简单的轴对称图形(3)教案
简单的轴对称图形(三)
第3节简单的轴对称图形(三)教学目标:知识与技能:1.经历探索角的轴对称性的过程,进一步体验轴对称的特征.2.探索并了解角的轴对称性及相关性质.3.会用尺规作角的平分线.过程与方法:1.通过独立思考,小组合作探究,主动展示,经历角的平分线性质的形成与初步应用过程,从而增强应用数学知识的意识与解决实际问题的能力.2.通过观察、折叠等活动,发展空间观念,培养有条理的思考和规范的数学语言.情感态度与价值观:1.通过活动体验学数学的快乐,增强学生学习数学的求知欲和数学活动的经验,并在合作学习中获得成功的体验,增强自信心,提高学习数学的兴趣,培养学生的合作、探究精神.2.培养学生自主学习、主动参与、主动交流合作的意识和能力,在小组合作交流活动中互相激发灵感,取长补短,培养学生团结合作的学习精神.教学重难点:【重点】掌握角平分线的性质,会用尺规作已知角的平分线.【难点】角平分线的性质的应用.教学准备:【教师准备】课件、基本作图工具.【学生准备】笔记本、基本作图工具等.教学过程:导入:前面我们学习了基本图形“线段”是轴对称图形,那么,我们之前学过的另一个基本图形“角”是不是轴对称图形?如果是,对称轴是怎样的直线?【活动内容】不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?对折,再打开纸片,看看折痕与这个角有何关系?[处理方式]学生实验:通过折纸的方法作角的平分线;教师与学生一起动手操作,展示学生作品.通过折纸及作图过程,由学生自己去发现结论.教师要有足够的耐心,要为学生的思考留有时间和空间.通过探究,学习新知:角是轴对称图形,角平分线所在的直线是它的对称轴.新课教学:探究活动1角平分线的性质【活动内容】(多媒体出示)请同学们按要求继续前面的折纸活动,并与同伴交流.折纸要求:1.在折痕(即∠AOB的角平分线)上任意找一点C;2.过点C折OA边的垂线,得到新的折痕CD,点D是折痕与OA边的交点,即垂足;3.过点C折OB边的垂线,得到新的折痕CE,点E是折痕与OB边的交点,即垂足;4.将∠AOB再次对折.【问题】在上述的操作过程中,折痕CD与CE能重合吗?改变点C的位置,CD与CE还相等吗?你能解释其中的道理吗?小组交流展示成果.(教师动画展示)已知:如图∠AOC=∠BOC,CD⊥OA,垂足为D,CE⊥OB,垂足为E,CD与CE相等吗?试说明理由.解:因为CD⊥OA,CE⊥OB,所以∠CDO=∠CEO=90°.在△CDO和△CEO中,∠CDO=∠CEO,∠COD=∠COE,OC=OC,所以△CDO≌△CEO.所以CD=CE.(教师板书)结论:角平分线上的点到这个角的两边的距离相等.符号语言:因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.[处理方式]学生动手折叠,教师在多媒体上演示折叠过程.学生分组讨论、交流,并用文字语言阐述得到的性质.教师要给学生充分思考的时间和空间.教师通过几何画板演示,让学生形象感受角平分线的性质.【即时训练】判断下列说法是否正确.如图所示.1.因为OC平分∠BOA,所以CD=CE.()2.因为CD⊥OA,CE⊥OB,所以CD=CE.()3.因为OC平分∠AOB,CD⊥OA,CE⊥OB,所以CD=CE.()注意事项:角平分线性质中的距离,对应的必须是垂线段,不能认为是任意线段.探究活动2尺规作角的平分线对这种可以折叠的角可以用折叠方法得到角平分线,对不能折叠的角怎样得到其角平分线呢?下面我们探究用尺规作角的平分线.已知:∠AOB.求作:射线OC,使∠AOC=∠BOC.作法:(1)在∠AOB的两边OA和OB上分别截取OD,OE,使OD=OE.DE的长为半径作弧,两弧在∠AOB内交于点C.(2)分别以D,E为圆心,以大于12(3)作射线OC.则OC是∠AOB的平分线.你能说明这样作的道理吗?想一想:在作图的过程中有哪些相等的线段?学生交流后得到:OD=OE,CD=CE.△COD和△COE全等吗?全等的依据是什么?[处理方式]教师口述作法步骤,学生根据教师的口述完成作图过程.不要求学生写作法,教师可以引导学生分析在作图的过程中哪些线段相等,学生可以通过交流讨论明确这样作的道理.[知识拓展]“角平分线上的点到这个角的两边的距离相等”这句话逆过来说“到这个角的两边的距离相等的点在这个角的平分线上”也是正确的.课堂总结:1.角的轴对称性:角是轴对称图形,角平分线所在的直线是它的对称轴.2.角平分线的性质:角平分线上的点到这个角的两边的距离相等.3.尺规作角平分线.检测反馈:1.如图所示,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1B.2C.3D.4答案:B2.如图所示,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP答案:D3.如图所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6 cm,则△DEB的周长为()A.4 cmB.6 cmC.10 cmD.不能确定答案:B4.如图所示,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是 ()A.TQ=PQB.∠MQT=∠MQPC.∠QTN=90°D.∠NQT=∠MQT答案:D板书设计:布置作业:一、教材作业【必做题】教材第127页习题5.5知识技能第1题.【选做题】教材第127页习题5.5数学理解第2,3题.二、课后作业【基础巩固】1.如图所示,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C,D为圆CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是心,大于12()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C,D两点关于OE所在直线对称D.O,E两点关于CD所在直线对称2.如图所示,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4B.3C.6D.5【能力提升】3.如图所示,两个班的学生分别在M,N两处参加植树劳动,现要在道路AB,AC的交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请你通过尺规作图找出这一P点(不写作法,保留作图痕迹).【拓展探究】4.如图所示,在△ABC中,∠C=90°,∠A=30°,作AB的垂直平分线,交AB于点D,交AC于点E,连接BE,则BE 平分∠ABC,你能说明理由吗?【答案与解析】1.D(解析:根据角的平分线作图步骤可以得到答案,A,B,C 都是正确的.)2.B(解析:因为AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,所以DF =DE =2.又因为S △ABC =S △ABD+S △ACD ,AB =4,所以7=12×4×2+12×AC ×2,所以AC =3.故选B.)3.解:如图所示,P 点即为所求.4.解:因为在△ABC 中,∠C =90°,∠A =30°,所以∠ABC =90°- ∠A =60°.因为DE 是AB 的垂直平分线,所以EA =EB ,所以∠ABE =∠A =30°,所以∠EBC =∠ABC - ∠ABE =30°,所以∠ABE =∠EBC ,即BE 平分∠ABC.教后反思: 成功之处:通过折纸操作,从而得到启发,在教师的引导下,让学生悟出角平分线的性质和用尺规作角的平分线,培养学生实践操作能力;学生在经历观察、类比、归纳等过程的基础上,再让学生实践用尺规作角的平分线的过程,进一步提升了学生的感性和理性的融合,通过本节课的学习,让学生了解了在现实生活中,角及角的平分线在现实中的广泛应用.在本课时中,营造了一个和谐的课堂学习氛围,达到了预期的教学效果. 不足之处:对学生的操作和实验关注不够,这就要求在课堂教学时,应走下讲台,深入到学生中去,与他们一起合作探究,对需要指导的学生给予适当的指导,应当在教学方法和教学语言的选择上,尽可能多地关注学困生. 再教设计:今后应该大胆让学生讲解并且板书,真正落实到纸上,扎根到心底,才能真正体现我的课堂我做主的学习理念.。
轴对称图形教案(6篇)
轴对称图形教案(6篇)轴对称图形教案篇一教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识对称图形。
2、使学生能根据对称图形初步认识,在图形中识别对称图形,用一些方法做出对称图形。
3、使学生在认识和制作简单的对称图形的过程中,感受到物体或图形的对称美。
激发数学学习的兴趣。
教学重点:对称图形的初步认识和制作。
教学难点:对称图形的初步认识。
教学准备:1.师:课件等2.生:剪刀、纸、等材料教学过程:一、谈话激趣。
1、你们喜欢玩吗?给你们一张纸,你们能玩吗?怎么玩?2、你们猜猜老师会玩吗?想知道老师是怎么玩的?(撕纸)只有一张纸,先对折,认真的撕一部分……同学们注意看老师是在很认真的撕……3、想学老师这样玩吗?请拿出纸玩玩。
(认真的撕)4、作品展示二、“认”对称,悟特征。
1.以撕(剪)出的图形为例。
撕(剪)出的图形,有什么特点?动手试一试,互相交换试试。
(对折,完全重合。
)师:像这样的图形,对称图形。
(板书课题)对折,两侧完全重合,这个图形就是对称图形,2、巩固判断对称图形。
课件①同学们,我们刚才认识了一种新的图形(对称图形)。
问:想一想,我们学过哪些图形?强调:有些图形看起来象是轴对称图形,但他们却不是轴对称图形;有些图形看起来不象是轴对称图形,但他们却是轴对称图形;折一折,看一看哪些是对称图形,投影出示,折一折,说明是否是对称图形,并说说各原因。
三、观对称,加强认识。
(课件)1、展示数学课件,欣赏图片。
今天,老师为同学们带来了一些美丽的'图案。
请看。
请判断这些图案是不是对称图形?(课件)2、判断电脑中的图案是否是对称的。
(学生说说判断的依据)。
四、猜图案自己想。
选择你喜欢的一个说说……奥运五环(奥运五环也称为奥林匹克环,从左至右为天蓝、黄、黑、绿、红五色。
五环的含义是“象征五大洲的团结,全世界的运动员以公正、坦率的比赛和友好的精神,在奥运会上相见”。
“轴对称图形”教学设计(优秀7篇)
“轴对称图形”教学设计(优秀7篇)《轴对称图形》教案篇一教学内容:北师大版义务教育课程标准实验教科书《数学》三年级下册第二单元第13—15页《轴对称图形》教学目标:1. 通过生活中的事例,使学生初步体会什么是轴对称图形。
2. 让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。
3. 让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意识和实践能力。
教学重点:1. 了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。
2. 能正确判断轴对称图形。
教学难点:画出轴对称图形。
教学准备:课件剪刀彩色卡纸平行四边形纸一、情境导入1. 谈话:看到同学们一张张可爱的笑脸,老师非常开心。
课件出示不对称“脸图”问:“这张脸可爱吗?”生:不可爱!课件演示脸图由不对称变为对称,问:现在呢?生:可爱!师:看来,人人都喜欢美丽的东西。
今天老师给大家带来了一些美丽的图片,请欣赏。
2.图片欣赏(课件出示对称图形图片)看完图片后师问:这些图片中的图形有什么特点?(指名回答)学生可能会说,它们两边完全一样。
教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)二、探究新知1.认识轴对称图形师:在我们的生活中,还有很多事物都是对称的。
看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)生:想!师:老师和你们来一场比赛,看谁剪的又快又好,开始!师生同时动手剪,完成后教师把自己剪的贴在黑板上。
请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。
(指导学生演示方法)问演示学生:你怎么让大家知道你剪的小松树是对称的呢?生:我把它对折(生边说边演示)(师板书:对折)师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?生:左右两边完全重合(师板书:完全重合)师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。
《轴对称图形》教案
《轴对称图形》教案《轴对称图形》教案(通用6篇)作为一名优秀的教育工作者,常常要根据教学需要编写教案,教案是备课向课堂教学转化的关节点。
那么大家知道正规的教案是怎么写的吗?以下是店铺整理的《轴对称图形》教案,仅供参考,大家一起来看看吧。
《轴对称图形》教案篇1教材简析:《轴对称图形》是六年《数学》中继“认识圆的特征”,“计算圆的周长和面积”之后的一个学习内容。
在本章教材的编排顺序中起着承上启下的作用。
把它放在圆的后面,一方面可以更好地说明轴对称图形的特点,另一方面可以对所学的各种平面图形中轴对称的情况作全面的了解。
从而更好地发展学生的空间观念。
教学重点:掌握轴对称图形的概念。
教学难点:能找出轴对称图形的对称轴。
学生分析:学生已学过简单平面图形,对平面图形已有一定的认识,且初步了解研究平面图形的方式方法。
高年级的学生具有好胜,好强的特点,班级中已初步形成合作交流,敢于探索与实践的良好学风,学生间相互讨论的气氛较浓。
设计理念:根据基础教育课程改革的具体目标以及鼓励学生在具体、直观操作中发现知识是《数学课程标准》的一个特点。
改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。
教学目标:1、通过教学向学生渗透事物的特殊性存在于普遍性之中,体会对称美。
2、通过操作活动培养学生观察能力,概括能力。
3、使学生直观的认识轴对称图形,在操作中理解掌握轴对称的概念,并能找出轴对称图形的对称轴。
教学流程:一、创设问题情境,导入课题。
1、(屏幕出示相关图片)观察下面的图形,(折一折,看一看)这些图形有什么特点?2、指出:像前三个这样的图形,我们把它叫轴对称图形。
3、引入课题:轴对称图形二、学生通过直观感知,操作确认等实践活动,加强对图形的认知和感受。
【实施动手操作,合作交流方式教学,让学生主动参与学习活动,经历和体验检验轴对称图形的方法。
北师大版数学七年级下册5.3 《简单的轴对称图形第3课时》教学课件%28共30张PPT%29
DC相等吗?还有其他相等的线段吗?
解:∵在Rt△ABC中,∠C=90°,AD是∠BAC的
平分线,DE⊥AB,
∴DE=DC,
∵∠ADE=180°-∠EAD-∠AED,
∠ADC=180°-∠C-∠CAD,
∴∠ADE=∠ADC,
B
∴△ADE≌△ADC,
∴AE=AC.
∴图中相等的线段:DE=DC,AE=AC.
∴ DB = DC,(在角的平分线上的点到这个角的两边的距离相等. )
√
B
A D
C
典型例题
例2.如图,CD⊥OA,CE⊥OB,D、E为垂足. (1)若∠1=∠2,则有___C_D_=__C_E___; (2)若CD=CE,则有__∠__1_=_∠__2___.
典型例题
例3.有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A 点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平 分线,为什么?
随堂练习
3.如图,求作一点P,使PC=PD,并且使点P到∠AOB的两边的距
离相等,并说明你的理由.
A
D
C
O
B
解:作线段CD的垂直平分线和∠AOB的角平分线,两线交 点即为所求点.
随堂练习
4.如图,在△ABC中, ∠ABC=90°,AB的垂直平分线交AC与D,垂 足为E,若∠A=30°,DE=2,求∠DBC的度数和CD的长.
1 AB•OE+
2
1BC•OD+
2
1
2 AC•OF
=
1 2
×4×(AB+BC+AC)=34
随堂练习
1.(1)如图:OC是∠AOB的平分线, 点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm, 则PE=______4____cm.
5.3简单的轴对称图形(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“轴对称图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“5.3简单的轴对称图形”。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过折叠纸飞机或剪窗花时出现的对称现象?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索轴对称图形的奥秘。
2.提高学生的几何直观:引导学生运用轴对称性质,分析解决实际问题,培养学生的几何直观能力,提升对几何图形的认识。
3.发展学生的逻辑推理能力:在探讨轴对称图形性质和应用的过程中,培养学生严谨的逻辑推理能力,增强学生论证和分析问题的能力。
4.培养学生的审美情趣:通过设计美丽的轴对称图案,激发学生的审美情趣,提高学生的美术素养和创造力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称图形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对轴对称图形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
关于学生小组讨论部分,我认为这是一个很好的互动环节,学生们能够各抒己见,碰撞出思维的火花。但在讨论过程中,我发现有些学生过于依赖别人,缺乏独立思考。在今后的教学中,我要注意引导他们独立思考,培养他们解决问题的能力。
轴对称图形教案(通用17篇)
轴对称图形教案(通用17篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!轴对称图形教案(通用17篇)轴对称图形教案(通用17篇)作为一无名无私奉献的教育工作者,通常会被要求编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
《轴对称图形》教案(优秀8篇)
《轴对称图形》教案(优秀8篇)轴对称图形教案篇一教学目标:1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:经历发现长方形、正方形对称轴条数的过程。
画平面图形的对称轴。
课前准备:小黑板、学具卡片。
教学活动:一、复习导入出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形)指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴)谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。
(把课题补书完整)二、教学例题1.谈话:首先我们研究长方形的对称轴。
请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。
(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?指名到黑板上量长方形的边,取中点。
小学数学三年级上册《轴对称图形》教案(通用5篇
小学数学三年级上册《轴对称图形》教案(通用5篇小学数学三年级上册《轴对称图形》教案1教学内容:人教版《义务教育课程标准实验教科书·数学(二年级下册)》第三单元“图形的运动”第一课时轴对称图形(课本第29页例1的内容)教学目标:1.知识目标:使学生通过观察、操作,初步认识对称现象并能判断对称的图形;会画对称轴。
2.能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3.情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:理解对称图形的概念,能正确找、画对称轴。
教学难点:准确找对称轴。
教、学具准备:1.教具:图片、课件、2.学具:剪刀、彩纸和正方形、长方形、圆形的纸各一张教学过程:一导入新课激趣感知师:同学们老师今天给你们带来了几张漂亮的图片,想看吗?生:想。
课件出示图片:喜字、表演杂技、门、举重、蝴蝶、小毛驴师:漂亮吗?生:漂亮。
师:它们不仅漂亮还都隐藏着一个共同特征,赶快睁大小眼睛找一找共同特点是什么?生1:喜字的两边一样。
生2:小毛驴的两边一样。
生3:举重的两边一样。
… …二、师生互动探索新知1、认识对称师:同学们观察的真仔细,这些图片的两边无论形状大小都一样。
如果把图片从中间开始对折后,两边又会怎样?(点击图片动画对折)生:和在一起了。
师:这是完全重合,从中间开始,两边的图形对折后没有多一点,也没有少一点。
这些图片都是对称的。
(板书课题---对称)师:谁能告诉老师,什么样的物体是对称的?生:两边完全重合就是对称的。
师:你学的真认真。
在你生活的周围就有许多对称的物体,请你留心想一想,说一说。
生1:桌子生2:裤子生3:黑板……师:你们真是细心观察的孩子,老师这里也有一些图形,考考大家你们敢挑战吗?生:敢。
(课件出示图形并判断,其中字母E是上下对称的,告诉同学生活中的物体不仅有左右对称的,还有上下对称的。
北师大版七下《简单的轴对称图形》word教案2篇
7.2简单的轴对称图形(1)教学案教学目标知识目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念2、探索并了解角的平分线、线段垂直平分线的有关性质。
过程与方法:教师通过生活中的实际问题来达到让学生对简单轴对称图形的认识,从而培养学生的识图能力。
情感与价值观:通过分组讨论学习,使学生体会在解决问题的过程中与他人合作的重要性。
培养团结协作的精神。
教学重、难点:教学重点:1、角、线段是轴对称图形2、角的平分线、线段垂直平分线的有关性质教学难点:角的平分线、线段垂直平分线的有关性质教学过程:一、知识回顾1.什么是轴对称图形?2. 角是不是轴对称图形呢?如果是,它的对称轴在哪里?二、探索研究,充分发挥学生的主体作用探索1:角的对称性1、在准备好的三角形的每个顶点上标好字母;2、A、B、C。
把角A对折,使得这个角的两边重合。
3、在折痕(即平分线)上任意找一点C,4、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。
5、将纸打开,新的折痕与OB边交点为E。
教师要引导学生思考:我们现在观察到的只是角的一部分。
注意角的概念。
学生通过思考应该大部分都能明白角是轴对称图形这个结论。
问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试。
是否也有同样的发现?实验结论:⑴角是轴对称图形,它的对称轴是它的平分线所在的直线;⑵角平分线的性质:角平分线上的点到这个角的两边的距离相等。
学生应该很快就找到相等的线段。
下面用我们学过的知识证明发现:巩固练习:1、在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?2、如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.3、如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的距离为5cm,则CD=_____cm.探索2:探索线段的对称性做一做:按下面步骤做:1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB 的交点为O。
轴对称图形认识教案6篇
轴对称图形认识教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、先进事迹、条据文书、合同协议、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, advanced deeds, normative documents, contract agreements, rules and regulations, emergency plans, teaching materials, essay summaries, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!轴对称图形认识教案6篇在编写教案时,教师应该考虑到学生的年龄和发展水平,以确保内容的合适性,在编写教案时,教师需要考虑如何引发学生的兴趣和积极参与,以下是本店铺精心为您推荐的轴对称图形认识教案6篇,供大家参考。
轴对称图形教案优秀7篇
轴对称图形教案优秀7篇作为一名无私奉献的老师,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
教案应该怎么写才好呢?熟读唐诗三百首,不会作诗也会吟,这里是漂亮的小编为大家分享的轴对称图形教案优秀7篇,欢迎参考,希望对大家有一些参考价值。
《轴对称图形》教案篇一教学目标:1、通过实践活动,进一步加强对轴对称图形的认识,培养在实际生活中的创造性,提高数学学习的兴趣。
2、通过参与创作,合作交流,启迪灵感,感受生活。
3、通过欣赏剪纸作品,感受古今劳动人民的高超技艺,培养民族自豪感。
教学重、难点:学习运用轴对称图形的特点创作美丽的图案。
教具准备:实物投影仪、剪纸作品、剪刀、彩色纸片。
教学过程:一、作品赏析1、利用实物投影仪欣赏剪纸作品。
2、介绍:我国劳动人民创造出了中国民间艺术——剪纸,又叫做窗花。
这古老的传统民间艺术有1000多年的历史了,风格独特,深受国内外人士的喜爱。
今天,我们就来欣赏和学习制作剪纸。
3、问:你较喜欢刚才的哪一幅剪纸?教师相机对部分作品进行解说。
二、作品分类1、观察分析。
谈话:在民间艺人的创作中,这些剪纸使分不同种类的,那么你们能进行分类吗?小组讨论,学生分类只要合理就予以充分肯定。
比如:分为人物、动物、花草、文字等类别或以颜色分类。
小结:同学们观察得非常仔细,从创作内容上看可以分为这几类,我们还可以从创作的方法进行分类,比如有的剪纸图案是由以组或几组完全相同的图案组合而成的,大家来看看有哪些。
2、研究方法引导观察:你们再来看现在这些作品,它们有什么共同的特点?教师拿出其中以一次对折形式剪成的枫叶图案。
问:这张剪纸是什么图案?你知道这样漂亮图案是怎样剪成的吗?组织学生拿出工具进行剪纸。
三、作品创作1、尝试创作(一次对折剪纸)教师指导枫叶图案:一次对折——沿外边画轮廓线——剪去轮廓线以外的部分。
同桌进行交流、评析,将优秀的作品贴在黑板上。
小结:剪纸时对折要整齐,画样要美观,用剪要稳当。
小学四年级《轴对称图形》教案(精选5篇)
小学四年级《轴对称图形》教案(精选5篇)小学四年级《轴对称图形》教案(精选5篇)作为一名默默奉献的教育工作者,可能需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。
怎样写教案才更能起到其作用呢?以下是小编整理的小学四年级《轴对称图形》教案(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
《轴对称图形》教案1对称是义务教育课程标准实验教科书数学(人教版)二年级上册第五单元观察物体第二课时的内容,主要教学轴对称的知识。
整节课,设计了五个大的活动。
让学生在活动中体验对称、感悟对称、理解对称、并且在欣赏的活动中体验对称美。
第一个活动是让学生动手剪剪,在剪一剪中体验对称图形的特点,对对称、对称图形有一个直观的了解。
第二个活动,设计的是让学生找一找,在各种图形事物中找一找那些是对称图形,那些不是对称图形?在找的同时,感悟到对称图形的特点,同时让学生感受到生活中到处都有对称,到处都有对称的事物。
第三个活动是让学生动手画一画对称轴,进一步理解对称及对称图形的特点,接着,出示正方形、长方形、和五角星,让学生找对称轴,由于可找很多条对称轴,让学生感悟到同一个物体有不同的对称轴,感觉到对称的奥妙.第四个活动,在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。
把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。
第五个活动,是对学生学习的课外延伸,让学生设计一个对称图形,打扮我们的教室,充分调动了学生的积极性,发挥了他们的想象力。
《轴对称图形》教案2教学内容:义务教育课程标准实验教材数学第六册56—61页内容教学资源分析:本教材从学生熟悉的生活入手,结合实例,通过观察、操作等形式多样的活动,让学生初步感知生活中的对称现象,认识简单的轴对称图形,为今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法进行变换或设计图案打好基础。
5.3.3简单的轴对称图形(三)角平分线
5.3.3角平分线的性质教学目标:1.掌握作已知角的平分线的尺规作图方法。
2.利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.3.使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验;重难点:1. 利用角平分线的性质定理解决实际问题;2. 利用角平分线构造垂线。
启中入1.复习:(1)角平分线定义:(2)角平分线性质:(3)相关模型:2.验证猜想:角的平分线上的点到角的两边的距离相等.已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于E 。
求证: PD=PE归纳:角平分线性质:___________________________________________ 几何语言:O B读中思例1.如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ,求证:CF=EB 。
练习1.如图 ,在△ABC 中,∠C=90°,AC=BC , AD 平分∠CAB ,并交BC 于D , DE ⊥AB 于点E ,若 AB=8cm ,则△DEB 的周长为_____2.如图,已知点P 是∠AOB 角平分线上的一点, PC ⊥OA 于C ,PC=4cm ,点D 是OB 上一个动点, 则PD 的最小值为___(练习1) (练习2) (例2)例2.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积为__________.练习1.如图,已知△ABC ,∠ABC ,∠ACB 的角平分线交于点O ,连接AO 并延长交BC 于D ,OH ⊥BC 于H ,若∠BAC=60°,OH=3cm ,OA 长为_____(练习1) (练习2)CF OC B2.如图,∠AOB=300,P 是∠AOB 的平分线上一点,PC ∥OA,交OB 于点C ,PD ⊥OA ,垂足为点D 。
《轴对称》的教案实用5篇
《轴对称》的教案实用5篇《轴对称》的教案 1一、说教材【说课内容】:九年义务教育青岛版四年级下册第六单元第一节《轴对称图形》。
【教材分析】《轴对称图形》是在学生已经学*了一些简单的*面几何图形的特征、初步形成了空间观念的基础上教学的;自然界和日常生活中具有轴对称特性的许多事物,也为学生认识轴对称图形提供了必要的感性认识,为此教材在编写时十分注重直观性和可操作性。
本节课主要是帮助学生在原有的感性认知的基础上建立轴对称图形和对称轴这两个概念,为学生今后进一步学*几何图形的有关知识打下良好的基础,并在学生的学*过程中引导学生发现和创造生活中的美。
为了更好的激起学生的学*兴趣,因此我对教材适当调整,以贴米奇的耳朵游戏引入新知充分利用有关素材开展数学活动。
根据大纲的要求和教材的特点结合四年级学生的认知能力,本节课我确定一下的教学目标。
【教学目标】(1)知识与技能目标:通过观察、操作等活动让学生认识并理解轴对称图形的特征,能准确判断哪些图形是轴对称图形,并能找出轴对称图形的对称轴。
(2)过程与方法目标:让学生通过观考、实践、发现,亲历知识形成的过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
(3)情感态度与价值观目标:在探究新知的活动中,培养审美意识,这样的目标设计打破了传统概念教学的规律,从过于注重概念教学的本身转化到了更加专注学生的学*过程和情感体验,立足教学目标多元化,不仅让学生掌握认知目标还要学生的学*过程中发展各方面的能力体会轴对称图形的美学价值。
【教学重、难点】教学重点:掌握轴对称图形的特征,能准确判断哪些图形是轴对称图形,并能找出轴对称图形的对称轴。
教学难点:准确找出轴对称图形的对称轴。
5、教具及学具准备教具准备:课件,尺子,米奇头像,轴对称图形图片和常见几何图形。
学具准备:剪刀,尺子,已学的各种*面图形纸片一份。
二、说教法、学法教法:《新数学课程标准》指出:“教师是学生学*的组织者、引导者、合作者”根据这一理念,我遵循“激——导——探——放”的原则,教学中精心设计游戏,诱导学生思考操作,鼓励学生概括交流并让学生去运用知识大胆创新。
5.3.简单轴对称图形(3)
5.3.简单轴对称图形(3)角平分线的性质及画法一、学习目标:1.经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念.2.探索并掌握角平分线的有关性质.二、复习回顾与练习1.垂直平分线的定义:垂直于一条线段,并且这条线段的直线,叫做这条线段的 .(简称中垂线) 2.垂直平分线的性质:线段垂直平分线上的点到这条线段两个的相等.几何语言:3. 如图,已知直线MN是线段AB的中垂线,垂足为N,AM=5 cm,△MAB的周长为16 cm,那么AN= .三、自主探究新知(一)角平分线的性质1.阅读教材P125页“引例”和“做一做”完成下列问题:角是图形,所在的直线是它的对称轴.角平分线的性质:角平分线上的点到这个角的相等.几何语言:练习巩固:1.如图,CD⊥OA,CE⊥OB,D,E为垂足.(1)若∠1=∠2,则有;(2)若CD=CE,则有 .2.如图,在Rt△ABC中, ∠C=900,BD是∠ABC的角平分线,DE⊥AB,垂足为E,DE=3,则 CD= .(二)角平分线的画法1.阅读教材P126页“例2”完成下列问题:利用尺规作图:如图,作∠AOB的角平分线.作法:(1)以点_ _为圆心,以为半径画弧,两弧交∠AOB两边于点M、N;(2)分别以M、N为圆心,以为半径作弧,两弧交于点C;(3)作射线OC,OC就是∠AOB的角平分线.小组讨论如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.试说明:DE=DF.四、精题精讲点拨1.如图所示,点P在∠AOB的角平分线上,C、D在OA上,E、F在OB上,且PD⊥OA于D,PE⊥OB于E,则下列说法正确的有( )A.PC=PDB.PC=PFC.PD=PFD.PD=PE2.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A、B.下列结论中不一定成立的是( )A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP3.如图所示,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于D,DE⊥AB于E,且AB=6 cm,则△BDE的周长为____.总结方法:五、交流展示提升一、本课知识点1.角平分线的性质2.尺规作角的平分线二、解题方法技巧六、检测反馈评价1.如图,已知AB∥CD,点O为∠CAB,∠ACD角平分线的交点,点O到AC的距离为1.5 cm,则两平行线间的距离为 .2.用直尺和圆规作已知角的平分线的示意图如图,则说明∠CAD=∠DAB的依据是( )A.SSSB.SASC.ASAD.AAS。
轴对称图形教案最新3篇
轴对称图形教案最新3篇《轴对称图形》教案篇一教学目标:1、使学生初步认识生活中的对称现象,认识轴对称图形和对称轴;知道轴对称图形的含义,能判断一个图形是否是轴对称图形。
2、会根据轴对称图形的特点,找出相应的对称轴。
3、让学生体会理论来源于实践,又在实践中广泛运用这一道理。
4、培养学生的观察能力和动手操作能力。
教学重点:掌握轴对称图形的特点,能判断一个图形是否是轴对称图形。
教学难点:会找出轴对称图形的对称轴。
教学准备:多媒体课件,剪纸学具准备:长方形纸一张、剪刀、教学过程:一.情景欣赏:师:同学们,老师今天给大家带来了一些的图片,请大家欣赏,在欣赏的同时观察这些图片有什么特点。
1.屏幕出现图片(1)自然景观图片师:这景色美吗?生:美师:大自然的景色很美,而且还很有特点,聪明的设计师和能工巧匠利用大自然的特点设计和建造了一些美丽的建筑。
(2)轴对称建筑图片师:你看到的图形有什么特点?生:有,有的左右一样,有的上下一样。
两边一样…师:我们的生活中经常也可以看到具有这种特点的物体和图形。
(3)生活中的轴对称图片师:剪纸是我国的民间艺术,历史悠久,流传广泛,它最能体现这种特点。
(4)剪纸图片2、对图形进行概括:师:你们所看到的这些图形都有什么特点?生:有的左右一样,有的上下一样。
两边一样,有一种对称美。
师:上面这些图形给我们一种对称美,这些图形都是轴对称图形。
(板书课题:轴对称图形)轴对称这种特点在我们日常生活中,应用很广泛,到底什么样的图形是轴对称图形呢?这就是我们今天要研究的问题。
二.动手操作发现新知:1、师:我们来做个实验,先看大屏幕老师怎么做(演示课件。
折纸------画图-----剪纸-----打开)师:现在请大家拿出你手中的长方形纸和剪刀,向老师这样也剪出一个简单的图形。
2、学生操作(教师巡视指导)师:通过剪纸,你发现了什么?生:我发现了我这个图形的两边一样,中间还有一条折痕,师:那你知道它是什么图形吗?生:轴对称图形。
北师大版数学七年级下册5.3.1《简单的轴对称图形》教案
北师大版数学七年级下册5.3.1《简单的轴对称图形》教案一. 教材分析《简单的轴对称图形》是北师大版数学七年级下册第五章第三节的第一课时内容。
本节课主要让学生初步认识轴对称图形,了解轴对称图形的性质,并学会判断一个图形是否为轴对称图形。
通过本节课的学习,为学生后续学习更复杂的轴对称图形打下基础。
二. 学情分析学生在六年级已经学习了图形的对称性,对对称的概念有一定的了解。
但他们对轴对称图形的认识还不够深入,需要通过实例和操作来进一步理解和掌握。
此外,学生需要培养观察、操作、归纳和推理的能力,以便更好地学习本节课的内容。
三. 教学目标1.知识与技能:使学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形;2.过程与方法:培养学生观察、操作、归纳和推理的能力;3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:轴对称图形的概念及性质;2.难点:判断一个图形是否为轴对称图形,以及如何寻找对称轴。
五. 教学方法1.采用问题驱动法,引导学生主动探究;2.运用直观演示法,让学生清晰地了解轴对称图形的性质;3.利用合作学习法,培养学生的团队协作能力;4.运用练习法,巩固所学知识。
六. 教学准备1.准备一些轴对称图形的实例,如剪纸、图片等;2.准备教学课件,展示轴对称图形的性质和判定方法;3.准备练习题,让学生课后巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形,如剪纸、图片等,引导学生关注这些美丽的图形,激发学生的学习兴趣。
并提出问题:“你们能找出这些图形的共同特点吗?”让学生思考并回答。
2.呈现(10分钟)教师通过课件展示轴对称图形的定义和性质,让学生直观地了解轴对称图形的特点。
同时,教师给出轴对称图形的判定方法,让学生学会如何判断一个图形是否为轴对称图形。
3.操练(10分钟)教师提出一些判断题,让学生判断给定的图形是否为轴对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公
开
课
教
案
单位:开阳县第四中学执教人:郑静
【课题】简单的轴对称图形(第3课时)【教学目标】
知识与技能:
1.探索发现角是轴对称图形,掌握作已知角的平分线的尺规作图方法。
2. 利用逻辑推理的方法证明角平分线的性质,并能够利用其解决简但的问题.过程与方法:
1、经历用折纸活动探索角的对称性的过程,培养学生的观察思考能力。
2.在探究作已知角的平分线的方法和角平分线的性质的过程中,发展几何直观。
3.提高综合运用三角形全等的有关知识解决实际问题的能力.
情感态度与价值观:
1. 通过引导学生自主探索角的对称性的过程中,经历折纸、观察、比较、推理、交流等环节,从中获得正确的学习方式和良好的情感体验;
2.在探讨作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,培养学生的合情推理能力。
【重点难点】
1、重点:掌握角平分线的性质,并能运用这一性质解决简单的实际问题。
2、难点:用尺规画角的平分线、运用全等三角形推理说明角平分线的性质。
【教学过程】
第一环节:复习回顾,导入课题
1、什么叫轴对称图形?
2、前面大家学过哪些简单的轴对称图形?
3、什么叫点到直线的距离?
第二环节:动手操作,探究新知
【问题情境一】}不利用工具,请你将一张用纸片做的角分成两个相等的角。
你有什么办法?(对折)再打开纸片,看看折痕与这个角有何关系?
1、学生实验:通过折纸的方法作角的平分线。
2、教师与学生一起动手操作。
展示学生作品。
3、师生互动,得出角是轴对称图形,角平分线所在的直线是他的对
称轴。
【情境问题二】对这种可以折叠的角可以用折叠方法的角平分线,对不能折叠的角怎样得到其角平分线?
有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB 和AD沿AC画一条射线AE,AE就是∠BAD的平分线,为什么?
(1)学生从简易角平分仪中抽象出两个形;
(2)学生用三角形全等的条件说明明两个三角形全等,从而说明线段AE是
∠BAD的平分线。
(3)从上面的探究中,可以得出作已知角的平分线的方法。
(4)归纳角平分线的作法(教师提问,学生与老师一起完成探究画法的过程.
学生独立说明,学生相互讨论,交流,归纳后教师归纳展示作法。
)
(5)完成角平分线的画法的讲解后,问学生能否将一个角四等分。
(学生板演)第三环节:实践猜想,验证推理。
[情境问题三]将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察两次折叠形成的三条折痕.
问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
学生动手剪纸,折叠,教师在多媒体上演示折叠过程.学生观察思考后,分组讨论、交流:第一次折痕是角的平分线,第二次的折痕是角平分线上的点到两边的距离,它们的长度相等.再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)
教师归纳,引导学生结合图形写出已知、求证,分析后写出证明过程,并利用实物投影展示,强调定理的条件和作用.
问题3:如何用简洁的语言描述这一性质?(师生互动板书内容)
2、在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,已知DE=4cm,
求DC的长是多少?
第五环节:课堂小结,布置作业。
小结:我们这节课学习了那些知识?
小节让学生畅所欲言,从不同角度谈论本节课的收获?
板书设计:。