(完整版)最短路径习题

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.4课题学习最短路径问题

1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B 处,则它爬行的最短路径是。

B

A

②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。

D

C

A B

2.①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。

李庄

张村

②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。请在图中找出点P的位置,并计算PA+PB的最小值。

B

A

L

③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度

为。

3.如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D

处,则蚂蚁爬行的最短路径是 。

4.现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。

5.如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。

6.正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为 。

7.在菱形ABCD 中,AB=2,∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。

张村

李庄

A

B

C

D

A

B

A

B

图(2)

8.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值为____ ___。

9.如图,点P关于OA、OB的对称点分别为C、D,连接CD,交OA于M,交OB 于N,若CD=18cm,则△PMN的周长为________。

10.已知,如图DE是△ABC的边AB的垂直平分线,D为垂足,DE交BC于E,且AC=5,BC=8,则△AEC的周长为__________。

11.已知,如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,AC=8,△ABE的周长为14,则AB的长。

12.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是____.

13.△ABC中,∠C = 90°,AB = 10,AC=6,BC=8,过AB边上一点P作PE⊥AC 于E,PF⊥BC于F,E、F是垂足,则EF的最小值等于.

14.如图,菱形ABCD中,AB=2,∠BAD=60°,点E、F、P分别是AB、BC、AC 上的动点,则PE+PF的最小值为___________.

15.如图,村庄A、B位于一条小河的两侧,若河岸a、b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近.

16.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).

(1)求该函数的解析式;

(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.

17.如图,已知∠AOB内有一点P,试分别在边OA和OB上各找一点E、F,使得△PEF的周长最小。试画出图形,并说明理由。

18.如图,直线l是第一、三象限的角平分线.

实验与探究:

(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;

归纳与发现:

(2)结合以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为;

运用与拓广:

(3)已知两点D (1,-3)、E (-1,-4),试在直线l 上确定一点Q ,使点Q 到D 、E 两点的距离之和最小,并求出Q 点坐标.

19.几何模型:

条件:如图,A 、B 是直线L 同旁的两个定点.问题:在直线L 上确定一点P ,使PA+PB 的值最小.

方法:作点关于直线的对称点,连结交于点,则的值

最小(不必证明).

模型应用:

(1)如图1,正方形的边长为2,为的中点,是上一动点.连结,由正方形对称性可知,

与关于直线对称.连结交于,则

的最小值是___________;

(2)如图2,的半径为2,点在上,,

,是上一动点,求的最小值;

(3)如图3,∠AOB=45°,P 是∠AOB 内一点,PO=10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值.

20.问题探究

(1)如图①,四边形是正方形,

,为边的中点,为

上的一个动点,求的最小值;

A l A 'A

B 'l P ABCD E AB P A

C B

D D AC ED AC P PB P

E +O ⊙A B C 、、O ⊙OA OB ⊥60AOC ∠=°P OB PA PC +ABCD E BC P BD PC PE + A

B

P

l

A B E C

B

D

图1

O

A

B C 图2

P O

A B P

R

Q 图3

相关文档
最新文档