不会出现映射不完全和映射重叠。

所以,⼀般使⽤向后映射来处理图像的⼏何变换。

从上⾯也可以看出,向前映射之所以会出现问题,主要是由于图像像素的总数发⽣了变化,也就是图像的⼤⼩改变了。

在⼀些图像⼤⼩不会发⽣变化的变换中,向前映射还是很有效的。

图像的变换与透视调整

图像的变换与透视调整

图像的变换与透视调整图像处理软件中的PhotoShop是一款功能强大的工具,可以帮助用户对图像进行各种操作和调整。

本文将介绍图像的变换与透视调整两种常用的技巧。

首先,我们来讨论图像的变换。

图像变换是指对图像进行尺寸、位置和形状上的调整。

在PhotoShop中,有几种常见的图像变换方式。

第一种是缩放。

通过调整图像的大小,可以使图像更适合特定的输出尺寸或显示设备。

在PhotoShop中,可以选择“图像”菜单中的“图像大小”选项来进行缩放操作。

在弹出的窗口中,可以手动输入所需的尺寸,也可以选择保持宽高比或锁定像素。

此外,还可以选择插值算法来优化图像的质量。

第二种是旋转。

旋转可以改变图像的方向,使其更符合用户的需求。

在PhotoShop中,可以通过选择“编辑”菜单中的“转换”选项来进行旋转操作。

在弹出的对话框中,可以选择旋转的角度和参考点。

此外,还可以选择是否保持图像的纵横比,以及是否裁剪边缘。

第三种是翻转。

翻转可以使图像的左右或上下位置颠倒,从而产生不同的视觉效果。

在PhotoShop中,可以选择“编辑”菜单中的“转换”选项,然后选择“翻转水平”或“翻转垂直”来完成翻转操作。

另外,透视调整也是一种常用的图像处理技巧。

透视调整可以使平面图像变得更加立体和逼真。

在PhotoShop中,有几种方法可以实现透视调整。

第一种是使用透视工具。

选择“编辑”菜单中的“变换”选项,然后选择“透视”工具。

在图像上点击并拖动四个角点,以便将图像调整为所需的透视效果。

可以按住Shift键来限制角度的变化。

完成调整后,按下回车键或单击外部空白处来应用透视调整。

第二种是使用仿射变换工具。

选择“编辑”菜单中的“变换”选项,然后选择“仿射变换”工具。

在图像上点击并拖动所需的控制点,以便将图像调整为所需的透视效果。

可以按住Shift键来保持比例。

完成调整后,按下回车键或单击外部空白处来应用仿射变换。

通过上述的图像变换和透视调整技巧,用户可以对图像进行灵活和多样化的处理。

高中函数图像变换总结

高中函数图像变换总结

高中函数图像变换总结高中数学是高中阶段的一门重要学科,其中函数图像变换是数学中非常基础和重要的内容之一。

函数图像变换是指通过一系列变换操作来改变函数的图像的位置、形状、方向等特征。

在高中教学中,函数图像变换是一个重要的考察内容,也是学生需要掌握的重要技能之一。

下面我们来总结一下高中函数图像变换的相关知识。

首先,高中函数图像变换主要涉及到平移、伸缩、翻转和对称等变换操作。

其中,平移是函数图像在平面上沿着 x 轴和 y 轴方向移动的变换操作。

通过平移操作,可以改变函数图像的位置。

平移操作可以用公式 y=f(x-a)+b 来表示,其中 (a, b) 为平移的向量。

当 a>0 时,函数图像向右平移,反之向左平移;当 b>0 时,函数图像向上平移,反之向下平移。

其次,伸缩是函数图像在 x 轴和 y 轴方向上进行拉伸或收缩的变换操作。

通过伸缩操作,可以改变函数图像的形状。

伸缩操作可以用公式 y=a*f(kx) 来表示,其中 a 表示纵向伸缩因子,k 表示横向伸缩因子。

当 a>1 时,函数图像纵向拉伸;当 0<a<1 时,函数图像纵向收缩;当 k>1 时,函数图像横向收缩;当0<k<1 时,函数图像横向拉伸。

再次,翻转是函数图像沿着 x 轴和 y 轴进行翻转的变换操作。

通过翻转操作,可以改变函数图像的方向。

翻转操作可以用公式 y=f(-x) 来表示。

当 x 取正值时,函数图像在 y 轴左侧;当x 取负值时,函数图像在 y 轴右侧;当 x 取正值时,函数图像在 x 轴下方;当 x 取负值时,函数图像在 x 轴上方。

最后,对称是函数图像关于某个轴或某个点对称的变换操作。

通过对称操作,可以改变函数图像的形状和位置。

常见的对称操作有关于 x 轴、y 轴和原点的对称。

关于 x 轴的对称操作可以用公式 y=-f(x) 来表示;关于 y 轴的对称操作可以用公式y=f(-x) 来表示;关于原点的对称操作可以用公式 y=-f(-x) 来表示。

变换图像的操作方法

变换图像的操作方法

变换图像的操作方法变换图像有许多不同的操作方法,可以通过修改图像的几何属性、颜色属性或者根据特定的应用进行变换。

下面将介绍几种常用的图像变换操作方法。

1. 几何变换几何变换是通过对图像的几何属性进行修改,改变图像的位置、形状、大小和方向。

常见的几何变换包括平移、旋转、缩放和剪裁等。

- 平移:平移是将图像沿着水平和垂直方向移动一定的距离。

平移操作可以通过对图像每个像素坐标进行加法运算来实现。

例如,将一个图像向右平移10个像素,就可以将图像的x坐标都加上10。

- 旋转:旋转是将图像围绕一个中心点进行旋转一定的角度。

旋转操作可以通过对图像每个像素坐标进行旋转矩阵运算来实现。

例如,将一个图像顺时针旋转30,就可以将图像的x和y坐标都根据旋转矩阵进行变换。

- 缩放:缩放是改变图像的大小。

缩放操作可以通过对图像的每个像素进行插值运算来实现。

常用的插值方法有最近邻插值、双线性插值和双三次插值等。

- 剪裁:剪裁是将图像从一个大的尺寸截取到一个较小的区域。

剪裁操作可以通过对图像的像素坐标进行判断,只保留指定区域内的像素值。

2. 色彩变换色彩变换是通过修改图像的色彩属性来变换图像。

常见的色彩变换包括调整亮度、对比度、饱和度和色调等。

- 调整亮度:调整图像的亮度可以通过对每个像素的RGB值进行加减操作来实现。

增加亮度时,可以将RGB值都加上一个较大的常数;减小亮度时,可以将RGB值都减去一个较大的常数。

- 调整对比度:调整图像的对比度可以通过拉伸图像的灰度值范围来实现。

可以使用直方图均衡化等方法将图像的灰度值分布拉伸到更广的范围。

- 调整饱和度:调整图像的饱和度可以通过修改图像的色彩空间来实现。

可以将RGB空间转换为HSV空间,然后修改饱和度分量的值,再将HSV空间转换回RGB空间。

- 调整色调:调整图像的色调可以通过修改图像的色相值来实现。

可以将RGB 空间转换为HSV空间,然后修改色调分量的值,再将HSV空间转换回RGB空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像位置变换图像的位置变换是指图像的大小和形状不发生变换,只是将图像进行平移,镜像和旋转的变换等,主要用于图像目标识别的目标配准。

一、图像旋转变换旋转。

一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。

旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。

图像的旋转变换也可以用矩阵变换来表示。

设点),(000y x P 逆时针旋转θ角后的对应点为),(y x P 。

那么,旋转前后点),(000y x P 、),(y x P 的坐标分别是:⎩⎨⎧==ααcos cos 00r y r x ⎩⎨⎧+=+=+=-=-=+=θθθαθαθαθθθαθαθαcos sin sin cos cos sin )sin(sin cos sin sin cos cos )cos(0000y x r r r y y x r r r x 写成矩阵表达式为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11000cos sin 0sin cos 100y x y x θθθθ 其逆运算为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1100cos sin 0sin cos 100y x y x θθθθ(3-9) 利用上述方法进行图像旋转时需要注意如下两点:(1)图像旋转之前,为了避免信息的丢失,一定要有坐标平移。

(2)图像旋转之后,会出现许多空洞点。

对这些空洞点必须进行填充处理,否则画面效果不好,一般也称这种操作为插值处理。

以上所讨论的旋转是绕坐标轴原点(0,0)进行的。

如果图像旋转是绕一个指定点(a,b)旋转,则先要将坐标系平移到该点,再进行旋转,然后将旋转后的图象平移回原来的坐标原点,这实际上是图像的复合变换。

如将一幅图像绕点(a,b)逆时针旋转θ度,首先将原点平移到(a,b),即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1001001b a A 然后旋转⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=000cos sin 0sin cos θθθθB 然后再平移回来⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1001001b a C 综上所述,变换矩阵为A B C T ⋅⋅=。

在旋转变换的Callback 函数下添加代码如下:function xuanzhuanbianhuan_Callback(hObject, eventdata, handles) % hObject handle to xuanzhuanbianhuan (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes_2); prompt={'Input Angle'}; title='Input Angle'; def={'0'};x=inputdlg(prompt,title,2,def); y=str2num(char(x));img_1=getappdata(handles.figure_by_me,'img_1'); img_2=imrotate(img_1,y,'nearest'); imshow(uint8(img_2));二、图像平移变换平移变换是几何变换中最简单的一种变换,是将一幅图像上的所有点都按照给定的偏移量在水平方向沿x 轴、在垂直方向沿y 轴移动。

设图像中点P 0(x 0,y 0)进行平移后已到P(x,y),其中x 方向的平移量为Δx,y 方向的平移量为Δy 。

那么,点P(x,y)的坐标为:x=x 0+Δxy=y 0+Δy利用齐次坐标系,变换前后图像上的点P 0(x0,y0)和P(x,y)之间的关系可以用如下的矩阵变换表示为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1x y =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆∆10010x 01y ×⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1x 00y 利用坐标变换原理我们进行编程。

首先要设计一个GUI 界面方便我们进行图像处理。

首先读入图片,并将其显示在第一个坐标轴上,处理后的图像显示在第二个坐标轴上,形成对比。

Matlab 中读入函数imread,打开对话框函数为uigetfile 。

在打开菜单的Callback函数下添加函数激活打开命令。

function dakai_Callback(hObject, eventdata, handles)[]=uigetfile(...{'*.bmp;*.png;*.jpeg;*.jpg','Image Files(*.bmp,*.jpg,*.png,*.jpeg)';...'*.*', 'All Files(*.*)'},...'Pick an image');if isequal()||isequal(pathname,0)return;endfpath=[pathname ];img_1=imread(fpath);imshow(img_1);title(' ');setappdata(handles.figure_by_me,'img_1',img_1);获得图片后,接下来就是对其进行处理,以实现图像几何变换菜单下的平移变换。

在平移变换的Callback函数下添加如下代码:function pingyibianhuan_Callback(hObject, eventdata, handles)% hObject handle to pingyibianhuan (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)prompt={'X(0-166)','Y(0-166)'};title='pingyibianhuan'defaults={'0','0'};xy_cells=str2num(char(inputdlg(prompt,title,1,defaults)));if isempty(xy_cells)msgbox('为您执行平移操作,'提示,'help');elsex=xy_cells(1);y=xy_cells(2);axes(handles.axes_2);img_1=getappdata(handles.figure_by_me,'img_1');img_2=double(img_1);img_2_M=zeros(size(img_2));H=size(img_2);move_x=x;move_y=y;if(size(img_2,3)~=1)img_2_M(round(move_x)+1:round(H(1)),round(move_y)+1:round(H(2)),1:roun d(H(3)))=img_2(1:round(H(1))-round(move_x),1:round(H(2))-round(move_y),1 :round(H(3)));%此处利用矩阵直接进行图像平移操作,其中move_x为在x方向平移尺度大小,move_y为在y轴方向平移的尺度大小H(1)为图像的行数,H(2)为图像的列数,H(3)为图像维数,函数round为取整操作。

elseimg_2_M(round(move_x)+1:round(H(1)),round(move_y)+1:round(H(2)))=i mg_2(1:round(H(1))-round(move_x),1:round(H(2))-round(move_y));%此处为利用矩阵直接进行灰度图像的平移的操作,其中move_x为在x方向平移尺度的大小,move_y为在y轴方向平移的尺度大小,H(1)为图像的行数,H(2)为图像的列数,函数round为取整操作。

endimshow(uint8(img_2_M));end;当选择“平移变换”菜单时,则弹出如图所示对画框。

设定水平平移30个像素,垂直平移65个像素,单击OK,处理结果如下:三、图像镜像变换1、图像水平镜像图像的水平镜像操作是将图像的左半部分和又半部分以图像垂直中线为中心进行镜像对换。

设点P 0(x 0,y 0)进行镜像后的对应点为P(x,y),图像高度为f H ,宽度为f W ,原图像中P 0(x 0,y 0)经过水平镜像后坐标将变为(f W -x 0,y 0),其代数表达式为:x=f W -x 0y=y 0 矩阵表达式为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1x y =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010f 01-W ×⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1x 00y在水平镜像的Callback 函数下添加如下代码:function shuipingjingxiang_Callback(hObject, eventdata, handles) % hObject handle to shuipingjingxiang (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes_2);img_1=getappdata(handles.figure_by_me,'img_1'); img_1=double(img_1); H=size(img_1);img_2(1:H(1,1),1:H(1,2))=img_1(1:H(1,1),H(1,2):-1:1); imshow(uint8(img_2));点击菜单栏中图像几何处理中的平移变换,结果如下图所示:2、图像垂直镜像图像的垂直镜像操作是将图像上半部分和下半部分以图像水平中轴线为中心进行的镜像变换。

设点P 0(x 0,y 0)进行镜像后的对应点为P(x,y),图像高度为f H ,宽度为f W ,,原图像中P 0(x 0,y 0)经过垂直镜像后坐标将变为(x 0,f H -y 0),其代数表达式为:x=x0 y=f H -y 0矩阵表达式为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1x y =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100f 1-0001H ×⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1x 00y 在图像垂直镜像的Callback 函数下添加代码如下:function chuizhijingxaing_Callback(hObject, eventdata, handles) % hObject handle to Untitled_3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) axes(handles.axes_2);img_1=getappdata(handles.figure_by_me,'img_1');img_1=double(img_1);H=size(img_1);img_2(1:H(1,1),1:H(1,2))=img_1(H(1,1):-1:1,1:H(1,2));imshow(uint8(img_2));点击菜单栏图像几何处理中的垂直镜像,结果如下图所示:3、图像对角镜像图像对角镜像是将图像以图像水平中轴线和垂直中轴线的交点为中心进行镜像对换。

相关文档
最新文档