高中数学必修交集、并集、补集专项练习题

合集下载

高一数学集合、子集、交集、并集、补集训练基础训练含答案

高一数学集合、子集、交集、并集、补集训练基础训练含答案

集合、子集、交集、并集、补集一. 选择题:1. 设I 为全集,A B ⊂,则A B ⋃=( )A AB BC ID ....φ2. 满足{}{}-⊂⊆--1121012,,,,,M 的集合M 的个数是( )A. 6B. 7C. 8D. 93. {}{}M x x k k Z N x x k k Z ==+∈==-+∈||()3231,,,,则集合M 、N 的关系是( )A M NB M NC M ND M N ....=⊂⊃⋂=φ4. 已知{}{}M y y x x R N y y x x R ==+∈==+∈||211,,,,则M N ⋂等于( ){}{}{}A B C D .()()...[)011201121,,,,,,+∞5. 已知集合{}{}A x x B x a x a =-≤≤=+≤≤+||35141,,且A B B ⋂=, B ≠φ,则实数a 的取值范围是( )A aB aC aD a ....≤≤≤≤-≤≤1010416. 下列各式中正确的是( ){}{}A B C D ....0000∈⊂=⊃φφφφ7. 设全集{}I =1234567,,,,,,,集合{}{}A B ==135735,,,,,,则( )A I A BB I A BC I A BD I A B ....=⋃=⋃=⋃=⋃8. 已知全集{}{}{}I x x x N A B =≤∈==|101352379,,,,,,,,,那么集合{}46810,,,是( )A AB B A BC A BD A B ....⋃⋂⋃⋂二. 填空题:1. 用列举法表示{不大于8的非负整数}__________________________。

2. 用描述法表示{1,3,5,7,9,…}________________________。

3. {}()|x y xy ,<0表示位于第___________象限的点的集合。

4. 若{}{}A x x x N B x x x N I N =<∈=>∈=||126,,,,,则A B ⋂=_______。

并集、交集、补集混合运算练习题含答案

并集、交集、补集混合运算练习题含答案

并集、交集、补集混合运算练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 设全集U={x∈N∗|x≤4},集合A={1, 4},B={2, 4},则∁U(A∩B)=()A.{1, 2, 3}B.{1, 2, 4}C.{1, 3, 4}D.{2, 3, 4}2. 设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}3. 已知全集U为实数集,A={x|x2−3x≤0},B={x|x>1},则A∩(∁U B)=( )A.{x|0≤x≤1}B.{x|0≤x<1}C.{x|1≤x≤3}D.{x|0≤x≤3}4. 已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}5. 已知集合A={x|−2<x<1},B={x|y=√x},那么A∪∁R B=( )A.(−2,1)B.(−2,0)C.(−∞,1)D.(−∞,0)6. 已知全集U=R,集合A={x|x<2},B={x|x>3或x<−4},则A∩(∁U B)等于( )A.{x|−3≤x<3}B.{x|−3<x<2}C.{x|−4≤x<2}D.{x|−4<x<2}≥1},则A∩∁U B=( ) 7. 已知全集U=R,集合A={x||x−1|<1},B={x|2x−5x−1A.{x|1<x<2}B.{x|1≤x<2}C.{x|1<x≤2}D.{x|1≤x<4}8. 已知全集为R,集合A={x|2x≥1},B={x|x2−6x+8≤0},则A∩(∁R B)=( )A.{x|x≤0}B.{x|2≤x≤4}C.{x|0≤x<2或x>4}D.{x|x<2或x>4}9. 已知集合A={x|1<x<2},集合B={x|x>m},若A∩(∁R B)=⌀,则m的取值范围为( )A.(−∞,1]B.(−∞,2]C.[1,+∞)D.[2,+∞)10. 设全集U={−1,0,1,2,3},集合A={−1,0,1},B={0,1,2},则(∁U A)∪B=( )A.{0,1,2,3}B.{0,1,2}C.{−1,0,1,2}D.{−1,0,1,2,3}11. 已知集合M,N为U的子集,若(∁U M)∪N=N,则M∩(∁U N)=( )A.⌀B.∁U NC.ND.M12. 已知全集U=R,A={x|x≤2},B={x|x≥3},则集合∁U(A∪B)=( )A.{x|x≥2}B.{x|x≤3}C.{x|2≤x≤3}D.{x|2<x<3}13. 已知全集为U,P,Q为U的子集,P∩(∁U Q)=P,则Q∩(∁U P)=( )A.⌀B.PC.QD.U14. 已知集合A={x|x2−3x−18≤0},B={x|2x−4>x},则A∩(∁R B)=( )A.[−6,4]B.[−3,4]C.[4,6]D.[3,4]15. 已知集合A={x∈N|1≤x≤4},B={x|x>2},则A∩(∁R B)=________.16. 已知全集U={0, 1, 2, 3, 4, 5, 6, 7, 8, 9},集合A={0, 1, 3, 5, 8},集合B={2, 4, 5, 6, 8},则(∁U A)∩(∁U B)=________.17. 已知集合U={1,2,3,4,5},A={3,4},B={1,4,5},则A∪(∁U B)=________.18. 如果全集U=A∪B={x∈N|0≤x<8},(∁U A)∩B={1, 3, 5, 7},那么用列举法表示A=________.19. 设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=________.20. 若U={1,2,3,4},M={1,2},N={2,3},则M∩N=________,∁U(M∪N)=________.21. 市场调查公司为了了解某小区居民在阅读报纸方面的取向,抽样调查了500户居民,调查的结果显示:订阅晨报的有334户,订阅晚报的有297户,其中两种都订的有150户,则两种都不订的有________户.22. 设集合A={x∈R|0<x<2},B={x∈R||x|<1},求A∩B=________,(∁R A)∪B=________.23. 对于集合M ,定义函数f M (x)={−1,x ∈M 1,x ∉M.对于两个集合A ,B ,定义集合A △B ={x|f A (x)⋅f B (x)=−1}.已知A ={2, 4, 6, 8, 10},B ={1, 2, 4, 8, 12},则用列举法写出集合A △B 的结果为________.24. 设集合A ={x|132≤12x ≤4},B ={x|m −1≤x ≤2m +1}.(1)若m =3,求∁R (A ∪B);(2)若A ∩B =B ,求m 的取值范围;25. 设集合U =R ,A ={x|x 2−x −6<0},B ={x|x 2−5x +4≥0},C ={x|x <a }.(1)求图中阴影部分表示的集合;(2)若B ∩C =C ,求a 的取值范围.26. 已知集合A ={x|2x −4<0},B ={x|0<x <5},全集U =R ,求:(1)A ∪B ;(2)(∁U A)∩B .27. 已知集合A ={x|3≤x <6},B ={x|2<x <9}.(1)求∁R (A ∩B),(∁R B)∪A ;(2)已知C ={x|a <x <a +1},若C ⊆B ,求实数a 的取值集合.28. 已知集合A ={x |x−4x+3>0},集合B ={x |a −2≤x ≤2a +1}.(1)当a =3时,求A 和(∁R A )∪B ;(2)若x ∈A 是x ∈B 的必要不充分条件,求实数a 的取值范围.29. 设全集为R,A={x|3≤x<5},B={x|2<x<10} .(1)求∁R(A∪B)及(∁R A)∩B;(2)若集合C={x|x≤2m−1},A∩C≠⌀,求m的取值范围.≤2x≤8},B={x|x<m−2或x>m+2}.30. 已知全集U=R,集合A={x|12(1)若A∩∁U B={x|0≤x≤3},求实数m的值;(2)若A∪B=B,求实数m的取值范围.<0},B={x|3x−1≥27},C=A∩(∁R B).31. 已知A={x|x−5x+3(1)求集合C;(2)若不等式x2+ax+2b<0的解集为C,求不等式5x2+ax+b≥0的解集.32. 设全集U=R,集合A={x∣−2<x<3},B={x∣−3<x≤3}.(1)求∁U A,A∪B;(2)∁U(A∩B),(∁U A)∩B.参考答案与试题解析并集、交集、补集混合运算练习题含答案一、选择题(本题共计 14 小题,每题 3 分,共计42分)1.【答案】A【考点】交、并、补集的混合运算【解析】利用交、并、补集的混合运算对题目进行判断即可得到答案,需要熟知求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法.【解答】解:∵全集U={x∈N∗|x≤4}={1, 2, 3, 4},A={1, 4},B={2, 4},∴A∩B={4},∴∁U(A∩B)={1, 2, 3}.故选A.2.【答案】B【考点】交、并、补集的混合运算【解析】无【解答】解:由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6}.故选B.3.【答案】A【考点】交、并、补集的混合运算【解析】利用二次不等式的解法得A={x|0≤x≤3},利用补集的思想解得C U B,再利用交集得解.【解答】解:由题设得A={x|0≤x≤3},B={x|x>1},∁U B={x|x≤1},所以A∩(∁U B)={x|0≤x≤1}.故选A.4.【答案】A【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】解:由M={1,2},N={3,4},所以M∪N={1,2,3,4},所以∁U(M∪N)={5}.故选A.5.【答案】C【考点】交、并、补集的混合运算【解析】可求出集合B,然后进行补集和并集的运算即可.【解答】解:∵A={x|−2<x<1},B={x|x≥0},∴∁R B={x|x<0},A∪∁R B=(−∞,1).故选C.6.【答案】C【考点】交、并、补集的混合运算【解析】无【解答】解:因为全集U=R,集合A={x|x<2},B={x|x>3或x<−4},所以∁U B={x|−4≤x≤3},所以A∩(∁U B)={x|−4≤x<2}.故选C.7.【答案】B【考点】交、并、补集的混合运算【解析】可解出集合A,B,然后进行补集、交集的运算即可.【解答】解:由题意,A={x|0<x<2},B={x|x<1或x≥4},∴∁U B={x|1≤x<4},∴A∩∁U B={x|1≤x<2}.故选B.8.【答案】C【考点】交、并、补集的混合运算【解析】化简集合A、B,再根据补集与交集的定义进行计算即可.【解答】解:全集为R,集合A={x|2x≥1}={x|x≥0},B={x|x2−6x+8≤0}={x|2≤x≤4},∁R B={x|x<2或x>4},∴ A∩(∁R B)={x|0≤x<2或x>4}.故选C.9.【答案】A【考点】交、并、补集的混合运算【解析】根据B集合求出∁R B,由A与∁R B的交集为空集,确定出m的范围即可.【解答】解:∵集合B={x|x>m},∴∁R B={x|x≤m},又集合A={x|1<x<2},A∩(∁R B)=⌀,∴ m≤1,∴m的取值范围是(−∞,1].故选A.10.【答案】A【考点】交、并、补集的混合运算【解析】无【解答】解:∵U={−1, 0, 1, 2, 3},A={−1,0,1},B={0,1,2},∴∁U A={2,3},∴(∁U A)∪B={0,1,2,3}.故选A.11.【答案】B【考点】交、并、补集的混合运算【解析】【解答】解:因为(∁U M)∪N=N,所以∁U M⊆N,所以∁U N⊆M,所以M∩(∁U N)=∁U N.故选B.12.【答案】D【考点】交、并、补集的混合运算【解析】由题意求出集合A∪B,然后直接写出它的补集即可.【解答】解:∵ 全集U=R,A={x|x≤2},B={x|x≥3},∴ A∪B={x|x≤2或x≥3},∴∁U(A∪B)={x|2<x<3}.故选D.13.【答案】C【考点】交、并、补集的混合运算【解析】U为全集,P,Q为U的子集,由P∩(∁U Q)=P可知P与Q无交集,则Q∩(∁U P)=Q.【解答】解:∵ P∩(∁U Q)=P(U为全集,P,Q为U的子集),∴ 说明P与Q无交集,∴ Q∩(∁U P)=Q.故选C.14.【答案】B【考点】一元二次不等式的解法交、并、补集的混合运算【解析】此题暂无解析【解答】解:集合A={x|−3≤x≤6},B={x|x>4},则∁R B={x|x≤4},故A∩(∁R B)={x|−3≤x≤4},即[−3,4].故选B.二、填空题(本题共计 9 小题,每题 3 分,共计27分)15.【答案】{1,2}【考点】交、并、补集的混合运算【解析】无【解答】解:因为A={1,2,3,4},∁R B={x|x≤2},所以A∩(∁R B)={1,2}.故答案为:{1,2}.16.【答案】{7, 9}【考点】交、并、补集的混合运算【解析】由题已知全集U={0, 1, 2, 3, 4, 5, 6, 7, 8, 9},集合A={0, 1, 3, 5, 8},集合B= {2, 4, 5, 6, 8},可先求出两集合A,B的补集,再由交的运算求出(∁U A)∩(∁U B)【解答】解:由题意知,全集U={0, 1, 2, 3, 4, 5, 6, 7, 8, 9},集合A={0, 1, 3, 5, 8},集合B={2, 4, 5, 6, 8},所以∁U A={2, 4, 6, 7, 9},∁U B={0, 1, 3, 7, 9},所以(∁U A)∩(∁U B)={7, 9}.故答案为:{7, 9}.17.【答案】{2,3,4}【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】解:由补集定义可得C U B={2,3},则A∪(∁U B)={2,3,4}.故答案为:{2,3,4}.18.【答案】{0, 2, 4, 6}【考点】交、并、补集的混合运算集合的含义与表示【解析】此题暂无解析【解答】此题暂无解答19.【答案】{x|0<x<1}【考点】交、并、补集的混合运算【解析】此题暂无解析【解答】解:∵B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1}.故答案为:{x|0<x<1}.20.【答案】【考点】交集及其运算交、并、补集的混合运算【解析】此题暂无解析【解答】此题暂无解答21.【答案】19【考点】Venn图表达集合的关系及运算交、并、补集的混合运算【解析】根据条件绘制Venn图,由图可知,151−(297+150−500)=19,问题得以解决.【解答】解:绘制Venn图,由图可知,500−(184+150+147)=19(户),故答案为:19.22.【答案】{x|0<x<1},{x|x<1或x≥2}【考点】绝对值不等式交、并、补集的混合运算交集及其运算【解析】由题意直接求出A∩B,求出集合A的补集,然后求解(C R A)∩B,求出集合B的补集即可求解(C R A)∪(C R B).【解答】解:因为集合A={x∈R|0<x<2},B={x∈R||x|<1}={x∈R|−1<x<1},所以A∩B={x|0<x<2}∩{x|−1<x<1}={x|0<x<1}.∁R A={x|x≤0或x≥2},(∁R A)∪B={x|x≤0或x≥2}∪{x∈R|−1<x<1}={x|x<1或x≥2}.故答案为:{x|0<x<1};{x|x<1或x≥2}.23.【答案】{1, 6, 10, 12}【考点】交、并、补集的混合运算【解析】在理解题意的基础上,得到满足f A(x)⋅f B(x)=−1的x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A},分别求出两个集合后取并集.【解答】解:要使f A(x)⋅f B(x)=−1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6, 10}∪{1, 12}={1, 6, 10, 12, },所以A△B={1, 6, 10, 12}.故答案为{1, 6, 10, 12}.三、解答题(本题共计 9 小题,每题 10 分,共计90分)24.【答案】解:(1)m=3时,集合A={x|132≤12x≤4}={x|−2≤x≤5},B={x|m−1≤x≤2m+1}={x|2≤x≤7}.∴A∪B={x|−2≤x≤7},∴∁R(A∪B)={x|x<−2或x>7}=(−∞, −2)∪(7,+∞).(2)∵集合A={x|132≤12x≤4}={x|−2≤x≤5},A∩B=B,∴B⊆A,∴当B=⌀时,m−1>2m+1,解得m<−2.当B≠⌀时,{m−1≤2m+1,m−1≥−2,2m+1≤5,解得−1≤m≤2.综上,m的取值范围是(−∞,−2)∪[−1, 2].【考点】交、并、补集的混合运算集合关系中的参数取值问题【解析】此题暂无解析【解答】解:(1)m=3时,集合A={x|132≤12x≤4}={x|−2≤x≤5},B={x|m−1≤x≤2m+1}={x|2≤x≤7}.∴A∪B={x|−2≤x≤7},∴∁R(A∪B)={x|x<−2或x>7}=(−∞, −2)∪(7,+∞).(2)∵集合A={x|132≤12x≤4}={x|−2≤x≤5},A∩B=B,∴B⊆A,∴当B=⌀时,m−1>2m+1,解得m<−2.当B≠⌀时,{m−1≤2m+1,m−1≥−2,2m+1≤5,解得−1≤m≤2.综上,m的取值范围是(−∞,−2)∪[−1, 2].25.【答案】解:(1)图中阴影部分表示的集合为A∩∁U B,其中A={x|−2<x<3},B={x|x≤1或x≥4},则∁U B={x|1<x<4},A∩∁U B={x|1<x<3}.(2)由于B∩C=C,则C⊆B,则可得a≤1 .【考点】Venn图表达集合的关系及运算交、并、补集的混合运算集合关系中的参数取值问题【解析】(1)图中阴影部分表示的集合为A∩C U B,其中A={x|−2<x<3},B={x|x≤1或|x≥4},则C U B={x|1<x<4},A∩∁U B={x|1<x<3}即为所求.(2)由于B∩C=C,则C⊆B,则可得a≤1 .【解答】解:(1)图中阴影部分表示的集合为A∩∁U B,其中A={x|−2<x<3},B={x|x≤1或x≥4},则∁U B={x|1<x<4},A∩∁U B={x|1<x<3}.(2)由于B∩C=C,则C⊆B,则可得a≤1 .26.【答案】解:(1)∵A={x|2x−4<0}={x|x<2},B={x|0<x<5},∴A∪B={x|x<5}.(2)由(1)得:∁U A={x|x≥2},∴(∁U A)∩B={x|2≤x<5}.【考点】并集及其运算交、并、补集的混合运算【解析】根据集合的基本运算进行求解即可.【解答】解:(1)∵A={x|2x−4<0}={x|x<2},B={x|0<x<5},∴A∪B={x|x<5}.(2)由(1)得:∁U A={x|x≥2},∴(∁U A)∩B={x|2≤x<5}.27.【答案】解:(1)∵A∩B={x|3≤x<6},∴∁R(A∩B)={x|x<3或x≥6};∵∁R B={x|x≤2或x≥9},∴(∁R B)∪A={x|x≤2或3≤x<6或x≥9}.(2)由C={x|a<x<a+1},B={x|2<x<9},且C⊆B,则{a≥2,a+1≤9,解得:2≤a≤8,∴所求实数a的取值集合为{a|2≤a≤8}.【考点】集合关系中的参数取值问题交、并、补集的混合运算集合的包含关系判断及应用【解析】(1)先求出A∩B,再利用补集的定义即可;(2)结合数轴即可求出.【解答】解:(1)∵A∩B={x|3≤x<6},∴∁R(A∩B)={x|x<3或x≥6};∵∁R B={x|x≤2或x≥9},∴(∁R B)∪A={x|x≤2或3≤x<6或x≥9}.(2)由C={x|a<x<a+1},B={x|2<x<9},且C⊆B,则{a≥2,a+1≤9,解得:2≤a≤8,∴所求实数a的取值集合为{a|2≤a≤8}.28.【答案】解:(1)由题可知,当a =3时,则B ={x|1≤x ≤7},A ={x|x−4x+3>0}={x|x <−3或x >4},则∁R A ={x|−3≤x ≤4},所以(∁R A )∪B ={x|−3≤x ≤4}∪{x|1≤x ≤7}={x|−3≤x ≤7}.(2)由题可知,x ∈A 是x ∈B 的必要不充分条件,则B ⫋A ,当B =⌀时,a −2>2a +1,解得a <−3;当B ≠⌀时,{a −2≤2a +1,2a +1<−3或{a −2≤2a +1,a −2>4,解得−3≤a <−2或a >6.综上所得:a <−2或a >6.【考点】交、并、补集的混合运算集合关系中的参数取值问题【解析】(1)利用a 的值求出集合B ,再利用分式不等式求解集的方法,从而求出集合A ,再利用并集和补集的运算法则,从而求出集合(∁R A )∪B .(2)利用充分条件、必要条件与集合间的关系的关系,从而由x ∈A 是x ∈B 的必要不充分条件,推出B ⊆A ,再利用集合间的包含关系结合分类讨论的方法,从而借助数轴求出实数a 的取值范围.【解答】解:(1)由题可知,当a =3时,则B ={x|1≤x ≤7},A ={x|x−4x+3>0}={x|x <−3或x >4},则∁R A ={x|−3≤x ≤4},所以(∁R A )∪B ={x|−3≤x ≤4}∪{x|1≤x ≤7}={x|−3≤x ≤7}.(2)由题可知,x ∈A 是x ∈B 的必要不充分条件,则B ⫋A ,当B =⌀时,a −2>2a +1,解得a <−3;当B ≠⌀时,{a −2≤2a +1,2a +1<−3或{a −2≤2a +1,a −2>4,解得−3≤a <−2或a >6.综上所得:a <−2或a >6.29.【答案】解:(1)∵ A ∪B ={x|2<x <10},∴ ∁R (A ∪B )={x|x ≤2或x ≥10},∵ ∁R A ={x|x <3或x ≥5},∴ (∁R A )∩B ={x|2<x <3或5≤x <10} .(2)∵ 集合C ={x|x ≤2m −1},且A ∩C ≠⌀,∴ 2m −1≥3,解得m ≥2,故m 的取值范围是[2,+∞).【考点】交、并、补集的混合运算集合的包含关系判断及应用集合关系中的参数取值问题【解析】此题暂无解析【解答】解:(1)∵ A ∪B ={x|2<x <10},∴ ∁R (A ∪B )={x|x ≤2或x ≥10},∵ ∁R A ={x|x <3或x ≥5},∴ (∁R A )∩B ={x|2<x <3或5≤x <10} .(2)∵ 集合C ={x|x ≤2m −1},且A ∩C ≠⌀,∴ 2m −1≥3,解得m ≥2,故m 的取值范围是[2,+∞).30.【答案】解:(1)由已知得A ={x|−1≤x ≤3},∁U B ={x|m −2≤x ≤m +2},∵ A ∩∁U B ={x|0≤x ≤3},∴ {m −2=0,m +2≥3,即{m =2,m ≥1,∴ m =2.(2)∵ A ∪B =B ,∴ A ⊆B .∴ m −2>3或m +2<−1 ,∴ m >5或m <−3.即实数m 的取值范围为{m|m >5或m <−3}.【考点】交、并、补集的混合运算集合关系中的参数取值问题补集及其运算指、对数不等式的解法集合的包含关系判断及应用【解析】此题暂无解析【解答】解:(1)由已知得A ={x|−1≤x ≤3},∁U B ={x|m −2≤x ≤m +2},∵ A ∩∁U B ={x|0≤x ≤3},∴ {m −2=0,m +2≥3,即{m =2,m ≥1,∴ m =2.(2)∵ A ∪B =B ,∴ A ⊆B .∴ m −2>3或m +2<−1 ,∴ m >5或m <−3.即实数m 的取值范围为{m|m >5或m <−3}.31.【答案】解:(1)A ={x|−3<x <5},B ={x|x ≥4},∁R B ={x|x <4},C =A ∩(∁R B )={x|−3<x <4}.(2)依题意得,−3,4是关于x 的方程x 2+ax +2b =0的两根, ∴ {−3+4=−a ,−3×4=2b ,∴ a =−1,b =−6,∴ 5x 2−x −6≥0,(5x −6)(x +1)≥0,解得,x ≥65或x ≤−1,∴ 该不等式的解集为(−∞,−1]∪[65,+∞). 【考点】交、并、补集的混合运算分式不等式的解法一元二次不等式的解法根与系数的关系【解析】左侧图片未给出解析左侧图片未给出解析【解答】解:(1)A ={x|−3<x <5},B ={x|x ≥4},∁R B ={x|x <4},C =A ∩(∁R B )={x|−3<x <4}.(2)依题意得,−3,4是关于x 的方程x 2+ax +2b =0的两根, ∴ {−3+4=−a ,−3×4=2b ,∴ a =−1,b =−6,∴ 5x 2−x −6≥0,(5x−6)(x+1)≥0,或x≤−1,解得,x≥65,+∞).∴ 该不等式的解集为(−∞,−1]∪[6532.【答案】解:(1)∵U=R,A={x∣−2<x<3},∴∁U A={x∣x≤−2或x≥3},又B={x∣−3<x≤3},∴A∪B={x∣−3<x≤3}.(2)∵A∩B={x∣−2<x<3},∴∁U(A∩B)={x∣x≤−2或x≥3};由(1)知:∁U A={x∣x≤−2或x≥3}∴(∁U A)∩B={x∣−3<x≤−2或x=3}.【考点】交、并、补集的混合运算【解析】(1)直接求补集,并集即可;(2)直接求交集,再求补集;后面是先求补集,再求交集. 【解答】解:(1)∵U=R,A={x∣−2<x<3},∴∁U A={x∣x≤−2或x≥3},又B={x∣−3<x≤3},∴A∪B={x∣−3<x≤3}.(2)∵A∩B={x∣−2<x<3},∴∁U(A∩B)={x∣x≤−2或x≥3};由(1)知:∁U A={x∣x≤−2或x≥3}∴(∁U A)∩B={x∣−3<x≤−2或x=3}.。

高中必修一高一数学交集、并集随堂练习及答案

高中必修一高一数学交集、并集随堂练习及答案

高中必修一高一数学交集、并集随堂练习及答案1.设A=(]3,1- ,B=[)4,2,求A ∩B2.设A=(]1,0,B={0},求A ∪B3.在平面内,设A 、B 、O 为定点,P 为动点,则下列集合表示什么图形(1){P|PA=PB} (2) {P|PO=1}4.设A={(x,y )|y=—4x+b},B={(x,y )|y=5x —3 },求A ∩B5.设A={x|x=2k+1,k ∈Z},B={x|x=2k —1,k ∈Z},C= {x|x=2k ,k ∈Z}, 求A ∩B ,A ∪C ,A ∪B[巩固提高]1. 设全集U={a ,b ,c ,d ,e},N={b ,d ,e}集合M={a ,c ,d},则C U (M ∪N ) 等于2.设A={ x|x <2},B={x|x >1},求A ∩B 和A ∪B3.已知集合A=[)4,1, B=()a ,∞-,若A B ,求实数a 的取值范围 ⊂ ≠4.求满足{1,3}∪A={1,3,5}的集合A5.设A={x|x 2—x —2=0},B=(]2,2-,求A ∩B6、设A={(x,y )| 4x+m y =6},B={(x,y )|y=nx —3 }且A ∩B={(1,2)},则m= n=7、已知A={2,—1,x 2—x+1},B={2y ,—4,x+4},C={—1,7}且A ∩B=C ,求x ,y 的值8、设集合A={x|2x 2+3px+2=0},B={x|2x 2+x+q=0},其中p ,q ,x ∈R ,且A ∩B={21}时,求p 的值和A ∪B9、某车间有120人,其中乘电车上班的84人,乘汽车上班的32人,两车都乘的18人,求:⑴只乘电车的人数 ⑵不乘电车的人数 ⑶乘车的人数 ⑷只乘一种车的人数10、设集合A={x|x 2+2(a+1)x+a 2—1=0},B={x|x 2+4x=0} ⑴若A ∩B=A ,求a 的值⑵若A ∪B=A ,求a 的值答案:1、[2,3]2、[0,1] 3、(1)直线(2)圆 4、{(1,2)} 5、A 或B ,Z ,A 或B[巩固提高]1、φ2、(1,2),R 3、 a ≥4 4、{5},{3,5},{1,5},{1,3,5} 5、A 6、1,5 7、3,21- 8、35-,{2,21,—1} 9、66,36,98,80 10、a=1或a ≤—1, a=1。

集合的并集、交集专题训练

集合的并集、交集专题训练

集合的并集、交集专题训练一、选择题1.已知集合A ={x |x >0},B ={x |-1≤x ≤2},则A ∪B =( )A .{x |x ≥-1}B .{x |x ≤2}C .{x |0<x ≤2}D .{x |-1≤x ≤2}2.设S ,T 是两个非空集合,且它们互不包含,那么S ∪(S ∩T )等于( )A .S ∩TB .SC .∅D .T3.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .44.设集合A ={a ,b },B ={a +1,5},若A ∩B ={2},则A ∪B 等于( )A .{1,2}B .{1,5}C .{2,5}D .{1,2,5}5.如图所示的Venn 图中,若A ={x |0≤x ≤2},B ={x |x >1},则阴影部分表示的集合为( )A .{x |0<x <2}B .{x |1<x ≤2}C .{x |0≤x ≤1,或x ≥2}D .{x |0≤x ≤1,或x >2}二、填空题6.满足条件M ∪{1}={1,2,3}的集合M 的个数为________.7.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.8.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是____________.三、解答题9.已知S ={x |2x 2-px +q =0},T ={x |6x 2+(p +2)x +q +5=0},且S ∩T =⎩⎨⎧⎭⎬⎫12,求S ∪T .10.集合A={x|-1<x<1},B={x|x<a}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B={x|x<1},求a的取值范围.能力提升11.已知A={x|a<x≤a+8},B={x|x<-1,或x>5}.若A∪B=R,求a的取值范围.12.已知A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},且∅(A∩B),A∩C=∅,求a的值.集合的并集、交集专题训练答案一、选择题1.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2} C.{x|0<x≤2} D.{x|-1≤x≤2}解析:选A 借助数轴可知A∪B={x|x≥-1}.2.设S,T是两个非空集合,且它们互不包含,那么S∪(S∩T)等于( )A.S∩T B.S C.∅ D.T解析:选B ∵(S∩T)⊆S,∴S∪(S∩T)=S.3.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1 C.2 D.4解析:选D ∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4. 4.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于( )A.{1,2} B.{1,5} C.{2,5} D.{1,2,5}解析:选D ∵A∩B={2},∴2∈A,2∈B,∴a+1=2,∴a=1,b=2,即A={1,2},B={2,5}.∴A∪B={1,2,5}.5.如图所示的Venn图中,若A={x|0≤x≤2},B={x|x>1},则阴影部分表示的集合为( )A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1,或x≥2} D.{x|0≤x≤1,或x>2}解析:选D 因为A∩B={x|1<x≤2},A∪B={x|x≥0},阴影部分为A∪B中除去A∩B的部分,即为{x|0≤x≤1,或x>2}.二、填空题6.满足条件M∪{1}={1,2,3}的集合M的个数为________.解析:∵M ∪{1}={1,2,3},∴M ={1,2,3}或{2,3},即M 的个数为2.答案:27.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设所求人数为x ,则只喜爱乒乓球运动的人数为10-(15-x )=x -5,故15+x -5=30-8⇒x =12.答案:128.设集合A ={x |-1<x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是____________. 解析:由图可知,若A ∩B ≠∅,则a >-1,即a 的取值范围为{a |a >-1}.答案:{a |a >-1}三、解答题9.已知S ={x |2x 2-px +q =0},T ={x |6x 2+(p +2)x +q +5=0},且S ∩T =⎩⎨⎧⎭⎬⎫12,求S ∪T . 解:∵S ∩T =⎩⎨⎧⎭⎬⎫12, ∴12∈S ,且12∈T . 因此有⎩⎪⎨⎪⎧ p -2q -1=0,p +2q +15=0⇒⎩⎪⎨⎪⎧ p =-7,q =-4.从而S ={x |2x 2+7x -4=0}=⎩⎨⎧⎭⎬⎫12,-4. T ={x |6x 2-5x +1=0}=⎩⎨⎧⎭⎬⎫12,13. ∴S ∪T =⎩⎨⎧⎭⎬⎫12,-4∪⎩⎨⎧⎭⎬⎫12,13=⎩⎨⎧⎭⎬⎫12,13,-4. 10.集合A ={x |-1<x <1},B ={x |x <a }.(1)若A ∩B =∅,求a 的取值范围;(2)若A ∪B ={x |x <1},求a 的取值范围.解:(1)如下图所示,A ={x |-1<x <1},B ={x |x <a },且A ∩B =∅,∴数轴上的点x =a 在x =-1的左侧(含点x =-1),∴a ≤-1,即a 的取值范围为{a |a ≤-1}.(2)如下图所示,A ={x |-1<x <1},B ={x |x <a },且A ∪B ={x |x <1},∴数轴上的点x =a 在x =-1和x =1之间(含点x =1,但不含点x =-1),∴-1<a ≤1,即a 的取值范围为{a |-1<a ≤1}.能力提升11.已知A ={x |a <x ≤a +8},B ={x |x <-1,或x >5}.若A ∪B =R ,求a 的取值范围.解:在数轴上标出集合A ,B ,如图.要使A ∪B =R ,则⎩⎪⎨⎪⎧ a +8≥5,a <-1,解得-3≤a <-1.综上可知,a 的取值范围为{a |-3≤a <-1}.12.已知A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},且∅(A ∩B ),A ∩C =∅,求a 的值.解:B ={x |x 2-5x +6=0}={x |(x -2)(x -3)=0}={2,3},C ={x |x 2+2x -8=0}={x |(x -2)(x +4)=0}={2,-4},∵A ∩B ≠∅,A ∩C =∅,∴3∈A ,将x =3代入x 2-ax +a 2-19=0得:a 2-3a -10=0,解得a =5或-2.当a =5时,A ={x |x 2-5x +6=0}={2,3}与A ∩C =∅矛盾;当a =-2时,A ={x |x 2+2x -15=0}={3,-5}符合题意.综上a =-2.。

高中数学必修1___交集、并集、补集专项练习

高中数学必修1___交集、并集、补集专项练习

交集、并集、补集专项练习一、选择题:1、 已知{}{}22,022≤<-==--=x x B x x x A 则等于( )A 、{}21≤≤-x x B 、{}2 C 、{}1- D 、{}2,1- 2、 已知集合{}{})0,1(),1,1(),0,0(,0),(,1),(22-==-=⎭⎬⎫⎩⎨⎧==C y x y x B x y y x A ,则C B A ⋂⋃)(等于( )A 、{})1,1(),0,0(B 、{})0,0(C 、{})1,1(D 、C 3、 设{}{}Z U Z x x x B Z x x x A =∈≤=∈<=全集,,1,,3则)(B C A z ⋂等于( )A 、{}Z x x x ∈≤,2B 、ΦC 、{}32<<x x D 、{}2 4、 已知{}⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈==∈==Z n n x x P Z n n x x N Z n n x x M ,21,,2,,,则下列选项中正确的是( ) A 、N M = B 、NMC 、)(P M N ⋃=D 、)(P M N ⋂=5、 已知,R U =且{}{},043,922<--=>=x x x B x x A 则)(B A C u ⋃等于( )A 、{}1≤x xB 、{}13-≤≤-x xC 、{}13->-<x x x 或D 、{}31≥≤x x x 或 6、 设集合{}21≤≤-=x x A ,集合{},a x x B ≤=若=⋂B A Φ,则实数a 的集合为( )A 、{}2<a aB 、{}1-≥a aC 、{}1-<a aD 、{}21≤≤-a a 7、 设全集{}R y x y x U ∈=、),(,⎭⎬⎫⎩⎨⎧=--=133),(x y y x M ,{}1),(+≠=x y y x B ,则)()(N C M C u u ⋂为( )A 、ΦB 、{})3,2(C 、{}1),(+=x y y xD 、{}32),(==y x y x 或8、(2004年全国高考题)已知集合{},42<=x x M {}0322<--=x x x N ,则集合N M ⋂=( )A 、{}2-<x xB 、{}3>x xC 、{}21<<-x xD 、{}32<<x x9、(2004年全国高考题)已知集合{},,,1),(22R y R x y x y x M ∈∈=+={}R y R x y xy x N ∈∈=-=,,0),(2则集合N M ⋂中元素个数为( )A 、1B 、2C 、3D 、410、(2004年高考题)已知{}{},06,3122≤-+=>+=x x x B x x A 则=⋂B A ( )A 、{}123>-≤<-x x x 或B 、{}2123<≤-≤<-x x x 或 C 、{}2123≤<-<<-x x x 或 D 、{}213≤<-<x x x 或 11、(2004年全国高考题)不等式03)2(<-+x x x 的解集为( )A 、{}30,2<<-<x x x 或B 、{}3,02><<-x x x 或 C 、{}0,2>-<x x x 或 D 、{}3,0><x x x 或12、设P M 、是两个非空集合,规定{}P x M x x P M ∉∈=-且,|,根据这一规定)(P M M --等于( )A 、MB 、PC 、P M ⋃D 、P M ⋂ 二、填空题:13、已知集合N M 、满足{}{}R x x y y N R x x y y M ∈+-==∈+==,1|,,122,则有______=⋂N M 。

高中数学必修1___交集、并集、补集专项练习题

高中数学必修1___交集、并集、补集专项练习题

交集、并集、补集专项练习、选择题:1、 已知 A - "∙x X 2 - X - 2 = O ,B - 1χ - 2 ::: X _ 2 {则等于()A 1≤x≤2>B 、b}C 、{_ 1)D 、{_ 1,2}广I2、 已知集合 A = J(X ) y)=1 器 B = ^x,y)x —y = θ]c=《0,0), (1,1),(—1,0)},则LXJ(A 一 Br C 等于()A X0,0), (1,1B 、X0,0) ?C 、f(1,1)}D、C3、设 A = {χx w 3,x ^ Z>,B = {χx ≤1,χE Z },全集 U=Z 则 AC(C Z B)等于()A d x ι≡2,χE Z }B 、①C 、{χ2<x v 3>D 、{2}4、 已知 M=LX = n,n E Z I N =I XX=:, n E z },P =J xx = n+^,n ≤ Z > ,则下列选项中正确的是()A 、M=NB 、N^^MC 、N=(M ι.P) D 、N=(M-IP)5、 已知 U=R,且 A = J ∣χ2 >9] B = JX 2 —3x —4c 0^ 则 C U (AUB)等于()A dx≤"B 、{χ-3≤x 兰一 1〉C 、{χx £—3或X a —1>D 、{χx≤1 或x K 3〉6、 设集合A = {χ-1^χE 2},集合B={χx 兰a l 若ACB=①,则实数a 的集合为()A 0a ::2?B 、 5a_—1C 、 、aa ::—dD 、则(C U M ) - (C U N )为()A ΦB 、《2,3)}C 、《x, y)y = x +1>D 、匕,y) x = 2或y = 3> 8、(2004年全国高考题)已知集合M=JX 2 <4〉,N =Jx 2—2x —3 V 0〉,则集合7、设全集U =《x,y)x 、y 壬R }, ^= HX) y)y-3X -3B = <(x,y)y=x 1,A、£-2〉B、{χx>3> C &-1 £X V 2} D、{χ2cχc3>9、(2004年全国高考题)已知集合M ="(x, y)χ2+y2=Ix迂R, R lN = fx, y)χ2— y = 0, X E R, y迂R则集合MeN中元素个数为()A、1 B 、2 C 、3 D 、410、( 2004 年高考题)已知A J X 2χ∙1 .3^B J xx2∙ x-6 岂0】则ArB =()A 、'x-3 :x_—2或X 1B 、'x-3 : X _—2或1 乞X : 2$C、{x—3 C X C—2 或1<x≤2> D 、Lx £—3或 1 £ X ≤ 2〉11、( 2004年全国高考题)不等式空:: 0的解集为()x-3A、:xx :: -2,或0::xB、*2 ■■:. X 0,或X 3】C 俭XV-2,或X A。

高一数学苏教版必修1课后训练:1.3交集、并集含解析精品配套练习

高一数学苏教版必修1课后训练:1.3交集、并集含解析精品配套练习

交集、并集练习1.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于________.2.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N等于________.3.设集合A={y|y=x2+1,x∈R},B={y|y=x+1,x∈R},则A∩B等于________.4.第二十九届夏季奥林匹克运动会于2008年8月8日在北京举行.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则B∪C__________A.5.设M={1,2,4,5},P={1,2,3},则有________(M∩P).6.如图所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是__________.7.满足条件{1,2,3}∪B={1,2,3,4,5}的集合B的个数是__________.8.已知集合A={x|x2+2(a+1)x+a2-1=0},B={x|x2+4x=0},若A∪B=B,则实数a的取值范围是________.9.某市政府对水、电提价,召开听证会,如记对水提价为事件A,对电提价为事件B.现向100名市民调查其对A、B两事件的看法,有如下结果:赞成A的人数是全体的35,其余的不赞成;赞成B的比赞成A的多3人,其余不赞成;另外,对A、B都不赞成的市民人数比对A、B都赞成的市民人数的13多1人,问对A、B都赞成的市民和都不赞成的市民各有多少人?10.已知集合A={x|0≤x≤5},集合B={x|m≤x≤2m-1},且A∪B=A,试用区间符号表示实数m的取值范围.参考答案1.答案:{x |x <-5或x >-3} 2.答案:{(3,-1)} 3.答案:{y |y ≥1}4.答案:=5.答案:6.答案:S ∩M ∩P7.答案:88.答案:{a |a ≤-1或a =1}9.解:赞成A 的人数为100×35=60,赞成B 的人数为60+3=63.如图所示,记100名市民组成的集合为U ,赞成事件A 的市民为集合A ,赞成事件B 的市民为集合B .设对事件A 、B 都赞成的市民人数为x ,则对A 、B 都不赞成的市民人数为3x +1.依题意可得,(60-x )+(63-x )+x +3x+1=100,解得x =36,即对A 、B 两事件都赞成的市民有36人,对A 、B 两事件都不赞成的市民有13人.10.解:∵A ∪B =A ,∴B A .又∵A ={x |0≤x ≤5}≠,∴B =,或B ≠.当B =时,有m >2m -1,∴m <1.当B ≠时,如图,由图可得210215mm m m ,,,解得1≤m ≤3.综上所述,实数m 的取值范围为(-∞,3].别想一下造出大海,必须先由小河川开始。

高中数学交集和并集练习题

高中数学交集和并集练习题

高中数学交集和并集练习题高中数学交集和并集练习题交集、并集若集合A={x|x是6的倍数},B={x|x是4的倍数},则A与B有公共元素吗?它们的公共元素能组成一个集合吗?两个集合A与B的公共元素能组成一个集合吗?若能组成一个集合C,则C与A、B的关系如何?基础巩固1.若集合A={0,1,2,3,4},B={1,2,4}则AB=()A.{0,1,2,3,4} B.{1,2,3,4}C.{1,2} D.{0}答案:A2.设S={x||x|3},T={x|3x-51},则ST=()A. B.{x|-33}C.{x|-32} D.{x|23}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且AB={3}, AUB ={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则AB为() A.{x=1,或y=2} B.{1,2}C.{(1,2)} D.(1,2)解析:AB=x,y4x+y=63x+2y=7={(1,2)}.答案:C5.已知集合A={(x,y)|x,yR且x2+y2=1},B={(x,y)|x,yR 且x+y=1,则AB的元素个数为()A.4个 B.3个 C.2个 D.1个解析:由x2+y2=1,x+y=1x=1,y=0或x=0,y=1,即AB={(1,0),(0,1)}.答案:C6.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(UA)B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}答案:C7.已知方程x2-px+15=0与x2-5x+q=0的解分别为M和S,且MS={3},则pq=________.解析:∵MS={3},3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p,q.答案:438.已知全集S=R,A={x|x1},B={x|05},则(SA)B=________.解析:SA={x|x1}.答案:{x|15}9.设集合A={x||x-a|1,xR},B={x|15},若AB=,则a的取值范围是________.解析:∵A={x|a-1a+1},若AB=,则a+11或a-1a0或a6.答案:{a|a0或a6}10.设集合A={0,1,2,3,4,5,7},B={1,3,6,8,9},C={3,7,8},那么集合(AC是________.答案:{1,3,7,8}11.满足条件{1,3}A={1,3,5}的'所有集合A的个数是________个.答案:4能力提升12.集合A={x||x|1,xR},B={y|y=x2,xR},则AB为()A.{x|-11} B.{x|x0}C.{x|01} D.解析:∵A={x|-11},B={y|y0}AB={x|01}.答案:C13.若A、B、C为三个集合,且有AB=BC,则一定有()A.AC B.CAC.A D.A=答案:A14.设全集U={a,b,c,d},A={a,b},B={b,c,d},则UAUB=________解析:UA={c,d},UB={a},UAUB={a,c,d}.答案:{a,c,d}15.(2013上海卷)设常数aR,集合A={x|(x-1)(x-a)0},B={x|xa-1},若AB=R,则a的取值范围为________.解析:当a1时,A={x|x1或xa},要使AB=R,则a1,a-112;当a1时,A={x|xa或x1},要使AB=R,则a1,a-1a1.综上,a答案:{a|a2}16.已知集合A={x||x+2|3,xR},集合B={x|(x-m)(x-2)0},xR},且AB=(-1,n),求m和n的值.解析:|x+2|-3x+2-51,A={x|-51},又∵AB=(-1,n),-1是方程(x-m)(x-2)=0的根,即m=-1,此时B={x|-12},AB=(-1,1),即n=1.17.设集合P={1,2,3,4},求同时满足下列三个条件的集合A:(1)AP;(2)若xA,则2xA;(3)若xPA,则2xPA.解析:∵21=2,22=4,因此1和2不能同时属于A,也不能同时属于UA,同样地,2和4也不能同时属于A和UA,对P的子集进行考查,可知A只能为:{2},{1,4},{2,3}{1,3,4}.18.设集合A={x|x+10或x-40},B={x|2aa+2}.(1)若A,求实数a的取值范围;(2)若AB=B,求实数a的取值范围.解析:(1)A={x|x-1或x4},∵A,2a2+a,a+24或2aa+2,2a-1.a=2或a-12.综上所述,实数a的取值范围为aa-12或a=2.(2)∵AB=B,BA.①B=时,满足BA,则2aa+22,②B时,则2aa+2,a+2-1或2aa+2,2a4.即a-3或a=2.综上所述,实数a的取值范围为{a|a-3或a=2}.。

3高中 必修一交集、并集 知识点+例题 全面

3高中 必修一交集、并集 知识点+例题 全面

辅导讲义――交集、并集教学目的1交集和并集的定义 2集合间的关系和运算 重点难点1交集和补集的定义 2集合的关系和运算教学内容1、交集的定义定义 由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集;记作A ∩B ,(读作“A 交B ”) 符号语言A ∩B ={x |x ∈A ,且x ∈B }图示语言例:1、{1,2,3,6}∩{1,2,5,10}={1,2}. 2、{1,2,3,6}∩{5,10}=∅3、设A ={x |x >-2},B ={x |x <3},则A ∩B ={x |-2<x <3}2、集合的常用性质(1)A ∩A =A (2)A ∩∅=∅ (3)A ∩B =B ∩A (4)A ∩∁U A =∅ (5)(A ∩B )⊆A ,(A ∩B )⊆B[例1](1)设集合A ={-1,0,1},B ={0,1,2,3},求A ∩B ;(2)设集合A ={x |x >0},B ={x |x ≤1},求A ∩B.[巩固](1)已知集合A ={-1,1,3,5},B ={x |-4<x -3≤0},求A ∩B ;(2)设A ={x |x =2k ,k ∈Z },B ={x |x =2k+1,k ∈Z },求A ∩B.[例2]若集合A ={1,m -2},B ={-1,2,4},且A ∩B ={2},则实数m =______.[巩固] 已知集合A ={1,3,m },B ={1,m },若A ∩B = B ,则m =_________. 知识模块1交集精典例题透析[例3]已知集合A ={x |1≤x <4},B ={x |x <a },若A ∩B=A ,则实数a 的取值范围为_______________.[巩固]已知集合A ={x |1≤x <7},B ={x |x <a },全集为实数集R ,且A ∩B=∅,则实数a 的取值范围为_______________.[例4]已知集合A ={-1,1},B ={x |x 2-2ax+b =0},若A ∩B = B=∅,则实数a ,b 的关系是______________.[巩固]已知集合A ={-1,21},B ={x |mx -1=0},若A ∩B = B ,则所有实数m 组成的集合是________________.1、并集的定义定义 由所有属于集合A 或者属于集合B 的元素构成的集合,叫做A ,B 的并集;记作A ∪B (读作“A 并B ”) 符号语言A ∪B ={x |x ∈A ,或x ∈B }图示语言2、并集的常用性质(1)A ∪A =A (2)A ∪∅=A (3)A ∪B =B ∪A (4)A ∪∁U A =U (5)A ⊆ (A ∪B ) ,B ⊆ (A ∪B )[例1]根据下面给出的集合A ,B ,求A ∪B . (1)A ={-1,0,1},B ={0,1,2,3}; (2)A ={x |x >1},B ={x |x ≥-2}.[巩固] (1)已知集合A ={x |x >0},B ={x |x ≤1},求A ∪B ;(2)已知集合A ={-1,1,3,5},B ={x |-4<x -3≤2},求A ∪B .[例2]已知集合A ={2,m },B ={1,m 2},若A ∪B={1,2,3,9},则m=________. 知识模块2并集精典例题透析[巩固]设集合A ={a+5,3,5},B ={2a+1,a 2+2a ,a 2+2a -1},若A ∩B={2,3},则A ∪B =______________.[例3] 已知集合A ={x |x ≤1},B ={x |x >a },若A ∪B=R ,则a 的取值范围为____________.[巩固]已知集合S ={x |x ≤-1或x ≥2},P ={x | a ≤x ≤a+3},若S ∪P=R ,则实数a 的取值集合为[例4] 已知集合A ={x |ax -1=0},B ={x |x 2-3x+2=0},若A ∪B= B ,则a =____________.[巩固] 已知集合A ={x |x -a =0},B ={x | ax -1=0},若A ∪B=A ,则a =_____________.设a ,b 是两个实数,且a<b ,我们规定如下表:定义 名称 符号 数轴表示{x|a ≤x ≤b } 闭区间 [a ,b ] {x|a<x<b } 开区间 (a ,b ) {x|a ≤x<b } 左闭右开区间 [a ,b ) {x|a<x ≤b } 左开右闭区间(a ,b ] {x|x ≥a } [a ,+∞) {x|x>a } (a ,+∞) {x| x ≤b } (-∞,b ] {x| x<b }(-∞,b )R(-∞,+∞)数轴上的所有点[例]将下列集合用区间表示出来.(1){x |2x -1≥0}; (2){x | x<-4,或-1<x ≤2}[巩固1]已知全集U=R ,A={x |-4≤x <2},B =(-1,3],P={x |x ≤0,或x ≥25},求下列各集合,将结果用区间表示. (1)(A ∪B )∩P ; (2)(∁U B )∪P (3)(A ∩B )∪(∁U P ) 知识模块3区间的概念精典例题透析2、集合A={-1,2,3,6},B={x|x=-2<x<3},则A⋂B=__________.3、已知全集U={x|0≤ x <10,x∈N},A∪B=U,A∩(∁U B)={1,3,5,7,9},则集合B=_______________.4、已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A B=_________.5、设集合M={-1,0,1},N={a,a2},若M∪N=M,则a=________.4、满足条件{1,2}∪B={1,2,3,4,5}的所以集合B的个数为__________.5、用集合表示下列的阴影部分.(1)____________ (2)______________ (3)___________ (4)____________6、已知方程x2+px+q=0的两个不相等实数根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅,求p,q的值.7、已知集合P=(){}(){}bxyyxQxy+===,,yx,,若P∩Q≠Φ,则求出实数b的最大值。

(推荐)高中数学必修1-交集、并集、补集专项练习题

(推荐)高中数学必修1-交集、并集、补集专项练习题
(1)求f(x)函数的定义域。 (2)求使f(x)>0的x的取值范围。
高一数学参考答案
命题:惠东中学高一数学科组
一、选择题(共10题,每题5分)
题号
1
2
3
4
5
6
7
8
9
10
答案
C
D
A
B
A
C
B
B
A
B
二、填空题(共4题,每题5分)
11、[-4,3] 12、300 13、-x
14、 或 或
三、解答题(共80分)
A、1.2 B、1.3 C、1.4 D、1.5
7、函数 的图像为( )
8、设 (a>0,a≠1),对于任意的正实数x,y,都有( )
A、f(xy)=f(x)f(y) B、f(xy)=f(x)+f(y)
C、f(x+y)=f(x)f(y) D、f(x+y)=f(x)+f(y)
9、函数y=ax2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( )
10、不等式 恒成立,求实数 的取值范围。
11、不等式 有解,求实数 的取值范围。(如果“<”改为“≤”
呢?)
四、存在性问题:
12、是否存在实数 使“ ”是“ ”的充分条件?如果存在
求出 的取值范围。是否存在实数 ,使“ ”是“ ”的必要条件?如果存在求出 的取值范围。
高一数学必修1模块考试()
一、选择题。(共10小题,每题5分,共50分)
交集、并集、补集专项练习
一、选择题:
1、已知 则等于( )
A、 B、 C、 D、
2、已知集合 ,则 等于( )

补集练习题及讲解以及答案高中

补集练习题及讲解以及答案高中

补集练习题及讲解以及答案高中# 高中数学补集练习题及讲解## 练习题一:补集的基本概念设集合A={1,2,3,4,5},求集合A的补集。

解答:集合A的补集是指在全集U中不属于A的所有元素组成的集合。

假设全集U是自然数集N,那么A的补集就是N中除了1,2,3,4,5之外的所有自然数。

因此,如果全集U是{0,1,2,3,4,5,6,7,8,9,...},那么A 的补集就是{0,6,7,8,9,...}。

## 练习题二:补集的运算已知集合A={1,2,3},B={2,3,4},求A∪B的补集。

解答:首先,我们需要求出A和B的并集A∪B。

A∪B={1,2,3,4}。

假设全集U是{1,2,3,4,5,6},那么A∪B的补集就是U中不属于A∪B的所有元素组成的集合。

因此,A∪B的补集是{5,6}。

## 练习题三:补集与交集的关系已知集合A={1,2,3,4},B={3,4,5},求A∩B的补集。

解答:首先,我们需要求出A和B的交集A∩B。

A∩B={3,4}。

假设全集U是{1,2,3,4,5,6},那么A∩B的补集就是U中不属于A∩B的所有元素组成的集合。

因此,A∩B的补集是{1,2,5,6}。

## 练习题四:补集与差集的运算已知集合A={1,2,3,4,5},B={3,4,5},求A-B的补集。

解答:首先,我们需要求出A和B的差集A-B。

A-B={1,2}。

假设全集U是{1,2,3,4,5,6},那么A-B的补集就是U中不属于A-B的所有元素组成的集合。

因此,A-B的补集是{3,4,5,6}。

## 练习题五:补集的多重运算已知集合A={1,2,3,4},B={2,3,4,5},C={4,5,6},求(A∪B)∩C的补集。

解答:首先,我们需要求出A和B的并集A∪B。

A∪B={1,2,3,4,5}。

然后,我们需要求出A∪B与C的交集(A∪B)∩C。

(A∪B)∩C={4,5}。

假设全集U是{1,2,3,4,5,6,7},那么(A∪B)∩C的补集就是U中不属于(A∪B)∩C的所有元素组成的集合。

高中数学并集和交集课后练习(带解析新人教A版1)

高中数学并集和交集课后练习(带解析新人教A版1)

高中数学并集和交集课后练习(带解析新人教A版1)并集和交集课后训练(带解析新人教A版必修1)一、选择题1.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.NM B.MN=MC.MN=N D.MN={2}[答案]D2.(2021~2021学年浙江省期中试题)集合A={1,2},B={1,2,3},C ={2,3,4},则(AC=()A.{1,2,3} B.{1,2,4}C.{2,3,4} D.{1,2,3,4}[答案]D[解析]AB={1,2},(AC={1,2,3,4},故选D.3.(2021~2021河北省邢台一中月考试题)已知集合M={x|-3<x5},N={x|x<-5或x>5}则MN=()A.{x|-3<x<5} B.{x|-5<x<5}C.{x|x<-5或x>-3} D.{x|x<-3或x>5}[答案]C[解析]在数轴上表示集合M、N则AB={x|x<-5或x>-3}},故选C.4.设集合A={x|-1x<2},B={x|xa},若A,则a的取值范畴是()A.a<2 B.a>-2C.a>-1 D.-1<a2[答案]A[解析]由A知a2,故选A.5.(2021~2021衡水高一检测)若集合A,B,C满足AB=A,BC=C,则A与C之间的关系为()A.C?A B.A?CC.CA D.AC[答案]D[解析]∵AB=A,AB,又BC=C,BC,AC,故选D.6.设集合A={a,b},B={a+1,5},若AB={2},则AB等于()A.{1,2} B.{1,5}C.{2,5} D.{1,2,5}[答案]D[解析]∵AB={2},2A,2B,a+1=2,a=1,b=2,即A={1,2},B={2,5}.AB={1,2,5},故选D.二、填空题7.设A={x|13},B={x|x0或x2},则AB=________,AB=_______ _.[答案]{x|23}{x|x0或x1}8.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合MN=________.[答案]{(3,-1)}[解析]解方程组x+y=2x-y=4得x=3y=-1因此AB={(3,-1)}.9.(2021~2021清远高一检测)已知集合A={x|x1},集合B={x|ax},且AB=R,则实数a的取值范畴是________.[答案]a1[解析]若AB=R应满足a1如图.三、解答题10.已知集合A={1,3,5},B={1,2,x2-1},若AB={1,2,3,5},求x 及AB.[解析]∵B(AB),x2-1B.x2-1=3或x2-1=5.解得x=2或x=6.若x2-1=3,则AB={1,3}.若x2-1=5,则AB={1,5}.11.设集合A={x|x2=4x},B={x|x2+2(a-1)x+a2-1=0}.(1)若AB=B,求a的取值范畴;(2)若AB=B,求a的值.[分析]能够利用条件“AB=BBA”及“AB=BAB”求解.[解析](1)∵A={x|x2=4x}={0,4},又∵AB=B,BA.①若B=,则=4(a-1)2-4(a2-1)<0,解得a>1.因此当a>1时,B=A.②若0B,则0为方程x2+2(a-1)x+a2-1=0的一个根.即a2-1=0,解得a=1.当a=1时,B={x|x2=0}={0}A;当a=-1时,B={x|x2-4x=0}=A.③若4B,则4为方程x2+2(a-1)x+a2-1=0的一个根,即a2+8a+7=0,解得a=-1或a=-7.由②知当a=-1时A=B符合题意,当a=-7时,B={x|x2-16x+4 8=0}={4,12} A.综上可知:a1,或a=-1.(2)∵AB=B,AB.又∵A={0,4},而B中最多有2个元素,A=B,即0,4为方程x2+2(a-1)x+a2-1=0的两个根.-2a-1=4,a2-1=0,解得a=-1.12.已知集合A=x3-x>0,3x+6>0,集合B={x|3>2x-1},求A B,AB.[分析]集合A是不等式组3-x>0,3x+6>0的解集,集合B是不等式3>2x-1的解集,先确定集合A和B的元素,再依照交集和并集的定义,借助数轴写出结果.[解析]解不等式组3-x>0,3x+6>0,得-2<x<3,则A={x|-2<x<3},解不等式3>2x-1,得x<2,则B={x|x<2}.事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

苏教版高中数学必修一1.3交集、并集同步测试

苏教版高中数学必修一1.3交集、并集同步测试

苏教版高中数学必修一1.3交集、并集同步测试共 20 题一、单选题1、已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则 =()A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}2、若集合A={-2,1,2,3},B={x|x=2n,n∈N},则A∩B=()A.{-2}B.{2}C.{-2,2}D.∅3、设集合,,,则()A. B.C. D.4、设集合,则满足的的取值范围是()A. B.C.或或D.或或5、已知全集U={1,2,3,4,5},集合A={x|x2﹣3x+2=0},B={x|x=2a,a∈A},则集合CU(A∪B)中元素的个数为( )A.1B.2C.3D.46、已知集合M= ,N= ,则M N=()A. B.C. D.7、已知集合,,则 ( )A. B.C. D.8、已知,则( )A. B.[-2,2]C. D.9、设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}10、设集合,集合.若中恰含有一个整数,则实数a的取值范围是()A. B.C. D.二、填空题11、已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.12、设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=________.13、已知集合U={1,2,3,4,5},A={2,4},B={4,5},则A∩(C U B)=________.14、设是非空集合,定义 ={ 且 },已知,,则=________.15、设全集U=R.若集合A={1,2,3,4},B={x|2≤x≤3} ,则A C u B=________ .16、已知集合,,则 ________.三、解答题17、已知集合 .(1)若,求实数m的取值范围:(2)若,求实数m的取值范围.18、已知集合A={x|0<x+2≤7},集合B={x|x2-4x-12≤0},全集U=R,求:(Ⅰ)A∩B;(Ⅱ)A∩(∁U B).19、已知集合A={x|x2+4x=0},B={x|x2+ax+a=0},且A∪B=A,求实数a的取值范围.20、设集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}.若A∩B={2},求实数a的值.参考答案一、单选题1、【答案】A【解析】【解答】解:,所以 ={-1}.故答案为:A.【分析】根据集合的补写出即可得到 .2、【答案】B【解析】【解答】解:∵∴故答案为:B【分析】通过集合B中,用列举法表示出集合B,再利用交集的定义求出。

高中数学 第一章 集合 第7课时 集合的并集、交集、补集的综合运算练习 新人教B版必修1

高中数学 第一章 集合 第7课时 集合的并集、交集、补集的综合运算练习 新人教B版必修1

第7课时集合的并集、交集、补集的综合运算课时目标1.深刻理解交集、并集、补集的含义及运算.2.能进行集合的并交补运算.识记强化1.集合的运算性质(1)A∪B=B∪A,A∪A=A,A∪∅=A,A∩B=B∩A,A∩A=A,A∩∅=∅.(2)A⊆(A∪B),B⊆(A∪B),(A∩B)⊆A,(A∩B)⊆B.(3)A⊆B⇔A∪B=B⇔A∩B=A.(4)A∪(∁U A)=U,A∩(∁U A)=∅.(5)∁U(∁U A)=A,∁U U=∅,∁U∅=U.2.全集具有相对性,即对于研究某个问题时的全集可能在研究另一个问题时就不是全集;补集是相对于全集而言的,由于全集具有相对性,那么补集也具有相对性,在不同的全集下,一个集合的补集可能不相同.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.已知集合M={-1,0,1},N={0,1,2},则M∪N=( )A.{-1,0,1} B.{-1,0,1,2}C.{-1,0,2} D.{0,1}答案:B解析:由题意,得M∪N={-1,0,1,2},选B.2.设全集U和集合A,B,P,若A=∁U B,B=∁U P,则A与P的关系是( )A.A=∁U P B.A=PC.AÙP D.AØP答案:B解析:A=∁U B=∁U(∁U P)=P.3.设全集U=Z,集合A={-1,1,2},B={-1,1},则A∩(∁U B)为( )A.{1,2} B.{1}C.{2} D.{-1,1}答案:C解析:因为U=Z,B={-1,1},所以∁U B为除-1,1外的所有整数的集合,而A={-1,1,2},所以A∩(∁U B)={2}.4.已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=( )A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}答案:A解析:集合A={x|x>-1},所以∁R A={x|x≤-1},所以(∁R A)∩B={-2,-1}.5.已知集合A,B,I.AØI,BØI,且A∩B≠∅,则下面关系式正确的是( )A.(∁I A)∪(∁I B)=IB.(∁I A)∪B=IC.A∪B=ID.∁I(A∩B)∪(A∩B)=I答案:D解析:由A∪(∁U A)=U知D正确.6.已知全集U=R,集合A={x|1<x≤3},B={x|x>2},则A∩(∁U B)等于( )A.{x|1<x≤2} B.{x|1≤x<2}C.{x|1≤x≤2} D.{x|1≤x≤3}答案:A解析:U=R,∴∁U B={x|x≤2},A∩∁U B={x|1<x≤3}∩{x|x≤2}={x|1<x≤2}.选A.二、填空题(本大题共3个小题,每小题5分,共15分)7.集合A={x|-1<x<3},B={x|x≥2},则A∩(∁R B)等于________.答案:{x|-1<x<2}解析:∁R(B)={x|x<2},A∩(∁R B)={x|-1<x<3}∩{x|x<2}={x|-1<x<2}.8.如图所示阴影部分表示的集合为________.答案:(∁U A)∪B9.设集合A={x|-4≤x<2},B={x|-1<x≤3},C={x|x≥a},若(A∪B)∩C=∅,则a 的取值范围是________.答案:{a|a>3}三、解答题(本大题共4小题,共45分)10.(12分)某班有50名学生,有36名同学参加学校组织的数学竞赛,有23名同学参加物理竞赛,有3名学生两科竞赛均未参加,问该班有多少同学同时参加了数学、物理两科竞赛?解:全集为U,其中含有50名学生,设集合A表示参加数学竞赛的学生,B表示参加物理竞赛的学生,则U中元素个数为50,A中元素个数为36,B中元素个数为23,全集中A、B之外的学生有3名,设数学、物理均参加的学生为x名,则有(36-x)+(23-x)+x+3=50,解得x=12.所以,本班有12名学生同时参加了数学、物理两科竞赛.11.(13分)已知全集S={1,2,3,4,5,6,7,8,9},A⊆S,B⊆S,且有(∁S A)∩B={1,9},A∩B={2},(∁S A)∩(∁S B)={4,6,8},求A和B.解:如图,A={2,3,5,7},B={1,2,9}.能力提升12.(5分)已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是( )A.A∪B B.A∩BC.∁U(A∩B)D.∁U(A∪B)答案:D解析:逐一检验.13.(15分)已知集合A={x|2a-2<x<a},B={x|1<x<2},且AØ∁U B,求a的取值范围.解:∁U B={x|x≤1或x≥2},∵A Ø∁U B ,∴分A =∅和A ≠∅两种情况讨论.(1)若A =∅,此时有2a -2≥a ,∴a ≥2.(2)若a ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧ 2a -2<a 2a -2≥2.∴a ≤1.综上所述,a ≤1或a ≥2.。

(人教版)数学必修一课时训练《并集、交集、补集)(含答案)

(人教版)数学必修一课时训练《并集、交集、补集)(含答案)

课时提升卷并集、交集(45分钟 100分)一、选择题(每小题6分,共30分)1.(衡水高一检测)若集合A,B,C满足A∩B=A,B∪C=C,则A与C之间的关系为( )A.C AB.A CC.C⊆AD.A⊆C2.已知M={0,1,2, 4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)等于( )A.{1,4}B.{1,7}C.{1, 4,7}D.{4,7}3.(本溪高一检测)A={x∈N︱1≤x≤10},B={x∈R︱x2+x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}4.(德州高一检测)设集合A={x|x≤1},B={x|x>p},要使A∩B= ,则p应满足的条件是( )A.p>1B.p≥1C.p<1D.p≤15.(新课标全国卷)已知集合A={1,3,},B={1,m},A∪B=A,则m=( )A.0或B.0或3C.1或D.1或3二、填空题(每小题8分,共24分)6.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N= .7.(清远高一检测)已知集合A={x|x≤1},集合B={x|a≤x},且A∪B=R,则实数a的取值范围是.8.(西安高一检测)设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .三、解答题(9题,10题14分,11题18分)9.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.10.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=∅,求a的取值范围.11.(能力挑战题)已知:A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.(1)若A∪B=B,求a的值.(2)若A∩B=B,求a的值.答案解析1.【解析】选D.∵A∩B=A,B∪C=C,∴A⊆B,B⊆C,∴A⊆C.2.【解析】选C.M∩N={1,4},M∩P={4,7},故(M∩N)∪(M∩P)={1,4,7}.3.【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A ∩B={2}.4.【解析】选B.∵A∩B=∅,∴结合数轴分析可知应满足的条件是p≥1.【误区警示】本题易漏掉p=1的情况而误选A.5.【解析】选B.由A∪B=A得B⊆A,所以有m=3或m=.由m=得m=0或1,经检验,m=1时B={1,1}不符合集合元素的互异性,m=0或3时符合.6.【解析】由题意联立方程组得x=3,y=-1,故M∩N={(3,-1)}.答案:{(3,-1)}7.【解析】∵A∪B=R,∴a≤1.答案:a≤18.【解析】∵A∩B={2},∴2∈A,故a+1=2,a=1,即A={5,2};又2∈B,∴b=2,即B={1,2},∴A∪B={1,2,5}.答案:{1,2,5}9.【解析】∵B⊆(A∪B),∴x2-1∈A∪B.∴x2-1=3或x2-1=5.解得x=±2或x=±.若x2-1=3,则A∩B={1,3}.若x2-1=5,则A∩B={1,5}.10.【解题指南】通过数轴直观表示,并结合A∩B=∅分析列不等式(组)求解.【解析】A∩B=∅,A={x|2a≤x≤a+3}.(1)若A=∅,有2a>a+3,∴a>3.(2)若A≠∅,如图所示.则有解得-≤a≤2.综上所述,a的取值范围是-≤a≤2或a>3.【拓展提升】数轴在解含参不等式(组)中的作用数轴是解不等式(组)的重要工具,它是实现数形结合解决数学问题的桥梁,在求解不等式(组)待定字母值或范围时,借助数轴的直观性,很轻松地将各变量间的关系表示出来,进而列出不等式(组),更能显示出它的优越性.11.【解析】(1)A={-4,0},若A∪B=B,则B=A={-4,0},解得a=1.(2)若A∩B=B,则①若B为空集,则Δ=4(a+1)2-4(a2-1)=8a+8<0,则a<-1;②若B为单元素集合,则Δ=4(a+1)2-4(a2-1)=8a+8=0,解得a=-1,将a=-1代入方程x2+2(a+1)x+a2-1=0,得x2=0得,x=0,即B={0},符合要求;③若B=A={-4,0},则a=1,综上所述,a≤-1或a=1.课时提升卷补集及综合应用(45分钟 100分)一、选择题(每小题6分,共30分)1.设全集U={x ∈N*|x<6},集合A={1,3},B={3,5},则U ð(A ∪B)=( ) A.{1,4} B.{1,5} C.{2,4} D.{2,5}2.已知全集U=R,集合A={x|-1≤x ≤2},B={x|x<1},则A ∩(R ðB)=( )A.{x|x>1}B.{x|x ≥1}C.{x|1<x ≤2}D.{x|1≤x ≤2} 3.已知全集U={1,2,3,4,5,6,7},A={1,3,5,7},B={3,5},则下列式子一定成立的是( )A.U ðB ⊆U ð AB.(U ðA)∪(U ðB)=UC.A ∩U ðB=∅D.B ∩U ðA=∅4.设全集U(U ≠∅)和集合M,N,P,且M=U ðN,N=U ðP,则M 与P 的关系是( ) A.M=U ðP B.M=P C.M PD.M P 5.(广州高一检测)如图,I 是全集,A,B,C 是它的子集,则阴影部分所表示的集合是( )A.(I ðA ∩B)∩CB.(I ðB ∪A)∩CC.(A ∩B)∩I ðCD.(A ∩I ðB)∩C二、填空题(每小题8分,共24分)6.已知集合A={1,3,5,7,9},B={0,3,6,9, 12},则A ∩(N ðB)= .7.已知全集为R,集合M={x ∈R|-2<x<2},P={x|x ≥a},并且M ⊆R ðP,则a 的取值范围是 .8.设集合A,B 都是U={1,2,3,4}的子集,已知(U ðA)∩(U ðB)={2},(U ðA)∩B={1},且A ∩B=∅,则A= .三、解答题(9题,10题14分,11题18分) 9.(济南高一检测)已知全集U=R,集合A={x|1≤x ≤2},若B ∪R ðA=R, B ∩R ðA={x|0<x<1或2<x<3},求集合B.10.已知集合A={x|2a-2<x<a},B={x|1<x<2},且A R ðB,求a 的取值范围.11.(能力挑战题)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(U ðA)∩B=∅,求m 的值.答案解析1.【解析】选C.由题知U={1,2,3,4,5},A ∪B={1,3,5},故U ð(A ∪B)={2,4}. 2.【解析】选D.∵B={x|x<1},∴R ðB={x|x ≥1}, ∴A ∩R ðB={x|1≤x ≤2}.3.【解析】选D.逐一进行验证.U ðB={1,2,4,6,7},U ðA={2,4, 6},显然U ðA ⊆U ðB,显然A,B 错误;A ∩U ðB={1,7},故C 错误,所以只有D 正确.4.【解析】选B.利用补集的性质:M=U ðN=U ð(U ðP)=P,所以M=P.【拓展提升】一个集合与它的补集的关系集合与它的补集是一组相对的概念,即如果集合A 是B 相对于全集U 的补集,那么,集合B 也是A 相对于全集U 的补集.同时A 与B 没有公共元素,且它们的并集正好是全集,即A ∪B=U,A ∩B= .5.【解析】选D.由图可知阴影部分是A 的元素,且是C 的元素,但不属于B,故所表示的集合是(A ∩I B)∩C.6.【解析】∵A={1,3,5,7,9},B={0,3,6,9,12},∴N ðB={1,2,4,5,7,8,…}.∴A ∩N ðB={1,5,7}.答案:{1,5,7}7.【解析】M={x|-2<x<2},R ðP={x|x<a}. ∵M ⊆R ðP,∴由数轴知a ≥2.答案:a ≥28.【解析】根据题意画出Venn 图,得A={3,4}.答案:{3,4}9.【解析】∵A={x|1≤x ≤2},∴R ðA={x|x<1或x>2}.又B ∪R ðA=R,A ∪R ðA=R,可得A ⊆B. 而B ∩R ðA={x|0<x<1或2<x<3},∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A ∪{x|0<x<1或2<x<3}={x|0<x<3}.10.【解题指南】解答本题的关键是利用A R ðB,对A=∅与A ≠∅进行分类讨论,转化为等价不等式(组)求解,同时要注意区域端点的问题.【解析】R ðB={x|x ≤1或x ≥2}≠∅,∵A R B.∴分A=∅和A ≠∅两种情况讨论.(1)若A=∅,则有2a-2≥a,∴a ≥2.(2)若A ≠∅, 则有或 ∴a ≤1.综上所述,a ≤1或a ≥2.11.【解题指南】本题中的集合A,B 均是一元二次方程的解集,其中集合B 中的一元二次方程含有不确定的参数m,需要对这个参数进行分类讨论,同时需要根据(U ðA)∩B=∅对集合A,B 的关系进行转化.【解析】A={-2,-1},由(U ðA)∩B=∅,得B ⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B ≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2. 经检验知m=1和m=2符合条件.∴m=1或m=2.【变式备选】已知集合A={x|x2-5x+6=0},B={x|ax-6=0}且R ðA ⊆R ðB,求实数a 的取值集合. 【解析】∵A={x|x2-5x+6=0},∴A={2,3}.又R ðA ⊆R ðB,∴B ⊆A,∴有B=∅,B={2},B={3}三种情形.当B={3}时,有3a-6=0,∴a=2;当B={2}时,有2a-6=0,∴a=3;当B=∅时,有a=0,∴实数a 的取值集合为{0,2,3}.。

高中数学必修1___交集、并集、补集专项练习题

高中数学必修1___交集、并集、补集专项练习题

交集、弁集、补集专项练习、选择题:1、已知A xx2 x 2 0,B x 2 x 2 则等于(A、X 1 x 2B、2C、 12、已知集合A (x, y)3 1 , B (x, y)x2 y 0 ,C x(A B) C 等于()xx 1,x Z,全集U Z 则A (C z B)等于(A、x x 1B、x6、设集合A x 1 x 2 ,集合B()A、aa 2 B aa 17、设全集U (x, y) x、y R , M则(QM) (C uN^()A、①8、(2004年全国高考题)已知集合MM N=()A、x x 2B、x x 34 0 ,则C u (A B)等于( )3或x 1 D、xx 1或x 3xx a,若A B ①,则实数a的集合为C aa 1 D、a 1 a 2,、y 3 , - , 、, (x, y)--- 1 , B (x,y)y x 1 ,x 3D、(x, y)x 2或y 3xx2 4,N xx2 2x 3 0 ,则集合C、x1x2 D、x2x3A、(0,0),(1,1)B、(0,0)C、(1,1)D、C A、xx 2,x Z B、① C x2 x 3 D、24、已知M xx n,n Z ,N列选项中正确的是()A、M NB、N j Mn r「xx —, n Z , P2C N (M P)xx1n -, n Z ,则下2D N (M P))D、1,2(Q0),(1,1),( 1,0),则3、设A xx 3,x Z ,B5、已知U R,且A xx2 9 , B xx2 3x3 x 1 C、x xB、(2,3) C (x, y) y x 19、(2004年全国高考题)已知集合 M(x,y)x 2 y 2 1,x R,y R,N (x,y)x 2 y 0,x R, y R 则集合 MC 3D 、43,B xx 2 x 6 0,则 AA 、x 3 x 2或x 1 C 、x 3 x2或1 x 211、(2004年全国高考题)不等式 x A 、x x2,或 0 x 3C xx 2,或 x 0B 、x 3 x M1 x 2 D 、xx3或1 x 20的解集为()3B 、x 2 x 0,或 x 3 D 、x x 0,或 x 3规定M P x | x)P C M Py y x 2 1, x R ,NM ,且x P ,根据这一规定D 、M Py | y x 2 1, x Rixx 2 ax (a 1) 0若B 室 A,则a 的值为:15、已知a P,b Q,c M 其中PM xx 3k 2,k Z ,贝U a 16、已知集合 A x|x 3, Bxx 2 三、综合题:, • ,、…217、已知全集U xx 3x 2xx 3k,k Z , Q xx 3k 1,k Z ,b c ________________5x 4 0,则 A B 。

2024-2025年人教A版数学必修第一册同步练习3-并集与交集(带答案)

2024-2025年人教A版数学必修第一册同步练习3-并集与交集(带答案)

同步练习3 并集与交集必备知识基础练一、选择题(每小题5分,共45分)1.A={x|x为15的正约数},B={x|x为15以内的所有质数},则A∩B=( ) A.{1,3,5,15}B.{1,3,5}C.{3,5}D.{3,5,15}2.[2023·江苏连云港高一期末]集合A={x|-1<x<1},B={x|0≤x<2},则A∩B=( )A.{x|-1<x<2}B.{x|0≤x<1}C.{x|0<x<1}D.{x|-1<x<0}3.[2023·广东广州高一期末]已知集合M={x|-2<x<5},N={x|1<x≤7},则M∪N=( )A.{x|-2<x<7}B.{x|1<x<5}C.{x|-2<x≤7}D.{x|1≤x<5}4.[2023·福建福州高一校考期中]如图,设集合A={华南虎,爪哇虎,里海虎},B={华南虎,巴厘虎,马来亚虎},则阴影部分表示的集合是( )A.{华南虎,爪哇虎}B.{华南虎,巴厘虎}C.{爪哇虎,里海虎}D.{巴厘虎,马来亚虎}5.设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|-2≤x<0},则(B∪C)∩A =( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}6.已知集合A={x∈N|x>-2},B={x|x≤4},则A∩B=( )A.{-1,0,1,2,3,4}B.{x|-2<x<4}C.{0,1,2,3,4}D.{x|-2<x≤4}7.设集合A={a,6},B={4,5,7},A∩B={4},则A∪B=( )A.{4,5,7} B.{4,5,6,7}C.{4,6} D.{4}8.(多选)已知集合A={1,4,a},B={1,2,3},若A∪B={1,2,3,4},则a的取值可以是( )A.2 B.3C.1 D.59.[2023·福建泉州高一期中](多选)已知集合A={-1,1,2,4},B={x||x-1|≤3},则下列说法正确的是( )A.集合A的子集个数为16B.集合B={x|-4≤x≤4}C.A⊆BD.A∪B=A二、填空题(每小题5分,共15分)10.若集合A={x|1≤x≤3,x∈R},B=Z,则A∩B=________.11.[2023·河北石家庄高一期中]设a,b,c是互不相等的实数,则满足条件{a,b}∪A ={a,b,c}的集合A有________个.12.[2023·山东青岛高一期中]已知集合A={(x,y)|y=x},B={(x,y)|y=x-1},则A∩B=________.三、解答题(共20分)13.(10分)已知集合A={x|x2+3x-4=0},集合B={x|(2x+3)(x-1)=0},集合C ={x|x+1>0}.求:(1)A∩B;(2)A∪B;(3)B∩C.14.(10分)已知集合A={2,m2},B={2,4,m}.(1)若A∪B={2,4,m2},求m的值;(2)若A∩B={2,4},求m的值.关键能力提升练15.(5分)[2023·湖南师大附中高一期末]已知集合A={(x,y)|x+y=8,x,y∈N*},B={(x,y)||x-y|>2,x,y∈R},则A∩B中元素的个数为( )A.2 B.3C.4 D.5[答题区]0},若A ∩B ={3},则实数a 的值为________.17.(10分)已知集合A =⎩⎨⎧⎭⎬⎫x |-12<x <4 ,B ={x |3a -2<x <2a +1}. (1)当a =0时,求A ∩B ;(2)若A ∩B =∅,求a 的取值范围.同步练习3 并集与交集必备知识基础练1.答案:C解析:因为A ={x |x 为15的正约数}={1,3,5,15},B ={x |x 为15以内的所有质数}={2,3,5,7,11,13},则A ∩B ={3,5}.故选C.2.答案:B解析:在数轴上分别标出集合所表示的范围如图所示,由图可知,A ∩B ={x |0≤x <1}.故选B.3.答案:C解析:因为M ={x |-2<x <5},N ={x |1<x ≤7},所以M ∪N ={x |-2<x ≤7}.故选C.4.答案:C解析:由题意得阴影部分表示的集合中的元素需满足x ∈A ,且x ∉B ,A ∩B ={华南虎},所以阴影部分表示的集合即∁A (A ∩B )={爪哇虎,里海虎}.故选C.5.答案:C解析:因为A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |-2≤x <0},所以B ∪C ={2,3,4}∪{x ∈R |-2≤x <0},(B ∪C )∩A ={-1,2,3}.故选C.6.答案:C解析:因为集合A ={x ∈N |x >-2},B ={x |x ≤4},所以A ∩B ={x ∈N |-2<x ≤4}={0,1,2,3,4}.故选C.7.答案:B解析:由于A ∩B ={4},故4∈A ,所以a =4,则A ={4,6},故A ∪B ={4,5,6,7}.故选B.8.答案:AB解析:∵集合A ={1,4,a },B ={1,2,3},A ∪B ={1,2,3,4},∴a =2或a =3.故选AB.9.答案:AC解析:选项A :集合A ={}-1,1,2,4 的子集个数为24=16.正确; 选项B :由|x -1|≤3,可得-3≤x -1≤3,即-2≤x ≤4,则集合B ={x |-2≤x ≤4}.错误;选项C :由{-1,1,2,4}⊆{x |-2≤x ≤4},可得A ⊆B .正确;选项D :由A ⊆B ,可得A ∪B =B .错误.故选AC.10.答案:{1,2,3}解析:因为集合A ={x |1≤x ≤3,x ∈R },B =Z ,由交集的定义可得A ∩B ={1,2,3}.11.答案:4解析:由题可知,A 可能为{c },{b ,c },{a ,c },{a ,b ,c },故满足条件的集合A 共4个.12.答案:{(1,1),(-1,-1)}解析:联立⎩⎪⎨⎪⎧y =x y =x -1=1x ,解得⎩⎪⎨⎪⎧x =1y =1 或⎩⎪⎨⎪⎧x =-1y =-1 , 故A ∩B ={(1,1),(-1,-1)}.13.解析:(1)x 2+3x -4=(x +4)(x -1)=0,解得x =-4或x =1,A ={1,-4}.(2x +3)(x -1)=0,解得x =-32 或x =1,B ={1,-32}. 所以A ∩B ={1}.(2)由(1)得A ∪B =⎩⎨⎧⎭⎬⎫1,-32,-4 . (3)C ={x |x >-1},所以B ∩C ={1}.14.解析:(1)由题意得m 2=m ,得m =0或m =1.(2)由题意得4∈A ,所以m 2=4,即m =2或m =-2.又B ={2,4,m },所以m ≠2.故m =-2.关键能力提升练15.答案:C解析:因为x +y =8,x ,y ∈N *,所以x =1,y =7或x =2,y =6或x =3,y =5或x =4,y =4或x =5,y =3或x =6,y =2或x =7,y =1,所以A ={(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1)}, 因为x =1,y =7,x =2,y =6,x =6,y =2,x =7,y =1满足|x -y |>2,所以A ∩B ={(1,7),(2,6),(6,2),(7,1)},所以A ∩B 中元素的个数为4.故选C.16.答案:-13解析:由题意,可知x =3为方程x 2+ax +b =0的根,且x =3为方程x 2+bx +15=0的根, 则⎩⎪⎨⎪⎧9+3a +b =09+3b +15=0 ,解得⎩⎪⎨⎪⎧a =-13b =-8. 17.解析:(1)由题知,A ={x |-12<x <4},B ={x |3a -2<x <2a +1}, 当a =0时,B ={}x |-2<x <1 ,所以A ∩B =⎩⎨⎧⎭⎬⎫x |-12<x <1 . (2)由题知,A ={x |-12<x <4},B ={x |3a -2<x <2a +1} 因为A ∩B =∅,所以当B =∅时,3a -2≥2a +1,解得a ≥3,满足题意;当B ≠∅时,⎩⎪⎨⎪⎧3a -2<2a +12a +1≤-12 或⎩⎪⎨⎪⎧3a -2<2a +13a -2≥4 , 解得a ≤-34或2≤a <3. 综上所述,a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤-34或a ≥2 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修交集、并集、补集专项练习题一、选择题:1、 已知{}{}22,022≤<-==--=x x B x x x A 则等于( ) A 、{}21≤≤-x x B 、{}2 C 、{}1- D 、{}2,1-2、 已知集合{}{})0,1(),1,1(),0,0(,0),(,1),(22-==-=⎭⎬⎫⎩⎨⎧==C y x y x B x yy x A ,则CB A ⋂⋃)(等于( )A 、{})1,1(),0,0(B 、{})0,0(C 、{})1,1(D 、C3、 设{}{}ZU Z x x x B Z x x x A =∈≤=∈<=全集,,1,,3则)(B C A z ⋂等于( )A 、{}Z x x x ∈≤,2 B 、Φ C 、{}32<<x x D 、{}24、 已知{}⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈==∈==Z n n x x P Z n n x x N Z n n x x M ,21,,2,,,则下列选项中正确的是( ) A 、N M = B 、NM C 、)(P M N ⋃= D 、)(P M N ⋂=5、 已知,R U =且{}{},043,922<--=>=x x x B x x A 则)(B A C u ⋃等于( )A 、{}1≤x x B 、{}13-≤≤-x x C 、{}13->-<x x x 或 D 、{}31≥≤x x x 或6、 设集合{}21≤≤-=x x A ,集合{},a x x B ≤=若=⋂B A Φ,则实数a 的集合为( )A 、{}2<a a B 、{}1-≥a a C 、{}1-<a a D 、{}21≤≤-a a 7、 设全集{}R y x y x U ∈=、),(,⎭⎬⎫⎩⎨⎧=--=133),(x y y x M ,{}1),(+≠=x y y x B ,则)()(N C M C u u ⋂为( )A 、ΦB 、{})3,2(C 、{}1),(+=x y y x D 、{}32),(==y x y x 或8、(2004年全国高考题)已知集合{},42<=x x M {}0322<--=x x x N ,则集合N M ⋂=( )A 、{}2-<x x B 、{}3>x x C 、{}21<<-x x D 、{}32<<x x9、(2004年全国高考题)已知集合{},,,1),(22R y R x y x y x M ∈∈=+={}Ry R x y x y x N ∈∈=-=,,0),(2则集合N M ⋂中元素个数为( ) A 、1 B 、2 C 、3 D 、4 10、(2004年高考题)已知{}{},06,3122≤-+=>+=x x x B x x A 则=⋂B A ( )A 、{}123>-≤<-x x x 或 B 、{}2123<≤-≤<-x x x 或 C 、{}2123≤<-<<-x x x 或 D 、{}213≤<-<x x x 或 11、(2004年全国高考题)不等式03)2(<-+x x x 的解集为( )A 、{}30,2<<-<x x x 或 B 、{}3,02><<-x x x 或 C 、{}0,2>-<x x x 或 D 、{}3,0><x x x 或 12、设P M 、是两个非空集合,规定{}P x M x x P M ∉∈=-且,|,根据这一规定)(P M M --等于( )A 、MB 、PC 、P M ⋃D 、P M ⋂ 二、填空题:13、已知集合N M 、满足{}{}Rx x y y N R x x y y M ∈+-==∈+==,1|,,122,则有______=⋂N M 。

14、已知{},0432=-+=x x x A {}0)1(2=-+-=a ax x x B 若BA ,则a 的值为:_______。

15、已知M c Q b P a ∈∈∈,,其中{}Z k k x x P ∈==,3,{}Z k k x x Q ∈+==,13,{}Z k k x x M ∈+==,23,则_______=-+c b a16、已知集合{},3>=x x A {},0452<+-=x x x B 则_______=⋂B A 。

三、综合题:17、已知全集{},0232≥+-=x x x U {},12>-=x x A ,021⎭⎬⎫⎩⎨⎧>--=x x x A 求B C A u ⋂,BA C u ⋃)(。

18、已知{}{}BB A x x B R a a x ax x x A =⋃≤+≤=∈-≤-=若,412|,,2,求a 的取值范围。

19、已知{}⎭⎬⎫⎩⎨⎧∈∈+-=∈∈=R y R x x y y x M R y R x y x U ,,21|),(,,|),(, {},,,052|),(R y R x y x y x N ∈∈=+-=N M C I ⋂求20、 已知全集R U =,{}3|13||≤-=x x A ,⎭⎬⎫⎩⎨⎧>++-=0143|2x x x B , 求)(B A U I 。

21、已知集合{}034|2=+-=x x x A ,{}01|2=-+-=a ax x x B , {}01|2=+-=mx x x C ,且A B A =Y ,C C A =I ,求m a ,的值或取值范围。

国庆节作业一、覆盖问题:1、 集合{},01032≤--=x x x A 集合{},121-≤≤+=p x p x B 若,A B ⊆求实数p 的取值范围。

2、 已知集合{}{}a x x B x x x A <=<--=,0322,若BA ,求实数a 的取值范围。

3、 已知集合A 、B 分别为A={x| R x x ∈≥+,116},{},,0222R x m x x x B ∈<+-=若A B A =Y ,求实数m 的取值范围。

4、 已知集合,321)13(41⎭⎬⎫⎩⎨⎧+≤-=)(x x x A {}=⋂<-=B A a x x B 且,12{}57<≤-x x ,求实数a 的取值范围。

(6班必做,8班选做)5、若集合A 、B 分别为:{},0322>--=x x x A {},,02R B A b ax x x B =⋃≤++=且{}的值。

、试求B A x x B A ,43≤<=⋂6、{}{},k x x B x x A <-=>+=5,107且B B A =⋂,求实数k 的取值范围。

二、根的分布问题:6、是否存在实数k,使方程02)1(5122=--++-k k x k x 、的两根分别在,10<<x 21<<x 的范围内。

7、已知方程01222=+-+m mx x 两根都大于2,求m 的取值范围。

三、恒成立问题:8、求使不等式a x x ax --≥-+22214对任意实数x 恒成立的a 的取值范围。

9、已知关于x 的不等式03)1(4)54(22>+-+-+x k x k k 对任意实数k 都成立,求实数k 的取值范围。

10、不等式a x x >-+-31恒成立,求实数a 的取值范围。

11、不等式ax x <-+-31有解,求实数a 的取值范围。

(如果“<”改为“≤”呢?)四、存在性问题:12、是否存在实数p 使“04<+p x ”是“022>--x x ”的充分条件?如果存在求出p 的取值范围。

是否存在实数p ,使“04<+p x ”是“022>--x x ”的必要条件?如果存在求出p 的取值范围。

高一数学必修1模块考试()一、选择题。

(共10小题,每题5分,共50分) 1、设集合A={x ∈Q|x>-1},则( )A 、A ∅∉B 、2A ∉C 、2A ∈D 、{}2 ⊆A2、设A={a ,b},集合B={a+1,5},若A∩B={2},则A∪B=( )A 、{1,2}B 、{1,5}C 、{2,5}D 、{1,2,5}3、函数21)(--=x x x f 的定义域为( )A 、[1,2)∪(2,+∞)B 、(1,+∞)C 、[1,2)D 、[1,+∞)4、设集合M={x|-2≤x ≤2},N={y|0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )5、三个数70。

3,0。

37,,㏑0.3,的大小顺序是( )A 、 70。

3,0.37,,㏑0.3,B 、70。

3,,㏑0.3, 0.37C 、 0.37, , 70。

3,,㏑0.3,D 、㏑0.3, 70。

3,0.37,6、若函数f(x)=x 3+x 2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表: 那么方程x 3+x 2-2x-2=0的一个近似根(精确到0.1)为( )A 、1.2B 、1.3C 、1.4D 、1.57、函数2,02,0x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为( ) f(1)=-2 f(1.5)=0.625 f(1.25)=-0.984 f(1.375)=-0.260 f(1.438)=0.165f(1.4065)=-0.0528、设()logaf x x=(a>0,a≠1),对于任意的正实数x,y,都有()A、f(xy)=f(x)f(y)B、f(xy)=f(x)+f(y)C、f(x+y)=f(x)f(y)D、f(x+y)=f(x)+f(y)9、函数y=ax2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则()A、b>0且a<0B、b=2a<0C、b=2a>0D、a,b的符号不定10、某企业近几年的年产值如右图,则年增长率最高的是()(年增长率=年增长值/年产值)A、97年B、98年C、99年D、00年二、填空题(共4题,每题5分,共20分)11、f(x)的图像如右下图,则f(x)的值域为;12、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为;13、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;14、老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{|0}x R x∈≠;③在(0,)+∞上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确。

相关文档
最新文档