微积分I知识点复习
微积分知识点简单总结
微积分知识点简单总结1. 函数的导数函数的导数描述了函数在某一点处的变化率,可以简单理解为函数的斜率。
导数的定义为函数在某一点处的极限,即$f'(x_0)=\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$。
导数的计算可以使用求导法则,包括常数倍法则、幂函数法则、和差法则、乘积法则、商法则等。
2. 高阶导数函数的导数可以进行多次求导,得到的导数称为高阶导数。
高阶导数可以描述函数更加详细的变化情况,例如速度、加速度等概念。
3. 函数的微分微分是导数的一种形式,描述了函数在某一点附近的线性近似。
微分的定义为$dy=f'(x)dx$,可以理解为函数在某一点处的微小改变量。
微分可以用于估计函数的变化,以及在计算积分时的一些技巧和方法中。
4. 不定积分不定积分是积分的一种形式,用于求解函数的原函数。
不定积分的记号为$\intf(x)dx=F(x)+C$,其中$F(x)$为$f(x)$的一个原函数,$C$为积分常数。
不定积分的计算可以使用换元法、分部积分法、有理函数的积分等一系列的积分法则。
5. 定积分定积分是积分的一种形式,用于计算函数在一个区间上的累积变化。
定积分的计算可以使用牛顿-莱布尼茨公式,也可以使用定积分的近似计算法,如矩形法、梯形法、辛普森法等。
6. 微积分基本定理微积分基本定理是微积分的核心定理之一,描述了导数和积分的关系。
第一部分定理称为牛顿-莱布尼茨公式,表明了函数的不定积分可以表示为函数的定积分。
第二部分定理描述了定积分的求导运算,即若函数$f(x)$在区间$[a,b]$上连续,则$\int_{a}^{b}f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数。
7. 微分方程微分方程是微积分的一个重要应用,描述了含有未知函数及其导数的方程。
微分方程可以是常微分方程或偏微分方程,按照阶数、线性性质、系数等分类。
微分方程在物理、工程、经济等领域有着广泛的应用,例如描述物体的运动、电路的动态行为、人口增长等问题。
微积分知识点总结 pdf
微积分知识点总结
微积分知识点总结如下:
1.极限:极限是微积分的基础,描述函数在某个点附近的趋势。
极限有多种计算方法,包括直接代入法、因式分解法、有理化法、夹逼定理等。
2.导数:导数表示函数在某一点处的变化率或斜率。
导数的计算方法有定义法、四则运算法则、链式法则、乘积法则、商法则等。
3.积分:积分表示函数在某个区间上的累积量或面积。
定积分等于被积函数在该区间上与x轴围成的面积。
积分的计算方法有反导数法、换元法、分部法、定积分性质等。
4.无穷级数:无穷级数表示无穷多项相加的表达式。
它可以分为收敛和发散两种类型,收敛级数有有限或无限的和,而发散级数的和是无穷大。
5.微分学:微分学是微积分的重要组成部分,包括函数的微分、微分法则、微分的应用等。
6.积分学:积分学是微积分的另一个重要部分,包括定积分、不定积分、积分的应用等。
7.多元函数微积分:多元函数微积分包括多元函数的极限、连续性、偏导数、全微分、方向导数等,以及多元函数的积分和重积分等。
8.微分方程:微分方程是描述变量之间依赖关系的数学模型,包括一阶微分方程、高阶微分方程、线性微分方程和非线性微分方程等。
9.泰勒公式与麦克劳林公式:泰勒公式是一个将一个函数展开成无穷级数的公式,而麦克劳林公式则是泰勒公式的特殊形式。
10.幂级数与傅里叶级数:幂级数是一种无穷级数,可以用来展开函数;傅里叶
级数则是将一个函数展开成正弦和余弦函数的无穷级数。
微积分知识点归纳
微积分知识点归纳微积分是数学中最基础也是最重要的分支之一、它研究的是函数的变化和求解问题的方法。
微积分的核心思想是将一个复杂的问题进行分解,然后通过求和和求极限的方法来得到问题的解答。
以下是微积分中一些重要的知识点的归纳:1.极限:极限是微积分的核心概念。
通过求极限,可以描述函数的变化趋势、计算无穷大和无穷小的值。
极限的定义是当自变量趋于其中一特定值时,函数的值趋于其中一极限值。
2.导数与微分:导数描述了函数的变化率。
它表示函数在其中一点的切线斜率。
求导的方法包括了基本的求导法则和一些特殊函数的求导法则,如幂函数、指数函数、对数函数等。
微分是导数的几何意义,也可以理解为函数的一小段近似线性变化。
3.积分与定积分:积分是导数的逆运算。
它表示函数在一定区间上的累积变化量。
定积分是积分的一种具体形式,它可以求解曲线下面的面积、路径长度和体积等问题。
定积分的计算方法包括基本的定积分法则和换元法、分部积分法等。
4.微分方程:微分方程描述了函数与其导数之间的关系。
它是微积分中一个很重要的应用领域。
常见的微分方程包括一阶线性微分方程、二阶线性常系数齐次微分方程等,可以通过积分的方法进行求解。
5.泰勒级数与级数收敛性:泰勒级数是一种将函数展开为幂级数的方法。
它可以将复杂的函数简化为无限可微的多项式函数进行计算。
级数收敛性研究级数求和是否能收敛到有限的值,常用的判别法有比值判别法、根值判别法和级数展开法等。
6.空间解析几何:空间解析几何是微积分的一个重要应用。
它研究了点、直线、平面和曲线在三维空间中的性质和关系。
通过微积分的方法可以求解空间曲线的长度、曲率和曲面的面积等问题。
7.多元函数微积分:多元函数微积分研究的是多变量函数的导数、偏导数和多重积分等。
它在计算机科学、经济学和物理学等领域有广泛的应用。
8.偏微分方程与变分法:偏微分方程描述了多元函数的偏导数与自变量之间的关系。
变分法是一种求解偏微分方程的方法,它通过极小化一些泛函来求解偏微分方程的解。
微积分知识点总结精选
微积分知识点总结精选微积分是数学的一门重要分支,研究函数的变化规律及其在几何、物理、工程等领域的应用。
微积分包括微分学和积分学,通过对函数进行求导和求积分,研究函数的性质和一些重要的数学定理。
下面将对微积分的一些重要知识点进行总结。
1.极限与连续性微积分的起点是极限的概念,极限描述了一个数列或者函数在一些点上的趋近情况。
常用的极限形式有左极限、右极限、无穷大极限等。
在微积分中,极限的定义为:如果对于任意给定的正数ε,都存在正数δ,使得当x满足0<,x-a,<δ时,f(x)与A之间的差的绝对值小于ε,那么就称函数f(x)在x=a处的极限为A。
连续性是极限的一个重要应用,如果在一些点上函数的极限与函数值相等,就称该函数在该点处连续。
2.导数和微分导数是一个函数在特定点上的变化率,可以用来描述函数的斜率、速度和加速度等概念。
导数的定义为:如果极限lim(x->a) [(f(x)-f(a))/(x-a)]存在,那么就称函数f(x)在x=a处可导,导数的值就是这个极限。
微分是导数的一个应用,微分的定义为:如果函数y=f(x)在x=a处可导,那么称d(y) = f'(a)dx 为函数f(x)在x=a处的微分。
3.高阶导数和导数法则函数的导数还可以求导数的导数,这叫做高阶导数。
高阶导数的符号通常用f(x)的斜体字母加单撇号表示,如f''(x)。
导数有许多重要的性质,导数的和差规则、常数与函数乘积的导数规则、函数乘幂的导数规则、复合函数的导数规则等都是常用的导数法则。
4.泰勒展开和泰勒级数泰勒展开是一个函数在特定点处的近似表达式,利用函数在该点的导数的值来逼近函数。
泰勒展开的公式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^(n)(a)(x-a)^n/n!+Rn(x),其中Rn(x)是余项,描述了泰勒展开的误差。
高等数学一微积分考试必过归纳总结要点重点
高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续(包括级数) 第二部分 导数及其应用(包括多元函数)第三部分 积分计算及其应用 (包括二重积分和方程)第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
二、 极限与连续 常见考试题型:1、求函数或数列的极限。
2、考察分段函数在分段点处极限是否存在, 函数是否连续。
3、函数的连续与间断。
4、求函数的渐进线。
5、级数的性质及等比级数。
6、零点定理。
每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。
3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。
每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。
第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。
2、判断函数的有界性、周期性、单调性、奇偶性。
3、求反函数。
4、求复合函数的表达式。
log log x的定义域是___________. 2007.7例1..函数y=23知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。
解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。
微积分知识点总结ppt
微积分知识点总结ppt一、基本概念1. 导数的定义:导数的定义是函数在一点的导数,是该函数在这一点的切线的斜率。
2. 导数的性质:基本公式,和,积,商法则等。
3. 函数的极值:通过导数求函数的极值点及极值。
4. 函数的单调性:通过导数研究函数的单调性。
5. 函数的凹凸性:通过导数研究函数的凹凸性。
二、微分学1. 微分的概念:微分是函数在某一点处的导函数的表现,是切线的截距。
2. 微分的计算:通过导函数求微分。
3. 微分的应用:微分在函数的近似计算,误差估计及优化问题中的应用。
三、积分学1. 不定积分:通过求导数的逆运算求不定积分。
2. 定积分:通过Riemann和定积分求解面积及曲线弧长等问题。
3. 定积分的性质:定积分的基本性质及计算公式。
4. 定积分的应用:定积分在物理,力学,生物等领域的应用。
四、微积分基本定理1. 微积分基本定理的概念:微分与积分之间的关系。
2. 牛顿—莱布尼兹公式:微积分基本定理的应用。
3. 微积分基本定理的证明:微积分基本定理的几何和代数证明。
4. 微积分基本定理的应用:微积分基本定理在实际问题中的应用。
五、一元函数微积分1. 一元函数极限:一元函数极限的概念及计算方法。
2. 一元函数连续性:一元函数连续性的概念及计算方法。
3. 一元函数导数:一元函数导数的概念及计算方法。
4. 一元函数积分:一元函数积分的概念及计算方法。
六、多元函数微积分1. 多元函数极限:多元函数极限的概念及计算方法。
2. 多元函数连续性:多元函数连续性的概念及计算方法。
3. 多元函数偏导数:多元函数偏导数的概念及计算方法。
4. 多元函数积分:多元函数积分的概念及计算方法。
七、微分方程1. 微分方程的基本概念:微分方程的定义及分类。
2. 微分方程的解法:微分方程的解法及技巧。
3. 微分方程的应用:微分方程在物理,工程等领域的应用。
八、泰勒级数与麦克劳林级数1. 泰勒级数:泰勒级数的定义及计算方法。
微积分知识点总结笔记
微积分知识点总结笔记微积分是数学中的一个重要分支,它涉及到了各种变化率、积分、微分和极限等概念。
在现代数学中,微积分是一门非常基础的学科,它广泛应用于物理、工程、经济学等领域。
本文将从微积分的基本概念、函数的极限、导数和微分、不定积分和定积分、微分方程等方面对微积分的知识点进行总结。
1.微积分的基本概念微积分的基本概念包括函数、极限、导数和积分。
首先,函数是自变量到因变量的映射规律,通常用f(x)或y来表示。
当自变量x的取值逐渐接近某一数值时,函数值f(x)也有着确定的趋势,这种趋势称为极限。
导数是函数在某一点处的变化率,而积分则是对函数在某一区间上的累积效应。
2.函数的极限函数的极限是微积分中的基础概念之一,它用来描述自变量趋于某一数值时,函数值的变化情况。
数学上通常用极限符号lim来表示,比如lim(x->a)f(x)=L表示当x趋近a时,函数f(x)的极限是L。
在微积分中,函数的极限经常用来计算导数和积分,因此对于函数的极限有着很重要的意义。
3.导数和微分导数是函数在某一点处的变化率,它描述了函数在这一点附近的近似线性变化。
导数的计算可以通过极限的方法进行,通常用f'(x)或dy/dx来表示。
微分是导数的积分形式,它表示了函数的微小变化。
在实际中,导数和微分常用来描述函数的变化趋势和优化问题,比如求解最大值、最小值和函数图像的曲线斜率等。
4.不定积分和定积分不定积分是对函数的积分形式,它表示了函数在某一区间上的累积效应。
通常用∫f(x)dx来表示,它求解的是函数的原函数。
定积分则是对函数在某一区间上的定量描述,它表示了函数曲线与x轴之间的面积。
在微积分中,不定积分和定积分是密切相关的,它们有着许多重要的性质和应用,比如面积、体积、弧长、曲线图形的面积等。
5.微分方程微分方程是描述变化规律的数学方程,它由未知函数、自变量和导数等组成。
微分方程在物理、工程、生物等领域中有着广泛的应用,它可以用来描述各种自然现象的变化规律,比如弹簧振动、电路运行、生物种群的增长和衰减等。
高等数学一微积分考试必过归纳总结要点重点
高等数学一微积分考试必过归纳总结要点重点微积分是高等数学一门重要的学科,对于大部分学习该学科的学生来说,微积分考试是一个必须要过的关卡。
为了帮助大家更好地应对微积分考试,下面将对微积分的重点内容进行归纳总结,希望对大家有所帮助。
1. 导数与微分- 定义:导数是描述函数在某一点的变化率,微分是导数的代数形式。
- 基本公式:常见函数的导函数,如幂函数、指数函数、对数函数等。
- 高阶导数:描述函数变化率变化的快慢程度。
2. 极限与连续性- 极限的概念:函数逐渐趋近于某一值的过程。
- 常见极限:基本极限,如常数极限、幂函数极限、指数函数极限等。
- 连续性:函数在某一点上没有间断的特性。
- 常见连续函数:多项式函数、三角函数、指数函数等。
3. 微分中值定理与导数应用- 中值定理:介于两个点之间存在某一点,该点的切线斜率等于这两个点的斜率之差。
- 增量与微分:增量是函数值的改变量,微分是函数值的无穷小部分。
- 泰勒展开:将函数表示为幂级数的形式,用来逼近函数在某一点附近的近似值。
4. 积分与定积分- 不定积分:求函数的原函数,即求导的逆运算。
- 定积分:表示曲线下面的面积。
- 牛顿-莱布尼兹公式:定积分与不定积分的关系。
5. 微分方程与应用- 常微分方程:描述变化的过程中,一些量的关系式。
- 一阶微分方程:只涉及到一阶导数的方程。
- 区分可分离方程、一阶线性方程、齐次方程、可化为齐次形式的方程等常见类型。
以上就是微积分考试的必过归纳总结要点重点,希望对大家的学习有所帮助。
无论是在理论还是实际应用中,微积分都是一门重要的学科,需要大家掌握扎实。
希望大家通过复习和练习,能够在微积分考试中取得好成绩。
祝愿大家学业进步!。
大学微积分l知识点总结一
大学微积分l 知识点总结第一部分大学阶段准备知识 1、不等式:ab 2ba ≥+2121n n 2211......a a b a ...b a b a n n b b b a +++++≤+++()时取等号为常数,当且仅当,n ...3,2,1i b a i i ==λλ2、函数周期性和对称性的常用结论1、若fx+a=±fx+b,则fx 具有周期性;若fa+x=±fb-x,则fx 具有对称性; 口诀:“内同表示周期性,内反表示对称性”2、周期性1若fx+a=fb+x,则T=|b-a| 2若fx+a=-fb+x,则T=2|b-a| 3若fx+a=±1/fx,则T=2a 4若fx+a=1-fx/1+fx,则T=2a 5若fx+a=1+fx/1-fx,则T=4al n sin =∂正弦 l m cos =∂余弦 m ntan =∂正切n m cot =∂余切 m l sec =∂正割 n lcsc =∂余割∂=∂cot 1tan ∂=∂csc 1sin ∂=∂sec 1cos商的关系:∂∂=∂=∂∂csc sec tan cos sin ∂∂=∂=∂∂sec csc cot sin cos平方关系:()()sina cosa 1cosa-1sina 2a cot sina cosa -1cosa 1sina 2a tan cosa 1212a cos cosa -1212a sin 22+==⎪⎭⎫⎝⎛=+=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=⎪⎭⎫⎝⎛•⎪⎭⎫ ⎝⎛+•=a -3tan a 3tan tana a 3tan a -3cos a 3cos cosa 4a 3cos a -3sin a 3sin sina 4a 3sin ππππππ 万能公式:()ββtan tan 1-tan •∂+=∂和差化积公式:()()⎦⎤⎢⎣⎡⎦⎤⎢⎣⎡+=+21-cos 21sin 2sin sin ϕθϕθϕθ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=21-sin 21cos 2sin -sin ϕθϕθϕθ ()()⎥⎦⎤⎢⎣⎡⎦⎤⎢⎣⎡+=+21-cos 21cos 2cos cos ϕθϕθϕθ ()()()⎥⎦⎤⎢⎣⎡⎦⎤⎢⎣⎡+=21-sin 21sin 2-cos -cos ϕθϕθϕθ原式得证,由题,22b a x x cos x sin 1x x +=∴===⎪⎭ ⎝+⎪⎭ ⎝M M 4、数学归纳法数学上证明与自然数N 有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立;例如:前n个奇数的总和是n2,那么前n个偶数的总和是:n2+n最简单和最常见的数学归纳法证明方法是证明当n属于所有正整数时一个表达式成立,这种方法由下面两步组成:①递推的基础:证明当n=1时表达式成立②递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立1第一数学归纳法5、初等函数的含义概念:初等函数是由幂函数、指数函数、对数函数、三角函数、反三角函数与常数经过有限次的有理运算以及有限次数函数复合所产生,并且能用一个解析式表示的函数;有理运算:加、减、乘、除、有理数次乘方、有理数次开方基本初等函数:对数函数、指数函数、幂函数、三角函数、反三角函数6、二项式定理:即二项展开式,即a+b n 的展开式()nn n k k -n k n 1-n 1n n 0n n b ...b a ...b a a C b a C C C ++•++•+=+称为二次项系数其中kn C表示项,用项,它是第叫做二次项展开式的通1k k k -n kn 1k b a ++•T Cn n y∞→8、其他一些知识点10不是正数,不是负数;是自然数;0是偶数,偶数分为:正偶数、负偶数和0 (2)正偶数称为“双数” (3)正常数:常数中的正数(4)质数:又称“素数”;一个大于1的自然数,如果除了1和它自身以外,不能被其他自然数整除的数,否则称为“合数”;最小的质素数是2;1既不是素数,也不是合数;(5)exp :高等数学中,以自然对数e 为底的指数函数 (6)在数学符号中,sup 表示上界;inf 表示下界 (7)≡:表示恒等于(8)0的阶乘是1.阶乘是一个递推定义,递推公式为:n=nn-1因为1的阶乘为其中,e n 11n→⎪⎭⎫⎝⎛+,e 为初等函数,又称“幂指函数”,e 即根据此公式得到,e ≈2.7181n 1-1n2→⎪⎭⎫⎝⎛ ()()61n 21n n n ...21222++=+++()233321n n n ...21⎥⎦⎤⎢⎣⎡+=+++()1-a a-a s a ...a a s 1n n 2+=+++=()()()()()1-n 2-n 1-n n n b ...b a a b -a b -a +++=x sinx 0x →→时, x tanx → 2x 21cosx -1→列举一些趋向于0的函数:()0lnn 10n a 1a 0c -n b0b 0a 0q 1q b nan →→→→④,>③,>,>②,<①柯西极限存在准则:3斯托尔茨定理设数列n y 单调增加到无穷大,则11lim lim--∞→∞→--=n n n n n n n n y y x x y x ()[]()a x g f x g f x f x x x x =⎥⎦⎤⎢⎣⎡=→→00lim lim )().4(是连续函数:如:nn n S S n S --++++=-2232 (2523211)32n 解题思路: 函数的连续性和间断点问题 1如何讨论并确定函数的连续性①若该函数是初等函数,则该函数在其定义域区间均连续②若是一元函数,则可对其求导,其导数在某点上有意义则函数在该点必然连续的x f x )()0=00)''()'(''''''00x )('''x x )()''()'(''''''0.0x )(εδδεεδεδε≥----∈∃∀x f x f x x x x x f x x x f x f x f x x x x x x f ,但是<,尽管、存在,总>,无论对多么小的>上,存在定义在集合不一致连续:设函数小。
微积分(I)复习(不定积分与定积分)
7) b f ( x)dx
b
f ( x)dx
a
a
8) 估 值 定 理
若m f ( x) M ,则
b
m(b a) a f ( x)dx M (b a)
9) 中 值 定 理
若f ( x) C[a, b], 则 存 在 [a, b],
使 得
b
f ( x)dx
f ( )( b a).
a
10) 广 义 中 值 定 理
若f ( x) C[a, b], g( x) R[a, b]且 在[a, b]
上 不 变 号, 则 存 在 [a, b], 使 得
b
b
a f ( x)g( x)dx f ( )a g( x)dx .
(四)变上限定积分
x2 a2 dx.
x
解 令 x asec t, 则
原式
a tant asec t
asin t cos2 t
dt
a
sin 2 t cos2 t
dt
a
tan 2
tdt
a (sec 2 t 1)dt a sec2 tdt dt
a d tant dt a tant at C
限 值 为f ( x)在[a, b]上 的 定 积 分 , 记 作
b
n
a
f ( x)dx
lim
0 k1
f (k )xk
此 时 称f ( x)在[a, b]上 可 积.
2.定积分的几何意义
b f ( x)dx表示f ( x)与x轴及直线x a, a
x b之间所围面积的代数和.
微积分上重要知识点总结
微积分上重要知识点总结微积分是数学的一个重要分支,主要研究函数的变化率和积分,是应用数学和理论数学的基础。
以下是微积分的重要知识点总结。
1.限制和连续性微积分的基础是限制和连续性的概念。
限制是指函数在其中一点的极限值,可以通过求导来计算。
连续性是指函数在其中一区间上连续,也可以通过求极限来判断。
2.导数导数是描述函数在其中一点的变化率的量,表示函数的斜率或切线的斜率。
如果函数的导数存在,那么函数在该点处是可导的。
导数可以通过求极限的方法来计算。
3.基本导数一些基本函数的导数是我们需要熟记的,如常数函数的导数为0,幂函数的导数为其幂次减1,指数函数的导数为其自身。
此外,常用基本函数的和、差、积、商等的导数运算法则也需要掌握。
4.高阶导数除了一阶导数之外,函数还可以有更高阶的导数。
高阶导数表示函数的变化速率的变化率,可以通过多次求导来获得。
5.泰勒级数和泰勒公式泰勒级数是一种用无穷级数来表示函数的方法,可以将一个光滑的函数在其中一点展开成无穷和的形式。
而泰勒公式是将泰勒级数截断为有限项,用来近似计算函数的值。
6.积分积分是求函数在其中一区间上的累积之和。
通过求和的极限可以计算定积分。
积分是导数的逆运算,反映了从变化率恢复到原函数的过程。
7.定积分定积分是对函数在一个区间上的积分,表示该区间上函数的累积值。
可以通过定积分来计算曲线下的面积、质心、弧长等。
8.基本积分公式与导数类似,一些基本函数的积分也是需要熟记的,如常数函数的积分为其积分常数,幂函数的积分为其幂次加1的导数,指数函数的积分为其自身。
此外,常用基本函数的和、差、积、商等的积分运算法则也需要掌握。
9.使用积分求解面积、体积和弧长通过积分可以计算曲线下的面积、旋转曲线生成的体积以及曲线的弧长。
这些应用包括求解几何图形的面积、立体图形的体积和弯曲线的长度。
10.偏导数偏导数是多变量函数中对其中一变量求导的概念。
通过偏导数可以获得函数在一些方向上的变化率。
微积分1知识点总结
微积分1知识点总结微积分1是大学数学中的一门重要课程,它主要包括导数和不定积分两大部分。
微积分1是数学系、物理系、工程系等专业的重要基础课程,对学生的数学思维能力、逻辑思维能力和解决实际问题的能力都有较高的要求。
微积分1知识点较多,本文将对微积分1的相关知识点进行总结,以帮助学生更好地理解和掌握微积分1的知识。
一、函数与极限1.1 函数的概念函数是一个变量与变量之间的一种对应关系。
通常用 f(x) 或 y 来表示函数,x 是自变量,y 是因变量。
函数在微积分中有着非常重要的作用,它可以用来描述数学模型中的关系、描述实际问题中的情况等。
1.2 函数的极限极限是微积分中的一个重要概念,它描述的是当自变量趋向于某一点时,函数值的趋势。
极限的概念为后续的导数和积分提供了重要的理论基础。
1.3 极限的性质极限有一些重要的性质,比如极限的唯一性、函数极限存在的条件、函数极限的运算性质等。
掌握这些性质对于理解和计算函数的极限具有重要的意义。
1.4 极限的计算计算极限是微积分中的一个重要技能。
常见的计算技巧包括利用基本极限、利用夹逼定理、利用洛必达法则等。
二、导数2.1 导数的定义导数是函数的变化率,描述了函数在某一点的变化趋势。
导数的定义是函数在某一点的切线的斜率。
2.2 导数的计算导数的计算是微积分1中的重要内容。
常见的计算技巧包括使用导数的定义、使用导数的性质、使用求导法则等。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、导数的运算法则、导数的几何意义等。
2.4 高阶导数导数的概念可以进一步推广到高阶导数,高阶导数描述了函数的变化趋势更加细致的情况。
三、不定积分3.1 不定积分的概念不定积分是导数的逆运算,描述了函数的积分情况。
不定积分的概念是微积分1中的一个重要内容。
3.2 不定积分的计算计算不定积分是微积分1中的一个关键技能。
对于一些特定的函数,可以通过不定积分的性质、不定积分的基本积分公式等来进行计算。
微积分I知识点复习
微积分I知识点复习微积分是高等数学中的重要分支,对于许多学科和领域都有着广泛的应用。
在微积分 I 的学习中,我们接触到了一系列关键的知识点,下面就来一起复习一下。
一、函数与极限函数是微积分的基础概念之一。
函数可以理解为一种输入与输出之间的对应关系。
比如常见的一次函数、二次函数、三角函数等等。
极限则是微积分中一个非常核心的概念。
它描述了函数在某个点或者趋于某个值时的趋势。
极限的计算方法有多种,比如直接代入、约分、有理化等等。
例如,当 x 趋近于 1 时,求函数(x² 1) /(x 1) 的极限。
通过因式分解,将分子变形为(x + 1)(x 1),然后约分,得到极限值为 2。
二、导数导数表示函数在某一点的变化率。
从几何意义上来说,导数就是函数曲线在某一点的切线斜率。
求导的基本公式包括:(xⁿ)'=nxⁿ⁻¹,(sin x)'= cos x,(cos x)'= sin x 等等。
对于复合函数的求导,要使用链式法则。
例如,对于函数 y =sin(2x + 1),令 u = 2x + 1,则 y = sin u,先对 u 求导为 2,再对 sin u 求导为 cos u,所以复合函数的导数为 2cos(2x + 1)。
三、微分微分是导数的一种应用。
如果函数 y = f(x)在点 x 处可导,则函数在该点的微分 dy = f'(x)dx。
例如,已知函数 y = x²,求在 x = 2 处的微分。
首先求导得 y' =2x,当 x = 2 时,导数为 4,所以在 x = 2 处的微分 dy = 4dx。
四、中值定理中值定理包括罗尔定理、拉格朗日中值定理和柯西中值定理。
拉格朗日中值定理指出,如果函数 f(x)在闭区间a, b上连续,在开区间(a, b)内可导,那么在(a, b)内至少存在一点ξ,使得 f(b) f(a) = f'(ξ)(b a)。
这个定理在证明一些不等式和解决函数的相关问题时经常用到。
(完整版)微积分知识点总结
(完整版)微积分知识点总结微积分知识点总结
微积分是数学中的一个分支,涵盖了很多基础的概念和方法。
以下是一些微积分的主要知识点总结:
极限与连续
- 极限是微积分的核心概念之一,它描述函数在某一点的趋近情况。
- 函数在某一点连续,意味着函数在该点的极限存在且与函数在该点的取值相等。
导数与微分
- 导数是用来描述函数变化率的概念,表示函数在某一点的瞬时变化率。
- 函数在某一点可导,意味着函数在该点有导数。
- 微分是导数的一种表达形式,它表示函数在某一点附近的近似线性变化。
积分与区间
- 积分是导数的逆运算,用来计算函数在某个区间上的累积变化量。
- 定积分计算的是函数在某个区间上的面积。
- 不定积分是求函数的原函数,用来表示函数在某一点的反函数。
微分方程
- 微分方程描述了函数与其导数之间的关系,是很多实际问题的数学模型。
- 一阶线性微分方程是最简单的微分方程类型,具有广泛的应用。
泰勒级数
- 泰勒级数是一种用多项式逼近函数的方法,可以将复杂的函数简化为简单的多项式。
- 泰勒展开公式是计算泰勒级数的重要工具。
以上是微积分的一些主要知识点,它们在数学、工程、物理等领域都有广泛的应用。
学好微积分有助于理解和解决实际问题。
微积分I注意事项!!!
微积分I
以下来自于我对平时作业的总结,希望可以对大家起到一定的作用。
一、极限
1.左右极限存在且相等,极限才存在
2.极限值若为无穷时,极限不存在
3.注意一些特殊情况,极限的形式需要技巧转化(eg:0/0等类型)
二、导数,微分
1.可导必连续
2.学会用定义求导
3.注意e的定义式并会利用
4.记住d(f(x))=f(x)dx
5.注意有关经济的应用题
6.注意洛必达法则的适用的规则与并非所有的情况都能用洛必达法
则
三、积分
1.求不定积分记得加c,定积分不加c
2.看懂积分的定义
3.掌握求积分的一些技巧
四、其他事项
1.学会构造辅助函数
Eg: f(x)+f”(x)=g(x),evaluate f(x)
e^x( f(x)+f”(x))=g(x)*e^x
2.记住书上的公式
3.记住上的定理最好可以默写出来并能证明,老师很喜欢从书上抽一条定理,要你们默写并证明
4.其他的不是不重要,只是大家不常错,好好巩固就好了。
微积分重点知识点梳理
微积分重点知识点梳理微积分是数学的一个重要分支,涉及到函数、极限、导数、积分等概念和方法。
它是研究函数变化规律、求解曲线斜率和曲线面积等问题的数学工具。
本文将对微积分的重点知识点进行梳理,帮助读者理解和掌握微积分的核心内容。
1. 函数的极限函数的极限是微积分的基础,通过研究函数在某一点处的极限可以描述函数的趋势和性质。
在函数的极限求解过程中,常用的方法有代数运算法、夹逼准则法和无穷小量法等。
函数极限的概念和求解方法对于理解微积分的后续内容非常重要。
2. 导数与微分导数表示函数在某一点处的变化率,是微积分的重要概念。
求导的过程可以帮助我们研究函数的斜率和变化趋势。
在求导的过程中,需要掌握基本的导数公式和求导法则,并能够应用它们解决实际问题。
3. 高阶导数与导数应用高阶导数是导数的导数,表示函数变化率的变化率。
通过研究高阶导数,我们可以更深入地理解函数的曲率和变化趋势。
在实际问题中,高阶导数的应用非常广泛,如求解最值、曲线拟合和泰勒展开等。
4. 积分与不定积分积分是导数的逆运算,求解函数曲线下的面积和定积分值。
通过对函数进行积分,我们可以得到函数的原函数或不定积分。
在积分的过程中,需要掌握积分的基本公式和常用积分法则,并能够应用它们解决实际问题。
5. 定积分与面积应用定积分表示函数在给定区间上的面积或曲线长度等量值。
通过定积分,我们可以求解实际问题中的面积、曲线长度、质量和质心等相关量。
在定积分的应用过程中,需要理解积分区间的选择、积分上下限的确定以及定积分的几何和物理意义。
6. 微分方程微分方程是描述变量之间关系的数学方程,是微积分与方程的结合体。
微分方程在自然科学和工程技术等领域中具有广泛的应用,如物理学中的运动学、化学中的反应动力学等。
掌握微分方程的基本概念和解法,可以帮助我们解决与变化和变动有关的实际问题。
总结起来,微积分是一门研究函数变化和趋势的数学学科,涵盖了函数极限、导数与微分、高阶导数与导数应用、积分与不定积分、定积分与面积应用以及微分方程等重要概念和方法。
(完整版)微积分复习资料
基本知识复习一、 不定积分1. 不定积分概念,第一换元积分法(1) 原函数与不定积分概念设函数()F x 与()f x 在区间(),a b 内有定义,对任意的(),x a b ∈,有()()'F x f x =或()()dF x f x dx =,就称()F x 是()f x 在(),a b 内的一个原函数。
如果()F x 是函数()f x 的一个原函数,称()f x 的原函数全体为()f x 的不定积分,记作()(),f x dx F x C =+⎰(2) 不定积分得基本性质1.()()df x dx f x dx=⎰2。
()()'F x dx F x C =+⎰ 3。
()()()().Af x Bg x dx A f x dx B g x dx +=+⎡⎤⎣⎦⎰⎰⎰(3)基本不定积分公式表一()()122222(1)2)1,13ln C,x (4)arctan ,1(5)arcsin ,(6)cos sin ,(7)sin cos ,(8)sec tan ,cos (9)csc cot ,sin (10)sec t kdx kx C k x x dx C dx x dx x C x x C xdx x C xdx x C dx xdx x C x dxxdx x C x x μμμμ+=+=+≠-+=+=++=+=+=-+==+==-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰是常数,(1()22an sec ,(11)csc cot csc ,(12),ln (13),(14),1(15),1(16).xxxdx x C x xdx x C a a dx C ashxdx chx C chxdx shx C dx thx C ch x dx cthx C sh x =+=-+=+=+=+=+=-+⎰⎰⎰⎰⎰⎰⎰(3) 第一换元积分法(凑微分法)设()f u 具有原函数, ()u x ϕ=可导,则有换元公式()()()()'.u x f x x dx f u du ϕϕϕ=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰2. 第二换元积分法,分部积分法(1) 第二换元积分法设()x t ψ=是单调的、可导的函数,并且()'0t ψ≠.又设()()'f t t ψψ⎡⎤⎣⎦具有原函数,则有换元公式()()()()1',t x f x dx f t t dt ψψψ-=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰其中()1x ψ-是()x t ψ=的反函数.(2) 分部积分法设函数()u u x =及()v v x =具有连续导数,那么,()''',uv u v uv =+移项,得 ()'''.uv uv u v =-对这个等式两边求不定积分,得''.uv dx uv u vdx =-⎰⎰这个公式称为分部积分公式.它也可以写成以下形式:.udv uv vdu =-⎰⎰(3) 基本积分公式表二(2222(17)tan ln cos )cot ln sin ,sec ln sec tan C,(20)csc ln csc cot ,1(21)arctan ,1(22)ln ,2(23)arcsin ,(24)ln ,(2xdx x C xdx x C xdx x xdx x x C dx x C a x a a dx x adx C x a a x a xC a x C =-+=+=++=-+=++-=+-+=+=++⎰⎰⎰⎰⎰⎰,(18(19)5)ln .x C =+ (3)有理函数的积分,三角函数有理式的积分,某些简单无理式的积分一、有理函数的积分 两个多项式的商()()P x Q x 称为有理函数,又称为有理分式.我们总假定分子多项式()P x 与分母多项式()Q x 之间是没有公因式的.当分子多项式()P x 的次数小于分母多项式()Q x 的次数时,称这有理函数为真分式,否则称为假分式.利用多项式的除法,总可以将一个假分式化成一个多项式与一个真分式之和的形式,由于多项式的积分容易求,故我们将重点讨论真分式的积分方法.对于真分式()()n m P x Q x ,首先将()m Q x 在实数范围内进行因式分解,分解的结果不外乎两种类型:一种是()kx a -,另外一种是()2lx px q ++,其中,k l 是正整数且240p q -<;其次,根据因式分解的结果,将真分式拆成若干个分式之和.具体的做法是:若()m Q x 分解后含有因式()kx a -,则和式中对应地含有以下k 个分式之和:()()()122,k kA A A x a x a x a +++---L 其中:1,,k A A L 为待定常数.若()m Q x 分解后含有因式()2lx px q ++,则和式中对应地含有以下l 个分式之和:()()()11222222,l l l M x N M x N M x N x px q x px q x px q ++++++++++++L 其中:(),1,2,,i i M N i l =L 为待定常数.以上这些常数可通过待定系数法来确定.上述步骤称为把真分式化为部分分式之和,所以,有理函数的积分最终归结为部分分式的积分.二、可化为有理函数的积分举例 例4 求()1sin .sin 1cos xdx x x ++⎰解 由三角函数知道,sin x 与cos x 都可以用tan2x的有理式表示,即 222222222tan 2tan22sin 2sin cos ,22sec 1tan 221tan 1tan 22cos cos sin .22sec 1tan 22x x x x x x xx xx x x x x ===+--=-==+如果作变换()tan2xu x ππ=-<<,那么 22221sin ,cos ,11u u x x u u -==++ 而2arctan ,x u =从而22.1dx du u =+ 于是()22222221sin sin 1cos 2211121111112212ln 2211tan tan ln tan .42222xdx x x u du u u u u u u u du u u u u C x x xC ++⎛⎫+ ⎪++⎝⎭=⎛⎫-+ ⎪++⎝⎭⎛⎫=++ ⎪⎝⎭⎛⎫=+++ ⎪⎝⎭=+++⎰⎰⎰例5求. 解u =,于是21,2,x u dx udu =+=从而所求积分为()222222111212arctan 12.u u dx udu dux u u du u u C u C =⋅=++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰⎰ 例6求解u =,于是322,3,x u dx u du =-=从而所求积分为223113113ln 13ln 1.2u duu u duu u u u C C =+⎛⎫=-+ ⎪+⎝⎭⎛⎫=-+++=+ ⎪⎝⎭⎰⎰例7 求解 设6x t =,于是56,dx t dt =从而所求积分为()()52223266111616arctan 16arctan .t t dt dt t t tdt t t C t C ==++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰例8求.解t =,于是()2222112,,,11x tdtt x dx x t t +===---从而所求积分为 ()()()22222222*********ln 1122ln 1ln 12ln 1ln .t t t t dt dtt t t dt t Ct t t t t C x C -=-⋅=----⎛⎫=-+=--+ ⎪-+⎝⎭=-++--+⎫=-++⎪⎪⎭⎰⎰⎰二、 定积分(1) 定积分概念,微积分基本定理,定积分得基本性质 (1) 定积分的概念1。
微积分知识点总结梳理
微积分知识点总结梳理一、导数1. 导数的定义在微积分中,导数是描述函数变化率的重要工具。
给定函数y=f(x),如果函数在某一点x0处的导数存在,那么它的导数可以用以下极限来定义:\[f’(x_0)=\lim_{\Delta{x} \to 0} \frac{f(x_0+\Delta{x})-f(x_0)}{\Delta{x}}\]2. 导数的几何意义导数的几何意义指的是函数在某一点处的导数就是该点处切线的斜率。
切线和曲线在该点处相切,且与曲线在该点处有着相同的斜率。
3. 导数的计算方法导数的计算方法有很多种,常见的有用极限定义、求导法则、隐函数求导、参数方程求导等方法。
其中求导法则包括常数法则、幂函数法则、指数函数和对数函数法则、三角函数法则、反三角函数法则、复合函数求导法则等。
4. 导数的应用导数在物理学、工程技术、经济学等领域都有广泛的应用。
在物理学中,速度、加速度等物理量都与导数有密切的关系。
在经济学中,边际收益、边际成本、弹性系数等经济学指标的计算都需要用到导数。
二、积分1. 积分的定义积分是导数的逆运算,它是函数的面积或曲线长度的定量描述。
给定函数y=f(x),函数在区间[a, b]上的定积分可以用以下极限来定义:\[\int_{a}^{b} f(x)dx=\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i)\Delta{x}\]其中\[Δx=\frac{b-a}{n}\]2. 积分的几何意义积分的几何意义指的是函数在区间[a, b]上的定积分就是该函数与x轴所围成的曲边梯形的面积。
它表示函数在该区间上的总体积或总体积分。
3. 积分的计算方法积分的计算方法有很多种,常见的有用不定积分的积分法则、定积分的积分法则、分部积分法、换元积分法、特殊函数积分法等。
4. 积分的应用积分在几何学、物理学、工程技术、统计学等领域都有着重要的应用。
在几何学中,积分可以用来计算曲线长度、曲线面积和曲面体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v2 ( x)
(v(x) 0)
例6 y x2 sin x cos x 1, 求 y 。 解 y (x2 ) (sin x) (cosx) (1) 2x cosx (sin x) 0 2x cosx sin x
四.复合函数的导数
例2 求 y x3 在 x 2 处的微分, 以及当x 0.1时, 在 x 2 处的微分.
解 d y (x3)d x 3x2 d x
故 d y x2 3x2 d x x2 12d x
d y x2 3x2 d x x2
x0.1
x0.1
3 22 0.1 1.2 (x d x)
第三章 导数与微分
一. 导数的定义 二. 基本初等函数的导数 三. 导数的加减乘除四则运算法则 四. 复合函数求导法则 五. 隐函数的求导法则 六. 参数方程求导法则
七. 高阶导数与微分
求导方法小结
按定义求导
基本初等函数的导数 导数的四则运算法则 复合函数求导法
反函数的导数 隐函数的求导法 参数方程求导法
此时, 切线方程为:
y y0 f (x0 )(x x0 )
定理
函数 f (x) 在点 x0可导的 必要条件是它在点 x0 连续.
只是必要条件!
1. 常量函数 (C) 0
六
类
2. 幂函数
(x ) x1
基 3. 指数函数 (ex ) ex
(ax ) ax ln a
设 f (x) 的 n 1阶导数存在, 它仍是 x 的函数,
若它可导, 则称它的导数为原来函数的n 阶导数.
n 阶导数的记号为:
f (n) (x) ( f (n1) (x)),
y(n) ( y(n1) ),
2. 函数的微分可以写成:
d y f (x)d x 或 d f (x) f (x)d x
第二章 极限与连续
一. 数列的观察 二. 无穷大、无穷小的观察 三. 极限的计算方法 四. 连续函数的概念
极限的计算方法总结:
1.直接代入计算法.
2. 分式函数, 时,分子分母同除以
最高次幂法. 3.分式函数,无穷小时, 因式分解约 去公因式(x-a)法 4. 无理分式时, 将无理式有理化法
d dx
F
(
x
,
y) 0
然后, 从这个式子中解出 y , 就得到隐函数的导数.
六、参数方程求导法则:
设
x x(t)
tI
y y(t)
dy
dy dx
y(t)
xt
dt dx
dt
由微分形式 不变性更是 一目了然
七、高阶导数与函数的微分:
一般说来, 如果函数 f (x) 的导函数 f (x) 仍然 可导, 则称 f (x) 的导数为原来函数 f (x) 的二 阶导数, 记为 f (x) ( f (x)).
本 初 等
4. 对数函数 5. 三角函数
(ln x) 1 x
(log
a
x)
1 x ln
a
(sin x) cos x
函 数
(
tan
x )
1 c os2 x
sec2
x
1
tan2
x
求
6. 反三角函数
(arcsin x)
1
(1 x 1)
导
1 x2
(arctan
x)
2 (1); 9 (2) (4) (6) (8) (9); 14 (2)(3); 16; 18 (1)(2); 20 (1); 32 (1); 35 (1)(5)(8); 38; 41; 43.
第三章 导数与微分 习题二(A) P137:5;
10; 15(3)(5); 16(3)(6)(9); 17(1)(4); 21(1)(7)(18); 24(1)(4); 26(1)(5); 30(1); 46(5); 47(2); 50; 51; 57(5)(7);
第四章 导数的应用
一. 理论:三个微分中值定理 二. 应用一:极限计算,洛必达法则 三. 应用二:函数图形性质研究 四. 应用三:最优化应用
f
'
( x0
)
lim
h0
f (x0 h) h
f (x0 ) ;
f
(x0 )
lim
x0
f
(x0
x) f 2x
(x0
x)
函数 f (x) 在点 x0 的导数 f ( x0) 就是对应的平面
曲线 y = f (x) 在点 (x0, y0) 处的切线的斜率 k :
k tan f (x0)
u x
( f ((x))) f ((x))(x)
五.隐函数的求导法则 方法:
如果由方程 F(x, y) = 0 确定隐函数 y = f (x) 可导,
则将 y = f (x) 代入方程中, 得到
F ( x, f (x) ) 0 对上式两边关于 x 求导, 碰到y要看成是复合函数:
取对数求导法
一、导数概念
y lim y lim f (x0 x) f (x0 ) .
x0 x x0
x
f
( x)
lim
x0
y x
lim
x0
f
(x
Hale Waihona Puke x) xf(x)
f (x0 ) f (x) xx0 先求导、后代值.
如果函数 f (x) 在点 x0 处可导, 则导数有其他形式
1 1 x2
x (, )
二. 导数的四则运算法则
若函数 u(x) , v(x) 均可导, 则
(1) (u(x) ±v(x)) u(x) ±v(x),
(2) (u(x)v(x)) u(x)v(x) u(x)v(x)
(3)
u( x) v(x)
u(x)v(x) u(x)v(x)
定理
设 u = (x) 在点 x 处可导, y = f (u) 在对应
点 u ( u = (x) ) 处也可导, 复合函数 y = f ( (x))
在 U(x) 内有定义, 则 y = f ( (x)) 在点 x 处可导,
且
y f (u)(x)
或
d d
y x
d d
y u
d d
5. 运用两个特殊的极限(拼凑法)
1. 重要极限 limsin x 1 x0 x
2. 重要极限
lim1 x
1 x
x
e
6.无穷小代换法(公式较多,不宜记)
7. 分段函数在分段点的极限计算法 (在分段点分别按左、右极限计算)
8. 洛必达法则(第四章)
四.初等函数的连续性 基本初等函数在其定义域内是连续的. 初等函数在其有定义的区间内连续.
三. 应用二:函数图形性质研究
第三节 函数的单调性,运用一阶导数的讨论 第四节 函数极值 第六节 函数的凹凸性,运用二阶导数的讨论 第七节 函数的图形(近渐线的计算)
四. 应用三:最优化应用
第五节 函数的最大值、最小值
1. 工业设计中的几何问题、 2. 经济(成本、收益、利润)问题
第四章 中值定理与导数的应用 习题四(A) P194:1 (1);
函数间断点—只可能是-无定义点、分段点
函
第一类间断点
数
的
跳跃
可去
间
断 点
第二类间断点
无穷 振荡 其它
第二章 极限与连续 习题二(A) P90:3(1)(2)(3);
9; 10; 11(1)(2)(6)(11)(12)(18); 13; 16; 23(2)(3)(7); 24(1)(2)(3); 30(1)(2)(3); 31; 35; 38. 习题二 (B) P96: 2; 5; 6; 7; 11.
微积分I 知识点(考点)
第一章 函数
一. 函数的定义域 二. 函数的代入运算 三. 基本初等函数分类 四. 复合函数的概念 五. 初等函数的概念 六. 分段函数的概念
复习题 习题一 P41: 20(1)(2)(3);
21; 22; 27(1)(2)(3)(7); 52; 53; 55(1)(2)(3)(4)(5)。