最短路径问题和最小

合集下载

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册

13.4轴对称之最短路径问题人教版2024—2025学年八年级上册二、例题讲解例1.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.变式1.如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC,EC,已知AB=5,DE=1,BD=8.(1)请问点C什么位置时AC+CE的值最小?最小值为多少?(2)设BC=x,则AC+CE可表示为,请直接写出的最小值为.例2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.变式1.如图,在⊥ABC中,BA=BC,BD平分⊥ABC,交AC于点D,点M、N 分别为BD、BC上的动点,若BC=10,⊥ABC的面积为40,则CM+MN的最小值为.变式2.如图,等腰三角形ABC的底边BC长为8,面积是24,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则⊥CDM的周长的最小值为()A.7B.8C.9D.10变式3.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)点D的坐标为;(2)若E为边OA上的一个动点,当⊥CDE的周长最小时,求点E的坐标.例3.如图,⊥AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若⊥PMN的周长是6cm,则P1P2的长为()A.6cm B.5cm C.4cm D.3cm变式1.已知点P在⊥MON内.如图1,点P关于射线OM的对称点是G,点P 关于射线ON的对称点是H,连接OG、OH、OP.(1)若⊥MON=50°,求⊥GOH的度数;(2)如图2,若OP=6,当⊥P AB的周长最小值为6时,求⊥MON的度数.变式2.如图,⊥MON=45°,P为⊥MON内一点,A为OM上一点,B为ON上一点,当⊥P AB的周长取最小值时,⊥APB的度数为()A.45°B.90°C.100°D.135°变式3.如图,⊥AOB=30°,P是⊥AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则⊥CPD周长的最小值为.变式4.如图,在五边形中,⊥BAE=140°,⊥B=⊥E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当⊥AMN的周长最小时,求⊥AMN+⊥ANM 的值是()A.100°B.140°C.120°D.80°例4.如图,在⊥ABC中,AB=AC,⊥A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,⊥DNM+⊥EMN的大小是()A.45°B.90°C.75°D.135°变式1.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.变式2.如图,在四边形ABCD中,⊥B=90°,AB⊥CD,BC=3,DC=4,点E 在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE 的周长的最小值为.例5.如图,⊥AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记⊥MPQ=α,⊥PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°变式1.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,求MQ+PQ+PN的最小值。

最短路径问题介绍

最短路径问题介绍

最短路径问题介绍全文共四篇示例,供读者参考第一篇示例:最短路径问题是指在一个带有边权的图中,寻找连接图中两个特定节点的最短路径的问题。

在实际生活中,最短路径问题广泛应用于交通运输、通信网络、物流配送等领域。

通过解决最短路径问题,可以使得资源的利用更加高效,节约时间和成本,提高运输效率,并且在紧急情况下可以迅速找到应急通道。

最短路径问题属于图论中的基础问题,通常通过图的表示方法可以简单地描述出这样一个问题。

图是由节点和边组成的集合,节点表示不同的位置或者对象,边表示节点之间的连接关系。

在最短路径问题中,每条边都有一个权重或者距离,表示从一个节点到另一个节点移动的代价。

最短路径即是在图中找到一条路径,使得该路径上的边权和最小。

在解决最短路径问题的过程中,存在着多种算法可以应用。

最著名的算法之一是Dijkstra算法,该算法由荷兰计算机科学家Edsger W. Dijkstra于1956年提出。

Dijkstra算法是一种贪心算法,用于解决单源最短路径问题,即从一个给定的起点到图中所有其他节点的最短路径。

该算法通过维护一个距离数组和一个集合来不断更新节点之间的最短距离,直到找到目标节点为止。

除了Dijkstra算法和Floyd-Warshall算法外,还有一些其他与最短路径问题相关的算法和技术。

例如A*算法是一种启发式搜索算法,结合了BFS和Dijkstra算法的特点,对图中的节点进行评估和排序,以加速搜索过程。

Bellman-Ford算法是一种解决含有负权边的最短路径问题的算法,通过多次迭代来找到最短路径。

一些基于图神经网络的深度学习方法也被应用于最短路径问题的解决中,可以获得更快速和精确的路径搜索结果。

在实际应用中,最短路径问题可以通过计算机程序来实现,利用各种算法和数据结构来求解。

利用图的邻接矩阵或者邻接表来表示图的连接关系,再结合Dijkstra或者Floyd-Warshall算法来计算最短路径。

最短路径问题

最短路径问题

最短路径问题 姓名 类型一、一条直线外两个定点到直线上一动点距离之和最小的问题:1. 一条直线异侧两个定点到直线上一动点距离之和最小,确定动点的位置。

作法:连接两个定点,交直线于一点,交点即为所求。

例1、如图,在直线l 上求一点P ,使PA +PB 值最小.作法:连接AB ,交直线l 于点P ,点P 即为所求。

说明:∵连接A 、B 两点的线中,线段最短。

∴连接AB ,交直线l 于点P ,此时PA+PB 最小=AB2. 一条直线同侧两个定点到直线上一动点距离之和最小,确定动点的位置。

方法:利用轴对称变换将直线同侧两个定点转化为直线异侧两个定点,然后根据“两点之间线段最短”,用例1的方法确定动点的位置。

例2、 如图,在直线l 上求一点P ,使PA +PB 值最小.作法:①作点A 关于直线l 的对称点A ’;②连接A ’B ,交直线l 于点P ,点P 即为所求。

说明:连接AP 、AA ’,∵点A 和点A ’关于直线l 对称,∴直线l 是AA ’的垂直平分线,∴PA=PA ’,∵两点之间,线段最短。

∴此时PA+PB 最小=PA ’+PB=AB 。

类型二、一条直线外两个定点到直线上一动点距离之差最大的问题:1.一条直线同侧两个定点到直线上一动点距离之差最大,确定动点的位置。

例3、在直线l 上求一点P ,使PB PA -的值最大.作法:连接AB ,并延长交直线l 于点P ,点P 即为所求。

证明:在直线l 上另取一点P ’,连接P ’A 和P ’B , ∵三角形的两边之差大于第三边, ∴AB B P A P <''-; 而连接AB ,并延长交直线l 于点P ,此时AB PB PA =-, AB PB PA =-∴最大此时 2.一条直线异侧两个定点到直线上一动点距离之差最大,确定动点的位置。

l A l l l A方法:利用轴对称变换将直线异侧两个定点转化为直线同侧两个定点,然后根据“三角形的两边之差大于第三边”,用例3的方法确定动点的位置。

八年级最短路径问题归纳

八年级最短路径问题归纳

八年级最短路径问题归纳最短路径问题是图论中的一个经典问题,也是计算机科学中的重要研究领域之一。

在八年级的学习中,我们也会接触到最短路径问题,并且通过一些简单的算法来解决这个问题。

本文将对八年级最短路径问题进行归纳总结,希望能够帮助大家更好地理解和应用这个问题。

一、最短路径问题的定义最短路径问题是指在一个给定的图中,找出两个顶点之间的最短路径,即路径上的边权之和最小。

其中,图由顶点和边组成,顶点表示路径中的点,边表示路径中的通路或连接。

二、最短路径问题的应用最短路径问题在生活中有着广泛的应用,比如导航系统中的最短路径规划、货物运输中的最短路径选择等等。

通过寻找最短路径,可以帮助我们节省时间和资源,提高效率。

三、最短路径问题的解决方法1. 迪杰斯特拉算法迪杰斯特拉算法是解决最短路径问题的一种常用算法。

该算法通过不断更新起点到各个顶点的最短路径,直到找到终点的最短路径为止。

迪杰斯特拉算法的具体步骤如下:- 初始化起点到各个顶点的距离为无穷大,起点到自身的距离为0;- 选择一个未访问的顶点,更新起点到其他顶点的距离;- 重复上述步骤,直到找到终点的最短路径或所有顶点都被访问过。

2. 弗洛伊德算法弗洛伊德算法是解决最短路径问题的另一种常用算法。

该算法通过不断更新任意两个顶点之间的最短路径,直到更新完所有顶点对之间的最短路径为止。

弗洛伊德算法的具体步骤如下:- 初始化任意两个顶点之间的距离,如果两个顶点之间有直接的边,则距离为边的权值,否则距离为无穷大;- 选择一个顶点作为中转点,更新任意两个顶点之间的距离;- 重复上述步骤,直到更新完所有顶点对之间的最短路径。

四、最短路径问题的注意事项在解决最短路径问题时,需要注意以下几点:1. 图的表示方式:可以使用邻接矩阵或邻接表来表示图,根据具体的问题选择合适的表示方式。

2. 边的权值:边的权值可以表示两个顶点之间的距离、时间、花费等等,根据具体的问题选择合适的权值。

最短路径知识点

最短路径知识点

l A 最短路径问题一、基本模型与方法问题1:“牵牛从点A 出发,到河边l 喝水,再到点B 处吃草,走哪条路径最短?”即在l 上找一点P ,使得PA+PB 和最小.(1)A ,B 两点在直线异侧时,连接AB 交l 于P ,则PA+PB 和最小.(2)A ,B 两点在直线同侧时,在l 上找一点P ,使得PA+PB 和最小.作B 点关l 的对标点B’,连接AB’交l 于点P ,即为所要找的P 点,使PA+PB 和最小.(3)变式讨论:在l 上找一P 点,使得△PAB 周长最小.问题2:在l 上找一点P ,使得|PA 一PB|最大(1)A ,B 两点在直线同侧时,连接AB 井延长交l 于P ,则|PA 一PB|最大(2)A ,B 两点在直线异侧时,作B 点关于l 的对称点B’,连接AB’并延长交l 于点P ,即为所要找的P 点,使|PA 一PB|最大.(3)当两定点A 、B 在直线l 同侧时,在直线l 上找一点P ,使得PA PB 最小. l A l A l l A问题3:(1)在直线l 1、l 2上分别求点M 、N ,使△PMN 周长最小做法:分别作点P 关于直线l 1、l 2的对称点P 1,P 2连接P 1,P 2与l 1、l 2交点即为M ,N(2)变式:在直线l 1、l 2上分别求点M 、N ,使四边形PMQN 周长最小.做法:分别作点P ,Q 关于直线l 1,l 2的对称点P’,Q’,连接P’,Q’ 与l 1,l 2交点即为M ,N问题4:点在锐角△AOB 内部,在OB 边上求作一点D ,在OA 边上求作一点C ,使PD+CD 最小做法:做点P 关于直线OB 的对称点P’,过P’向直线OA 作垂线与OB 的交点为所求点D ,垂足即为点C问题5:(1)直线l 1△l 2,并且l 1与l 2之间的距离为d ,点A 和点B 分别在直线l 1、l 2的两 侧,在直线l 1、l 2上分别求一点M 、N ,使AM+MN+AB 的和最小.作法:将点A 向下平移d 个单位到A 1,连结A 1B 交l 2于点N ,过N 作MN△”1,垂足为M ,连结AM ,则线段AM+MN+NB 的和最小,点M ,N 即为所求. l ABl 22O(2)直线l 的同侧有两点A ,B ,在直线l 上求两点C 、D ,使得AC+CD+DB 的和最小,且CD 的长为定值a ,点D 在点C 的右侧.作法:将点A 向右平移a 个单位到A 1,作点B 关于直线的对称点名B 1,连结A 1,B 1交直线l 于点D ,过点A 作AC//A 1D 交直线l 于点G ,连结BD ,则线段AC+CD+DB 的和最小. 点C 、D 即为所求二、基本题型训练(欢迎大家补充练习题并上传!)1. 如图,已知△ABC 为等腰直角三角形,AC =BC =4,∠BCD =15°,P 为CD 上的动点,则PA PB的最大值是多少?解答:l 21如图所示,作点A关于CD的对称点A′,连接A′C,连接A′B并延长交CD于点P,则点P就是PA PB-的值最大时的点,PA PB-=A′B.∵△ABC为等腰直角三角形,AC=BC等于4,∴∠ACB=90°.∵∠BCD=15°,∴∠ACD=75°.∵点A、A′关于CD对称,∴AA′⊥CD,AC=CA′,∵∠ACD=∠DCA′=75°,∴∠BCA′=60°.∵CA′=AC=BC=4,∴△A′BC是等边三角形,∴A′B=BC=4.∴PA PB-的最大值为4.2.。

最短路径问题 课件

最短路径问题 课件
课题学习 最短路径问题
知识点1:两点在直线异侧时的最短路径问题 【例1】 如图1-13-30-1,在直线l上找一点P,使得 PA+PB的和最小.
解:答图13-30-1,点P即为所求.
知识点2:两点在直线同侧时的最短路径问题 【例2】 如图1-13-30-3,已知直线l和l外两点A,B, 点A,B在l同侧,求作一点P,使点P在直线l上,并且 使PA+PB最短.
解:如答图13-30-6,作点A的对称点A′, 连接A′B,与直线l相交于点C,连接AC, 点C即为所求.
6. 如图1-13-30-9,正方形网格中每个小正方形边 长都是1.在直线l上找一点P,使PB+PC的值最小.
略.
7. 如图1-13-30-10,在平面直角坐标系中,点 A(4,4),B(2,-4).在y轴上求作一点P,使 PA+PB的值最小.(不写作法,保留作图痕迹)
略.
8. 如图1-13-30-11,∠XOY内有一点P,请在射线OX上 找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.
解:如答图13-30-7,作点P关于OX对称的点 P1,关于OY对称的点P2,连接P1P2,交OX, OY于点M,N,则M,N两点即为所求.
9. 如图1-13-30-12,在△ABC中,AB=AC,AD是BC边 上的高,P是AB边上的一点,请在高AD上找一点E, 使得△PEB的周长最短.
解:作图略, 作点A关于直线l的对称点A′, 连接A′B与直线l交于点P, 则P点即为所求.
4. 如图1-13-30-7,直线l旁有两点A,B,在直线上 找一点CA,B两点的距离相等.
解:如答图13-30-5,点C,点D即为所求.
5. 如图1-13-30-8,l为某河流的南岸线,一天傍晚 某牧童在A处放牛,欲将牛牵到河边饮水后再回到家 B处,牧童想以最短的路程回家.请你在找中画出牛 饮水C的位置.

二次函数压轴题专题一 最短路径问题

二次函数压轴题专题一   最短路径问题

二次函数压轴题专题一最短路径问题——和最小知识梳理最短路径就是无论在立体图形还是平面图形中,两点间的最短距离,常涉及以下 两个方面:1、两点之间,线段最短;2、垂线段最短。

常用思考的方式:1、把立体转化为平面;2、通过轴对称寻找对称点。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

例题导航例1:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥。

证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。

例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。

作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。

证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD,··CDA BEa∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB所以抽水站应建在河边的点D 处,常见问题归纳“和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小.【方法归纳】①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求.②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求.③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点C ,D 即为所求.④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DElBAllllBAOBOB+EF +CF 最小,则点E ,F 即为所求.⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求.⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =14x 2)上的一点,点A (0,1)在y轴正半轴.点P 在什么位置时PA +PB 最小?过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA +PB 最小,则点P 即为所求.二次函数中最短路径例题例1.(13广东)已知二次函数y =x 2-2mx +m 2-1.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.BOB Oll练习1.(11菏泽)如图,抛物线y =12x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.练习2.(12滨州)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.例2.(14海南)如图,对称轴为直线x =2的抛物线经过A (-1,0),C (0,5)两点,与x 轴另一交点为B .已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a =1时,求四边形MEFP 的面积的最大值,并求此时点P 的坐标;(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.【思路点拨】 (1)由对称轴为直线x =2,可以得出顶点横坐标为2,设二次函数的解析式为y =a (x -2)2+k ,再把点A ,B 的代入即可求出抛物线的解析式;(2)求四边形MEFP 的面积的最大值,要先表示出四边形MEFP 面积.直接求不好求,可以考虑用割补法来求,过点P 作PN ⊥y 轴于点N ,由S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME 即可得出; (3)四边形PMEF 的四条边中,线段PM ,EF 长度固定,当ME +PF 取最小值时,四边形PMEF 的周长取得最小值.将点M 向右平移1个单位长度(EF 的长度),得到点M 1(1,1),作点M 1关于x 轴的对称点M 2(1,-1),连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小. 【解题过程】解:(1)∵对称轴为直线x =2,∴设抛物线解析式为y =a (x -2)2+k .将A (-1,0),C (0,5)代入得:⎩⎨⎧9a +k =04a +k =5,解得⎩⎨⎧a =-1k =9,∴y =-(x -2)2+9=-x 2+4x +5.(2)当a =1时,E (1,0),F (2,0),OE =1,OF =2.设P (x ,-x 2+4x +5),如答图2,过点P 作PN ⊥y 轴于点N ,则PN =x ,ON =-x 2+4x +5,∴MN =ON -OM =-x 2+4x +4.S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME =12(PN +OF )•ON -12PN•MN -12OM •OE =12(x +2)(-x 2+4x +5)-12x •(-x 2+4x +4)-12×1×1=-x 2+92x +92 =-(x -94)2+15316 ∴当x =94时,四边形MEFP 的面积有最大值为15316,此时点P 坐标为(94,15316). (3)∵M (0,1),C (0,5),△PCM 是以点P 为顶点的等腰三角形,∴点P 的纵坐标为3.令y =-x 2+4x +5=3,解得x =2±6.∵点P 在第一象限,∴P (2+6,3).四边形PMEF 的四条边中,PM 、EF 长度固定,因此只要ME +PF 最小,则PMEF 的周长将取得最小值. 如答图3,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1);作点M 1关于x 轴的对称点M 2,则M 2(1,-1);连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小.设直线PM 2的解析式为y =mx +n ,将P (2+6,3),M 2(1,-1)代入得:⎩⎨⎧(2+6)m +n =3m +n =-1,解得:m =46-45 ,n =46+45,∴y =46-45x -46+45.当y =0时,解得x =6+54.∴F (6+54,0).∵a +1=6+54,∴a =6+14. ∴a =6+14时,四边形PMEF 周长最小.图1 图2练习3.(11眉山)如图,在直角坐标系中,已知点A (0,1),B (﹣4,4),将点B 绕点A 顺时针方向90°得到点C ;顶点在坐标原点的拋物线经过点B . (1)求抛物线的解析式和点C 的坐标;(2)抛物线上一动点P ,设点P 到x 轴的距离为d 1,点P 到点A 的距离为d 2,试说明d 2=d 1+1;(3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.例4.(14福州)如图,抛物线y =12(x -3)2-1与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D 了. (1)求点A ,B ,D 的坐标; (2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD .求证:∠AEO =∠ADC ;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.【思路点拨】(1)由顶点式直接得出点D 的坐标,再令y =0,得12(x -3)2-1=0解出方程,即可得出点A ,B 的坐标;(2)设HD 与AE 相交于点F ,可以发现△HEF 与△ADF 组成一个“8字型”.对顶角∠HFE =∠AFD ,只要∠FHE =∠FAD 即可.因为∠EHF =90°,只需证明∠EAD =90°即可.由勾股定理的逆定理即可得出△ADE 为直角三角形,得∠FHE =∠FAD =90°即可得出结论;(3)先画出图形.因为PQ 为⊙E 的切线,所以△PEQ 为直角三角形,半径EQ 长度不变,当斜边PE 最小时,PQ 的长度最小.设出点P 的坐标,然后表示出PE ,求出PE 的最小值,得到点P 的坐标,再求出点Q 的坐标即可.【解题过程】解:(1)顶点D 的坐标为(3,-1).令y =0,得12 (x -3)2-1=0,解得x 1=3+2,x 2=3-2.∵点A 在点B 的左侧,∴A 点坐标(3-2,0),B 点坐标(3+2,0).(2)过D 作DG ⊥y 轴,垂足为G .则G (0,-1),GD =3.令x =0,则y =72,∴C 点坐标为(0,72).∴GC =72-(-1) = 92.设对称轴交x 轴于点M .∵OE ⊥CD ,∴∠GCD +∠COH =90︒.∵∠MOE +∠COH =90︒,∴∠MOE =∠GCD .又∵∠CGD =∠OMN =90︒,∴△DCG ∽△EOM . ∴CG OM =DGEM ,即923=3EM .∴EM =2,即点E 坐标为(3,2),ED =3. 由勾股定理,得AE 2=6,AD 2=3,∴AE 2+AD 2=6+3=9=ED 2. ∴△AED 是直角三角形,即∠DAE =90︒.设AE 交CD 于点F .∴∠ADC +∠AFD =90︒.又∵∠AEO +∠HFE =90︒, ∴∠AFD =∠HFE ,∴∠AEO =∠ADC .(3)由⊙E 的半径为1,根据勾股定理,得PQ 2=EP 2-1.要使切线长PQ 最小,只需EP 长最小,即EP 2最小.设P 坐标为(x ,y ),由勾股定理,得EP 2=(x -3)2+(y -2)2.∵y =12 (x -3)2-1,∴(x -3)2=2y +2.∴EP 2=2y +2+y 2-4y +4=(y -1)2+5.当y =1时,EP 2最小值为5.把y =1代入y =12(x -3)2-1,得12(x -3)21=1,解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上,∴x 1=1舍去.∴点P 坐标为(5,1).此时Q 点坐标为(3,1)或(195,135).例5.(14遂宁)已知:直线l :y =﹣2,抛物线y =ax 2+bx +c 的对称轴是y 轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P 是抛物线上任意一点,过点P 作直线l 的垂线,垂足为Q ,求证:PO =PQ .(3)请你参考(2)中结论解决下列问题:(i )如图②,过原点作任意直线AB ,交抛物线y =ax 2+bx +c 于点A 、B ,分别过A 、B 两点作直线l 的垂线,垂足分别是点M 、N ,连结ON 、OM ,求证:ON ⊥OM . (ii )已知:如图③,点D (1,1),试探究在该抛物线上是否存在点F ,使得FD +FO 取得最小值?若存在,求出点F 的坐标;若不存在,请说明理由.【解题过程】解:(1)由题意,得⎩⎨⎧-b 2a =0-1=c 0=4a +2b +c ,解得:⎩⎨⎧a =14b =0c =-1,∴抛物线的解析式为:y =14x 2-1; (2)如图①,设P (a ,14a 2﹣1),就有OE =a ,PE =14a 2﹣1,∵PQ ⊥l ,∴EQ =2,∴QP =14a 2+1.在Rt △POE 中,由勾股定理,得PO =a 2+(14a 2-1)2=14a 2+1,∴PO =PQ ; (3)(i )如图②,∵BN ⊥l ,AM ⊥l ,∴BN =BO ,AM =AO ,BN ∥AM ,∴∠BNO =∠BON ,∠AOM =∠AMO ,∠ABN +∠BAM =180°.∵∠BNO +∠BON +∠NBO =180°,∠AOM +∠AMO +∠OAM =180°,∴∠BNO +∠BON +∠NBO +∠AOM +∠AMO +∠OAM =360°,∴2∠BON +2∠AOM =180°, ∴∠BON +∠AOM =90°,∴∠MON =90°,∴ON ⊥OM ;(ii )如图③,作F ′H ⊥l 于H ,DF ⊥l 于G ,交抛物线与F ,作F ′E ⊥DG 于E ,∴∠EGH =∠GHF ′=∠F ′EG =90°,FO =FG ,F ′H =F ′O ,∴四边形GHF ′E 是矩形,FO +FD =FG +FD =DG ,F ′O +F ′D =F ′H +F ′D ,∴EG =F ′H ,∴DE <DF ′,∴DE +GE <HF ′+DF ′,∴DG <F ′O +DF ′,∴FO +FD <F ′O +DF ′,∴F 是所求作的点.∵D (1,1),∴F 的横坐标为1,∴F (1,54).l。

最短路径问题梳理

最短路径问题梳理
常见路径最值模型梳捋
按照路径最值问题的构成或解答方式分组。
模型组一
1 两点一线异侧和最小值问题 问题:两定点A、B位于直线l异侧,在直线l上找一点P,使PA+PB值最 小. 问题解决:
结论:根据两点之间线段最短,PA+PB的最小值即为线段AB长.
模型组一
2. 两点一线同侧和最小值问题 问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得PA+PB值 最小. 问题解决:
(分析:PQ为定值,只需AP+QB的值最小,可通 过平移,使P、Q“接头”,转化为基本模型)
解:将点A沿着平行于l的方向,向右移至A´, 使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取
PQ=a(P在Q左边),则线段PQ即为所求,此 时
AP+PQ+QB的最小值为A´B+PQ,即A´B+a
ห้องสมุดไป่ตู้
模型组三
解:作点A关于OM的对称点A′,过点A′作AQ⊥ON 于 点Q,A′Q交OM于点P,此时AP+PQ最小;
理由:由轴对称的性质知AP=A′P, 要使AP+PQ最小, 只需A′P+PQ最小,从而 转化为拓展模型1
模型组二
3. “胡不归”问题 基本模型:两定一动,动点在定直线上
问题:点A为直线l上一定点,点B为直线外一定点, P为直线l上一动点,要使 AP+BP最小.
模型组四
2.异侧差最小值问题
问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-
PB|的值最小. 问题解决:
A▪
B▪
结论:根据垂直平分线上的点到线段两端点的距 离相等,当PA=PB时,|PA-PB|=0.
模型组四总结:

最短路径问题

最短路径问题

A
O
N
3. 两定两动型最值
例:在∠MON的内部有点A和点B,在OM 上找一点C,在ON上找一点D,使得四边形 ABCD周长最短.
M
A
B
O
N
例:(造桥选址)将军每日需骑马从军营出发,去 河岸对侧的瞭望台观察敌情,已知河流的宽度为30 米,请问,在何地修浮桥,可使得将军每日的行程 最短?
A
C
D
B
4. 垂线段最短型
最短路径问题
1.两定一动型:两定点到一动 点的距离和最小
原理:两点之间线段最短。
例:在定直线l上找一个动点C,使动点C到两 个定点A与B的距离之和最小, 即CA+CB的和最小.
B A
l
2.两动一定型 例:在∠MON的内部有一点A,在OM上找 一点B,在ON上找一点C,使得△BAC周长 最短.
M
A
D
E
B
C
3.正方形ABCD的边长为8,M在DC上,且 DM=2,N是AC上的一动点,DN+MN的最小值 为————
课堂小结
通过本节课的学习,
你有哪些收获 ?作业CD NhomakorabeaA
B
典型例题
1.如图,在等边△ABC中,AB = 6,AD⊥BC, E是AC上的一点,M是AD上的一点,且AE = 2, 求EM+EC的最小值
A
A
E M
E
M
H
B
D
CB
D
C
2.正方形ABCD的面积为12, ABE是等边三角 形,点E在正方形ABCD内,在对角线AC上有一 点P,使PD+PE的和最小,则这个最小值是
例1:在∠MON的内部有一点A,在OM上找一点 B,在ON上找一点C,使得AB+BC最短.

初中数学函数压轴题:将军饮马问题---- 最短路径最小值问题专题训练

初中数学函数压轴题:将军饮马问题---- 最短路径最小值问题专题训练

--------- 最短路径最小值问题专题训练“将军饮马”这个问题早在古罗马时代就有了,传说古希腊亚历山大里亚城有一位久负盛名的学者,名叫海伦。

有一天,有位罗马将军前来向他求教一个百思不得其解的问题:如图,将军从A 地出发到河边饮马,然后再到B 地军营视察,显然有很多走法。

问走什么样的路线最短呢?精通数理的海伦稍加思考,便作了完善的回答。

这个问题后来被人们称作“将军饮马”问题广为流传。

事实上,不仅将军有这样的烦恼,运动着的车、船、飞机,包括人们每天走路都要遇到这样的问题。

古今中外的任何旅行者总希望寻求最佳的旅行路线,尽量走近道,少走冤枉路。

我们把这类求近道的问题统称“最短路线问题”。

另外,从某种意义上说,一笔画问题也属于这类问题。

看来最短路线问题在生产、科研和日常生活中确实重要且应用广泛。

这个问题在我们中考中也是常考的热点问题,因此,我们要掌握其分析解决的方法。

下面我就几个例题来具体分析解决。

【典例探究】(•梧州)如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线解析式;(2)先判断出周长最小时BE⊥AC,即作点B关于直线AC的对称点F,连接DF,交AC于点E,联立方程组即可;(3)三角形BDE是直角三角形时,由于BD>BG,因此只有∠DBE=90°或∠BDE=90°,两种情况,利用直线垂直求出点E坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,∴,∴,∴抛物线解析式为y=x2﹣3x﹣4,(2)如图1,作点B关于直线AC的对称点F,连接DF交AC于点E,由(1)得,抛物线解析式为y=x2﹣3x﹣4①,∴D(0,﹣4),∵点C是直线y=﹣x+4②与抛物线的交点,∴联立①②解得,(舍)或,∴C(﹣2,6),∵A(4,0),∴直线AC解析式为y=﹣x+4,∵直线BF⊥AC,且B(﹣1,0),∴直线BF解析式为y=x+1,设点F(m,m+1),∴G(,),∵点G在直线AC上,∴﹣,∴m=4,∴F(4,5),∵D(0,﹣4),∴直线DF解析式为y=x﹣4,∵直线AC解析式为y=﹣x+4,∴直线DF和直线AC的交点E(,),(3)∵BD=,由(2)有,点B到线段AC的距离为BG=BF=×5=>BD,∴∠BED不可能是直角,∵B(﹣1,0),D(0,﹣4),∴直线BD解析式为y=﹣4x+4,∵△BDE为直角三角形,∴①∠BDE=90°,∴BE⊥BD交AC于B,∴直线BE解析式为y=x+,∵点E在直线AC:y=﹣x+4的图象上,∴E(3,1),②∠BDE=90°,∴BE⊥BD交AC于D,∴直线BE的解析式为y=x﹣4,∵点E在抛物线y=x2﹣3x﹣4上,∴直线BE与抛物线的交点为(0,﹣4)和(,﹣),∴E(,﹣),即:满足条件的点E的坐标为E(3,1)或(,﹣).【学以致用】1.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD上移动,则PE+PC 的最小值是________.2.如图,牧童在A处放牛,他的家在B处,l为河流所在直线,晚上回家时要到河边让牛饮一饮水,饮水的地点选在何处,牧童所走的路程最短?3.如图,点P为马厩,AB为草地边缘(下方为草地),CD为一河流.牧人欲从马厩牵马先去草地吃草,然后到河边饮水,最后回到马厩.请帮他确定一条最短行走路线.4.(•贺州)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.【分析】(1)利用矩形的性质和B点的坐标可求出A点的坐标,再利用待定系数法可求得抛物线的解析式;(2)设AD=x,利用折叠的性质可知DE=AD,在Rt△BDE中,利用勾股定理可得到关于x 的方程,可求得AD的长;(3)由于O、A两点关于对称轴对称,所以连接OD,与对称轴的交点即为满足条件的点P,利用待定系数法可求得直线OD的解析式,再由抛物线解析式可求得对称轴方程,从而可求得P点坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).【点评】本题主要考查二次函数的综合应用,涉及知识点有待定系数法、矩形的性质、勾股定理、轴对称的性质及方程思想.在(2)中注意方程思想的应用,在(3)中确定出满足条件的P点的位置是解题的关键.本题考查知识点虽然较多,但题目属于基础性的题目,难度不大.5.如图,在矩形OABC中,已知A,C两点的坐标分别为A(4,0),C(0,2),D为OA的中点.设点P是∠AOC平分线上的一个动点(不与点O重合).(1)试证明:无论点P运动到何处,PC总与PD相等;(2)当点P运动到与点B的距离最小时,求P的坐标;(3)已知E(1,﹣1),当点P运动到何处时,△PDE的周长最小?求出此时点P的坐标和△PDE的周长.【分析】(1)由A(4,0),C(0,2),D为OA的中点,得到D点坐标为(2,0),则OC=OD,而点P是∠AOC平分线上的一个动点(不与点O重合),根据角平分线的性质有∠COP=∠DOP=45°,再根据三角形全等的判定方法易得△POC≌△POD,则PC=PD;(2)过B作BP垂直∠AOC的平分线于P点,过P点作PN⊥x轴于N,交BC于M点,OP 交BC于H点,易得△PHM、△COH和△PON都是等腰直角三角形,△PHB是也等腰直角三角形,得到PM垂直平分BH,而CH=CO=2,则BH=2,得到PM=BH=1,于是有ON=PN=1+2=3,根据坐标的表示方法即可得到P点坐标;(3)连CE交∠AOC的平分线于P点,连PD、CD,ED,由OC=OD,OP平分直角AOC得到OP垂直平分CD,则PC=PD,得到PD+PE=PC+PE=CE,根据两点之间线段确定此时△PDE的周长最小,然后利用待定系数法求出直线CE的解析式为y=﹣3x+2,根据P点的横纵坐标相等即可得到P点坐标为(,),再利用勾股定理分别计算出CE==,DE==,即可得到此时△PDE的周长.【解答】(1)证明:∵A(4,0),C(0,2),D为OA的中点,∴D点坐标为(2,0),∴OC=OD,又∵点P是∠AOC平分线上的一个动点(不与点O重合),∴∠COP=∠DOP=45°,∴△POC≌△POD,∴PC=PD,即无论点P运动到何处,PC总与PD相等;(2)解:过B作BP垂直∠AOC的平分线于P点,过P点作PN⊥x轴于N,交BC于M 点,OP交BC于H点,如图,∵OP平分∠AOC,∴∠COP=∠NOP=45°,∴△PHM、△COH和△PON都是等腰直角三角形,∴△PHB是等腰直角三角形,∴PM垂直平分BH,∴CH=CO=2,∴BH=4﹣2=2,∴PM=BH=1,∴ON=PN=1+2=3,∴P点坐标为(3,3);(3)解:连CE交∠AOC的平分线于P点,连PD、CD,ED,如图,∵OC=OD,OP平分直角AOC,∴OP垂直平分CD,∴PC=PD,∴PD+PE=PC+PE=CE,此时△PDE的周长最小,设直线CE的解析式为y=kx+b(k≠0),把C(0,2)、E(1,﹣1)分别代入得,b=2,k+b=﹣1,解得k=﹣3,b=2,∴直线CE的解析式为y=﹣3x+2,而P点的横纵坐标相等,设P(a,a),把P点坐标代入y=﹣3x+2得,a=﹣3a+2,解得a=,∴P点坐标为(,),∵CE==,DE==,∴此时△PDE的周长=+.【点评】本题考查了轴对称﹣最短路线问题:通过对称,把两条线段的和转化为一条线段,利用两点之间线段最短解决问题.也考查了垂线段最短、勾股定理、矩形的性质和坐标变换以及待定系数法求一次函数的解析式.。

最短路径的十二个基本问题

最短路径的十二个基本问题
原理
两点之间线段最短. PA+PB 最小值为 A B'.
原理
分别作点 P 关于两直 线的对称点 P'和 P'', 在直线 l1 、l2 上分别求 连 P'P'',与两直线交 点 M、N,使△PMN 的 点即为 M,N. 周长最小.
两点之间线段最短. PM+MN+PN 的最小值为 线段 P'P''的长.
【十二个基本问题】
【问题 1】
作法
图形
原理
连 AB,与 l 交点即为
P.
在直线 l 上求一点 P,
使 PA+PB 值最小.
【问题 2】“将军饮马”
作法
作 B 关于 l 的对称点
B'连 A B',与 l 交点
在直线 l 上求一点 P,
即为 P.
使 PA+PB 值最小.
【问题 3】
作法
图形 图形
两点之间线段最短. PA+PB 最小值为 AB.
原理
将点 A 向下平移 MN 的
长度单位得 A',连 A'
B,交 n 于点 N,过 N 作
直线 m ∥ n ,在 m 、n , NM⊥ m 于 M.
上分别求点 M、N,使
MN⊥ m ,且 AM+MN+BN
的值最小.
【问题 6】
作法
图形
将点 A 向右平移 a 个
长度单位得 A',作 A'
关于 l 的对称点 A'',连 在直线 l 上求两点 M、N
对称点 B',连 A'B' l2 上一定点,在 l2 上求 交l2 于 M,交 l1 于 N.
点 M,在 l1 上求点 N,
使 AM+MN+NB 的 值 最
小.

最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册

最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册

专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△PAB的周长最小。

图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形PAQB的周长最小。

图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。

图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。

图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【答案】C 【分析】本题主要考查了,轴对称﹣最短路线问题的应用,解此题的关键是找出P 的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP BP +的值最小,即可得到ABP 周长最小.解:∵EF 垂直平分BC ,∴点B ,C 关于EF 对称.∴当点P 和点D 重合时,AP BP +的值最小.此时AP BP AC +=,∵3,4AB AC ==,ABP ∴ 周长的最小值是347AP BP AB AB AC ++=+=+=,故选:C .【变式】(23-24八年级上·广东广州·期中)如图,在ABC V 中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【答案】24【详解】设BM 与AC 的交点为点F ,连接AE ,DF 先根据折叠的性质可得12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE 周长最小,进而求解即可.解:如图,设BM 与AC 的交点为点F ,连接AE ,DF ,由折叠的性质得:12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长8CD DE CE AE CE =++=++,要使CDE 周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,最小值为AC ,∴CDE 周长为:681624AC +=+=.故答案为:24.【点拨】本题考查了折叠的性质等知识点,熟练掌握折叠的性质是解题关键.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【答案】B 【分析】本题主要考查了最短路线问题、四边形的内角和定理、轴对称的性质等知识点,掌握两点之间线段最短的知识画出图形是解题的关键.如图:作P 点关于OM ON 、的对称点A B ''、,连接A B '',此时PAB 的周长最小为A B '',求出A B ''即可.解:如图:作P 点关于OM ON 、的对称点A B ''、,然后连接A B '',∵点A '与点P 关于直线OM 对称,点B '与点P 关于ON 对称,∴A P OM B P ON A A AP B B BP ''''⊥⊥==,,,,∴A APA B BPB ''''∠=∠∠=∠,,∵A P OM B P ON ''⊥⊥,,∴180MON A PB ''∠+∠=︒,∴18045135A PB ''∠=︒-︒=︒,在A B P ''△中,由三角形的内角和定理可知:18013545A B ''∠+∠=︒-︒=︒,∴45A PA BPB ''∠+∠=︒,∴1354590APB ∠=︒-︒=︒.故选:B .【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC V 中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【答案】B 【分析】作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,根据对称可得:AP PQ A P PQ A Q ''+=+≥,得到当,,A P Q '三点共线时,AP PQ +最小,再根据垂线段最短,得到A Q AC '⊥时,A Q '最小,进行求解即可.解:作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.AD 是BAC ∠的平分线,1QAD Q AD∴∠=∠在AQD 与1AQ D 中【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【答案】D 【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以'P C PC =,'E D ED =,'1OP OP ==,=''CP CD DE CP CD DE ++++,'P OE ∠''P C D E 、、、在一条直线上,且''P E ''=9048=42OP E ∠︒-︒︒,'='''=7842CP P OP P OP E ∠∠-∠︒-︒=【答案】44βα-=︒【分析】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.OQM OQM NQP '∴∠=∠=∠,OPQ ∠∴1(180)2PQN AOB α∠=︒-=∠+∠44βα∴-=︒,故答案为:44βα-=︒.【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【答案】C 【分析】先构造△CFH 全等于△AEC ,得到△BCH 是等腰直角三角形且FH=CE ,当FH+BF 最小时,即是BF+CE 最小时,此时求出∠AFB 的度数即可.解:如图,作CH ⊥BC ,且CH=BC ,连接HB ,交AC 于F ,此时△BCH 是等腰直角三角形且FH+BF 最小,∵AC=BC ,∴CH=AC ,∵∠HCB=90°,AD ⊥BC ,∴AD//CH ,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH ≌△AEC ,∴FH=CE ,∴FH+BF=CE+BF 最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C .【点拨】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.∵CAB ∠的角平分线交∴FAP ∠∠=∵AP AP =,∴APF APE ≌∴PF PE =,第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【答案】12【分析】以CD 为边向外作等边三角形CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE=AD ,再根据三角形的三边关系即可得出结论.解:如图1,以CD 为边向外作等边三角形CDE ,连接BE ,∵CE=CD ,CB=CA ,∠ECD=∠BCA=60°,∴∠ECB=∠DCA ,∴△ECB ≌△DCA (SAS ),∴BE=AD ,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:12【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.在Rt DFC △中,30DCF ∠=︒,12DF DC ∴=,122()2AD DC AD DC +=+2()AD DF =+,∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=︒,2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【答案】C 【分析】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',证明'' A MB 为等边三角形,即可解决问题.解:如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',∵120CMD ∠=︒,∴60∠+∠=︒AMC DMB ,∴60''∠+∠=︒CMA DMB ,∴60''∠=︒A MB ,∵MA MB MA MB ''===,∴'' A MB 为等边三角形∵14CD CA A B B D CA AM BD ''''<++=++=,∴CD 的最大值为14,故选:C .【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7∴AM AE AN ==,MF =∵BAC BAD DAC ∠=∠+∠∴MAN MAB BAD ∠=∠+∠∴(2MAN BAE EAC ∠=∠+∠。

人教版数学八年级上册《课题学习——最短路径问题》课件

人教版数学八年级上册《课题学习——最短路径问题》课件
方法点拨:解决“两线两点”型最短路径问题 的方法以两线为对称轴,分别作靠近线的点的 对称点,连接两个对称点,将最短路径转化为 连接两个对称点的线段.
感悟新知
解:如图13 .4 -4,(1)作点A 关于直 线l1 的对称点A′; (2)作点B 关于直线l2 的对称点B′; (3)连接A′B′,分别与直线l1,l2相交 于C,D 两点,连接AC,BD,则沿 路线A → C → D → B 走才能使总路 程最短.
第十三章 轴对称
13.4 课题学习 最短路径问题
感悟新知
知识点 1 最短路径问题
知1-讲
类型
问题
作法
最小值
一 线 两
点 型
两点 在直 线异

在直线l 上找 一点P,使PA
+PB 最小
连接AB,与直 线l 的交点即为
点P
PA+PB 的最小值 为AB的

感悟新知
类型
问题
作法
知1-讲
最小值
两点
一 线 两
知1-练
ቤተ መጻሕፍቲ ባይዱ
感悟新知
知1-练
3-1.如图,AB 是∠ MON内部的一条线段,在∠ MON 的两 边OM,ON 上分别取点C,D组成四边形ABDC,如何 取点才能使该四边形的周长最小?
感悟新知
知1-练
(1)如果居民小区A,B 在主干线l 的两侧,如图13.4-1,那么 分支点M 在什么地方时总线路最短?
解:如图13 .4 -1,
连接AB,与l 的 交点即为所求的
分支点M.
感悟新知
知1-练
(2)如果居民小区A,B 在主干线l 的同侧,如图13.4-2,那么 分支点M 在什么地方时总线路最短?

《最短路径问题》课件

《最短路径问题》课件

A A1
符合条件的路径,并标明桥的位置.
ll12
l3 B1 l4 B
课堂小结


A∙
路 径
造桥选址问题
M

A′
a b

N
∙B
即AM+NB+MN的值最小.
M′ a M
b
N′
N
∙B
新知探究 跟踪训练
如图,从A地到B地要经过一条小河(河的两岸平行), 现要在河上建一座桥(桥垂直于河的两岸),应如何 选择桥的位置才能使从A地到B地的路程最短?
A
B
解:(1)如图,过点A作AC垂直于河岸,且使得AC的 长等于河宽; (2)连接BC,与河岸GH相交于点N,且过点N作 MN⊥EF于点M,则MN即为所建桥的位置. A
点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.此
时问题转化为,当点N在直线b的什么位置时,A′N+ NB的值最小.A∙ M
a
A′
b
N
∙B
如图,连接A′,B,线段A′B最短.因此,线段A′B与直线 b的交点即为所求的点N的位置,即在此处造桥MN,所 得路径AMNB是最短的.
A∙ M
《最短路径问题》
知识回顾
1.两点一线型.
如图,点A,B分别是直线l异侧的两个点,在直线l上找
一点C,使得AC+BC的值最小,此时点C就是线段AB与
直线l的交点.
A
C
l
B
1.两点一线型.
如图,点A,B是直线l同侧的两
B
点,在直线l上找一点C使得
A
AC+BC的值最小,这时先作点B

最短路径问题(Dijkstra算法)和最小生成树(Kruskal算法和Prim算法)

最短路径问题(Dijkstra算法)和最小生成树(Kruskal算法和Prim算法)
ift(j)==tmax
t(j)=tmin;
end
end
end
ifk==n
break;
end
end
T;
c;
Prim算法程序:
function[T c] =Primf(a)
%a表示权值矩阵
%c表示生成树的权和
%T表示生成树的边集合
l=length(a);
a(a==0)=inf;
k=1:l;
listV(k)=0;
上机实验1、2
1.最短路径问题(Dijkstra算法)
2.最小生成树(Kruskal算法和Prim算法)
一、最短路径问题(Dijkstra算法)
实验问题描述:如图的交通网络,每条弧上的数字代表车辆在该路段行驶所需的时间,有向边表示单行道,无向边表示可双向行驶。若有一批货物要从1号顶点运往11号顶点,问运货车应沿哪条线路行驶,才能最快地到达目的地。
listV(1)=1;
e=1;
while(e<l)
min=inf;
fori=1:l
iflistV(i)==1
forj=1:l
iflistV(j)==0&min>a(i,j)
min=a(i,j);b=a(i,j);
s=i;d=j;
end
end
end
end
listV(d)=1;
distance(e)=b;
T =
3 4 1 2
4 5 3 5
c =
10
>> a=[0 5 3 7 inf;5 0 8 inf 4;3 8 0 1 6;7 inf 1 0 2;inf 4 6 2 0];
>> [T c] =Primf(a)

行程问题7大经典题型

行程问题7大经典题型

行程问题7大经典题型行程问题是在现代计算机科学中研究的重要研究领域之一,也称为旅行商问题。

根据具体的应用,行程问题可分为七类经典题型:一、最短路径问题最短路径问题是指使行程开销最小化的最优路径问题,即在有权网(即有距离弧权值的有向图)中求出从起点到终点的最短路径问题。

最短路径问题的特点是将多条路径的值做比较,选择最优的路径。

最短路径问题的解法一般有迪杰斯特拉算法和贝尔曼-福德算法。

二、最小生成树问题最小生成树问题是指在连通图中求最小代价覆盖图(最小生成树)的问题。

求最小生成树也可以用迪杰斯特拉算法、贝尔曼-福德算法、克鲁斯卡尔算法等求解。

三、拓扑排序问题拓扑排序问题是指要解决有向图中的局部拓扑排序问题,让用户能够处理有向图的排序操作。

例如,拓扑排序可以用来求解项目管理中的生产流程排序,求解最长路径问题,用来求解运输问题。

某些拓扑排序问题常用拓扑排序法来解决,它的优点是举例简单,容易解决,但是在处理较大的网络可能不太方便。

四、负责度限制约束最小生成树问题负责度限制约束最小生成树问题是指当有负责度限制或边限制时,求出最小生成树的问题。

负责度限制最小生成树问题与最小生成树问题相似,但限制要求不同,使其可以求最小生成树但不需要所有节点出现。

解决负责度限制最小生成树问题的常见算法有Prim,Kruskal算法,单源最短路径算法等。

五、旅行商问题旅行商问题是指将一个实体从一个位置出发,访问所有位置,最后返回原位置,要尽可能使得整个行程之和最小的问题。

旅行商问题与最短路径问题之间存在着一定的联系,但是它更加复杂,可能有多个路径都是最优的,旅行商问题最优解的求解方法有穷举法、贪心法、遗传算法等。

六、交通网络问题交通网络问题是指涉及多晶体的旅行问题,在该问题中,客户的行程将跨越多个晶体构成的网络,以最小的费用或最短的时间从起点到终点运输物品或人员。

交通网络问题可以使用模拟退火法、遗传算法、混合算法等解决。

七、联通子图覆盖问题联通子图覆盖问题是指求解一个图G是否存在一个联通子图T,满足T中所有顶点和G中的全部顶点是相同的,最小顶点覆盖问题是联通子图覆盖问题的一个特殊情况,该问题的解法一般有贪心法和回溯法。

(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.

(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.

13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如图所示,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。

最短路径问题

最短路径问题

最短路径问题最短路径问题是图论中一个重要的研究领域,即求解两个节点之间的最短路径。

在实际生活中,最短路径问题有着广泛的应用,例如导航系统、交通规划以及网络通信等领域。

本文将介绍最短路径问题的定义、常见算法以及应用实例。

一、定义最短路径问题可以用来求解从一个节点到另一个节点的最短路径。

在图论中,最短路径通常指的是路径上的边的权重之和最小。

图可以由节点和边组成,边可以有权重,表示两个节点之间的距离或成本。

最短路径问题的目标是找到两个节点之间的路径,使得路径上的边的权重之和最小。

二、算法1. Dijkstra算法Dijkstra算法是解决最短路径问题的经典算法之一。

该算法采用贪心策略,逐步确定起点到其他节点的最短路径。

具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,所有其他节点的距离为无穷大。

(2)选择一个未被访问过的节点,标记为当前节点。

(3)对于当前节点的所有邻居节点,更新其距离为当前节点距离加上边的权重,并更新最短路径。

(4)继续选择未被访问过的节点中最短路径最小的节点,标记为当前节点,重复步骤(3)。

(5)重复步骤(3)和(4),直到所有节点都被访问过。

Dijkstra算法的时间复杂度为O(V^2),其中V为节点的数量。

2. Bellman-Ford算法Bellman-Ford算法是另一种解决最短路径问题的算法。

与Dijkstra 算法不同,Bellman-Ford算法可以处理带有负权边的图。

该算法通过迭代更新距离数组,逐步确定最短路径。

具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,其他节点的距离为无穷大。

(2)对于图中的每条边,重复以下步骤:a. 从边的起点到终点的距离是否可以通过起点到起点的距离加上边的权重来达到更小值。

b. 如果是,则更新终点的距离为该更小值。

(3)重复步骤(2)|V|-1次,其中V为节点的数量。

Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的数量,E为边的数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最短路径问题——和最小
【典型例题】1、已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P 点的坐标;若P点不存在,请说明理由.
2、如图,抛物线y =12
x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0). (1)求抛物线的解析式及顶点D 的坐标;
(2)判断△ABC 的形状,证明你的结论;
(3)点M (m ,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.
3、已知,如图,二次函数y =ax 2+2ax ﹣3a (a ≠0)图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :y =33x +3对称. (1)求A 、B 两点坐标,并证明点A 在直线l 上;
(2)求二次函数解析式;
(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.
4.如图,对称轴为直线x=2的抛物线经过A(-1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;
(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.。

相关文档
最新文档