MC3406芯片DC_DC转换升压电路
mc34063升压电路图大全(十款模拟电路设计原理图详解)
mc34063升压电路图大全(十款模拟电路设计原理图详解)MC34063DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。
它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。
特点:能在3.0-40V的输入电压下工作短路电流限制低静态电流输出开关电流可达1.5A(无外接三极管)输出电压可调工作振荡频率从100HZ到100KHZMC34063电路原理:振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电以产生振荡波形。
充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。
与门的C输入端在振荡器对外充电时为高电平,D输入端在比较器的输入电平低于阈值电平时为高电平。
当C和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。
电流限制通过检测连接在VCC和5脚之间电阻上的压降来完成功能。
当检测到电阻上的电压降接近超过300mV时,电流限制电路开始工作,这时通过CT管脚(3脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。
MC34063引脚图及原理框图MC34063引脚功能1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于。
MC34063应用之升压电路
MC34063运用之升压电路MC34063升压运用时,一般设定是输入输出电压的绝对值之和要低于40V,不然工作不稳固. 但是现实却看到许多输出50V.60V的电路,机能应当也是可以接收的.看电路应当是Q1的耐压不敷,采取扩流的方法同时把电感移到1脚和输出之间后,见计划五,升压的电压就可以不受40V的限制了,现实测试成果也很幻想.升压电路一这是个很尺度的升压电路,PCB上斟酌了两种芯片的装配方法,运用起来比较便利.MC34063的升压电路图MC34063的升压电路PCB图MC34063的升压电路元件安插示意图MC????????的升压电路什物图采取SMD封装芯片的什物图升压电路的元件数值选择可以经由过程盘算得到,作为参考也很便利,下面是衔接:http??gcdigitwcomProgramMC????????MC????????A Augustdesign Augusttoolhtm原文衔接:http??gcdigitwcomnew_page_ htmMC34063的升压电路图MC34063的升压电路设计草图MC34063的升压电路布线示意图MC34063的升压电路什物图升压电路三MC34063的升压电路图MC34063的升压电路PCB参考MC34063的升压电路什物图升压电路四:MC34063的升压电路图MC34063的升压电路什物图1MC34063的升压电路什物图2升压电路五:MC34063的升压电路成品机通电试验MC34063的升压电路线路图元件清单数目型号电路图标识1100µF/100V C1 122µF/100V C2 1220µF/25V C3 13,3nF C4 10,1µF C5 11N4148D1 1BY233D2 1ZPY100V D3 1Akku 6V 1,3Ah Panasonic G1 1MC34063DIL IC1 1Jumper 3polig JP11Meder dual Inline relayDIP052A7221LK11560µH realm ELT 09P560µL11470µH realm ELT 09P470µL2 1场效应管 IRF830Q1 11k G 1 1100R2 21R3, R4 1330R5 1100k R6 1Trimmer 50k R7 12k R8 1Safety device 1A/T SI1 1BC639T1 16fach clamp 5mm raster X1 (x5)1Housing Teko 373 106x50x26mm Realm ELT TEKO373MC34063的升压什物图1MC34063的升压电路什物图2MC34063的升压电路PCB元件安插MC34063的升压电路PCB铜箔面MC34063的升压电路的扩大运用,增长了负压输出←↑→↓。
MC34063升压、降压、负压
MC34063引脚图及原理框图
0 1 截止 导通 0 1 0 1 0 1 1
低于1.25V 高于1.25V
设
R2 R1 1.25 uo uo 1 1.25 R1 R2 R1
参数设计
ton Vout VF Vout 5 1 toff Vin (min) Vsat Vout Vin (min) Vout 25 5 4 1 6 f 20 KHz ton 10 10 S ton toff
MC34063 DC/DC变换器控制电 路介绍
一、MC34063 电路简介
MC34063是一单片双极型线性集成电路,专用于直 流-直流变换器控制部分。片内包含有温度补偿带隙基准 源、一个占空比周期控制振荡器、驱动器和大电流输出开 关,能输出1.5A的开关电流。它能使用最少的外接元件构 成开关式升压变换器、降压式变换器和电源反向器。 特点: 能在3.0-40V的输入电压下工作 短路电流限制 低静态电流 输出开关电流可达1.5A(无外接三极管) 输出电压可调 工作振荡频率范围为100HZ到100KHZ 可构成升压、降压或反向电源变换器
4、MC34063反向变换器电路
I out (max) 0.45 A I C ( switch ) 2 I out (max) 0.9 A CT 4 105 ton 400 1012 F 400 pF
参数设计
RSC 0.3 I C ( swatch ) 0.33
L(min)
Vin (min) Vsat Vout I C ( swatch )
6
ton
Vin (min) Vout I C ( swatch )
ton
以MC34063为例概述DC-DC转换控制电路测试方法
以MC34063为例概述DC/DC转换控制电路测试方法摘要:目前,DC/DC转换器广泛应用于远程及数据通信?计算机?办公自动化设备?工业仪器仪表?军事?航天等领域,涉及到国民经济的各行各业?文章以其中有一定代表性的MC34063电路为例,扼要介绍其电特性和用其构成的升压电路的测试方法,并解析其测试原理和升压电路设计中的注意事项,对DC/DC转换器的分析测试和量产测试提供一些借鉴?1 引言目前,DC/DC转换器广泛应用于各行各业?其中,MC34063电路本身包含了DC/DC变换器所需要的主要功能,是一种双极型线性集成单片控制电路,由于价格便宜,开关峰值电流达1.5 A,电路简单且效率满足一般要求,所以广泛用于以微处理器(MPU)或单片机(MCU)为基础的系统里?本文就以MC34063电路为例,探讨一下DC/DC转换电路的测试方法?2 MC34063电路简介MC34063电路由具有温度自动补偿功能的基准电压发生器?比较器?占空比可控的振荡器,R-S触发器和大电流输出开关电路等组成?该器件可用于升压变换器?降压变换器?反向器的控制核心,由它构成的DC/DC变换器使用简单可靠,仅用少量的外部元器件?主要特性:输入电压范围为2.5~40 V,输出电压可调范围为1.25~40 V,输出电流可达1.5 A,工作频率最高可达180 kHz,低静态电流,短路电流限制,可实现升压或降压电源变换器?基本结构及引脚功能如图1:Pin1:开关管T1集电极引出端;Pin2:开关管T1发射极引出端;Pin3:定时电容CT接线端,调节CT可使工作频率在100~100 kHz范围内变化;Pin4:电源地;Pin5:电压比较器反相输入端,同时也是输出电压取样端,使用时应外接两个精度不低于1%的精密电阻;Pin6:电源端; Pin7:负载峰值电流(Ipk)取样端;6?7脚之间电压超过300 mV时,芯片将启动内部过流保护功能;Pin8:驱动管T2集电极引出端?工作原理:振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断地充电和放电,以产生振荡波形?充电和放电电流都是恒定的,所以振荡频率仅取决于外接定时电容的容量?与门的C输入端在振荡器对外充电时为高电平;D输入端在比较器的输入电平低于阈值电平时为高电平?当C和D输入端都变成高电平时,触发器被置为高电平,输出开关管导通?反之,当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态?电流限制检测端Pin7通过检测连接在VCC和Pin7之间电阻上的压降来完成功能?当检测到电阻上的电压降接近超过300 mV时,电流限制电路开始工作?这时通过CT 管脚(Pin3)对定时电容进行快速充电,以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长?3 MC34063电路电参数测试说明对该电路的测试包含有振荡器部分?输出开关部分?比较器部分和器件总体,以及升压等应用部分进行测试?下面就各部分主要参数的测试方法做说明?3.1 振荡器部分对振荡器部分参数的测试包括振荡器频率(fosc)? 充电电流(Ichg)?放电电流(Idischg)?放电充电电流比(Idischg/Ichg)?电流限制检测电压(Vipk);按测试条件施加电压,输入定时电容会产生如图2的充放电三角波形,据此波形可知振荡器频率,根据公式I=CV/t,可计算出其充放电电流,置VCC=Vpin7=5 V,由图2可知,定时电容充电过程明显大于放电过程,往下微调VPin7电压,直到电流限制电路开始工作,这时通过CT管脚(Pin3)对定时电容进行快速充电,以减少充电时间和输出开关管的导通时间,结果使得放电时间和输出开关管的关闭时间延长,当充电时间和放电时间相等时,VCC和Vpin7的压差即为电流限制检测电压Vipk?生如图2的充放电三角波形,据此波形可知振荡器频率,根据公式I=CV/t,可计算出其充放电电流,置VCC=Vpin7=5 V,由图2可知,定时电容充电过程明显大于放电过程,往下微调VPin7电压,直到电流限制电路开始工作,这时通过CT管脚(Pin3)对定时电容进行快速充电,以减少充电时间和输出开关管的导通时间,结果使得放电时间和输出开关管的关闭时间延长,当充电时间和放电时间相等时,VCC和Vpin7的压差即为电流限制检测电压Vipk?3.2 输出开关部分为了满足开关峰值电流1.5 A的要求,通常采用达林顿接法?由Pin5到T1管的CE两极输出,涉及振荡器?与门?R-S触发器,如果要T1管处于导通状态,振荡器输出信号就必须保持在逻辑1的状态,图3为达林顿两种接法的典型值?3.3 比较器部分当Pin5输入电压低于内部Vref时,Pin2会输出24~42 kHz的方波,VOL=0 V,VOH为VCC/2; Pin5输入电压高于内部Vref时,Pin2输出为0 V?由此得出Vref值即为Vth?本测试连同振荡器充放电频率一同检测完毕?Vth电参数表制定规格为1.21~1.29 V(工作温度为0~70 ℃),量产测试通常为常温,考虑到测试中的误差,可以将其规格定为1.225~1.275 V?。
MC34063升压芯片中文资料
|MC34063 中文资料PDF及MC34063应用:2007年09月16日星期日下午12:281. MC34063DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。
它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。
特点:*能在3.0-40V的输入电压下工作*短路电流限制*低静态电流*输出开关电流可达1.5A(无外接三极管)*输出电压可调*工作振荡频率从100HZ到100KHZ2.MC34063引脚图及原理框图3 MC34063应用电路图:3.1 MC34063大电流降压变换器电路3.2 MC34063大电流升压变换器电路3.4 MC34063降压变换器电路3.5 MC34063升压变换器电路mc34063中文资料应用原理资料2009-06-09 17:45MC34063A(MC33063)芯片器件简介该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。
MC34063集成电路主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流短路电流限制可实现升压或降压电源变换器MC34063的基本结构及引脚图功能:1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。
mc34063升压7.2v到12v电路原理及参数
MC34063是一個低價位的DC-DC交換式轉換IC,使用上非常方便,除了穩壓、降壓、升壓,甚至還可以轉成負向電壓。
雖然它的效率還不算很高,但電路簡單、成本低廉、溫升低,所以被廣泛應用在許多電源轉換用途上。
由於在站上有介紹過這個IC,並在站上提供了線上計算程式,所以有關低電流的升壓、降壓、反電壓變得非常方便,而且經過多次的運用,效果很滿意。
我最常用的方式是用來把7.2V或7.4V的鋰電升壓成12V以上的電壓來提供電路電源,由於有些同好多次來信問及製作時發生的一些問題,往往發生在接線錯誤、使用錯誤零件等…..為了減少製作時發生的錯誤,特把升壓電路的電路板Layout出來分享大家。
下圖為MC34063的升壓電路圖:零件參數及計算的方式各位可以查一下它的Data sheet,為了方便使用站上的計算程式來作示範。
比如設定為輸入7.4V;輸出12.V,輸出電流400mA,蓮波電壓30mA,振盪頻率為30Khz,依上述的值在線上計算網頁上填到相關的欄位,然後點選計算鈕,程式就會自動的把相關的零件值算出,如下圖:※有時你設定的輸出電流太大,致使Ipk大於1500mA時,程式會提醒你,超出MC34063的最大電流。
依照出現的答案套入電路中的電阻、電容值就OK了。
但依網友失敗的經驗中得知,大部的問題是:1. 用錯電感,由於需較大的電流,所以電感不要使用色碼電感,應使用電流較大的線繞鉄粉芯電感。
2. 二極體用錯,不要使用一般的1N4001~4007,要使用速度較快的schottky(簫基特二極體),如1N 5820,1N 5819,1N 5818等…3. Rsc由於電阻較低,也許較不好找,但不能不用,找不到時還可用並的方式達成〈差一點數值沒關係,比如我就常用0.5歐姆並聯0.3歐姆。
MC34063应用电路图大全(升压电路/降压电路)
MC34063应用电路图大全(升压电路/降压电路)描述MC34063是一个单片集成电路,是一个包含了DC/DC变换器的控制电路。
该集成电路的主要构成部分是具有温度补偿的电压源、占空比可控的振荡器、驱动器、比较器、大电流输出开关电路和R-S触发器。
MC34063可用极少的开关元器件,构成升压变换开关、降压变换开关和电压反向电路,这种开关电源相对线性稳压电源来说,效率较高,而且当输入输出电压降很大时,效率不会降低,电源也不需要大的散热器,体积较小,使得其应用范围非常广泛,主要应用于以微处理器或单片机为基础的系统里。
mc34063应用电路图(一):降压变换电源原理图如下图所示是用芯片MC34063制作的+25/+5V降压变换电源原理图。
该降压电路的工作过程如下:1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。
其中,输出电压U。
=1.25(1+R2/R1)由公式可知输出电压。
仅与R1、R2数值有关,因1.25V为基准电压,恒定不变。
若R1、R2阻值稳定,U。
亦稳定。
2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。
当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co充电以提高U。
,达到自动控制U。
稳定的作用。
3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门被封锁,Q端为“0”状态(低电平),T2截止,T1亦截止。
4.振荡器的Ipk输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端。
5.脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。
mc34063应用电路图(二):MC34063升压电路MC34063组成的降压电路原理如图8,当芯片内开关管(T1)导通时,电源经取样电阻Rsc、电感L1、MC34063的1脚和2脚接地,此时电感L1开始存储能量,而由C0对负载提供能量。
MC34063升压电路.pdf
1. MC34063 DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。
它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。
特点:*能在3.0-40V的输入电压下工作*短路电流限制*低静态电流*输出开关电流可达1.5A(无外接三极管)*输出电压可调*工作振荡频率从100HZ到100KHZMC34063 电路原理振荡器通过恒流源对外接在C T管脚(3 脚)上的定时电容不断地充电和放电以产生振荡波形。
充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。
与门的C 输入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。
当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。
电流限制通过检测连接在V CC和5 脚之间电阻上的压降来完成功能。
当检测到电阻上的电压降接近超过300 mV 时,电流限制电路开始工作,这时通过C T管脚(3 脚) 对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。
2.MC34063引脚图及原理框图3 MC34063应用电路图:3.1 MC34063大电流降压变换器电路3.2 MC34063大电流升压变换器电路3.3 MC34063反向变换器电路3.4 MC34063降压变换器电路3.5 MC34063升压变换器电路MC34063集成电路主要特性:输入电压范围:2.5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达180kHz低静态电流短路电流限制可实现升压或降压电源变换器MC34063的基本结构及引脚图功能1脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。
MC34063升压电路.pptx
学海无涯
MC34063 的基本结构及引脚图功能 1 脚:开关管 T1 集电极引出端; 2 脚:开关管 T1 发射极引出端; 3 脚:定时电容 ct 接线端;调节 ct 可使工作频率在 100—100kHz 范围内变化; 4 脚:电源地; 5 脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低 于 1%的精密电阻; 6 脚:电源端; 7 脚:负载峰值电流(Ipk)取样端;6,7 脚之间电压超过 300mV 时,芯片将启动内部过 流保护功能; 8脚:驱动管 T2 集电极引出端。 MC34063 升压电路:从 5V 升到 12V 图四:MC34063 大电流降压变换器电路
2.MC34063 引脚图及原理框图
3 MC34063 应用电路图: 3.1 MC063 大电流升压变换器电路 3.3 MC34063 反向变换器电路 3.4 MC34063 降压变换器电路
学海无 涯
3.5 MC34063 升压变换器电路
MC34063 电路原理 振荡器通过恒流源对外接在 CT 管脚(3 脚)上的定时电容不断地充电和放电以产生振
荡波形。充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。与门的 C 输 入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电 平。当 C 和 D 输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器 在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。电流限 制通过检测连接在VCC 和 5 脚之间电阻上的压降来完成功能。当检测到电阻上的电压降接 近超过 300 mV 时,电流限制电路开始工作,这时通过 CT 管脚(3 脚) 对定时电容进行快速 充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。
MC34063芯片附送部分经典电路
都是来源于网络的治疗,整理整理,与大家分享学习,我想还是免费的好。
34063由于价格便宜,开关峰值电流达1.5A,电路简单且效率满足一般要求,所以得到广泛使用。
1. MC34063 DC/DC变换器控制电路简介:MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A的开关电流。
它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。
特点:*能在3.0-40V的输入电压下工作*短路电流限制*低静态电流*输出开关电流可达1.5A(无外接三极管)*输出电压可调*工作振荡频率从100HZ到100KHZ2.MC34063引脚图及原理框图MC34063 电路原理振荡器通过恒流源对外接在CT 管脚(3 脚)上的定时电容不断地充电和放电以产生振荡波形。
充电和放电电流都是恒定的,振荡频率仅取决于外接定时电容的容量。
与门的C 输入端在振荡器对外充电时为高电平,D 输入端在比较器的输入电平低于阈值电平时为高电平。
当C 和D输入端都变成高电平时触发器被置为高电平,输出开关管导通;反之当振荡器在放电期间,C 输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。
电流限制通过检测连接在VCC(即6脚)和7 脚之间采样电阻(Rsc)上的压降来完成,当检测到电阻上的电压降接近超过300 mV 时,电流限制电路开始工作,这时通过CT 管脚(3 脚)对定时电容进行快速充电以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。
线性稳压电源效率低,所以通常不适合于大电流或输入、输出电压相差大的情况。
开关电源的效率相对较高,而且效率不随输入电压的升高而降低,电源通常不需要大散热器,体积较小,因此在很多应用场合成为必然之选。
开关电源按转换方式可分为斩波型、变换器型和电荷泵式,按开关方式可分为软开关和硬开关。
MC34063 DCDC变换器特点及应用.
MC34063 DC/DC变换器特点及典型应用MC34063是一单片双极型线性集成电路,专用于直流-直流变换器控制部分。
片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器、驱动器和大电流输出开关,能输出1.5A 的开关电流。
它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。
MC34063的封装形式为塑料双列8引线直插式。
特点:能在3.0-40V的输入电压下工作短路电流限制低静态dianliu输出开关电流可达1.5A(无外接三极管)输出电压可调工作振荡频率从100Hz至100KHz可构成升压、降压或反向电源变换器内部框图电路原理振荡器通过恒流源对外接在CT管脚(3脚)上的定时电容不断的充电和放电,以产生振荡波形。
充电和放电电流都是恒定的,所以振荡频率仅取决于外接定时电容的容量。
与门的C输入端在振荡器对外充电时为高电平,D输入端在比较器的输入电平低于阈值电平时为高电平。
当C和D输入端都变成高电平时,触发器被置为高电平,输出开关管导通,反之,当振荡器在放电期间,C输入端为低电平,触发器被复位,使得输出开关管处于关闭状态。
电流限制SI检测端(5脚)通过检测连接在V+和5脚之间的电阻上的压降来完成功能。
当检测到电阻上的电压接近超过300mV时,电流限制电流开始工作。
这时通过CT管脚(3脚)对定时电容进行快速充电,以减少充电时间和输出开关管的导通时间,结果是使得输出开关管的关闭时间延长。
极限参数典型应用电路升压变换器降压变换器升压变换器(大电流)降压变换器(大电流)反向变换器低成本DC/DC变换器芯片MC34063介绍MC34063 是一块单片DC/DC 变换控制电路,内含直流到直流变换器所要求的主要功能。
这些功能有:带有温度补偿的基准电压源、比较器、带激励电流限制的占空比可控振荡器、驱动器和大电流输出开关等。
该电路是专为降压、升压和倒相应用所设计的,应用时外围元器件少。
特点3.0~40V 输入工作电压低备用电流电流限止输出开关电流1.5A 100KHz工作频率基准精度2% 封装形式:DIP8方框图和引出端功能引出端序号符号功能引出端序号符号功能1 CSW 开关集电极 5 INCOM 比较器反相输入2 ESW 开关发射极 6 VCC 电源3 GT 定时电容器 7 Ipk 电流限止传感4 GND 地 8 CDR 驱动器集电极极限参数(Tamb=25℃)参数符号数值单位电源电压 Vcc 40 V比较器输入电源范围 Vi(comp) -0.3~+40 V开关集电极电压 Vc(sw) 40 V开关发射极电压 Ve(sw) 40 V开关C-E 电压 Vce(sw) 40 V驱动器集电极电压 Vc(dr) 40 V驱动器集电极电流 Ic -55~100 mA开关电流 Isw 1.5 A功耗 PD 1.25 W工作结温 Tj 150 ℃工作环境温度 Tamb 0~70 ℃贮存温度 Tstg -65~150 ℃电特性(除非特别说明,Tamb=25℃, Vcc=5V)参数名称符号测试条件最小典型最大单位振荡器频率 fOSC Vpin=0V, CT=1.0 24 33 42 kHz充电电流 Ichq Vpin5=5~40V 24 35 42 μA放电电流 Idischg Vpin5=5~40V 140 190 260 μA放电、充电电流之比 K V7=Vcc 5.2 6.1 7.5电流限止传感电压 VIPK 250 300 350 mV输出开关饱和电压 Vce(sat) 达林顿联接Isw=1.0A Pin1 to Pin8 1.0 1.3 V 饱和电压Vce(sat) Isw=1.0A Rpin8=82Ω 0.45 0.7 V直流电压增益 hFE Isw=1.0A, Vce=5.0V 50 120集电极OFF 状态电流 Ic(off) Vce=40.0V 0.01 100 μA门限电压Vth Tamb=25℃ 1.225 1.25 1.275 VTamb=0℃~70℃ 1.21 1.29门限电压线路调整 Reg Vcc=3.0~40V 1.4 5.0 mV输入偏置电流 IIB Vin=0V -40 -400 nA电感降压式DC/DC变换器:电路原理框图如图所示。
MC3406芯片DC_DC转换升压电路
电子技术课程设计报告设计课题:MC3406芯片DC/DC转换升压电路专业班级:学生姓名:指导教师:设计时间:2011.10.15-2011.12.15目录1 设计任务与要求 (3)2 集成稳压电源和开关电源的区别 (3)2.1 集成稳压器的组成 (3)2.2 开关电源的组成 (4)3 开关电源的分类 (5)4 常见开关电源的介绍 (6)4.1基本电路 (6)4.2 单端反激式开关电源 (7)4.3单端正激式开关电源 (7)4.4自激式开关稳压电源 (8)4.5 推挽式开关电源 (9)4.6 降压式开关电源 (9)4.7 升压式开关电源 (10)4.8 反转式开关电源 (10)5设计升压开关电源并计算参数 (11)5.1 MC34063的介绍 (11)5.2MC34063组成的升压电路原理 (12)5.3电路的参数设计计算 (14)6 性能测试结果分析 (17)7.结论与心得 (18)8.参考文献 (18)9.附录 (19)基于MC34063的稳压电源设计一、设计任务与要求1.掌握PCB制板技术、焊接技术、电路检测以及集成电路的使用方法。
2.掌握mc34063的非隔离开关电源的设计、组装与调试方法。
3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。
具体要求如下:①分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出见解。
②掌握开关电源的工作原理。
③设计硬件系统并进行仿真,掌握系统调试方法,使系统达到设计要求。
主要技术指标直流输入电压:5~12V;输出电压:28V;输出电流:0.3A;效率:≥90%。
二、集成稳压电源和开关电源的区别:(1)、集成稳压器的组成电路内部包括了串联型直流稳压电路的各个组成部分,另外加上保电路和启动电路。
1. 调整管在W7800系列三端集成稳压电路中,调整管为由两个三极管组成的复合管。
这种结构要求放大电路用较小的电流即可驱动调整管发射极回路中较大的输出电流,而且提高了调整管的输入电阻。
34063升压电路报告
题目名称:降压型变换电源摘要:该降压电源变换器电路采用MC34063芯片作为其电路构成的核心部分,用以对5V的输入电压经过升压电源电路升至20V;定时电容Ct用以控制振荡器的频率,电感L和电阻R1、R2则是用以控制输出端电压;调节电感L的电感量以及电阻R2与R1比值即可控制输出端的电压输出,该电路设计则是输出端的电压升至20V;且要求在输出端带负载时的电压压降尽量小,同时要求输出端的纹波也尽量小。
关键字:升压型变换电源MC34063 5V升至20VEnglish subject:Buck type transform power supply Abstract:The buck power converter circuit adopts MC34063 chip as its core part of a circuit, which is applied to the 5 V input voltage power supply circuit after the boost to 20 V; Timing capacitance Ct can control the oscillator frequency, inductance L and resistance R1, R2 is used to control the output voltage of the; Adjust the inductance load and inductance L resistance and can control the ratio R2 R1 is the output voltage output, this circuit design is the output voltage to 20 V; And require in the output voltage of the load to bring pressure drop as low as possible, also asked the output ripple also as low as possible.Keywords:The boost the power of transformation MC34063 5 V to 20 V目录一.理论分析 (3)1、MC34063芯片简介: (3)1.1.1 MC34063的结构组成: (3)1.1.2 MC34063的内部结构图: (3)1.1.3 MC34063的引脚: (4)1.1.4 MC34063的内部电路原理: (5)1.1.5 MC34063芯片的主要电路应用有以下几个方面: (5)2.用MC34063制作的升压型变换电源的设计思路 (5)1.2.1 设计题目基本要求: (5)1.2.2 用MC34063制作降压型变换电源的设计思路 (6)二.方案设计与论证 (7)2.1.1、设计12V/5V降压电源变换器的思路 (7)2.1.2、12V/5V降压电源变换器的电路原理图设计 (7)2.1.3 、12V/5V降压电源变换器电路相关参数计算 (8)三. 系统硬件电路设计和实现 (9)四.系统测试 (9)4.1.1、调试中用到的仪器: (9)4.1.2、调试方法: (9)4.1.3、调试中出现的问题: (10)4.1.4、调试问题的解决方案: (10)4.1.5、误差分析: (11)五. 结论 (11)六. 系统使用说明 (11)七. 参考文献 (11)一.理论分析1、MC34063芯片简介:1.1.1 MC34063的结构组成:MC34063是一种开关型高效DC/DC变换集成电路。
电力电子课程设计mc34063升压dcdc变换电路
电力电子技术课程设计专业:自动化设计题目:MC34063升压DC-DC变换电路班级:自0841学生姓名:学号:35指导教师:分院院长:教研室主任:电气工程学院一、课程设计任务书1.课程设计项目1)升压DC-DC变换电路设计2)晶闸管光控电子开关电路设计3)晶闸管声控延时控灯电路设计4)晶闸管线性调光电路设计5)双向晶闸管楼道照明灯控制电路设计2.设计内容1)撰写方案设计2)硬件电路制作3)硬件电路调试4)撰写课程设计报告5)完成课程设计答辩3.设计要求1)课程设计项目中的五个题目由学生自选其中一个完成;2)课程设计项目的硬件电路设计、制作与调试由学生自行完成;3)设计结束学生应撰写课程设计报告一份,完成课程设计答辩;4)课程设计报告内容包括:课程设计题目;设计计划与方案论证;设计方案实现及硬件调试;课程设计总结。
5)课程设计报告的撰写格式应符合电力电子技术课程设计报告格式要求。
4、参考资料[1] 何希才、毛德柱编著. 新型半导体器件及其应用实例. 北京:电子工业出版社[2] 杨帮文编. 新型集成器件实用电路. 北京:电子工业出版社[3] 黄继昌主编. 电子元器件应用手册. 北京:人民邮电出版社[4] 曲学基,王增福,曲敬铠编著. 稳定电源电路设计手册. 北京:电子工业出版社5.设计进度(2011年6月27日至2011年7月8日)时间设计内容第1-2天查阅资料,方案比较、设计与论证,理论分析与计算第3-8天硬件电路制作与调试第9-10天书写报告、答辩6.设计地点新实验楼315-检测实验室二、评语及成绩成绩:指导教师:电力电子技术课程设计报告目录第一章课程设计内容与要求分析 (1)设计内容 (1)设计方案 (1)第二章方案实现及电器件简介 (2)2.1 MC34063 (2)2.1.1 MC34063概述 (2)2.1.2 MC34063升压原理 (4)2.1.3 MC34063外围元件标称含义及计算公式 (4)2.2 1N5819 (5)方案实现 (5)第三章硬件实现及调试 (7)硬件实现 (7)工具选择及测试方法 (8)第四章设计总结 (10)参考文献 (10)第一章课程设计内容与要求分析设计内容题目MC340563升压DC-DC变换电路设计2.设计要求1)五个题目任选一个,两人一组自行完成。
用MC34063集成电路制作的通用直流升压稳压装置[实用新型专利]
专利名称:用MC34063集成电路制作的通用直流升压稳压装置
专利类型:实用新型专利
发明人:刘昭利
申请号:CN201120293018.7
申请日:20110812
公开号:CN202178705U
公开日:
20120328
专利内容由知识产权出版社提供
摘要:本实用新型是关于一种用MC34063集成电路制作的通用直流升压稳压装置。
该直流升压稳压装置由供电电源DC、直流/直流升压稳压电路、输出电压调节电路和升压稳压输出端口组成,直流变直流升压稳压电路由集成电路IC1、过流保护电路、定时振荡电容C2、储能电感L、续流二极管D1和电解电容C3组成。
本实用新型所述的用MC34063集成电路制作的通用直流升压稳压装置使以往电路结构得到进一步简化,电路结构多样化得到了规范,为这一集成电路的推广使用提供了方便。
本实用新型具有电路简捷、仅使用少量常见元器件和电路免调试等特点。
利用MC34063集成电路转换效率较高的特点和集成电路本身富足的输出功率,可以制作外场用高性能升压型充电器。
申请人:刘昭利
地址:233000 安徽省蚌埠市蚌山区雪华新村二村2栋2单元16号
国籍:CN
更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子技术课程设计报告设计课题:MC3406芯片DC/DC转换升压电路专业班级:学生姓名:指导教师:设计时间:2011.10.15-2011.12.15目录1 设计任务与要求 (3)2 集成稳压电源和开关电源的区别 (3)2.1 集成稳压器的组成 (3)2.2 开关电源的组成 (4)3 开关电源的分类 (5)4 常见开关电源的介绍 (6)4.1基本电路 (6)4.2 单端反激式开关电源 (7)4.3单端正激式开关电源 (7)4.4自激式开关稳压电源 (8)4.5 推挽式开关电源 (9)4.6 降压式开关电源 (9)4.7 升压式开关电源 (10)4.8 反转式开关电源 (10)5设计升压开关电源并计算参数 (11)5.1 MC34063的介绍 (11)5.2MC34063组成的升压电路原理 (12)5.3电路的参数设计计算 (14)6 性能测试结果分析 (17)7.结论与心得 (18)8.参考文献 (18)9.附录 (19)基于MC34063的稳压电源设计一、设计任务与要求1.掌握PCB制板技术、焊接技术、电路检测以及集成电路的使用方法。
2.掌握mc34063的非隔离开关电源的设计、组装与调试方法。
3.研究开关电源的实现方法,并按照设计指标要求进行电路的设计与仿真。
具体要求如下:①分析、掌握该课题总体方案,广泛阅读相关技术资料,并提出见解。
②掌握开关电源的工作原理。
③设计硬件系统并进行仿真,掌握系统调试方法,使系统达到设计要求。
主要技术指标直流输入电压:5~12V;输出电压:28V;输出电流:0.3A;效率:≥90%。
二、集成稳压电源和开关电源的区别:(1)、集成稳压器的组成电路内部包括了串联型直流稳压电路的各个组成部分,另外加上保电路和启动电路。
1. 调整管在W7800系列三端集成稳压电路中,调整管为由两个三极管组成的复合管。
这种结构要求放大电路用较小的电流即可驱动调整管发射极回路中较大的输出电流,而且提高了调整管的输入电阻。
2.放大电路在W7800系列三端集成稳压电路中,放大管也是复合管,电路组态为共射接法,并采用有源负载,可以获得较高的电压放大倍数。
3.基准电源在W7800系列三端集成稳压电路中,采用一种能带间隙式基准源,这种基准源具有低噪声、低温漂的特点,在单片式大电流集成稳压器中被广泛采用。
4.采样电路在W7800系列三端集成稳压电路中,采样电路由两个分压电阻组成,它对输出电压进行采样,并送到放大电路的输入端。
5.启动电路启动电路的作用是在刚接通直流输入电压时,使调整管、放大电路和基准电源等部分建立起各自的工作电流。
当稳压电路正常工作后,启动电路被断开,以免影响稳压电路的性能。
6. 保护电路在W7800系列三端集成稳压电路中,芯片内部集成了三种保护电路,它们是限流保护电路、过热保护电路和过压保护电路。
(2)、开关电源:当输出电压发生变化时,采样电路将输出电压变化量的一部分送到比较放大电路,与基准电压进行比较并将二者的差值放大后送至脉冲调制电路,使脉冲波形的占空比发生变化。
此脉冲信号作为开关管的输入信号,使调整管导通和截止时间的比例也发生变化,从而使滤波后输出电压的平均值基本保持不变。
三、开关电源的分类:(1)按开关管的连接方式,开关电源可分为串联型开关电源和并联型开关电源。
串联型开关电源的开关管是串联在输入电压和输出负载之间,属于降压式稳压电路;而并联型开关电源的开关管是在输入电压和输出负载之间并联的,属于升压式稳压电路。
(2)按激励方式,开关电源可分为自激式和他激式。
在自激式开关电源中,由开关管和高频变压器构成正反馈环路,来完成自激振荡,类似于间歇振荡器;而他激式开关电源必须附加一个振荡器,振荡器产生的开关脉冲加在开关管上,控制开关管的导通和截止,使开关电路工作并有直流电压输出。
(3)按调制方式,开关电源可分为脉宽调制(PWM)方式和脉频调制(PFM)方式。
PWM是通过改变开关脉冲宽度来控制输出电压稳定的方式,而PFM是当输出电压变化时,通过取样比较,将误差值放大后去控制开关脉冲周期(即频率),使输出电压稳定。
(4)按输出直流值的大小,开关电源可分为升压式开关电源和降压式开关电源,也可分为高压开关电源和低压开关电源。
(5)按输出波形,开关电源可分为矩形波和正弦波电路。
(6)按输出性能,开关电源可分为恒压恒频和变压变频电路。
(7)按开关管的个数及连接方式又可将开关电源分为单端式、推挽式、半桥式和全桥式等。
单端式仅用一只开关管,推挽式和半桥式采用两只开关管,全桥式则采用四只开关管。
(8)开关电源按能量传递方式又可分为正激式和反激式。
(9)按软开关方式分,开关电源有电流谐振型、电压谐振型、E类与准E类谐振型和部分谐振型等四、常见开关电源的介绍:1、基本电路:开关式稳压电源的基本电路框图如下图所示:交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。
控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。
这部分电路目前已集成化,制成了各种开关电源用集成电路。
控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
2、单端反激式开关电源单端反激式开关电源的典型电路如图三所示。
电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。
所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。
当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。
单端反激式开关电源是一种成本最低的电源电路,输出功率为20-100W,可以同时输出不同的电压,且有较好的电压调整率。
唯一的缺点是输出的纹波电压较大,外特性差,适用于相对固定的负载。
单端反激式开关电源使用的开关管VT1 承受的最大反向电压是电路工作电压值的两倍,工作频率在20-200kHz之间。
3、单端正激式开关电源单端正激式开关电源的典型电路如图四所示。
这种电路在形式上与单端反激式电路相似,但工作情形不同。
当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。
在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。
为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%。
由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50-200 W的功率。
电路使用的变压器结构复杂,体积也较大,正因为这个原因,这种电路的实际应用较少。
4、自激式开关稳压电源自激式开关稳压电源的典型电路如图五所示。
这是一种利用间歇振荡电路组成的开关电源,也是目前广泛使用的基本电源之一。
当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2 中感应出使VT1 基极为正,发射极为负的正反馈电压,使VT1 很快饱和。
与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic 开始减小,在L2 中感应出使VT1 基极为负、发射极为正的电压,使VT1 迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。
在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。
这里就像单端反激式开关电源那样,由变压器T的次级绕组向负载输出所需要的电压。
自激式开关电源中的开关管起着开关及振荡的双重作从,也省去了控制电路。
电路中由于负载位于变压器的次级且工作在反激状态,具有输人和输出相互隔离的优点。
这种电路不仅适用于大功率电源,亦用于小功率电源。
5、推挽式开关电源推挽式开关电源的典型电路如图六所示。
它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。
电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级统组得到方波电压,经整流滤波变为所需要的直流电压。
这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。
电路的输出功率较大,一般在100-500 W范围内。
6、降压式开关电源降压式开关电源的典型电路如图七所示。
当开关管VT1 导通时,二极管VD1 截止,输人的整流电压经VT1和L向C充电,这一电流使电感L中的储能增加。
当开关管VT1截止时,电感L感应出左负右正的电压,经负载RL和续流二极管VD1释放电感L中存储的能量,维持输出直流电压不变。
电路输出直流电压的高低由加在VT1基极上的脉冲宽度确定。
这种电路使用元件少,它同下面介绍的另外两种电路一样,只需要利用电感、电容和二极管即可实现。
7、升压式开关电源升压式开关电源的稳压电路如图八所示。
当开关管VT1 导通时,电感L储存能量。
当开关管VT1 截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。
8、反转式开关电源反转式开关电源的典型电路如图九所示。
这种电路又称为升降压式开关电源。
无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。
当开关管VT1 导通时,电感L 储存能量,二极管VD1 截止,负载RL靠电容C上次的充电电荷供电。
当开关管VT1截止时,电感L中的电流继续流通,并感应出上负下正的电压,经二极管VD1向负载供电,同时给电容C充电。
以上介绍了脉冲宽度调制式开关稳压电源的基本工作原理和各种电路类型,在实际应用中,会有各种各样的实际控制电路,但无论怎样,也都是在这些基础上发展出来的。
五、设计降压开关电源并计算参数:1、MC34063的介绍:MC34063控制芯片:该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。
它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。
该器件可用于升压变换器、降压变换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。
主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。
MC34063集成电路主要特性:输入电压范围:2、5~40V输出电压可调范围:1.25~40V输出电流可达:1.5A工作频率:最高可达100kHz低静态电流短路电流限制可实现升压或降压电源变换器MC34063的基本结构及引脚图功能:图11脚:开关管T1集电极引出端;2脚:开关管T1发射极引出端;3脚:定时电容ct接线端;调节ct可使工作频率在100—100kHz范围内变化;4脚:电源地;5脚:电压比较器反相输入端,同时也是输出电压取样端;使用时应外接两个精度不低于1%的精密电阻;6脚:电源端;7脚:负载峰值电流(Ipk)取样端;6,7脚之间电压超过300mV时,芯片将启动内部过流保护功能;8脚:驱动管T2集电极引出端。