二元一次不等式表示的平面区域(精选)

合集下载

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域   课件

|AB|=|3×1+-32×-1+6|= 122.
∴S△ABC=12×
12 × 2
122=36.
(2)画出2x-3<y≤3表示的区域,并求所有的正整数解.
【思路分析】
原不等式等价于
y>2x-3 y≤3.
而求正整数解,则意味着x,y还有限制条件,即求:
xy> >00 y>2x-3,
y≤3
的整数解.
例3 画出不等式组2x+x+2yy--51≤>00 ,所表示的平面区域. y<x+2
【思路分析】 解决这种问题的关键在于正确地描绘出边 界直线,再根据不等号的方向,确定所表示的平面区域.
【解析】 先画直线x+2y-1=0,由于是大于号,从而将 直线画成虚线,∵0+0-1<0,∴原点在它的相反区域内.
如图中阴影部分中横坐标、纵坐标均为整数的点.
探究5 充分利用已知条件,找出不等关系,画出适合条件 的平面区域,然后在该平面区域内找出符合条件的点的坐 标.实际问题要注意实际意义对变量的限制.必要时可用表格 的形式列出限制条件.
思考题6 一工厂生产甲、乙两种产品,生产每吨产品的资
源需求如下表:
品种 电力/kW·h 煤/t 工人/人
(2)设直线l方程为Ax+By+C=0(A>0),则 ①Ax+By+C>0表示l右侧平面区域. ②Ax+By+C<0表示l左侧平面区域.
思考题1 (1)不等式x-2y≥0所表示的平面区域是下图中的 ()
【解析】
x-2y=0的斜率为
1 2
,排除C、D.又大于0表示直
线右侧,选B.
【答案】 B
(2)不等式x+3y-6<0表示的平面区域在直线x+3y-6=0的
【解析】 如图,在其区域内的整数解为(1,1)、(1,2)、 (1,3)、(2,2)、(2,3),共五组.

二元一次不等式表示平面区域2

二元一次不等式表示平面区域2

例2 用平面区域表示不等式组
y 3x 12 x 2 y
归纳:不等式组表示的平面区域是各个不等 式所表示的平面点集的交集,因而是各个不 等式所表示的平面区域的公共部分。
练习:
1.直线x 2 y 1 0右上方的区域可用 不等式 表示.
2.画出以下不等式(组)表示的平面区域 x 3 y 15 2 x y 15 (1) ; x 0 y 0
练习:
1.直线x 2 y 1 0右上方的区域可用 不等式 表示.
2.画出以下不等式(组)表示的平面区域 x 3 y 15 2 x y 15 (1) ; x 0 y 0
(2)( x 2 y 1)( x y 3) 0.
3.在ABC中, A(3, 1), B(1,1), C (1,3), 写出 ABC区域所表示的二元一次不等式组.
例题分析
例2:一个化肥厂生产甲、乙两种混合肥 料,生产 1 车皮甲种肥料需要的主要原料是 磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料 需要的主要原料是磷酸盐 1t 、硝酸盐 15t 。 现库存磷酸盐10t、硝酸盐66t,在此基础上 生产这两种混合肥料。列出满足生产条件的 数学关系式,并画出相应的平面区域。
二元一次不等式表示哪个平面区域 的判断方法:
由于对在直线Ax+By+C=0同一侧的所 有点(x,y),把它的坐标(x,y)代入 Ax+By+C,所得到实数的符号都相同,所 以只需在此直线的某一侧取一特殊点 (x0,y0),从Ax0+By0+C的正负即可判断 Ax+By+C>0表示直线哪一侧的平面区域. (特殊地,当C≠0时,常把原点作为此特殊点)

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)所表示的平面区域

分析:由于画所二求元平一面次区不域等的式点组的表坐
标需示同的时平满面足区两域个的不步等骤式:,
-5
因此二元一次不等式组表示
的区域是各个不等式表示的
区域的交集,即公共部分。
y
5
o4
x=3
x-y+5=0
x
x+y=0
例3.一个化肥厂生产甲、乙两种混合肥 料,生产1车皮甲种肥料需用的主要原料 是磷酸盐4吨,硝酸盐18吨,生产1车皮乙 种肥料需用的主要原料是磷酸盐1吨,硝 酸盐15吨,现有库存磷酸盐10吨,硝酸盐 66吨。如果在此基础上进行生产,设x,y 分别是计划生产甲、乙两种混合肥料的车 皮数,请列出满足生产条件的数学关系式, 并画出相应的平面区域。
把边界画成实线。
2、由实特殊于数2、点直 符点特代线 号定别入同 相域地侧 同Ax(,的 ,+B代当点 所y+入C的以C≠中特坐只0,殊时标需从点常代在所验把入直得证原线Ax结)点的+B果作某y的+为一C中正特侧,负殊取所即点一得可。个 判断Ax+By+C>0表示哪一侧的区域。
性质:
直线l:Ax+By+C=0把坐标平面内不在 直线l上的点分为两部分,直线l同一侧的点 的坐标使式子Ax+By+C的值具有相同的符 号,并且两侧的点的坐标使Ax+By+C的值 的符号相反,一侧都大于零,另一侧都小 于零。
(2)z=(x+3)2 +(y+1)2的最大值和最小值。
例3、写出表示下面区域 的二元一次不等式组
y
(-4,-1)
(0,1)
x
(2,-1)
典例精析
题型三:根据平面区域写出二元一次不等式(组)

二元一次不等式(组)与平面区域

二元一次不等式(组)与平面区域

y
x0,y0
10
5x2y88
6
4
3x4y9 2
o
2
4
6
8 10
x
9
例 3 ( 3 ) 画 出 不 等 式 ( x 3 y 6 ) ( x y 2 ) 0 表 示 的 平 面 区 域
解 :不等 式 x x 3 yy 2 可 6 0 0 或 化 x x 3 yy 为 2 6 0 0
16
17
例5某人准备投资1200万元兴办一所完全中学,对教育 市场进行调查后,他得到了下面的数据表格(以班级为 单位)
学段 班级学生数 配备教师数 硬件建设(万元) 教师年薪(万元)
初中 45
2
26/班
2/人
高中 40
3
54/班
2/人
初、高中的教育周期均为三年,办学规模以20~30个班为宜, 教师实行聘任制。分别用数学关系式和图形表示上述限制条件。
14
解: 设生产甲,乙两种肥料分别为xt和yt 则x, y,应满足以下不等式组
4x y 10
y
18x 15y 66
25Βιβλιοθήκη x 0, y 020 15
18x15y6610
甲,乙两种肥料的产量范
5
围在直角坐标系中为图中
o 1 2 3 45
x
的阴影部分(包括边界)
4x y 10
15
小结: (1)看懂题,列好表格(若有表格,则不必) (2)用不等式(组)列出限制条件(要考虑实 际意义) (3)画图
直线AxByC0的一边
(不包括边,直 界线画成虚) 线 用特殊点来确定是直线的某一 (2)在直角坐边另标,找系一中一般不点用等原式点,A若x 直 B线y 过 C原点0(,则0)表示 :

二元一次不等式组知识点讲解及习题

二元一次不等式组知识点讲解及习题

第三节:二元一次不等式组与简单的线性规划1、二元一次不等式表示的区域:二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域。

注意:由于对直线同一侧的所有点(x,y),把它代入Ax+By+C,所得实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0) ,从Ax0+By0+C的正负可以判断出Ax+By+C>0表示哪一侧的区域(一般在C≠0时,取原点作为特殊点)2、二元一次不等式组表示的区域:二元一次不等式表示平面的部分区域,所以二元一次方程组表示各个区域的公共部分。

(二元一次不等式表示的区域)例1、画出不等式2x+y-6<0表示的平面区域。

(跟踪训练)画出不等式4x-3y≤12表示的平面区域。

(点的分布)例2、已知点P(x 0,y 0)与点A(1,2)在直线l:3x+2y-8=0的两侧,则( ) A 、3x 0+2y 0>0 B 、3x 0+2y 0<0 C 、3x 0+2y 0>8 D 、3x 0+2y 0<8(跟踪训练)已知点(3 ,1)和点(-4 ,6)在直线 3x –2y + m = 0 的两侧,则( ) A .m <-7或m >24 B .-7<m <24 C .m =-7或m =24D .-7≤m ≤ 24(二元一次不等式组表示的平面区域) 例3、画出不等式组表示的区域。

(1) (2)⎪⎩⎪⎨⎧-≥≤+<242y y x xy ⎪⎪⎩⎪⎪⎨⎧+<≥+≥<9362323x y y x x y x(已知区域求不等式)例4、求由三直线x-y=0;x+2y-4=0及y+2=0所围成的平面区域所表示的不等式。

(跟踪训练)下图所示的阴影区域用不等式组表示为(已知不等式组求围成图形的面积)例5、求不等式组3,0,20xx yx y≤⎧⎪+≥⎨⎪-+≥⎩表示的平面区域的面积(跟踪训练)在直角坐标系中,由不等式组230,2360,35150,x yx yx yy->⎧⎪+-<⎪⎨--<⎪⎪<⎩所确定的平面区域内整点个数(绝对值不等式的画法)例6、画出不等式|x|+|y|<1所表示的区域。

高中数学二元一次不等式(组)所表示的平面区域

高中数学二元一次不等式(组)所表示的平面区域

实际问题 数学模型 数学模型的解 实际问题的解二元一次不等式〔组〕所表示的平面区域 [教学目标]1.知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2.过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;3.情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。

[教学重点]用二元一次不等式〔组〕表示平面区域;[教学过程]Jack 准备在2006年德国世界杯期间,一边看球,一边去卖点纪念品。

现在他有本钱1000美元,准备投入去购买单价50美元球衣和单价20元足球纪念品,希望使足球纪念品,球衣的总数尽可能多,但足球纪念品数量不多于球衣数量1.5倍,那么Jack 买足球纪念品和球衣各多少才行?一般实际问题的求解步骤如下表:你有..遇到什么难题了吗?.........设:..球衣x 件,足球纪念品y 只,总和为S 1.5502010000,0,y x x y x y x y N≤⎧⎪+≤⎪⎨≥≥⎪⎪∈⎩ S=x+y 学生此时应该到第三步,无法解决数学模型的解!二元一次不等式所表示的平面区域对于像上面这样有两个参量控制的取值X 围问题,我们都可以用下面的几何方法来求解。

第一步:研究出问题的约束条件,确定数对〔x,y 〕的X 围第二步:在第一步所得到的数对〔x,y 〕的X 围中,通过图形的方法,找出所求问题达到最大数对的〔x,y 〕我们不妨来画出其中一个32y x ≤练一练〔113x + 〔3〕260y +< 小结:一般地,直线y=kx+b 把平面分成两个部分: __________________________________________________________想一想请根据上面所画的图象时所得到的规律,完成下表B>0 表示的区域是直线0Ax By C ++= B<0 表示的区域是 直线0Ax By C ++= 0Ax By C ++> 0Ax By C ++>0Ax By C ++< 0Ax By C ++<请体会你在研究上面新的问题的过程中,用到了什么样的思想?〔化归〕大家有没有发现判断二元一次不等式所表示的平面区域问题,我们可以有新的方法了???〔由上面规律的总结,发现特殊点法〕如果有这样一个二元一次不等式组变化 1.550201000y x x y ≤⎧⎨+≤⎩如何表示出它的几何意义?我们在必修2中,学过曲线与方程的思想,它有这样两句话 〔1〕以方程0Ax By C ++=的解x,y 为横、纵坐标的点(x,y)都在直线0Ax By C ++=上 〔2〕直线0Ax By C ++=上的任一点〔x,y 〕的横、纵坐标值都是方程0Ax By C ++=的解 那么请你试描述一个关于不等式与曲线的关系 见必修5的教学参考书再变化1.5502010000,0y xx yx y≤⎧⎪+≤⎨⎪≥≥⎩,那么又有什么变化??再再变化1.5502010000,0,y xx yx yx y N≤⎧⎪+≤⎪⎨≥≥⎪⎪∈⎩那么又有什么变化???如果问题现在倒过来怎么办呢?倒过来:如果给出阴影,如何用不等式表示!小结:我们今天学习了:______________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ __________________________________________________________________________________ ____作业:书P78页练习4,5 80页1,2,3,4!并阅读P88页上的第7题的阅读题,并写下你的感受!。

高考数学一轮复习课件:二元一次不等式表示的平面区域

高考数学一轮复习课件:二元一次不等式表示的平面区域

变式:画出不等式 2x+y-6≥0表示的平面区域。
y
6
o
3
x
2x+y-6=0
若不等式中带等号时,其表示的区域包含边界,边界线应 画成实线;不带等号时,不包含边界,边界线画成虚线. 若不便于画成虚线(如坐标轴),应通过文字加以说明.
探究拓展 y
Y 6
2x+y-6≥0
6
O
3
X
o
3
x
2x+y-6<0
2x+y-6=0 2x+y-6=0
Y想 一 想 ?来自取原点(0,0),代入2x+y-6, 因为2×0+0-6=-6 <0,
所以,原点在2x+y-6<0 O 表示的平面区域内,不等 式 2x+y-6<0表示的区域 2x+y-6<0 为直线下方区域如图所示。
画出不等式 6 2x+y-6≥0表 示的平面区 域?
3 X
2x+y-6=0
点评:该题属给出不等式画出其所表示的平面区域问题 常采用“直线定界,特殊点定域”的方法
(1,0)点定域 若C=0,则 直线定界 _________、_________.
(3)注意事项: 若不等式中不含等号,则 ______________________ 边界画成虚线,否则画成实线 ____________________________________________
口 诀 : 同 号 在 上 , 异 号 在 下
O
X
x-y+5=0
x=3
自主归纳总结
(1)二元一次不等式Ax+By+C>0在平面直角 直线Ax+By+C=0某一侧所 坐标系中表示 ______________________ 有点组成的 __________平面区域。 (2)不等式所表示平面区域的确定步骤: 直线定界 特殊点定域 __________、____________ 直线定界 原点定域 若C≠0,则 _________、_________.

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)所表示的平面区域

二元一次不等式(组)表示平面区域主备人:审核:使用人:班级:【课题】:二元一次不等式(组)表示平面区域【学习目标】1、了解二元一次不等式(组)的概念,理解其解集的几何意义;2、会画二元一次不等式(组)所表示的平面区域。

【学习重难点】会画二元一次不等式(组)所表示的平面区域。

【课前预习案】1、二元一次不等式表示平面区域:一般的,二元一次不等式Ax By C++>在平面直角坐标系中表示直线0Ax By C++=某一侧所有点组成的________________.我们把直线画成_________以表示区域不包括边界直线.当我们在坐标系中画出不等式0Ax By C++≥所表示的平面区域时,此区域应包括边界直线,则把边界直线画成___________.2、如何确定二元一次不等式0Ax By C++>(或<0)表示的平面区域?【预习检测】画出不等式组10230x yx y--<⎧⎨--≥⎩表示的平面区域.【课内探究案】一、二元一次不等式表示平面区域例1、画出下列不等式表示的平面区域(1)230x y-->;(2)3260x y+-≤【变式训练】画出二元一次不等式320ax y++≥表示的平面区域,已知点(-1,0)在区域边界上.二、二元一次不等式组表示平面区域例2、画出不等式组表示的平面区域(1)21010x yx y-+≥⎧⎨+-≥⎩(2)232021030x yyx-+>⎧⎪+≥⎨⎪-≤⎩【变式训练】已知直线ax=2与x-by+1=0的交点为(1,2),试分别画出2a x<与10x by-+≥所表示的平面区域.三、用二元一次不等式组表示实际问题例3.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需用的主要原料是磷酸盐4吨,硝酸盐18吨,生产1车皮乙种肥料需用的主要原料是磷酸盐1吨,硝酸盐15吨,现有库存磷酸盐10吨,硝酸盐66吨。

如果在此基础上进行生产,设x,y分别是计划生产甲、乙两种混合肥料的车皮数,请列出满足生产条件的数学关系式,并画出相应的平面区域。

【数学】3.5.1《二元一次不等式(组)所表示的平面区域》课件(新人教B版必修5)

【数学】3.5.1《二元一次不等式(组)所表示的平面区域》课件(新人教B版必修5)

否则应画成实线。
2、画图时应非常准确,否则将得不到正确结果。 3、熟记“直线定界、特殊点定域”方法的内涵。
x+y-1≥0 在平面直角坐标系中,若不等式组x-1≤0 ax-y+1≥0 常数)所表示的平面区域内的面积等于 2,求 a 的值.
[解题过程] 如图可得阴影区域为不等式组
x+y-1≥0 x-1≤0
解:设开设初中班x个,高中班y个。因办学规模 以20~30个班为宜,所以, 20≤x+y≤30 而由于资金限制,26x+54y+2×2x+2×3y≤1200 另外,开设的班级不能为负,则x≥0,y≥0。
把上面四个不等式合在一起,得限制条件用数学关系式表示为
y
20 x+y 30 30 x+2y 40 20 x0 y 0
y
左上方 x-y+1<0
1
x-y+1=0
-1
o
x
(x。,y。) x0>x,y=y0 x0-y0+1> x-y+1
(x,y)
右下方 x-y+1>0
问题:一般地,如何画不等式 AX+BY+C>0表示的平面区域?
(1)二元一次不等式Ax+By+C>0在平面 直角坐标系中表示直线Ax+By+C=0某一侧 所有点组成的平面区域。
(2)由于对直线同一侧的所有点(x,y),把 它代入Ax+By+C,所得实数的符号都相同, 所以只需在此直线的某一侧取一个特殊点 (x0,y0) ,从Ax0+By0+C的正负可以判断出 Ax+By+C>0表示哪一侧的区域。 一般在C≠0时,取原点作为特殊点。

高三数学二元一次不等组表示的平面区域试题答案及解析

高三数学二元一次不等组表示的平面区域试题答案及解析

高三数学二元一次不等组表示的平面区域试题答案及解析1.不等式组表示的平面区域的面积为______________.【答案】11【解析】作出可行域如图中阴影部分所示,易求得C(4,0),B(4,2),D(0,3),A(2,3),所以阴影部分面积为12-=11.考点:二元一次不等式组表示的平面区域2.已知点A(a,1)与点B(a+1,3)位于直线x-y+1=0的两侧,则a的取值范围是 .【答案】【解析】由已知得,即答案为.【考点】不等式表示的平面区域.3.已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域,上的一个动点,则·的取值范围是()A.[-1,0]B.[0,1]C.[0,2]D.[-1,2]【答案】C【解析】·=-x+y,令z=-x+y,做出可行域,求线性规划问题.4.若关于,的不等式组(为常数)所表示的平面区域的面积等于2,则的值为 .【答案】3【解析】时,平面区域是一个无限区域,故.作出不等式组表示的平面区域如图所示,易得点,所以.【考点】不等式组表示的平面区域.5.已知平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为(,1),则z=·的最大值为().A.4B.3C.4D.3【答案】C【解析】作不等式组表示的平面区域D,如图所示.又z=·=(x,y)·(,1)=x+y,∴y=-x+z.令l0:y=-x,平移直线l,当过点M(,2)时,截距z有最大值.故zmax=×+2=46.如果实数满足,若直线将可行域分成面积相等的两部分,则实数的值为______.【答案】【解析】画出可行域,如图所示的阴影部分,直线过定点(1,0),要使得其平分可行域面积,只需过线段的中点(0,3)即可,故.【考点】1、二元一次不等式组表示的平面区域;2、直线的方程.7.在平面直角坐标系中,记不等式组所表示的平面区域为.在映射的作用下,区域内的点对应的象为点,则由点所形成的平面区域的面积为()A.B.C.D.【答案】C【解析】由得,代入得,,画出平面区域,面积为8.【考点】1、映射的概念;2、不等式组表示的平面区域.8.已知实数x,y满足,则z=2|x|+y的取值范围是_________【答案】[-1,11]【解析】作出可行域与目标函数,结合图象可得目标函数经过(0,-1)时,有最小值-1,经过点(6,-1)时有最大值11,所以取值范围是[-1,11]。

高三数学考点-二元一次不等式(组)与简单的线性规划问题

高三数学考点-二元一次不等式(组)与简单的线性规划问题

7.3二元一次不等式(组)与简单的线性规划问题1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的________.我们把直线画成虚线以表示区域________边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应________边界直线,则把边界直线画成________.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都________,所以只需在此直线的同一侧取一个特殊点(x0,y0)(如原点)作为测试点,由Ax0+By0+C的________即可判断Ax +By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.2.线性规划(1)不等式组是一组对变量x,y的约束条件,由于这组约束条件都是关于x,y的一次不等式,所以又可称其为线性约束条件.Z=Ax+By是要求最大值或最小值的函数,我们把它称为________.由于Z=Ax+By是关于x,y的一次解析式,所以又可叫做________.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的________的问题,统称为线性规划问题.(3)满足线性约束条件的解(x,y)叫做________,由所有可行解组成的集合叫做________.其中,使目标函数取得最大值或最小值的可行解都叫做这个问题的________.线性目标函数的最值常在可行域的边界上,且通常在可行域的顶点处取得;而求最优整数解首先要看它是否在可行域内.(4)用图解法解决简单的线性规划问题的基本步骤:①首先,要根据_________________ (即画出不等式组所表示的公共区域).②设__________,画出直线l0.③观察、分析、平移直线l0,从而找到最优解.④最后求得目标函数的__________.(5)利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出__________条件,确定__________函数.然后,用图解法求得数学模型的解,即__________,在可行域内求得使目标函数__________.自查自纠1.(1)平面区域不包括包括实线(2)相同符号2.(1)目标函数线性目标函数(2)最大值或最小值(3)可行解可行域最优解(4)①线性约束条件画出可行域②z=0④最大值或最小值(5)约束线性目标画出可行域取得最值的解(2016·济南模拟)已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)解:根据题意知(-9+2-a )(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24.故选B .(2017·全国卷Ⅲ)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解:绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点A (0,3) 处取得最小值z =0-3=-3. 在点B (2,0) 处取得最大值z =2-0=2.故选B .(2016·北京)若x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x +y ≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5解:作出可行域如图中阴影部分所示,则当z =2x +y 经过点P (1,2)时,取最大值,z max =2×1+2=4.故选C .(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解:由题意,画出可行域如图,目标函数为z =3x -4y ,则直线y =34x -z4纵截距越大,z 值越小.由图可知,在A (1,1)处取最小值,故z min =3×1-4×1=-1.故填-1.(2017届云南四川贵州百校大联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -2≥0,2x +y -4≤0,4x -y +1≥0,则目标函数z =y -3x 的最大值是________.解:作可行域如图所示,由目标函数z=y-3x得直线y=3x+z,当直线y=3x+z平移经过点A⎝⎛⎭⎫12,3时,目标函数z=y-3x取得最大值为32.故填32.类型一二元一次不等式(组)表示的平面区域(2016·郑州模拟)在平面直角坐标系xOy中,满足不等式组⎩⎪⎨⎪⎧|x|≤|y|,|x|<1的点(x,y)的集合用阴影表示为下列图中的()解:|x|=|y|把平面分成四部分,|x|≤|y|表示含y轴的两个区域;|x|<1表示x=±1所夹含y轴的区域.故选C.【点拨】关于不等式组所表示的平面区域(可行域)的确定,可先由“直线定界”,再由“不等式定域”,定域的常用方法是“特殊点法”,且一般取坐标原点O(0,0)为特殊点.不等式组⎩⎪⎨⎪⎧x+y-2≥0,x+2y-4≤0,x+3y-2≥0表示的平面区域的面积为________.解:不等式组所表示的平面区域如图中阴影部分所示,易求得|BD|=2,C点坐标(8,-2),所以S△ABC=S△ABD+S△BCD=12×2×(2+2)=4.故填4.类型二利用线性规划求线性目标函数的最优解(2017·天津)设变量x,y满足约束条件⎩⎪⎨⎪⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y的最大值为()A.23 B .1 C.32D .3解:可行域为四边形ABCD 及其内部,所以直线z =x +y 过点B (0,3)时取最大值3.故选D .【点拨】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用. 一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.(2017·北京)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x , 则x + 2y 的最大值为( )A .1B .3C .5D .9解:如图,画出可行域,z =x +2y 表示斜率为-12的一组平行线,当过点C (3,3)时,目标函数取得最大值z max=3+2×3=9.故选D .类型三 含参数的线性规划问题(1)(北京西城区2017届期末)实数x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥0,x -y +6≥0. 若z =ax +y 的最大值为3a +9,最小值为3a-3,则a 的取值范围是( ) A .[-1,0] B .[0,1]C .[-1,1]D .(-∞,-1]∪[1,+∞)解:作出不等式组对应的平面区域如图,由z =ax +y 得y =-ax +z .因为z =ax +y 的最大值为3a +9,最小值为3a -3, 所以当直线y =-ax +z 经过点B (3,9)时直线截距最大, 当经过点A (3,-3)时,直线截距最小. 则直线y =-ax +z 的斜率-a 满足, -1≤-a ≤1,即-1≤a ≤1.故选C .(2)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0 (a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解:如图可得阴影部分即为满足x -1≤0与x +y -1≥0的可行域,而直线ax -y +1=0恒过点(0,1),故看作直线绕点(0,1)旋转,若不等式组所表示的平面区域内的面积等于2,则它是三角形,设该三角形为△ABC ,因为△ABC 的点A 和B的坐标分别为A (0,1)和B (1,0),且S △ABC =2,设点C 的坐标为C (1,y ),则12×1×y =2⇒y =4,将点C (1,4)代入ax -y +1=0得a =3.故选D .【点拨】例3(1)考查了简单的线性规划中的斜率问题,通过y =-ax +z 得到参数-a 是动直线y =-ax +z 的斜率,z =ax +y 的最大值为3a +9,则动直线y =-ax +z 纵截距的最大值为3a +9,最优解在三个端点处取得;例3(2)中的ax -y +1=0,即为y =ax +1,其中a 为动直线的斜率,利用数形结合的方法求解.注意把握两点:①参数的几何意义;②条件的合理转化.(1)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0. 若z =ax +y 的最大值为4,则a =( )A .3B .2C .-2D .-3解:画出不等式组所表示的可行域如图中阴影部分所示,因为目标函数z =ax +y 的最大值为4,即目标函数对应直线与可行域有公共点时,在y 轴上的截距的最大值为4,所以作出过点D (0,4)的直线,由图可知,目标函数在点B (2,0)处取得最大值,有a ×2+0=4,得a =2.故选B .(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解:易得出约束条件中三条直线两两所成的交点(k ,k ),(4-k ,k ),(2,2),且可行域如图,则k ≤2.最小值在点(k ,k )处取得,3k =-6,得k =-2.故填-2.类型四 非线性目标函数的最优解问题(2016·江苏)已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,则x 2+y 2的取值范围是________.解:可行域如图中阴影部分所示,x 2+y 2为可行域中任一点(x ,y )到原点(0,0)的距离的平方.由图可知,x 2+y 2的最小值为原点到直线AC 的距离的平方,即⎝ ⎛⎭⎪⎫|-2|52=45.易求得B (2,3),最大值为OB 2=22+32=13.故填⎣⎡⎦⎤45,13. 【点拨】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2 .(3)斜率型:形如z =y -bx -a ,本题属于距离形式.(2015·全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________.解:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.故填3.类型五 线性规划与整点问题设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y -5>0,2x +y -7>0,x ≥0,y ≥0, 若x ,y 为整数,则3x +4y 的最小值为( )A .14B .16C .17D .19解:画出可行域如图,令3x +4y =z ,y =-34x +z4,过x 轴上的整点(1,0),(2,0),(3,0),(4,0),(5,0)处作格子线,可知当y =-34x +z4过(4,1)时有最小值(对可疑点(3,2),(2,4),(4,1)逐个试验),此时z min =3×4+4=16.故选B .【点拨】求解整点问题,对作图精度要求较高,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n (n ∈N *) 所表示的平面区域为D n ,记D n 内的整点(即横坐标和纵坐标均为整数的点)个数为a n (a n ∈N *),则数列{a n }的通项公式为a n =______.解:直线y =-nx +3n =-n (x -3),过定点(3,0),由y =-nx +3n >0得x <3,又x >0,所以x =1或x =2.直线x =2交直线y =-nx +3n 于点(2,n ),直线x =1交直线y =-nx +3n 于点(1,2n ),所以整点个数a n =n +2n =3n .故填3n.类型六 线性规划在实际问题中的应用(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元 B .16万元 C .17万元 D .18万元解:设每天生产甲、乙两种产品分别为x 、y 吨,利润为z 元,则⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数为z =3x +4y .作出二元一次不等式组所表示的平面区域(阴影部分),即可行域.由z =3x +4y 得y =-34x +z 4,平移直线y =-34x 至经过点B 时,直线y =-34x +z4的纵截距最大,此时z 最大,解方程组⎩⎪⎨⎪⎧3x +2y =12,x +2y =8, 得⎩⎪⎨⎪⎧x =2,y =3, 即B (2,3).所以z max =3x +4y =6+12=18.即每天生产甲、乙两种产品分别为2吨、3吨,能够获得最大利润,最大的利润是18万元.故选D . 【点拨】对于此类有实际背景的线性规划问题,可行域通常是位于第一象限的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形在第一象限的某个顶点.(2016·全国卷Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解:设某高科技企业生产产品A 和产品B 分别为x 件,y 件,生产产品A 、产品B 的利润之和为z 元,依题意得⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N , 即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y .作出可行域如图所示.当直线z =2 100x +900y经过点M (60,100)时,z 取得最大值.z max =2 100×60+900×100=216 000.故生产产品A 、产品B 的利润之和的最大值为216 000元.故填216 000.1.解客观题可利用特殊点判断二元一次不等式(组)表示的平面区域所在位置,如果直线Ax +By +C =0不经过原点,则把原点代入Ax +By +C ,通过Ax +By +C 的正负和不等号的方向,来判断二元一次不等式(组)表示的平面区域所在的位置.2.求目标函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb,通过求直线的截距z b 的最值间接求出z 的最值.最优解一般在顶点或边界取得.但要注意:①当b >0时,截距zb取最大值,z 也取最大值;截距z b 取最小值,z 也取最小值;②当b <0时,截距z b 取最大值,z 取最小值;截距zb 取最小值时,z 取最大值.3.如果可行域是一个多边形,那么一般在其顶点处目标函数取得最大值或最小值.最优解一般是多边形的某个顶点,到底是哪个顶点为最优解,有三种解决方法:第一种方法:将目标函数的直线平行移动,最先通过或最后通过可行域的一个便是. 第二种方法:利用围成可行域的直线斜率来判断.特别地,当线性目标函数的直线与可行域某条边重合时,其最优解可能有无数组.第三种方法:将可行域所在多边形的每一个顶点P i 逐一代入目标函数Z P i =mx +ny ,比较各个ZP i ,得最大值或最小值.1.(2015·烟台模拟)不等式组⎩⎪⎨⎪⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为( )A .1 B.12 C.13 D.14解:作出不等式组对应的区域为如图△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1, 得y D =12,所以S △BCD =12×(x C -x B )×12=14.故选D . 2.(湖北孝感市2017届期中)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1, 则目标函数z =2x -y 的最大值为( )A .-3 B.12 C .5 D .6解:作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (-1,-1),B (2,-1),C (0.5,0.5),将直线2x -y =0进行平移,当其经过点B 时,目标函数z 达到最大值.所以z 最大值=5.故选C .3.(2016·天津)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0.则目标函数z =2x +5y 的最小值为( )A .-4B .6C .10D .17解:可行域为一个三角形ABC 及其内部,其中A (0,2),B (3,0),C (1,3),根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3-5×0=6.故选B .4.(2017·浙江)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)解:如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值.故选D .5.(2016·浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( ) A .2 2 B .4 C .3 2 D .6解:如图△PQR 为线性区域,区域内的点在直线x +y -2=0上的投影构成了线段AB .由⎩⎪⎨⎪⎧x -3y +4=0,x +y =0得Q (-1,1),由⎩⎪⎨⎪⎧x =2,x +y =0得R (2,-2),|AB |=|RQ |=(-1-2)2+(1+2)2=3 2.故选C .6.(2016·商丘模拟)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( )A.14B.12C .1D .2解:作出可行域如图中阴影部分所示,当直线z =2x +y 通过A (1,-2a )时,z 取最小值,z min =2×1+(-2a )=1,所以a =12.故选B .7.(2016·全国卷Ⅲ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解:画出可行域,如图所示阴影部分,易得A (0,1),B (-2,-1),C ⎝⎛⎭⎫1,12,可得z =x +y 在C 点处取得最大值为32.故填32.8.(山西四校2017届联考)已知y =-2x -z 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0, 若2x +y +k ≥0恒成立,则实数k的取值范围为________.解:可行域为一个三角形ABC 及其内部,其中A (2,0),B (-2,-2),C (0,2),直线z =-2x -y 过点B 时取最大值6,而2x +y +k ≥0恒成立等价于k ≥[-(2x +y )]max =6.故填[6,+∞).9.(2016·昆明模拟)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥0,x -2y +2≥0,x -y ≤0,求z =2x -y 的最大值.解:作出可行域如图中阴影部分所示.当直线过点B (2,2)时,z =2x -y 取得最大值2.10.变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)假设z 1=4x -3y ,求z 1的最大值;(2)设z 2=yx ,求z 2的最小值;(3)设z 3=x 2+y 2,求z 3的取值范围.解:作出可行域如图中阴影部分,联立易得A ⎝⎛⎭⎫1,225,B (1,1),C (5,2). (1)z 1=4x -3y ⇔y =43x -z 13,易知平移y =43x 至过点C 时,z 1最大,且最大值为4×5-3×2=14.(2)z 2=y x 表示可行域内的点与原点连线的斜率大小,显然直线OC 斜率最小.故z 2的最小值为25.(3)z 3=x 2+y 2表示可行域内的点到原点距离的平方,而2=OB 2<OA 2<OC 2=29.故z 3∈[2,29].11.(2015·广东模拟)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率大0.25,甲产品为二等品的概率比乙产品为一等品的概率小0.05. (1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分工人(名)资金(万元)甲420乙85解:(1)依题意得⎩⎪⎨⎪⎧甲乙1-P甲=P乙-0.05,解得⎩⎪⎨⎪⎧P甲=0.65,P乙=0.4,故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=0.4.(2)依题意得x,y应满足的约束条件为⎩⎪⎨⎪⎧4x+8y≤32,20x+5y≤55,x≥0,y≥0,且z=0.65x+0.4y.作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l:0.65x+0.4y=0即13x+8y=0,把直线l向上方平移到l1的位置时,直线经过可行域内的点M,且l1与原点的距离最大,此时z取最大值.解方程组⎩⎪⎨⎪⎧x+2y=8,4x+y=11,得⎩⎪⎨⎪⎧x=2,y=3.故M的坐标为(2,3),所以z的最大值为z max=0.65×2+0.4×3=2.5.当实数x,y满足⎩⎪⎨⎪⎧x+2y-4≤0,x-y-1≤0,x≥1时,1≤ax+y≤4恒成立,则实数a的取值范围是________.解:作出可行域为一三角形,且易求出三个顶点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax+y≤4得⎩⎪⎨⎪⎧1≤a≤4,1≤a+32≤4,1≤2a+1≤4.解不等式组可得1≤a≤32.故填⎣⎡⎦⎤1,32.项目用量产品。

二元一次不等式表示的平面区域

二元一次不等式表示的平面区域

1
o
1
x x+=0
【问题2】
在直线上方和下方 取一些点:上方:(0,2), (1,3),(0,5),(2,2) 下方:(-1,0),(0,0),(0,-2) (1,-1)各点坐标代入 x+y-1中, 你有什么发现?
y
5 4 3
【问题3】
. .
直线L右上方点的坐 标都满足x+y–1>0吗?
-3
3.不等式x-2y>0表示的平面区域是
( C )
y y x O O y y
x
O
x O
x
(A)
(B)
(C)
( D)
(1)二元一次不等式Ax+By+C>0在平面直角坐标系
中表示什么图形?
(2)怎样画二元一次不等式(组)所表示的平面区域?
应注意哪些事项?
(3)熟记“直线定界,特殊点定域”方法。
作业:
课本P96 习题A第1,2题
感谢指导!
临邑一中
4:画出不等式组
Y
x y 5 0 x y 0 x 3
表示的平面区域
x+y=0
O
X
x-y+5=0 x=3
2x y 3 0
解:(1)用虚线画直线 2x-y-3=0 (2)取特殊点.取原点 (0,0)代入2x-y-3=-3<0. (3)判断.不等式2x-y3>0所表示的区域是不 包含原点的那一侧。
直线定界 特殊点定域
y
2x-y-3=0
.
-3
o 1 2
x
(2)3x 2 y 6 0.
y
Ax+By+C=0

数学教材的二次开发课例——二元一次不等式表示的平面区域

数学教材的二次开发课例——二元一次不等式表示的平面区域
学教学 参考
教学 经纬 …一 ・
数 学 教 材 的 二 次 示 的平 面 区域
江 苏常 州市 第一 中 学( 1 0 3 刘 素珍 23 0 )
笔 者所 在教研组 申请 了省级 课题 “ 数学教 材 的二 次 开发”, 课题研究过 程 中正好 参加 了市里 的青 年教 师基
数 , 此 问题 有 两 个 变 元 , 且 没 有 出 现 变 元 之 间 的 制 但 而
的重 点难 点 内容 , 生难 免产 生疑 惑 : 学 为什 么要 研究 二 元一次不 等式表示 什 么?颇有 “ 学 习” 被 本节 内容 的味
道.
疑惑二 : 这个引例能最大程 度 的激发学 生 的参 与热 情 吗?本 引例是 一个 生产 问题 , 立 足于 现实 生 活 , 虽 但
2 2 中学教 学参考( 中旬 )2 1 . 总第 1 6 023 1 期
约关 系 , 能消去 变元 , 不 从代 数 的角度 同学 感觉无 路 可
走了 , 你还有其它 的角度 吗? 评注 : 加密 1 然 只是 简单 的几句 话 , 虽 却把 最 值 问 题 的一般思维方 向呈现 出来 , 非常 自然 的过 渡 到对不 等 式 >2 x的几何意义 的研究 .
毕 竟 不 是 学 生 的 最 近 触 碰 区 . 引 例 中 的 关 系 式 4 + 而 x < 1 后 续 的研 究 中 需要 把 它 变 成 y ( 0 4 0在 < 1 - x研 究 , 且
点 的上下方位置也须通过 简单 的运算才 能判 断. 是否 可
以把引例改 编成 学 生实 践 中的 问题 呢?是否 可 以把 引
时较长 , 且建立模 型的过程并不 能作为本 节课 的核心 内
容. 围绕这个疑 惑 , 笔者反复对 引例 的作用进 行 了探 讨.

二元一次不等式(组)与平面区域 课件

二元一次不等式(组)与平面区域  课件
[提示] 一一对应.
4.二元一次不等式表示的平面区域及确定 (1)直线 l:ax+by+c=0 把直角坐标平面分成了三个部分: ①直线 l 上的点(x,y)的坐标满足 ax+by+c=0 . ②直线 l 一侧的平面区域内的点(x,y)的坐标满足 ax+by+c>0,另一侧 平面区域内的点(x,y)的坐标满足 ax+by+c<0 .
3.二元一次不等式(组)的解集概念 满足二元一次不等式(组)的 x 和 y 的取值构成一个有序数对(x,y),称为 二元一次不等式(组)的一个 解,所有这样的有序数对(x,y)构成的集合称为二 元一次不等式(组)的 解集 . 思考:把二元一次不等式的解看作有序数对,它与平面内的点之间有什 么关系?
同理得 B(-1,1),C(3,-1).
∴|AC|= 22+-42=2 5,
而点
B
到直线
2x+y-5=0
的距离为
d=|-2+51-5|=
6, 5
∴S△ABC=12|AC|·d=12×2 5× 65=6.
x>0 2.若将例题中的条件“y>0
4x+3y≤12
”变为“y|x≤|≤2y≤|x|+1 ”求所
标. (1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直 线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形. (2)整点是横纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠 近直线的点,以免出现错误.
x+y>2, 2.不等式组x-y>0, 表示的区域是什么图形,你能求出它的面积吗?
x<4
该图形若是不规则图形,如何求其面积?
提示:不等式组表示的平面区域如图阴影部分 △ABC,该三角形的面积为 S△ABC=12×6×3=9.若 该图形不是规则的图形.我们可以采取“割补”的 方法,将平面区域分为几个规则图形求解.

人教数学必修五33二元一次不等式组与平面区域

人教数学必修五33二元一次不等式组与平面区域

(B ) D.无数个
(5,0).
练一练·当堂检测、目标达成落实处
3.3.1
x+y≤1, 3.画出二元一次不等式组x≥0,
y≥0
表示的平面区域,则
1
本 讲
这个平面区域的面积为____2____.
栏 目
解析 平面区域如图所示.


练一练·当堂检测、目标达成落实处
3.3.1
4.根据下列平面区域,写出它们所对应的二元一次不等 式(组).
不等式表示为 x-y-6>0.
研一研·问题探究、课堂更高效
3.3.1
探究点一 二元一次不等式表示的平面区域
问题 在平面直角坐标系中,画出直线 x-y+2=0,并标出
本 讲
以下九点:O(0,0),A(0,2),B(-2,0),C(-1,1),D(1,0),
栏 目
E(0,-1),F(-3,0),G(-2,2),H(0,3).
3.3.1
3.二元一次不等式(组)表示平面区域的确定
(1)直线 Ax+By+C=0 同一侧的所有点的坐标(x,y)代入
Ax+By+C,所得的符号都 相同 .
(2)在直线 Ax+By+C=0 的同一侧取某个特殊点(x0,y0),

由 Ax0+By0+C 的符号就可以断定 Ax+By+C>0 表示
讲 栏
语言的理解和应用.
2.解决线性规划问题的基本方法是图解法,它的实质是数形
结合思想方法的具体体现.
填一填·知识要点、记下疑难点
3.3.1
1.二元一次不等式组是一组对变量 x、y 的约束条件,这组

约束条件都是关于 x、y 的 一次 不等式,所以又称为线性
讲 栏

巧解二元一次不等式(组)表示的平面区域

巧解二元一次不等式(组)表示的平面区域
化为 : y < 一 + 1 , 画 出 直线


图 5
v一

两个 点 的 上 下 左右 的概 念

x + l ( 虚线 ) , 原不 等式表示 的平面 区域在直线
1 阴影 部 分 。
在平面直角坐标系 中,两个点在横坐标相同的 条件下 ,纵坐标大 的点在上方 ,纵 坐标小 的点在下

图 1
● ..
。 ) 8 ( x 2 , Y 】 ) 如 图2 : 设 点 A( Y 。 ) , 点 B( x , A( Y
Y 1 ) , x l < x ,则说 点A在点 的左边 , 点 在点A的右边 。
二、 二 元 一 次 不 等 式 表 示 的平 面 区 域
不等式组的解表示 的平面 区域为它们 的公 共部分 , 如图8 阴影部分 。 这样 ,二元一次不等式表示的平面 区域就不难 画出了,它位于相应 的二元一次方程表示的直线的 侧, 至于在哪一侧 , 一般要把不等式画成相应的斜

不等式y > 2 x + l 表 示的平 面 区域 位 于这条直线的上方 , 如图 中阴影部
方。
例3 画出下列不等式表示的平面 区域。
( 1 ) y + 3 < 0 ( 2 ) x + 3 ≤0
( 1 ) 解: 原 不等 式化 为 : y < 一 3 , 画 出 直线 y = - 3 ,
・ 4 ( l , y

如 图1 : 设 点 ( Y ) , 点 B( y 2 ) , Y l > y 2 , 则 说 点A 在点B 的 上方 。
2 . 两个 点 左 右 的概 念

在平 面直 角坐标系 中, 两 个点 在纵 坐标 相同 的条件下 , 横坐标大 的点在 右边 ,横 坐标小 的点 在左

高中 二元一次不等式(组)与简单的线性规划 知识点+例题 全面

高中 二元一次不等式(组)与简单的线性规划 知识点+例题 全面

辅导讲义――二元一次不等式(组)与简单的线性规划[例4] 若点A (1,1),B (2,-1)位于直线0=-+a y x 的两侧,则a 的取值范围是___________.)2,1([巩固] 若点A (1,a )与原点在直线l :01=-+y x 的同侧,则实数a 的取值范围是_________.)0,(-∞[例5] 如图所示的平面区域(阴影部分)用不等式表示为_________________.033<--x y[巩固] 能表示图中阴影区域的二元一次不等式组是__________________.⎪⎩⎪⎨⎧-≥≤+≤11y y x x y[例6] 画出不等式组⎪⎩⎪⎨⎧≥>≤-+02042y y x y x 所表示的平面区域.[巩固] 画出不等式0)4)(12(<--++yxyx表示的平面区域.1.基本概念名称意义约束条件由变量x,y组成的不等式组线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的解析式,如:22yxz+=线性目标函数关于x,y的一次解析式,如yxz+=2可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最值问题注意:(1)对于实际背景的线性规划问题,可行域通常位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的定点;(2)对于线性规划问题,结果可能有唯一最优解,或是有无穷最优解,或是无最优解.2.应用利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.[例1] 设yxz-=2,其中x,y满足⎪⎩⎪⎨⎧≤≥-+≥+-221xyxyx,则z的取值范围是_________________.]4,21[-知识模块2简单的线性规划精典例题透析[例4] 不等式组⎪⎩⎪⎨⎧≤--≥++≤020220x y y x x 表示的平面区域的面积为__________.3[巩固1] 若不等式组⎪⎩⎪⎨⎧<++>>a y x x y x 11所确定的平面区域的面积为0,则实数a 的取值范围是____________.]3,(-∞[巩固2] 在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≤≥+-≥+a x y x y x 040(a 为常数)表示的平面区域的面积是9,则实数._____=a 1[巩固3] 在平面直角坐标系中,若不等式组⎪⎪⎨⎧≤-≥-+0101x y x (a 为常数)所表示的平面区域内的面积等于2,则.___=a[例5] 已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥-+≥-18360202y x y x y x ,且y ax z +=取得最大值的最优解恰为)3,23(,则a 的取值范围是______.(-2,2)[巩固] 若直线4=+by ax 与不等式组⎪⎩⎪⎨⎧≥++≤-+≥+-0420420852y x y x y x 表示的平面区域无公共点,则b a +的取值范围是________.(-3,3)[例6] 某公司计划招聘男职工x 名,女职工y 名,要求女职工人数不能多于男职工,女职工的人数不得少于男职工的31,最少10名男职工,则该公司最少能招聘多少名职工.CO的排放量b及每万吨铁矿石的价格c如下表:[巩固] 铁矿石A和B的含铁率a,冶铁每万吨铁矿石的2a b(万吨)c(万吨)A50% 1 3B70% 5.0 6CO的排放量不超过2(万吨),求购买铁矿石的最少费用. 某冶铁厂至少要生产9.1(万吨)铁,若要求2知识模块3经典题型[例](1)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是________.(2)如图阴影部分表示的区域可用二元一次不等式组表示为_____________.答案 (1) 73 (2)⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 (1)不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域. 因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43,所以k =73. (2)两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. [巩固](1)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于4,则a=______.(2)如图所示的平面区域(阴影部分)满足不等式_______________.答案 (1) 7 (2)x +y -1>0解析 (1)直线ax -y +1=0过点(0,1),作出可行域如图知可行域由点A (1,0),B (1,a +1),C (0,1)组成的三角形的内部(包括边界), 且a >-1,则其面积等于12×(a +1)×1=4,解得a =7.(2)边界对应直线方程为x +y -1=0,且为虚线,区域中不含(0,0),由以上可知平面区域(阴影部分)满足x +y -1>0.题型二:求线性目标函数的最值(2)(2013·课标全国Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 (1) 6 (2)12解析 (1)画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1, ∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6.(2)作出不等式组表示的可行域,如图(阴影部分). 易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1, 解得a =12.[巩固](1)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为________.(2)(2014·北京)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为_______.答案 (1) 4 (2) -12解析 (1)由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.(2)作出可行域,如图中阴影部分所示,直线kx -y +2=0与x 轴的交点为A (-2k,0).∵z =y -x 的最小值为-4,∴2k =-4,解得k =-12,故选D.题型三:线性规划的实际应用[例] 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z 2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. [巩固] 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得的最大利润是________万元.答案 27解析 设生产甲产品x 吨、乙产品y 吨, 则获得的利润为z =5x +3y .由题意得⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +y ≤13,2x +3y ≤18,可行域如图阴影所示.由图可知当x 、y 在A 点取值时,z 取得最大值,此时x =3,y =4,z =5×3+3×4=27(万元).1.在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为_______.答案 1夯实基础训练解析 不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去),故选C. 2.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为____________.答案 2或-1解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距, 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 3.(2014·课标全国Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为_______.答案 8解析 画出可行域如图所示.由z =2x -y ,得y =2x -z ,欲求z 的最大值,可将直线y =2x 向下平移, 当经过区域内的点,且满足在y 轴上的截距-z 最小时, 即得z 的最大值,如图,可知当过点A 时z 最大,由⎩⎪⎨⎪⎧ x +y -7=0,x -3y +1=0,得⎩⎪⎨⎪⎧x =5,y =2,即A (5,2),则z max =2×5-2=8. 4.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y -2≥0,x -y +2≥0,x ≤2表示的平面区域的面积为________.答案 4解析 作出可行域为△ABC (如图),则S △ABC =4.5.设z =2x +y ,其中x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则k 的值为________,z 的最小值为________.答案 2 -2解析 在坐标平面内画出题中的不等式组表示的平面区域及直线2x +y =z ,结合图形分析可知,要使z =2x +y 的最大值是6,直线y =k 必过直线2x +y =6与x -y =0的交点,即必过点(2,2),于是有k =2;平移直线2x +y =6,当平移到经过该平面区域内的点(-2,2)时,相应直线在y 轴上的截距达到最小,此时z =2x +y 取得最小值,最小值是z =2×(-2)+2=-2.6.在平面直角坐标系中画出不等式组⎩⎪⎨⎪⎧|x |≤|y |,|x |<1所表示的平面区域.解析 |x |=|y |把平面分成四部分,|x |≤|y |表示含y 轴的两个区域; |x |<1表示x =±1所夹含y 轴的带状区域.7.若直线x +my +m =0与以P (-1,-1)、Q (2,3)为端点的线段不相交,求m 的取值范围.解 直线x +my +m =0将坐标平面划分成两块区域,线段PQ 与直线x +my +m =0不相交,则点P 、Q 在同一区域内,于是,⎩⎪⎨⎪⎧ -1-m +m >0,2+3m +m >0,或⎩⎪⎨⎪⎧-1-m +m <0,2+3m +m <0,所以,m 的取值范围是m <-12.8.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润ω(元); (2)怎样分配生产任务才能使每天的利润最大,最大利润是多少? 解 (1)依题意每天生产的伞兵个数为100-x -y , 所以利润ω=5x +6y +3(100-x -y )=2x +3y +300. (2)约束条件为⎩⎪⎨⎪⎧5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ≥0,y ≥0,x 、y ∈N .整理得⎩⎪⎨⎪⎧x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x 、y ∈N .目标函数为ω=2x +3y +300,作出可行域,如图所示,作初始直线l 0:2x +3y =0,平移l 0,当l 0经过点A 时,ω有最大值,由⎩⎪⎨⎪⎧ x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.∴最优解为A (50,50),此时ωmax =550元.故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.9.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x +y ≤a ,x +y ≥8,x ≥6,且不等式x +2y ≤14恒成立,则实数a 的取值范围是__________.答案 [8,10]解析 不等式组表示的平面区域如图中阴影部分所示,显然a ≥8,否则可行域无意义. 由图可知x +2y 在点(6,a -6)处取得最大值2a -6,由2a -6≤14得,a ≤10.10.(2014·课标全国Ⅰ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a=________.答案 3解析 当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).由⎩⎪⎨⎪⎧ x -y =-1,x +y =-5得交点A (-3,-2), 则目标函数z =x -5y 过A 点时取得最大值.z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项. 当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分). 由⎩⎪⎨⎪⎧x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值. z min =1+3×2=7,满足题意.11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞ 解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.12.若函数y =log 2x 的图象上存在点(x ,y ),满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,2x -y +2≥0,y ≥m ,则实数m 的最大值为________.答案 1解析 如图,作出函数的可行域,当函数y =log 2x 过点(2,1)时,实数m 有最大值1.能力提升训练13.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种混合肥料.如果生产1车皮甲种肥料产生的利润为10 000元,生产1车皮乙种肥料产生的利润为5 000元,那么适当安排生产,可产生的最大利润是________元.答案 30 000解析 设生产甲种肥料x 车皮,生产乙种肥料y 车皮, 则z =10 000x +5 000y , ⎩⎪⎨⎪⎧4x +y ≤10,18x +15y ≤66,x ≥0,y ≥0,画出图形可知,目标函数在D (2,2)处有最大值, 且z max =10 000×2+5 000×2=30 000(元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档