浅谈代数式恒等变形的常用方法
代数式的恒等变形
教学·信息 课程教育研究 Course Education Ressearch 2015年9月 下旬刊174· ·著名教育家裴斯泰洛奇说过:“教学最大的挑战是她的不可预知性。
”语文课堂教学是师生、生生、生本之间相互对话、相互碰撞的动态过程,课堂随时会出现一些非预设性的新情况、新动态。
这就是所谓的“不可预知性”,通常也叫做节外生枝。
教师该如何运用教学的节外生枝,使其也能绽放出春天的光彩,我谈两个看法。
一、节外生枝,巧在引导有位教师教学苏教版五年级下册的《埃及的金字塔》第二自然段,形成下面的对话:师:读了这段话,谁来说说金字塔有什么作用?生:金字塔是拿来看的!(全班同学哄堂大笑,该同学满脸通红)师:这位同学已经跳出课文,融入了自己的理解,他把今天金字塔的作用用一个“看”字进行了高度的概括。
这个“看”字可不一般呀,同学们请想一想,你能给“看”换个词吗?生(纷纷举手):欣赏、研究、考察、勘探、瞻仰。
师:说得好!下面请同学们认真的默读第3、4、5、自然段,想一想,不同身份的人站在金字塔前,他们是怎么“看”的?《课标》指出:“阅读是学生的个性化行为。
”学生对文本的阅读感悟,是依据自己的阅读经验和情感而产生自然而真实的反应,有时会出现教师不可预料的阅读感悟。
上述教学,由于学生的生活经验和对文本的感悟不同,其认识确实偏离了课文内容。
但执教老师却没有简单地否定,而是充分尊重学生的个性化理解,顺学而导,由“看”引出“欣赏、研究、考察、勘探、瞻仰”等意思,让学生带着问题与文本进行一番深层次的对话,再次交流自己的体会和感悟。
看似离谱的回答,在老师巧妙地引导下,竟化腐朽为神奇。
学生的思维火花被点燃了,“欣赏金字塔、研究金字塔、勘探金字塔……”,对金字塔的崇敬之情、热爱之情油然而生,课堂呈现百花齐放、百家争鸣的局面,也加深了学生对文本的理解和感悟。
这样的引导,既呵护了学生,化解课堂教学的尴尬,又引发学生深入阅读探究,发表见解,从而获得真知求知。
初中奥数恒等变形知识点整理
初中奥数恒等变形知识点整理恒等概念是对两个代数式而言,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.表示两个代数式恒等的等式叫做恒等式.如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.1.如果两个多项式的同次项的'系数都相等,那么这两个多项式是恒等的.如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).2.通过一系列的恒等变形,证明两个多项式是恒等的.如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立.x2+3x+2=(x-1)2+b(x-1)+c ①解一:∵①是恒等式,对x的任意数值,等式都成立设x=1,代入①,得12+3×1+2=(1-1)2+b(1-1)+cc=6再设x=2,代入①,由于已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6b=5∴x2+3x+2=(x-1)2+5(x-1)+6解二:将右边展开x2+3x+2=(x-1)2+b(x-1)+c=x2-2x+1+bx-b+c=x2+(b-2)x+(1-b+c)比较两边同次项的系数,得由②得b=5将b=5代入③得1-5+c=2c=6∴x2+3x+2=(x-1)2+5(x-1)+6这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.【初中奥数恒等变形知识点汇总整理】。
第二讲 式的恒等变形常用的技巧
第二讲式的恒等变形常用的技巧
一、定义
恒等变形(Identity Transformation),即恒等转换,是数学中用来把一个等式变成另一个等式,保持等式的真值不变的变形方法,是一种常见的数学技术,被广泛用于研究不等式和方程的性质。
二、作用
恒等变形可以帮助人们更快地理解某一关系,从而推导出证明结果,它可以帮助学生更深入地掌握算法,提高学习效率,发展思维能力。
三、常用技巧
1. 左右交换法
左右交换法是把等式中的等号之外的式子分成两边,然后左右交换这两边的式子,例如,把x+y=6变成y+x=6.
2. 同乘除法
同乘除法是在等式中的式子两边同乘除一个数,例如,把2x+3y=6变成x+1.5y=3.
3. 组合法
组合法是通过简单的加减乘除把两边的式子组合起来,例如,把
x+y=6变成x+2y=8.
4. 公式法
公式法是把等式中式子变成另一个形式,如把2x+3y=6变成3x-2y=6.
5. 变数法
变数法是把等式中的公式变成另一个形式,如把x+2y=8变成2x+y=8.
6. 变换形式法
变换形式法是把等式中的公式变成另一个形式,如把2x+3y=6变成6-3y=2x.。
代数式恒等变形法则归纳
代数式恒等变形法则归纳引言代数式是代数学中的基础概念之一,它用字母和常数通过运算符号相连而成。
在数学中,我们常常需要对代数式进行变形,以达到简化、分解、合并或者推导等目的。
代数式的变形是数学问题解决过程中重要的一环,它不仅能提高计算效率,还能揭示代数运算的本质。
在代数式的变形中,恒等变形法则是重要的基础工具,本文将对代数式的恒等变形法则进行归纳总结。
一、基本变形法则1. 加法法则:•加法结合律:a+(b+c)=(a+b)+c•加法交换律:a+b=b+a•加法零元:a+0=a #### 2. 乘法法则:•乘法结合律:$a \\cdot (b \\cdot c) = (a \\cdot b) \\cdot c$•乘法交换律:$a \\cdot b = b \\cdot a$•乘法零元:$a \\cdot 0 = 0$•乘法单位元:$a \\cdot 1 = a$二、分配律1. 左分配律:对于任意的a,b,c,有$a \\cdot (b + c) = a \\cdot b + a \\cdot c$ #### 2. 右分配律:对于任意的a,b,c,有$(a + b) \\cdot c = a \\cdot c + b \\cdot c$三、幂运算法则1. 幂运算与乘法运算:•幂运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•幂运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.幂运算的乘方法则:•幂运算的乘方法则1:$a^n \\cdot a^m = a^{n + m}$•幂运算的乘方法则2:$(a^n)^m = a^{n \\cdot m}$•幂运算的乘方法则3:$(a \\cdot b)^n = a^n \\cdot b^n$四、指数运算法则1. 指数运算与乘法运算:•指数运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•指数运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.指数运算的指数法则:•指数运算的指数法则1:$a^n^m = a^{n \\cdot m}$•指数运算的指数法则2:$(a^n)^m = a^{n \\cdot m}$•指数运算的指数法则3:$(a^m)^n = a^{m \\cdot n}$五、因式分解法则1. 公因式提取法则:•公因式提取法则1:ax+ay=a(x+y)•公因式提取法则2:$a \\cdot b + a \\cdot c = a \\cdot (b + c)$ ####2. 公式分解法则:•差的平方公式:a2−b2=(a+b)(a−b)•平方差公式:a2−b2=(a−b)(a+b)•完全平方公式:a2+2ab+b2=(a+b)2•完全平方公式:a2−2ab+b2=(a−b)2六、合并同类项法则合并同类项法则:将含有相同字母指数的项合并为一个项•合并同类项法则1:ax+bx=(a+b)x•合并同类项法则2:ax2+bx2=(a+b)x2•合并同类项法则3:ax n+bx n=(a+b)x n结论恒等变形法则在代数式的变形中起着重要的作用。
代数式的恒等变形
代数式的恒等变形一、常值代换求值法——“1”的妙用例1 、 已知ab=1,求221111ba +++的值 [解] 把ab=1代入,得221111b a +++ =22b ab aba ab ab +++ =b a a b a b +++=1例2 、已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理练习:1111,1=++++++++=c ca cb bc b a ab a abc 证明:若二、配方法例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b a a b +之值。
[解] ∵a2b2+a2+b2-4ab+1=(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2则有(ab-1)2+(a-b)2=0∴⎩⎨⎧==-.1,0ab b a解得⎩⎨⎧==;1,1b a ⎩⎨⎧-=-=.1,1b a当a=1,b=1时,b aa b +=1+1=2 当a=-1,b=-1时,b a a b +=1+1=2 例1 设a 、b 、c 、d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数的平方和,其形式是______.解mn=(a2+b2)(c2+d2)=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例 2 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.解 将条件化简成2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴ x=y=z,∴原式=1.练习:,0146422222=+---++x cx bx ax c b a 已知求证:3:2:1::=c b a三、因式分解法例6 已知a4+b4+c4+d4=4abcd ,且a ,b ,c ,d 都是正数,求证:a=b=c=d . 证 由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0, 所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以 a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a ,b ,c ,d 都为正数,所以a+b≠0,c+d≠0,所以 a =b ,c=d . 所以ab-cd=a2-c2=(a+c)(a-c)=0, 所以a =c .故a=b =c=d 成立.例4 已知|a|+|b|=|ab|+1, 求a+b 之值 [解] ∵|a|+|b|=|ab|+1∴|a|·|b|-|a|-|b|+1=0 (|a|-1)(|b|-1)=0 |a|=1 |b|=1 ∴a=±1或b=±1. 则当a=1,b=1时,a+b=2 当a=1,b=-1时,a+b=0 当a=-1,b=1时,a+b=0当a=-1,b=-1时,a+b=-2[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A ·B=0,则A=0或B=0”的思想来解决问题。
恒等变形知识点总结
恒等变形知识点总结恒等变形是指根据等式的性质和算术运算的性质,将一个等式变形成另一个等式的过程。
在变换的过程中,通过适当的运算,将等式的两侧转变成相同的表达式。
首先,我们来看一下恒等变形的基本原则,它包括以下几个方面:1. 相等的两个数(对象)可以相互规约。
2. 等式的两边加(或减)相等的数(或算式)仍相等。
3. 等式的两边同乘(或同除)一个不为零的数(或数的倒数)仍相等。
4. 在等式中引进(或去除)平方根,绝对值符号对方程做平方根变形,只有当两边都为非负数时,该等式才成立。
这些基本原则是我们进行恒等变形时需要牢记的,只有在遵守这些原则的前提下,我们才能正确进行恒等变形。
在进行恒等变形时,我们通常会用到一些基本的代数运算,例如加减法、乘除法、开平方、平移等,这些运算在恒等变形中起着非常重要的作用。
接下来,我们来看一些常见的恒等变形的方法和技巧。
1. 加减法变形加减法变形是指用等于同一个数的两个数互换位置,并相加或相减,来得到一个新的等式。
例如:a +b =c 和 a = c - b这里,我们可以将第一个等式两边分别减去b,得到新的等式 a = c - b。
通过这个例子,我们可以看出,加减法变形是一种常见且有效的恒等变形方法,它可以帮助我们将一个复杂的等式化简成一个简单的等式。
2. 乘除法变形乘除法变形是指用等于同一数的两个数相除或相乘,得到新的等式。
例如:ab = c 和 a = c/b这里,我们可以将第一个等式两边都除以b,得到新的等式a = c/b。
通过这个例子,我们可以看出,乘除法变形也是一个常见且有效的恒等变形方法。
3. 平方根变形平方根变形是指用等于同一数的两个数同时开平方,得到新的等式。
例如:a^2 = c 和a = √c这里,我们可以将第一个等式两边同时开平方,得到新的等式a = √c。
通过这个例子,我们可以看出,平方根变形也是一个常见且有效的恒等变形方法。
4. 移项变形移项变形是指将等式中的某一项移到等式的另一侧,得到新的等式。
代数变形常用的技巧
代数变形中常用的技巧代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。
代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
本文就初等代数变形中的解题技巧,作一些论述。
两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。
恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。
代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。
中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。
代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。
一、整式变形整式变形包括整式的加减、乘除、因式分解等知识。
这些知识都是代数中的最基础的知识。
有关整式的运算与化简求值,常用到整式的变形。
例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。
而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。
初二奥数精讲——第10讲代数式的变形与求值(二)
初二奥数精讲——第10讲代数式的变形与求值(二)一、知识点解析1. 基本知识代数式:由字母和运算符号组成的式子叫做代数式。
代数式的值:当代数式中所有字母都取一个确定的值时,代数式也得到一个相应的值,这个值称为代数式的值。
代数式的变形:将一个代数式变为一个与之等价的代数式称为代数式的变形。
2. 基本方法凑配法:从某种结构中凑配出另一种结构,这种变形称为凑配法。
它常采用如下一些技巧:(1)条件的简化:将条件进行恒等变形(移项、合并、去分母、因式分解等),得出更简单的条件(称为新条件)。
(2)条件的凑配:瞄准目标,对条件进行凑配,即在条件中凑配出目标中的有关结构。
凑配的关键,是发现条件与结论的差异,由此改造条件。
(3)各条件的综合:对于多个条件的问题,常常要将条件综合在一起,得出综合的结论。
(4)结论的凑配:瞄准条件,对目标进行凑配,即在目标中凑配出条件中的有关结构,从而利用条件。
凑配的关键,是发现条件与结论间的差异,由此改造目标。
(5)从条件与结论同时凑配:先从条件中凑出一个新的结构,再在结论中凑出这一新结构。
(6)从结论的一部分中凑配另一部分:发现结论(等式)各个部分之间的差异,从一个部分凑配另一个部分。
常见的是从等式的一边凑配另一边。
(7)凑配公式:通过配因式、配项等,凑配“平方差”,借以产生某种因式。
此外,凑配完全平方、完全立方(简称“配方”),以进一步利用公式或产生非负项是常用手段。
消元法:通过比较题目的条件与目标,发现最终结果中不含条件中出现的某个字母,从而设法消去这个字母,常常可找到解题途径,或者,通过消去一些字母,使所含的字母个数减少,问题就变得简单些。
它常常采用如下一些技巧:(1)选择主元:如果条件中含有k个等式r个字母(k < r),则可选择r-k个字母为主元,将其他字母用主元表示。
(2)设等式参数:假设条件中含有某种等式,则可将等式一边的值用一个参数表示,进而将有关字母也用这个参数表示。
代数式的恒等变换
代数式的恒等变换方法与技巧一、代数式恒等的一般概念定义1:在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。
字母的所有允许值组成的集合称为这个代数式的定义域。
对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。
定义2:如果两个代数式A 、B ,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B 。
两个代数式恒等的概念是相对的。
同样的两个代数式在它们各自的定义域的x =,在x≥0时成立,但在x<0时不成立。
因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。
定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。
代数式的变形,可能引起定义域的变化。
如lgx 2的定义域是(,0)(0,)-∞+∞,2lgx 的定义域是(0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx 2=2lgx 。
由lgx 2变形为2lgx 时,定义域缩小了;反之,由2lgx 变形为lgx 2时,定义域扩大了。
这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。
由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。
例1:设p 为实常数,x =有实根的充要条件,并求出所有实根。
由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。
这样可避免增根和遣根的出现。
解:原方程等价于222(0,0x p x x x ⎧-=-⎪⎨-≥≥⎪⎩222222(4)4448(2)441330440,0p x x p p x x x x p x ⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043p x p p x x ⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩ 由上式知,原方程有实根,当且仅当p 满足条件24(4)44048(2)33p p p p --≤≤⇔≤≤- 这说明原方程有实根的充要条件是403p ≤≤。
代数式变形与技巧讲稿
A 、1B 、2C 、3D 、4代数式变形与技巧(一)徳阳二中邓正健如果两个代数式对于字母在允许范围内的一切取值,它们的值都相等,那么 这两个代数式恒等。
把一个代数式换成和它恒等的代数式,称为代数式的恒等变 形(或恒等变换)。
整式、分式、根式的运算及因式分解等都是恒等变形。
代数式 的恒等变形广泛应用于计算.化简.求值、证明、解方程之中,是数学中非常重 要的变形(运算)的方式。
能否将代数式进行适当、巧妙的变形,使问题获解,也是衡量学生数学能力 的标志之一。
因此,掌握恒等变形无论是对参加数学竞赛,还是进一步学好数学, 提高运算能力,都必将起到积极的促进作用。
代数式的变形方法灵活多变,技巧性强,即要求学生牢固掌握代数式运算的基本 法则,又要注意学习代数式恒等变形的方法和技巧。
下面将通过具体实例介绍一些代数式常用的变形方法和技巧。
一、利用因式分解进行代数式的变形因式分解本身就是恒等变形的一种形式。
常用的方法除提取公因式法、运用 公式法、分组分解法、十字相乘法之外,还有添(拆)项法、配方法、换元法、待 定系数法等。
山于后面还要专门探索代换法、配方法、待定系数法在代数式的变 形中的使用,所以这里不再展开。
例 1、计算:1991X 19921992-1992X 19911991 解:1991X 19921992-1992 X 19911991 =1991X1992X10001-1992X1991X10001分析:此题主要考察因式分解与约分的内容,已知条件首先要化成与所求式 相关的X 2 + 4 = 11的形式,然后将所求式的分子与分母同时变形,直到化成只含 X 2+4=H 时为止,再把X 2+-L=H 代入即可。
解:Vx-- = 3, •"+丄=11x H (x 2+ l) + (x 2+l) _ (x 2+l)(x 8 + l) x 6(x 4 +1) + (x 4 +1) _ (x 4 + l)(x 6 + 1)x(x + —)^x 4(x 4 + —) (2 +r 广 一2x x — __________ 疋 “LX H—V + —)X —)X + r -1)对对对例3、满足等式:还+曲-丁2003兀- j2OO3y + 丁2003貯=2003的正整数对(如刃 的个数是( )o分析:等式左边虽然很复杂,但通过观察分析知,它是仮、"的代数式, 因而可例2、当兀一丄=3时,x X 104-X 8+X 2+l x ,0 + x 6+x 4 + l严+/+宀 1 严+.{+F+l代入得,原式=「7 =丄11x(11-1) 110考虑用因式分解方法来解。
代数变形常用技巧
代数变形中常用的技巧代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。
代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
本文就初等代数变形中的解题技巧,作一些论述。
两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。
恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。
代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。
中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。
代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。
一、整式变形整式变形包括整式的加减、乘除、因式分解等知识。
这些知识都是代数中的最基础的知识。
有关整式的运算与化简求值,常用到整式的变形。
例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。
而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。
数学代数式变形技巧课件
数学代数式变形技巧课件数学中的代数式变形是指通过合理的变换规则将一个代数式转化为另一个等价的代数式,常用于解方程、证明等问题的推导过程中。
掌握代数式变形技巧,可以帮助我们更好地理解数学概念,简化计算过程,提高解题效率。
本课件将介绍一些常见的代数式变形技巧,并配有示例演示,旨在帮助学生掌握这些技巧,提升数学能力。
一、因式分解与合并因式分解和合并是代数式变形中常见且重要的技巧,它们可以将一个复杂的代数式简化为更简洁的形式。
1. 因式分解因式分解是将一个代数式拆分为多个乘积的形式,常用于简化计算、解方程等过程。
示例1:分解二次三项式对于形如ax² + bx + c的二次三项式,我们可以通过因式分解将其分解为两个一次项的乘积形式。
例如,对于2x² + 7x + 3,我们可以通过因式分解得到(2x + 1)(x + 3)。
示例2:分解完全平方差对于形如a² - b²的完全平方差,我们可以通过因式分解将其分解为两个一次项的乘积形式。
例如,对于x² - 9,我们可以通过因式分解得到(x + 3)(x - 3)。
2. 因式合并因式合并是将多个项合并为一个因式的过程,常用于简化计算、提取公因式等。
示例1:合并同类项对于形如3x + 4x + 2的代数式,我们可以将其中的同类项合并得到7x + 2。
示例2:提取公因式对于形如3x² - 6x的代数式,我们可以提取公因式得到3x(x - 2)。
二、化简与拓展化简与拓展是代数式变形中的重要技巧,它们可以帮助我们更好地理解代数式的性质,简化计算过程。
1. 化简代数式化简代数式是通过运用代数性质和运算规则,将一个复杂的代数式简化为更简单的形式。
示例1:化简分式对于形如(x² - 4)/(x + 2)的代数式,我们可以通过因式分解和约分的方法,将其化简为(x - 2)。
示例2:化简根式对于形如√(x² + 4x + 4)的代数式,我们可以通过完全平方公式,将其化简为(x + 2)。
代数式的恒等式与方程的解法
代数式的恒等式与方程的解法代数是数学中的一个重要分支,它研究各种代数结构及其运算规则。
在代数中,恒等式和方程是两个重要的概念。
恒等式是指两个代数式在任意给定的数值下都有相等的结果,而方程则是将一或多个未知数和一个或多个已知数之间的关系用代数式表示,并寻找使之成立的未知数值。
一、恒等式的概念及解法在代数中,恒等式是一种关系式,它对于任意给定的数值都成立。
恒等式的解法通常是将等式两边进行变形化简,直至推导出相等的结果。
例如,对于恒等式x^2 - y^2 = (x + y)(x - y),我们可以将其展开变形为x^2 - y^2 = x^2 - xy + xy - y^2,然后合并同类项得到0 = 0,这说明恒等式对于任意的x和y都成立。
另一个例子是恒等式(a + b)^2 = a^2 + 2ab + b^2,我们可以将其展开变形为a^2 + 2ab + b^2 = a^2 + 2ab + b^2,这样两边是相等的,所以恒等式成立。
二、方程的概念及解法方程是一种包含一个或多个未知数的等式,我们需要找到使之成立的未知数值,这些值称为方程的解。
解方程的基本思想是利用数学运算的性质,通过等式的变形和化简来求得未知数的值。
首先,我们可以通过合并同类项、移项和因式分解等方法将方程转化为简化形式。
例如,对于方程2x + 5 = 9,我们可以先将等式两边都减去5,得到2x = 4,然后再除以2,最终解得x = 2。
同样地,对于方程x^2 - 4 = 0,我们可以将其因式分解为(x + 2)(x - 2) = 0,这样我们可以得到两个解:x = 2和x = -2。
对于一些复杂的方程,我们可能需要运用更高级的解法。
例如,对于二次方程ax^2 + bx + c = 0,我们可以使用求根公式x = (-b ± √(b^2 -4ac))/(2a)来求解。
其中,根的个数和判别式D = b^2 - 4ac的正负性有关。
代数式与恒等变形
第5讲 爹代数式与恒等变形在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形.恒等变形,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简洁,一般可以把恒等变形分为两类:一类是无附加条件的,需要在式子默认的范围中运算;另一类 是有附加条件的,要善于利用条件,简化运算.恒等式变形的基本思路:由繁到简(即由等式较繁的一边向另一边推导)和相向趋进(即将等式两边同时转化为同一形式).恒等式证明的一般方法:1.单向证明,即从左边证到右边或从右边证到左边,其原则是化繁为简,变形的过程中要不断注意结论的形式,调整证明的方向.2.双向证明,即把左、右两边分别化简,使它们都等于第三个代数式.3.运用“比差法”或“比商法”,证明“左边一右边=0"或1=右边左边(右边≠O)”,可得左边d 右边. 4.运用分析法,由结论出发,执果索因,探求思路,本节结合实例对代数式的基本变形(如配方、因式分解、换元、设参、拆项与逐步合并等)方法作初步介绍,题1 求证 :=-+⨯+-+++n n n n 23522322n 2).235(1011-+-+n n n对同底数幂进行合并整理,解 方法一:左边)222()33(55221n n n n n -+-+++⨯⨯=++)22(2)13(35103121+-++⨯=-+n n n11210310510-+⨯-⨯+⨯=n n n)235(1011-+-+=n n n=右边,方法二:左边)12(2)13(352222+-++⨯=+n n n.25310522n n n ⨯-⨯+⨯=+右边11210310510-+⨯-⨯+⨯=n n n.25310522n n n ⨯-⨯+⨯=+故 左边=右边.方法一中受右边”、、“11235-+n n n 的提示,对左边式子进行合并时,以n n 351、+与12-n 为主元合并,迅速便捷.读一题,练3题,练就解题高手 1-1.已知,0=++c b a 求证:.3333abc c b a =++1-2.已知,xyz z y x =++证明:-+--1()1)(1(22y z y x .4)1)(1()1)(2222xyz y x z z x =--+- 1-3.证明:.32232++⋅+.13222.3222=++-+++题2 ?100321=++++ 经研究,这个问题的一般结论是),1(21321+=++++ n n n 其中,n 为整数,现在我们来研究一个类似的问题: ?=+⨯++⨯+⨯)1(...3221n n 观察下面三个特殊的等式:);210321(3121⨯⨯-⨯⨯=⨯ );321432(3132⨯⨯-⨯⨯=⨯ );432543(3143⨯⨯-⨯⨯=⨯ 将这三个式子两边相加(累加),可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完这段材料,请您思考回答:=⨯++⨯+⨯m 1003221)1(=+++⨯+⨯)1(3221)2(n n)2)(1(.432321)3(++++⨯⨯+⨯⋅⨯n n n =(只写出结果,不必写出中间的过程) 分析此题可得到如下信息:⨯⨯-⨯⨯=⨯10099102101100(31101100)1();101 +--++=+n n n n n n n n ()1()2)(1([31)1()2()];1 解 321(3110100]3221)1(⨯⨯=⨯++⨯+⨯ 210101100321432210⨯⨯++⨯⨯-⨯⨯+⨯⨯- ;34340010210110031)10110099=⨯⨯⨯=⨯⨯- (2)由类比思想知).2)(1(31)1(3221++=+++⨯+⨯n n n n n ),32104321(41321)3(⨯⨯⨯-⨯⨯⨯=⨯⨯),43215432(41432.⨯⨯⨯-⨯⨯⨯=⨯⨯ …… )]2)(1()1()3)(2)(1([41)2)(1(++--+++=++n n n n n n n n n n n 则 )2)(1(432321++++⨯⨯+⨯⨯n n n).3)(2)(1(41+++=n n n n 在解题时要善于利用类比推理思想,理解并记住一些常用的一般性结论,如++⨯+⨯ 321211 11321211,1)1(1++++++++=+n n n n n n .)12(531,112n n n =-++++-+= 读一题,练3题,练就解题高手2-1.已知n 是正整数,),(n n n y x P 是反比例函数xk y =图象上的一列点,其中.,,2,121n x x x n === 记⋅===1099322211,,,y x T y x T y x T 若=1T ,1则921T T T 的值是2-2.我们把分子为1的分数叫做单位分数,如,31,21,,41 任何一个单位分数都可以写成两个不同的单位分数的和,如,1214131,613121+=+⋅= ,2015141+= (1)根据对上述式子的观察,你会发现+=口151,1O请写出O ,口所表示的数; (2)进一步思考,单位分数n 1(n 是不小于2的正整数)=*+∆11请写出,*∆所表示的代数式,并加以验证.2-3.已知200921,,a a a 都是正数,+++= 21(a a M ),)(2009322008a a a a +++ +++=< 21a a N).)(2008322009a a a a +++试比较M 与N 的大小.题3 已知c b a a c a c c b c b b a b a ,,,)(3)(2-+=-+=-+互不相等,求证.0598⋅=++c b α 本题可设,)(3)(2k a c a C c b c h b a b a =-+=-+=-+然后求解. 解 设,)(3)(2k a c a c c b c b b a b a =-+=-⋅+=-+ 则).(3),(2),.(a c k a c c b k c b a k b a -=+-=-=+故 )(2),()(3),(6)(6a c c b c b b a k b a +-=+-=+α).(6a c k -=以上三式相加,得=+++++)(2)(3)(6a c c b b a ).(6a c c b a k -+--即 .0598=++c b a本题运用了连比等式设参数k 的方法,这种引入参数的方法是恒等式证明中的常用技巧,读 一题,练1题,决出能力高下3-1.已知,26223823122523=-++-=-+++=---+a c a c c b c b bk a b a 则=++--++734232c b a c b a题4 证明 333)2()2()2(z y x y x z x z y -++-++-+).2)(2()2(3z y x x z x z y -+-+⋅-+=γ本题看似复杂,但是仔细分析各项特征,可尝试使用多变量换元法.解 令①,2a x z y =-+②,2b y x z =-+③,2c z y x =-+ 则原待证恒等式转化为.3333abc c b a =++联想到公式 --++++=-++ab c b a c b a abc c b a 222333)((3).ca bc - 由①+②+③,得 )2()2()2(z y x y x z x z y c b a -++-++⋅-+=++.0=故,03333=-++abc c b a即.3333abc c b a =++原式得证.换元法的使用可以使题目条件更趋简洁,更易把握题目特点.读一题,练3题,冲刺奥数金牌4-1试用x+l 的各项幂表示.13.223-+-x x x4-2.已知z y x z y x ,0,0,200920072005222>>==0>且.1111=++zy x 求证:20072005200920072005+=++z y x .2009+ 4-3.解方程:,23322332⋅---=---x x x x 题5 设x,y,z 互为不相等的非零实数,且x z z y y x 111+=+=+求证: 1222=z y x由于结论为”“1222=z y x 的形式,可以从题设 式中导出x ,y ,z 乘积的形式xy ,yz ,zx 解 由,11xy y x +=+变形可得 ⋅-=-=-yzz y y z y x 11 则①⋅--=y x z y yz 同理可得②,zy x z zx --= ③xz y x xy --= 由①×②×③,得.1222=z y x本题中x ,y ,z 具有轮换对称的特点,也可从二元情形中得到启示:即令x ,y 为互不相等的非零实数,且,11x y y x +=+易推出,11y x y x -=-故有,1-=--=y x x y xy 所以,122=y x 三元与二元情形类似.读一题,练3题,冲刺奥数金牌5-1若实数x ,y ,z 满足x z z y y x 1,11,41+=+=+ ,37=则xyz= 5-2.已知),35(21),35(21-=+=y x 求226y xy x ++的值. 5-3.已知实数a ,b ,c ,d 互不相等,且=+=+c b b a 11,11x a d d c =+=+试求x 的值, 题6 已知 za a x y a z x a a y 222,,-==-=求证: 由待证式z a a x 2-=知要从题设条件中消去y .解 由已知,得.,22z a y a x a a y -=-=两式相乘,得),)((22z a x a a a -⋅⋅-= 即⋅+--=x z a az x a a a 2322 所以 ⋅-=x a xaz z 2故 ⋅-=z a a x 2综合考查条件结论,充分挖掘隐含信息,常会成为解题的关键,如本题中由-=-=a z x a a y ,2,,2y a 到,,,2z a a x -=发现要消去y 这一信息.读一题,练3题,冲刺奥数金牌6-1.已知,1=ab 求11+++b b a a 的值. 6-2.设⋅+-=+-=+-=,,,a c a c r c b c b q b a b a P 其中a c c b b a +++,,不为零.求证: ).1()1)(1()1)(1)(1(r q P r q P -⋅--=+++6-3.已知a ,b ,c ,d 满足3,0,,a d c b a d c b a =/+=+≤≤.333d c b ⋅+=+ 求证:.,d b c a ==参考答案与提示。
数学方法01_恒等变形法
第一篇 恒等变形法
恒等变形法:在代数式的变形过程中,往往要求形变值不变,而变化后新得到的形式,恰是有利于结论的推导的。
此法包括因式分解法、配方法、降幂法等
例1 解方程:22(1997)(1996)1x x -+-=
例2 在满足23,0,0x y x y +≤≥≥的条件下,求2x y +能达到的最大值
例3 如果20a b +=,求
12a a b b
-+-的值
例4 证明:没有一个自然数n ,能使6543235154123n n n n n n +--+++的值是某个自然数的平方
例5 证明:任一偶数是表达式2221112456x xy y x y +++++的值,其中变量x 和y 取任一整数值
例6 已知1,1a b ab +==-,求77a b +的值
例7 求方程32103x x x ---
=的实数解
例8 设122006,,x x x 都是+1或-1,证明12320062320060x x x x ++++≠
回家作业
(1)若分数()104()33
-⨯ +中,括号( )内是一个三位自然数,为了使该分数成为一个可约分数,( )内最小、最大的三位数是_________
(2)使22231
x x A x x --=-+为整数的一切整数x 为________________
(3)证明:n 为任何整数,形如2912n n ++的数,不能被121整除。
代数恒等变形
代数恒等变形代数恒等变形是数学中重要的一部分,一般来讲,代数恒等变形是将一个复杂的代数式子转化为较为简单或者更容易计算的形式的过程。
在初中、高中甚至大学的数学学习中,我们都会学习到代数恒等变形的相关知识。
在这篇文章中,我将详细介绍代数恒等变形的相关知识,包括代数恒等的定义、代数恒等变形的基本原则、代数恒等变形的应用等。
一、代数恒等的定义代数恒等是指在代数式中,等号两边始终相等的情况,常写作A=B。
这里的A和B可以是任意的含有变量的代数式。
代数恒等一般采用已知的代数恒等或者基本公式变化来推导到简便的等式。
代数恒等在代数运算中起到重要的作用,因为它们为计算提供了便利,可以用更简单的表达形式来表示原来复杂的运算过程。
例如,三角形的勾股定理可以写成a^{2}=b^{2}+c^{2},这就是代数恒等的一种形式。
在证明这个恒等时,我们可以使用代数运算规律和几何定理,从而将勾股定理转化为更加简单的代数式。
二、代数恒等变形的基本原则在代数恒等变形中,我们需要遵守一些基本原则,这些原则是代数恒等变形的基础。
下面是代数恒等变形的三条基本原则:1.等式两边加上相同的数或者代数式,等式仍然成立。
2.等式两边同时减去相同的数或者代数式,等式仍然成立。
3.等式两边同时乘以相同的数或者代数式,等式仍然成立。
除了这三条基本原则之外,还有一些其他的原则也需要遵守。
比如,等式两边同时开n次方时,需要保证等式两边都是非负数,等式两边同时取对数时,需要保证等式两边都是正数。
这些原则在代数恒等变形中非常重要,需要我们加以注意。
三、代数恒等变形的应用代数恒等变形在数学中有着广泛的应用,下面列举了一些常见的代数恒等变形应用:1.利用代数恒等变形来简化复杂的代数式,从而达到便于计算的目的。
2.在解经典问题时,通过使用已知的代数恒等或者基本公式,将问题转换为容易求解的一个或者多个代数式。
3.在证明定理和公式时,通过使用代数恒等变形来推导出想要的证明结果。
代数式的变形的技巧
代数式的变形的技巧在化简、求值、证明恒等式(不等式)、解方程(不等式)的过程中,常需将代数式变形,现结合实例对代数式的基本变形,如配方、因式分解、换元、设参、拆项与逐步合并等方法作初步介绍.1.配方在实数范围内,配方的目的就是为了发现题中的隐含条件,以便利用实数的性质来解题.例1 设a、b、c、d都是整数,且m=a2+b2,n=c2+d2,mn也可以表示成两个整数的平方和,其形式是______.解mn=(a2+b2)(c2+d2)=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd=(ac+bd)2+(ad-bc)2=(ac-bd)2+(ad+bc)2,所以,mn的形式为(ac+bd)2+(ad-bc)2或(ac-bd)2+(ad+bc)2.例2 设x、y、z为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.解将条件化简成2x2+2y2+2z2-2xy-2x2-2yz=0∴ (x-y)2+(x-z)2+(y-z)2=0∴x=y=z,∴原式=1.2.因式分解前面已介绍过因式分解的各种典型方法,下面再举几个应用方面的例子.例3 如果a是x2-3x+1=0的根,试求的值.解∵a为x2-3x+1=0的根,∴ a2-3a+1=0,,且=1.原式说明:这里只对所求式分子进行因式分解,避免了解方程和复杂的计算.3.换元换元使复杂的问题变得简洁明了.例4 设a+b+c=3m,求证:(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0.证明令p=m-a,q=m-b,r=m-c则p+q+r=0.P3+q3+r3-3pqr=(p+q+r)(p2+q2+r2-pq-qr-rp)=0∴p3+q3+r3-3pqr=0即 (m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0例5 若,试比较A、B的大小.解设则.∵2x>y ∴2x-y>0, 又y>0,可知∴A>B.4.设参当已知条件以连比的形式出现时,可引进一个比例系数来表示这个连比.例6 若求x+y+z的值.解令则有 x=k(a-b), y=(b-c)k z=(c-a)k,∴x+y+z=(a-b)k+(b-c)k+(c-a)k=0.例7 已知a、b、c为非负实数,且a2+b2+c2=1,,求a+b+c的值.解设 a+b+c=k则a+b=k-c,b+c=k-a,a+c=k-b.由条件知即∴a2k-a3+b2k-b3+c2k-c3=-3abc,∴(a2+b2+c2)k+3abc=a3+b3+c3.∵a2+b2+c2=1,∴k=a3+b3+c3-3abc=(a+b)3-3a2b-3ab2+c3-3abc=(a+b+c)[(a+b)2+c2-(a+b)c]-3ab(a+b+c),=(a+b+c)(a2+b2+c2-ab-bc-ca),∴k=k(a2+b2+c2-ab-bc-ac),∴k(a2+b2+c2-ab-bc-ca-1)=0,∴k(-ab-bc-ac)=0.若K=0, 就是a+b+c=0.若-ab-bc-ac=0,即 (a+b+c)2-(a2+b2+c2)=0,∴(a+b+c)2=1,∴a+b+c=±1综上知a+b+c=0或a+b+c=±15.“拆”、“并”和通分下面重点介绍分式的变形:(1)分离分式为了讨论某些用分式表示的数的性质,有时要将一个分式表示为一个整式和一个分式的代数和.例8 证明对于任意自然数n,分数皆不可约.证明如果一个假分数可以通约,化为带分数后,它的真分数部分也必定可以通约.而显然不可通约,故不可通约,从而也不可通约.(2)表示成部分分式将一个分式表示为部分分式就是将分式化为若干个真分式的代数和.(3)通分通分是分式中最基本的变形,例9的变形就是以通分为基础的,下面再看一个技巧性较强的例子.例9 已知求证:.证明6.其他变形例10 已知x(x≠0,±1)和1两个数,如果只许用加法、减法和1作被除数的除法三种运算(可用括号),经过六步算出x2.那么计算的表达式是______.解 x2=x(x+1)-x或 x2=x(x-1)+x例11 设a、b、c、d都是正整数,且a5=b4,c3=d2,c-a=19,求d-b.解由质因数分解的唯一性及a5=b4,c3=d2,可设a=x4,c=y2,故19=c-a=(y2-x4)=(y-x2)(y+x2)解得 x=3. y=10. ∴ d-b=y3-x5=7571.选择题(1)把相乘,其乘积是一个多项式,该多项式的次数是()(A)2 (B)3 (C)6 (D)7 (E)8(2)已知则的值是().(A)1 (B)0 (C)-1 (D)3(3)假定x和y是正数并且成反比,若x增加了p%,则y减少了().(A)p% (B)% (C)% (D)%(E)%2.填空题(1)(x-3)5=ax5+bx4+cx3+dx2+ex+f,则a+b+c+d+e+f=________, b+c+d+e=_______.(2)若=_____.(3)已知y1=2x,y2=,则y1y1986=______3.若(x-z)2-4(x-y)(y-z)=0,试求x+z与y的关系.4.把写成两个因式的积,使它们的和为,求这两个式子.5.若x+3y+5z=0,2x+4y+7z=0.求的值.6.已知x,y,z为互不相等的三个数,求证7.已知a2+c2=2b2,求证8.设有多项式f(x)=4x4-4px3+4qx2+2q(m+1)x+(m+1)2,求证:如果f(x)的系数满足p2-4q-4(m-1)=0,那么,f(x)恰好是一个二次三项式的平方.9.设(a+b)(b+c)(c+d)(d+a)=(a+b+c+d)(bcd+cda+dab+abc).求证:ac=bd.参考答案1.C.C.E2.(1)-32,210 (2) (3)23.略.4.5. 6.略, 7.略.8.∵p2-4q-4(m+1)=0, ∴4q=p2-4(m+1)=0,∴f(x)=4x4-4px3+[p2-4(m+1)]x2+2p·(m+1)x+(m+1)2=4x4+p2x2+(m+1)2-4px3-4(m+1)x2+2p(m+1)x=[2x2-px-(m+1)]2.9.令a+b=p,c+d=q,由条件化为pq(b+c)(d+a)=(p+q)(cdp+adq),展开整理得cdp2-(ac+bd)+pq+abq2=0,即(cp-bq)(dp-aq)=0.于是cp=bq或dp=aq,即c(a+b)=b(c+a)或d(a+b)=a(c+d).均可得出ac=bd.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网
浅谈代数式恒等变形的常用方法
作者:白祥福
来源:《理科爱好者(教育教学版)》2019年第03期
【摘要】代数式的恒等变形是初等数学重要知识点之一,是解决其它问题—函数及方程
的重要前提和手段。
其中也包含着数学观点和思维方法。
学习掌握、灵活运用代数式的恒等变形,能提高运算能力和逻辑思维能力。
【关键词】代数式;恒等变形;公式法;拼凑法;代换法
【中图分类号】G642 【文献标识码】A 【文章编号】1671-8437(2019)16-0011-02
两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等。
把一个代数式变成另一个与它恒等的代数式叫做代数式的恒等
变形。
为了完成代数式的证明、求值及化简等问题,我们常要对某些代数式(或解析式)进行恒等变形。
要较好地掌握代数式的恒等变形,首先要掌握代数式的相关公式、性质,并能灵活应用;其次要搞清楚该代数式变形的目的、方向和方法;第三是储备较丰富的解题实践经验。
代数式恒等变形的具体手段和技巧较多,一般有配方、因式分解、换元、设参、拆项与合并等。
下面结合例题从大的方面浅谈代数式的恒等变形的常用方法。
1 公式變形法
例1 若比较,
的大小。
分析:对于参数分为和两种情况讨论,分别去掉绝对值符号后再比较大小是可以的,但这种方法不简洁。
注意到,再结合一些公式的灵活变形,则可进行下列变化:
因为,所以可见
由此得证:。
评注:平方差公式大家很熟悉,但其在此题的变形目的、方向上作用不够。
而由其变形公式。