电磁场与电磁波基础第5章

合集下载

电磁场第五章 时变电磁场

电磁场第五章 时变电磁场

H2
同理得
en
(E1
E2
)
0

E1t E2t
5.4.2 两种常见的情况 1. 两种理想介质分界面
上的边界条件
在两种理想介质分界 面上,通常没有电荷和 电流分布,即JS=0、ρS =0,故
en
媒质 1 媒质 2
Er、Hr 的切向分量连续
en
媒质 1 媒质 2
Dr、Br的法向分量连续
en
dt
BgdS
S

Ñ 若空间同时存在由电荷产生的电场
rr r 。E由 于Ein Ec
,故有
C
rr Ec gdl
0
Er c,则总电场
应Er为
与Erin 之E和rc ,
rr d r r
ÑC Egdl
dt
S BgdS
这就是推广的法拉第电磁感应定律。
2. 引起回路中磁通变化的几种情况:
(1) 回路不变,磁场随时间变化
2.6.2 麦克斯韦方程组的微分形式
H
J
D
E
t B
t
B 0
D
麦克斯韦第一方程,表明传导电 流和变化的电场都能产生磁场
麦克斯韦第二方程,表 明变化的磁场产生电场
麦克斯韦第三方程表明磁场是 无源场,磁力线总是闭合曲线
麦克斯韦第四方程, 表明电荷产生电场
5.3.2 媒质的本构关系
在时变的情况下不适用
解决办法: 对安培环路定理进行修正

D
J
(
D)

H
J
修正为:
H
t J
D
t
时变电场会激发磁场
(J
D )

5电磁场与电磁波-第五章-图片

5电磁场与电磁波-第五章-图片

显见R2 =z2 +{a2 +x2 -2axcos`} =(rcos)2+ a2+(rsin)2-2arsin cos ’ =r2+ a2-2arsin cos ’ 远场区r>>a
一般来讲a无限缩小,r>>a总可满足,令πa2=ds, Pm=IdS便成为微小磁偶极子:
这个式子对磁偶极子所在点外区域均成立。
-dl

立体角改变量为: 即: 书上错误
此为P点位移dl时的变量,那么P沿C移动一周时 立体角改为:
可得:
书上错误
环积分结果取决于ΔΩ,一般有两种情况:
(1)回路C不与源电流回路C`相套链: 此时,从某点开始又回到原始点, 则ΔΩ=0,上式可变为:
-dl
(2)回路C与源电流回路C`相套链:
即C穿过C`所围的面S`,取起点 为S`上侧的A点,终点为下侧的 B点,由于上侧的点所张的立体 角为(-2π),而下侧的为2π,故 ΔΩ=4π,
0 B x, y , z ) ( 4 0 B x, y , z ) ( 4
J ( x ', y ', z ') er dV ' 2 ' r V J S ( x ', y ', z ') er dS ' 2 ' r S
对照静电场中电荷作体分布时电场强度的表达式:
E (r ) E (r ) 1 4 0 1 4 0
1
Idl R 1 ( R3 ) 4 c
Idl eR ( R 2 ) 5.1.4 c
所以在外场中受到的安培力为:
dFm Idl B Idl H
B ( r ) 0 H ( r )

电磁场与电磁波(第4版)教学指导书 第5章 平面电磁波

电磁场与电磁波(第4版)教学指导书 第5章 平面电磁波

第5章 平面电磁波5.1基本内容概述本章讨论均匀平面波在无界空间传播的特性,主要内容为:均匀平面波在无界的理想介质中的传播特性和导电媒质中的传播特性,电磁波的极化,均匀平面波在各向异性媒质中的传播、相速与群速。

5.1.1理想介质中的均匀平面波1.均匀平面波函数在正弦稳态的情况下,线性、各向同性的均匀媒质中的无源区域的波动方程为220k ∇+=E E对于沿z 轴方向传播的均匀平面波,E 仅是z 坐标的函数。

若取电场E 的方向为x 轴,即x x E =E e ,则波动方程简化为222d 0d x x E k E z+= 沿+z 轴方向传播的正向行波为()j jkz x m z E e e φ-=E e (5.1)与之相伴的磁场强度复矢量为()()z kz z ωμ=⨯H e E 1j jkz ym E e e φη-=e (5.2)电场强度和磁场强度的瞬时值形式分别为(,)Re[()]cos()j t x m z t z e E t kz ωωφ==-+E E e (5.3)(,)Re[()]cos()j t m y Ez t z e t kz ωωφη==-+H H e (5.4)2.均匀平面波的传播参数 (1)周期2T πω=(s),表示时间相位相差2π的时间间隔。

(2)相位常数k =(rad/m ),表示波传播单位距离的相位变化。

(3)波长kπλ2=(m ),表示空间相位相差2π的两等相位面之间的距离。

(4)相速p v kω==m/s ),表示等相位面的移动速度。

(5)波阻抗(本征阻抗)x y E H η==Ω),描述均匀平面波的电场和磁场之间的大小及相位关系。

在真空中,37712000≈===πεμηη(Ω) 3.能量密度与能流密度在理想介质中,均匀平面波的电场能量密度等于磁场能量密度,即221122εμ=E H电磁能量密度可表示为22221122e m w w w εμεμ=+=+==E H E H (5.5)瞬时坡印廷矢量为21zη=⨯=S E H e E (5.6)平均坡印廷矢量为211Re 22av z η*⎡⎤=⨯=⎣⎦S E H e E (5.7) 4.沿任意方向传播的平面波对于任意方向n e 传播的均匀平面波,定义波矢量为n x x y y z z k k k k ==++k e e e e (5.8)则00()n jk j --==e r k r E r E e E e (5.9)()()1n η=⨯H r e E r (5.10)00n =e E (5.11)5.1.2电磁波的极化1.极化的概念波的极化表征在空间给定点上电场强度矢量的取向随时间变化的特性, 并用电场强度矢量的端点在空间描绘出的轨迹来描述。

电磁场与电磁波 第五章时变电磁场

电磁场与电磁波 第五章时变电磁场

D H J t 位移电流是电流概念的扩充,它不是带电粒子的定向运动 形成的,而是人为定义的,不能直接由实验测出。

l
H dl (J Jd ) dS
S
D J dS dS S S t
年中发生的美国内战 (1861-1865)将会降低为一个地区性琐事而
黯然失色”。
陕西科技大学编写
电磁场与电磁波
第5章 时变电磁场
14
评价
处于信息时代的今天,从婴儿监控器到各种遥控设备、从雷达到
微波炉、从地面广播电视到太空卫星广播电视、从地面移动通信到 宇宙星际通信、从室外无线局域网到室内蓝牙技术、以及全球卫星 定位导航系统等,无不利用电磁波作为传播媒体。 无线信息高速公路更使人们能在任何地点、任何时间同任何人取 得联系,发送所需的文本、声音或图象信息。电磁波的传播还能制 造一种身在远方的感觉,形成无线虚拟现实。 电磁波获得如此广泛的应用,更使我们深刻地体会到19世纪的麦 克斯韦和赫兹对于人类文明和进步的伟大贡献。
D (J )0 t
全电流连续 位移电流
D Jd 陕西科技大学编写 t
电磁场与电磁波
第5章 时变电磁场
7
流进曲面S1的传导电流 S1 S2 等于流出S2的位移电流 ② 位移电流与传导电流、运流电流一样具有磁的效应;

J dS Jd dS
令 l2 0
H 2t H1t J s
磁场: ( H - H ) J 即 en 1 2 S
B1n B2n 电场:H 2t H1t J s
陕西科技大学编写
电磁场与电磁波
第5章 时变电磁场

电磁场与电磁波(第4版)第5章 均匀平面波在无界空间中的传播

电磁场与电磁波(第4版)第5章 均匀平面波在无界空间中的传播

电磁场与电磁波第5章 均匀平面波在无界空间中的传播1C.Y.W@SDUWH2010电磁场与电磁波第5章 均匀平面波在无界空间中的传播2均匀平面波的概念 波阵面:空间相位相同的点构成的曲面,即等相位面 平面波:等相位面为无限大平面的电磁波 均匀平面波:电磁波的场矢量只沿着它的传播方向变化,等相 位面上电场和磁场的方向、振幅都保持不变的平面波。

均匀平面波是电磁波的一种理想 情况,其特性及分析方法简单,但又 表征了电磁波的重要特性。

实际应用中的各种复杂形式的电 磁波可看成是由许多均匀平面波叠加 的结果。

另外,在距离波源足够远的 地方,呈球面的波阵面上的一小部分 也可以近似看作均匀平面波。

C.Y.W@SDUWH 2010波阵面xE波传播方向o yzH均匀平面波电磁场与电磁波第5章 均匀平面波在无界空间中的传播3本章内容5.1 理想介质中的均匀平面波 5.2 电磁波的极化 5.3 均匀平面波在导电媒质中的传播 5.4 色散与群速 5.5 均匀平面波在各向异性媒质中的传播C.Y.W@SDUWH2010电磁场与电磁波第5章 均匀平面波在无界空间中的传播45.1 理想介质中的均匀平面波5.1.1 理想介质中的均匀平面波函数 5.1.2 理想介质中的均匀平面波的传播特点 5.1.3 沿任意方向传播的均匀平面波C.Y.W@SDUWH2010电磁场与电磁波第5章 均匀平面波在无界空间中的传播55.1.1 理想介质中的均匀平面波函数 设在无限大的无源空间中,充满线性、各向同性的均匀理想 介质。

均匀平面波沿 z 方向传播,则电场强度和磁场强度都不是 x 和 y 的函数,即∂E ∂E ∂H ∂H = =0, = =0 ∂x ∂y ∂x ∂yd2E d2H + k 2E = 0 , + k 2H = 0 dz 2 dz 2∂Ez =0 ∂zHz = 0∂Ex ∂E y ∂Ez + + =0 由于 ∇ ⋅ E = ∂x ∂y ∂zEz = 0∂ 2 Ez + k 2 Ez = 0 ∂z 2同理 ∇ ⋅ H =∂H x ∂H z + + =0 ∂x ∂y ∂z∂H y结论:均匀平面波的电场强度和磁场强度都垂直于波的传播 方向 —— 横电磁波(TEM波)C.Y.W@SDUWH 2010电磁场与电磁波第5章 均匀平面波在无界空间中的传播6在直角坐标系中:∇ 2 F = ex∇ 2 Fx + ey ∇ 2 Fy + ez ∇ 2 Fz 即 (∇2 F )i = ∇ 2 Fi(i = x, y, z )2 2教材第28页 式(1.7.5)2 2 如:(∇ F )φ ≠ ∇ Fφ注意:对于非直角分量, (∇2 F )i ≠ ∇2 Fi 由电场强度满足波动方程 ∇ E + k E = 0ex ∇ 2 Ex + ey ∇ 2 E y + ez ∇ 2 Ez + k 2 (ex Ex + ey E y + ez Ez ) = 0 即⎧∇ 2 Ex + k 2 Ex = 0 ⎪ 2 2 ⎨∇ E y + k E y = 0 ⎪ 2 ∇ Ez + k 2 Ez = 0 ⎩⎧ ∂ 2 Ex ∂ 2 Ex ∂ 2 Ex + + 2 + k 2 Ex = 0 ⎪ 2 2 ∂y ∂z ⎪ ∂x ⎪ ∂2 Ey ∂2 Ey ∂2 Ey ⎪ + + + k 2 Ey = 0 ⎨ 2 2 2 ∂y ∂z ⎪ ∂x ⎪ ∂2 E ∂2 E ∂2 E z + 2 z + k 2 Ez = 0 ⎪ 2z + ∂x ∂y 2 ∂z ⎪ ⎩2010C.Y.W@SDUWH电磁场与电磁波第5章 均匀平面波在无界空间中的传播7对于沿 z 方向传播的均匀平面波,电场强度 E 和磁场强度 H 的分量 Ex 、Ey 和 H x 、H y 满足标量亥姆霍兹方程,即d 2 Ex + k 2 Ex = 0 dz 2 d2Ey + k 2Ey = 0 dz 2 2 d Hx + k 2H x = 0 dz 2 d2H y + k 2H y = 0 dz 2以上四个方程都是二阶常微分方程,它们具有相同的形式,因 而它们的解的形式也相同。

电磁场与电磁波(第4版)第5章部分习题参考解答

电磁场与电磁波(第4版)第5章部分习题参考解答

电磁场与电磁波(第4版)第5章部分习题参考解答GG5.1 在自由空间中,已知电场E(z,t)=ey103sin(ωt?βz)V/m,试求磁场强度G H(z,t)。

解:以余弦为基准,重新写出已知的电场表示式GπGE(z,t)=ey103cos(ωt?βz?V/m 2这是一个沿+z方向传播的均匀平面波的电场,其初相角为?90D。

与之相伴的磁场为G1GG1GGπH(z,t)=ez×E(z,t)=ez×ey103cos(ωt?βz?η0η023πG10G=?excos(ωt?βz?)=?ex2.65sin(ωt?βz) A/m120π25.2 理想介质(参数为μ=μ0、ε=εrε0、ζ=0)中有一均匀平面波沿x方向传播,已知其电场瞬时值表达式为GGE(x,t)=ey377cos(109t?5x) V/m GG试求:(1) 该理想介质的相对介电常数;(2) 与E(x,t)相伴的磁场H(x,t);(3) 该平面波的平均功率密度。

G解:(1) 理想介质中的均匀平面波的电场E应满足波动方程G2G?E?2E?με2=0 ?tG据此即可求出欲使给定的E满足方程所需的媒质参数。

方程中2G?EyGGG229et?5x) ?E=ey?Ey=ey=?y9425cos(102?xG22?EG?EyG18937710cos(10eet?5x) ==?×yy22 ?t?x 故得?9425cos(109t?5x)+με*377×1018cos(109t?5x)+=0即9425με==25×10?18 18377×10故25×10?18εr==25×10?18×(3×108)2=2.25 μ0ε0其实,观察题目给定的电场表达式,可知它表征一个沿+x方向传播的均匀平面ω109波,其相速为vp===2×108m/s k5而vp====3×108 3故εr=()2=2.25 2GGGGG(2) 与电场E相伴的磁场H可由?×E=?jωμ0H求得。

电磁场理论优秀课件

电磁场理论优秀课件
第五章 准静态电磁场
麦克斯韦方程组描述了时变电磁场中时变电场与时变磁场相 互依存又相互制约,并以有限速度在空间传播,形成电磁波旳普 遍规律。此时,电磁场量旳鼓励与响应不是同步发生旳,场量旳 时间变量t与空间变量r有关。但在许多工程问题中,尤其在电气 设备、电力传播、生命科学等领域,时变电磁场旳频率教低,因 而在某些特定旳情况下,能够忽视二次源 B 或 D 旳作用,
例5-3 研究具有双层有损介质旳平板电容器接至直流电压 源旳过分过程,如图5-3所示。[书p.195例5-4]
解:设电容器在t≤0-时
处于零状态,极板上没有电
S
荷,即E1(0-)=E2(0-)=0,u(0-)
=0;t≥0+时,电容器旳端电 压被强制跃变,即u(0+)=U。
U
o
根据电容旳伏安关系
ε2 γ2 ε1 γ1
内外导体之间旳坡印亭矢量是
S E H •


••
U I
2 2 ln
b a
ez
同轴线传播旳平均功率应是坡印亭矢量在内外导体之间旳横截面
S上旳面积分,即
P
Re
S
••
U I
2 2 ln
b
a
dS
• ReUln

I
b a
b a
d

Re[U

I
]
P Re
••
U I
dS
• ReU

I
t
旳库仑电场Ec和感应电场Ei。在低频电磁场中,假如感应电场Ei
远不大于旳库仑电场Ec,则能够忽视Bt 现无旋性
旳作用,这时旳电场呈
E (E c E i) E c 0 (5-1)

电磁场与电磁波(第三版)课后答案第5章

电磁场与电磁波(第三版)课后答案第5章

第五章习题解答5.1真空中直线长电流I 的磁场中有一等边三角形回路,如题 5.1图所示,求三角形回路内的磁通。

解根据安培环路定理,得到长直导线的电流I 产生的磁场2IrB e穿过三角形回路面积的磁通为d SB S32322[d ]d d 2db db zd dI I z z xxxx由题 5.1图可知,()tan63x d zx d ,故得到32d 3db dIx dxx3[ln(1)]223Ib d b d5.2通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题 5.2图所示。

计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。

解将空腔中视为同时存在J 和J 的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J 、均匀分布在半径为a 的圆柱内。

由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。

由安培环路定律d CI B l,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为2222b b bbbbr bbr br J r B J r 电流密度为J 、均匀分布在半径为a 的圆柱内的电流产生的磁场为2222a a aaaar aar ar J r B J r 这里a r 和br 分别是点a o 和b o 到场点P 的位置矢量。

将aB 和bB 叠加,可得到空间各区域的磁场为圆柱外:22222babab a r rBJr r ()br b 圆柱内的空腔外:2022ba aar BJr r (,)b ar b r a 空腔内:22b aBJr r J d()ar a 式中d 是点和b o 到点a o 的位置矢量。

由此可见,空腔内的磁场是均匀的。

5.3下面的矢量函数中哪些可能是磁场?如果是,求其源变量J 。

dbIzx题 5.1 图Sbr ar Jboao ab题5.2图d(1) 0,r ar H e B H(圆柱坐标)(2) 0(),x y ay ax H e e BH(3) 0,x y axay H e e BH(4) 0,ar He BH (球坐标系)解根据恒定磁场的基本性质,满足0B 的矢量函数才可能是磁场的场矢量,否则,不是磁场的场矢量。

电磁场与电磁波 第五章答案

电磁场与电磁波 第五章答案

第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。

但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。

说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。

讲解恒定磁场时,应与静电场进行对比。

例如,静电场是无散场,而恒定磁场是无旋场。

在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。

重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(30 r r r r r J r B πμ 毕奥─萨伐定律。

3,I ⎰=⋅ll B 0d μ安培环路定律。

面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0 r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇矢量磁位微分方程的解: V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。

第5章-习题详解

第5章-习题详解

z B w 0
α
Φ = ∫ B ⋅ dS = e y Bm sin(ωt ) ⋅ en hw
S
h y en
= Bm hw sin(ωt ) cos α dΦ = −ωBm hw cos(ωt ) cos α in = − dt
x 穿过线圈的磁通变化既 (2) 线圈以角速度 ω 旋转时, 习题 5-1 题图 有因磁场随时间变化引起的,又有因线圈转动引起 的。此时线圈面的法线 e n 是时间的函数,表示为 en (t ) , α = ωt 。因此
Φ = B (t ) ⋅ en (t ) S = e y Bm sin(ωt ) ⋅ e y hw cos α = Bm hw sin(ωt ) cos(ωt )

in
=−
dΦ = −ωBm hw cos 2ωt dt
5-2
长直导线载有电流 i = I m cos ωt ,其附近有一 a × b 的矩形线框,如图所示。在下列两 种情况下求线圈中的感应电动势:(1)线圈静止不动;(2)线圈以速度 v 向右方运动。
导体表面外侧的坡印廷矢量s由高斯定理可知面电荷在导体外产生的电场为当轴向通以均匀分布的恒定电流i设以电流流向为z坐标方向时导体内的电场为根据边界条件导体表面上电场的切向分量应连续即oz恒定电流i在导体外产生的磁场为521在球坐标系下已知真空中时变电磁场的电场强度为cossin
第 5 章 时变电磁场
5-1
C/ m 2
10 4 cos(ωt − kz ) ,电缆的内外导体之间填充了理想 r 介质,介质参数为 ε r = 2, µ r = 1 。求:理想介质中的电场强度 E 和磁场强度 H 。
在无源区域,已知电磁场的电场强度 E = e x 0.1sin(6.28 ×109 t − 20.9 z ) V/m,求空间任一 点的磁场强度 H 和磁感应强度 B。

《电磁场与电磁波》课后习题解答(第五章)

《电磁场与电磁波》课后习题解答(第五章)

《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。

导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。

当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。

也可以用静电能计算。

在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。

因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。

5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。

解:需要加三个镜像电荷代替 导体面上的感应电荷。

在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。

)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。

图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。

证明:使用镜像法分析。

电磁场与电磁波(金立军)第五章答案

电磁场与电磁波(金立军)第五章答案
1.25 20 4 100












题 5-9 图
F2 Idl B I ade Be z
BIa e d
0

BIa (cos e y sin e x )d
0

2 BIae x
2 1.25 120 1a x 50ex
e z 0 I 5 z x 2 ( y 1) 2 ( z 5) 2 ln 2 2 2 4 5 z x ( y 1) ( z 5)
则 A(3, 4,0) = ez 4.5 10 Wb / m
-6
y 1 y 1 B = A = ex (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 y 1 y 1 e x (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 x x e y (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 x x e y (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2 (5 z x 2 ( y 1) 2 ( z 5) 2 ) x 2 ( y 1) 2 ( z 5) 2

《电磁场与电磁波》(第4版)谢处方第4-5章

《电磁场与电磁波》(第4版)谢处方第4-5章
其中kz和Exm为实常数。写出电场强度的瞬时矢量 解
E ( z , t ) Re[ex jExm cos(k z z )e j t ]
j ( t ) 2 Re[ex Exm cos(k z z )e ]
ex Exm cos(k z z ) cos( t ) 2
式中H0 、ω、β、μ都是常数。试求:(1)瞬时坡印廷矢量; (2)平均坡印廷矢量。 解:(1)E 和H 的瞬时值为
jt x a H ( x, z , t ) Re[ He ] ex H 0 sin sin(t z ) a x ez H 0 cos cos(t z ) a
电磁场与电磁波
第5章 均匀平面波在无界媒质中的传播
13
例4.5.6 已知截面为 a b的矩形金属波导中电磁场的复矢量为 a x j z E ey j H 0 sin e a a x x j z H (ex j H 0 sin ez H 0 cos )e a a
jt a x E ( x, z, t ) Re[ Ee ] ey H 0 sin sin(t z ) a
电磁场与电磁波
第5章 均匀平面波在无界媒质中的传播
14
所以瞬时坡印廷矢量 S ( x, z, t ) E ( x, z, t ) H ( x, z, t )
A(r , t ) A0 cos[t (r )]
式中的A0为振幅、 ( r )为与坐标有关的相位因子。
实数表示法或 瞬时表示法
利用三角公式 其中
复振幅
j ( r ) A(r ) A0e

j [t ( r )] (r )e jt ] A(r , t ) Re A0e Re[ A

电动力学 电磁场与电磁波课件第5章 均匀平面波在无界空间中的传播

电动力学 电磁场与电磁波课件第5章 均匀平面波在无界空间中的传播

ε μ
A1e
jkz
eˆy
ε μ
Ex
z
定义介质的波阻抗
磁场的瞬 时值表达?
μ Ω
ε
1/ 称为特征光导纳
因和媒质参数有关,故又称媒质的本征阻抗或特性阻抗。
特别地,真空中的波阻抗
对于非铁磁材料

H
0
0 120 0
eˆz
eˆx
1 η
Ex
z
= 0/n
377Ω
H
1 η
eˆz
E
H
1 η
eˆz
k
传播方向 等相面
z
Ez,t eˆxEmcost kz
E
z,t
Eme
j t kr
Em 是复振幅矢量
该式可以推广到任意传播方向k:
E r,t
Eme
j t kr
因此,对时谐场 -j k
相应的磁场矢量:
H
r,t
1 η
eˆn
E
1 η
eˆn
Eme
j
ωt
k r
例: 已知无界理想媒质( =90, =0, =0)
3e
j
kz 3
eˆx
3
40
ej
kz 3
eˆy
1
10
e
jkz
eˆz
5
16
W
/
m2
Pav
S
Sav
dS
5 16π
W
课堂练习: 频率为9.4GHz的均匀平面波在
聚乙烯中传播,设材料无损耗,相对介电常数r=2.26,磁场
的振幅7 mA/m,求相速、波长、波阻抗和电场强度的振幅。
解:

电磁场课后答案 第5章 时变电磁场和平面电磁波-1

电磁场课后答案 第5章 时变电磁场和平面电磁波-1

& + H e jω t
]
故 S (t ) =
1 & & & & & & & & [ E × H + E × H + E × H e j 2ω t + E * × H e j 2ω t ] 4 1 & & & & = Re[ E × H + E × H e j 2 ω t ] 2
坡印廷矢量代表瞬时电磁功率流密度。 坡印廷矢量代表瞬时电磁功率流密度。
& & 由(a ), × × E = jω × H
& & & 将(b )代入,有 E 2 E = ω2εE
将(c )代入,得 & & 2 E + k 2 E = 0
( )
k = ω ε
& & 同理, 2 H + k 2 H = 0
复矢量边界条件
& & n × ( E1 E2 ) = 0 & & & n × ( H1 H 2 ) = J s & & & n ( D1 D2 ) = ρ s & & n (B B ) = 0
[
jω t
] = y ω
k
E 0 cos( ω t kz
0
π
2
)
η0
E0
sin( ω t kz )
ω
k
0
ω 0 = ω 0ε
=
0
0 = η ε0
0
14
复数形式Maxwell方程组 §5.2 复数形式 方程组

第5章电磁场与微波技术+课件PPT(黄玉兰)

第5章电磁场与微波技术+课件PPT(黄玉兰)

jβ cos mϕ ′ Er = − E 0 J m (k c r )sin mϕ e − jβz kc
5. 波阻抗
Z TE
ωµ = = = Hv β
Eu
η
λ 1− λ c
2
(5.32பைடு நூலகம் 5.32)
2
Z TM
λ β = = =η 1− λ H v ωε c Eu
(5.33) 5.33)
6. 功率流
1 ∗ P = Re ∫ E × H ⋅ dS S 2 1 ∗ = Re ∫ E 0t (u , v ) × H 0t (u , v ) ⋅ e z dS S 2 5.34) (5.34)
nπ − jβz x sin y e b m β nπ mπ nπ − jβz Ey = − j 2 E 0 sin a x cos b y e kc b ωε nπ mπ nπ − jβz Hx = j 2 x cos y e E 0 sin kc b a b ωε mπ mπ nπ − jβz Hy = −j 2 x sin y e E 0 cos kc a a b
∇ Et + k Et = 0
2 2
(5.15) 5.15) (5.16) 5.16) (5.17) 5.17) (5.18) 5.18)
∇ 2H t + k 2H t = 0
∇2 Ez + k 2 Ez = 0
∇ Hz + k Hz = 0
2 2
j β ∂E z ωµ ∂H z Eu = − 2 h ∂u + h ∂v kc 1 2

第五章 时变电磁场

第五章 时变电磁场
2、在 r = 1mm的球面上电荷密度的增加率; 3、在 r = 1mm的球内总电荷的增加率。
解:1、 I J dS 2 10r 1.5 r 2 sin d d
S
00
40 r0.5
3.9738A
r 1mm
2、因为

J

1 r2
d dr
r 2 10r 1.5
dS

H dS
S
上式右边应用散度定理可以写为
S H dS V H dV 0
左边为
D
S

J
c

t
dS
Ic
Id

I
0
证毕
例5-3 坐标原点附近区域内传导电流为 J er 10r 1.5( A / m2 ) 试求:1、通过半径 r = 1mm的球面的电流值;
B

E
l

dl
S
t
dS

B
S
dS

0

D
S

dS

q
微分形式 H J D
t E B
t B 0
D
可见,时变电场是有旋有散的,时变磁场是有旋无散的。但是, 时变电磁场中的电场与磁场是不可分割的,因此,时变电磁场是有旋 有散场。
四、麦克斯韦方程组的辅助方程—本构关系 》一般媒质本构关系 》各向同性线性媒质本构关系

D B

0E 0 ( H
P M
)

J


E
D E

电磁场与电磁波课件ppt(电子科技大学)第五章 均匀平面波在无界媒质中的传播

电磁场与电磁波课件ppt(电子科技大学)第五章 均匀平面波在无界媒质中的传播

电磁场与电磁波 第5章 均匀平面波在无界媒质中的传播
3
5.1 理想介质中的均匀平面波
5.1.1 一维波动方程的均匀平面波解 5.1.2 理想介质中均匀平面波的传播特点 5.1.3 沿任意方向传播的均匀平面波
电子科技大学编写
高等教育出版社出版
电磁场与电磁波 第5章 均匀平面波在无界媒质中的传播
4
5.1.1 一维波动方程的均匀平面波解 设在无限大的无源空间中,充满线性、各向同性的均匀理想
H1y

0
0 120 377 0
同理,对于 E2 ex E2x ex A2e jkz
1
H2 (ez ) E2
结论:在理想介质中,均匀平面波的电场强度与磁场强度相
互垂直,且同相位。
电子科技大学编写
高等教育出版社出版
电磁场与电磁波 第5章 均匀平面波在无界媒质中的传播
解:以余弦为基准,直接写出
H

(z,t)

ey

1
3
E(z,t) 0H (z,t
cos(t z)
)

(ez
)

ex
40
A/m cos(t

z)
V/m
因 30 rad/m,故
2 2 0.21 m , f c 3108 45 108 1.43109 Hz
E(z,t) exEx ex104 cos(t kz )
2 f 2 108 rad/s
k
c
r r

2 108
3108
4 4 rad/m
3
对于余弦函数,当相角为零时达振幅值。考虑条件t = 0、z =1/8m

电磁场与电磁波_第五章

电磁场与电磁波_第五章

1 2
Re[ez
|
E
|2
1
|c
|
e j
]
ez
2
1
|c
|
|
E
|2
cos
总结
• 1. 电场E、磁场H与传播方向之间相互垂直, 仍然是横电磁波(TEM)
• 2. 电场与磁场的振幅呈指数衰减 • 3. 波阻抗为复数,电场与磁场不同相位 • 4. 电磁波的相速与频率有关 • 5. 平均磁场能量密度大于平均电场能量密

亥姆霍兹的 解为 :
E
ex ex
exEx Exme( E x me z
ex Exme
j ) z
e jz
z
• 式中第一个式子 ez 表示电场的振幅随传播
距离 z而呈指数衰减, 称为衰减常数,表
示每传播一个单位距离其振幅的衰减量;第二
个因子 e jz是相位因子, 称为相位常数

瞬时值为:E
2ExmEym
Exm2
E
2 ym
cos
5.3 均匀平面波在导电媒质中的传播
• 在导电媒质中,由于电导率不为零,当电 磁波在其中传播时,其中必然有传导电流, 这将导致电磁能量的损耗。
• 5.3.1 导电媒质中的均匀平面波
• 在均匀导电媒质中,由
•得
H
J
jE
j(
j
)E
j cE
1
E
( H ) 0
• 可见,在弱导电媒质中,除了有一定的损 耗所引起的衰减外,与理想介质中平面波 的传播特性基本相同
5.3.3 良导体中的均匀平面波
• 良导体是指 1的媒质 • 传播常数为
j ( j ) j (1 j )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

J0 Ñ sJds 0
由上述方程组可知,静态场与时变场最基本的区别在于静 态场的电场和磁场是彼此独立存在的,即电场只由电荷产 生,磁场只由电流产生。没有变化的磁场,也没有变化的 电场。既然如此,我们就可以分别写出静电场、恒定电场 和恒定磁场的基本方程。
1、静电场的基本方程
静电场是静止电荷或静止带电体产生的场,其基本方
q
h
有效区域
h
q
R R
镜像电荷 电位函数
qq,hh
4q(R 1R 1) ( z0)
h q
因z = 0时, RRz00
满足原问题的边界条件,所得的结果是正确的。
上半空间( z≥0 )的电位函数
(x ,y ,z)q[
1 1]
4 x2 y2 (z h )2 x2 y2 (z h )2
(z 0)
导体平面上的感应电荷密度为
ur ur
B H
从以上方程可知,恒定磁场是一个旋涡场,电流是这个旋 涡场的源,磁力线是闭合的。
5.1.2 泊松方程和拉普拉斯方程
1、静电场的位函数
静电场既然是一个位场,就可以用一个标量函数
的梯度来表示它:

ur
E
式中的标量函数 称为
电位函数。
对于均匀、线性、各向同性的介质,ε为常数, 0
有了对偶原理后,我们就能把某种场的分析计算结果, 直接推广到其对偶的场中,这也是求解电磁场的一种方法。
1、ρ=0区域的静电场与电源外区域的恒定电场的对偶
静电场
ur
E0 ur
E
uur D 0 uur ur
DE
2 0
uur r
qÑ sDds
恒定电场
ur
E0 ur
E
r
ur J ur0
J E
显然,q1 对平面 2 以及q2 对平 面 1 均不能满足边界条件。
只有在(-d1, -d2 )处再设置一 镜像电荷q3 = q,所有边界条件才能
q1
d1
d2 R1
得到满足。
电位函数
q (1111) 4 R R1 R2 R3
d2 q3
R3 d1
1
d1
R
R2 d1
q d2
2
d2 q2
间而变化,即与时间t无关。因此 ,静态场的麦克斯韦方
程组为: uur D ur E 0 ur B 0 u ur ur H J
电流连续性方程为:
ur r
Ñ
s
D ur
d s r
v
dv
Ñ l
E ur
d
l r
0
Ñ
s
B u ur
d
s r
0
ur
r
Ñ l H d l s J d s
r
u r r
S
qh
zz0 2(x2y2h2)32
q
h
导体平面上的总感应电荷为
q h d xd y
q inS Sd S 2 (x2y2 h 2)32
2 qh
2
0
0(2dhd2)32q
2. 线电荷对无限大接地导体平面的镜像
镜像线电荷: ll,hh
电位函数 l lnR (z0) 2 R
当z=0时, r1 r2
0
有效区域
h
l
r1
r2
h
l
满足原问题的边界条件,所得的解是正确的。
3. 点电荷对相交半无限大接地导体平面的镜像
如图所示,两个相互垂直相连的半无限大接地导体平板,点 电荷q 位于(d1, d2 )处。
对于平面1,有镜像电荷q1=-q,位于(-d1, d2 ) 对于平面2,有镜像电荷q2=-q,位于( d1, -d2 )
即标量磁位函数 m
即令
uur
H m
注意:标量磁位的定义只是在无源区才能应用。
r
rr
当媒质是均匀、线性和各项同性时,由 B0 和 B H
可得
r
H0
uur
由于 H m
2m 0
以上所导出的三个静态场的基本方程表明:静态场可以用
位函数表示,而且位函数在有源区域均满足泊松方程,在
无源区域均满足拉普拉斯方程。因此,静态场的求解问题
函数值 f (s)
f ( s ) 为边界点S的位函数,这类问题称为第一类边界条件。

第二类边界条件
只给定待求位函数在边界上的
法向导数值
n
f (s)
因为
s
Dn En
n
故上式相当于给定了边界表面的面电荷密度或电场强度的 法向分量,这类问题称为第二类边界条件。
第三类边界条件
给定边界上的位函数及其法向 导数的线性组合
f1(s) nf2(s)
这是混合边界条件,称为第三类边界条件。
5.3.2 叠加原理
若 1 和 2 分别满足拉普拉斯方程,即 21 0 和
22 0 ,则 1 和 2 的线性组合: a1b2
必然也满足拉普拉斯方程: 2(a1b2)0
式中a、b均为常系数。
5.3.3 唯一性定理 唯一性定理可叙述为:对于任一静态场,在边界条件给定 后,空间各处的场也就唯一地确定了,或者说这时拉普拉 斯方程的解是唯一的。
可用一个标量函数来描述。
ur
E
3、恒定磁场的基本方程
恒定电流的导体周围或内部不仅存在电场,而且存在
磁场,但这个磁场不随时间变化,是恒定磁场。假设导体
中的传导电流为I,电流密度为
ur J
,则有
ur
B 0
ur r
H J
r
Ñs Br
dsr r
0
r
r
Ñl H dl s J ds
这是恒定磁场的基本方程。 另外:磁介质中的物态方程为
这说明,在无源区域,恒定电场的位函数满足拉普拉斯 方程。
3、恒定磁场的位函数分布
(1) 磁场的矢量位函数
恒定磁场是有旋场,即
ur r
urBJ
,但它却是无散场,
即 B0
r 引入一个矢量磁位 A
后,由于
ur r
B=A
,可得
u A r ( u A r) 2 u A rJ r
ur
人为规定 A0
拉普拉斯方程。它
是在不存在电荷的区域内,电位函数 应满足的方程。
拉普拉斯算符 2 在不同的坐标系中有不同的表达形式:
在直角坐标系中
22
2
2
x2 y2 z2
在圆柱坐标系中 21 rr(rr)r1222 z22
在球坐标系中
2 R 1 2 R (R 2 R ) R 2 s 1 in (s in ) R 2 s 1 in 2 2 2
2 0 rr
I sJds
对偶量
rr E E
rr DJ
q I
ur 2、ρ=0区域的静电场与 J 0 区域的恒定磁场的对偶
静电场
ur
E0 uur
D 0 uur ur
DE
uur r
qÑ sDds
2 0
恒定磁场
r H0
r B0 rr
B H
rr
Ñ sBds
2m 0
对偶量
rr Er Hr
等效电荷
q′
q
非均匀感应电荷
非均匀感应电荷产生的 电位很难求解,可以用 等效电荷的电位替代
接地导体柱附近有一个线电荷。情况与上例类似,但等效电 荷为线电荷。 结论:所谓镜像法是将不均匀电荷分布的作用等效为点电荷
或线电荷的作用。
问题:这种等效电荷是否存在? 这种等效是否合理?
2. 镜像法的原理 用位于场域边界外虚设的较简单的镜像电荷分布来等效替代
该边界上未知的较为复杂的电荷分布,从而将原含该边界的非均 匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程 得以明显简化的一种间接求解法。
3. 镜像法的理论基础——解的惟一性定理
在导体形状、几何尺寸、带电状况和媒质几何结构、特性不变 的前提条件下,根据惟一性定理,只要找出的解答满足在同一泛 定方程下问题所给定的边界条件,那就是该问题的解答,并且是 惟一的解答。镜像法正是巧妙地应用了这一基本原理、面向多种 典型结构的工程电磁场问题所构成的一种有效的解析求解法
就变成了如何求解泊松方程和拉普拉斯方程的问题。这两
个方程是二阶偏微分方程,针对具体的电磁问题,不可能
完全用数学方法求解。在介绍具体的求解方法之前,我们
要先介绍几个重要的基本原理,这些原理将成为以后求解
方程的理论依据。
5.2 对偶原理
如果描述两种物理现象的方程具有相同的数学形式, 并且有相似的边界条件或对应的边界条件,那么它们的数 学解的形式也将是相同的,这就是对偶原理。具有同样数 学形式的两个方程称为对偶性方程,在对偶性方程中,处 于同等地位的量称为对偶量。
重点:
1. 静电场、恒定电场 、恒定磁场的基本方程
2. 静态场的位函数方程 3. 求解静态场位函数方程的方法所依据的理论 : 4. 镜像对法偶、原分理离、变叠量加法原理、、格唯林一函性数定法理、
有限差分法
5.1 泊松方程和拉普拉斯方程
5.1.1 静态场中的麦克斯韦方程组
对于静态场,各场量只是空间坐标的函数,并不随时
4. 镜像法应用的关键点 镜像电荷的确定
像电荷的个数、位置及其电量大小——“三要素” ; 等效求解的“有效场域”。
5. 确定镜像电荷的两条原则 像电荷必须位于所求解的场区域以外的空间中;
像电荷的个数、位置及电荷量的大小以满足所求解的场 区域 的边界条件来确定。
5.4.1 接地导体平面的镜像 1. 点电荷对无限大接地导体平面的镜像
DB
q
m
5.3 叠加原理和唯一性定理
相关文档
最新文档