第5章 蛋白质分离纯化和表征
合集下载
蛋白质的分离纯化和表征
2.盐溶和盐析
蛋白质的分离纯化和表征
第21页
2. 盐析 在蛋白质水溶液中,加入大量高浓度强
电解质盐如硫酸铵、氯化钠、硫酸钠等, 可破坏蛋质分子表面水化层,中和它们电 荷,因而使蛋白质沉淀析出,这种现象称 为盐析。
而低浓度盐溶液加入蛋白质溶液中,会 造成蛋白质溶解度增加,该现象称为盐溶。
盐析机理:破坏蛋白质水化膜,中和表面 净电荷。
灵敏度高,能检测1微克蛋白,重复性好。
蛋白质的分离纯化和表征
第48页
蛋白质纯度判定
各种层析单峰,电泳单带,双向电泳单点, 末端氨基酸测定一个,溶解度曲线单转折。
蛋白质的分离纯化和表征
第49页
盐溶盐溶—盐析
• 等电点沉淀蛋白质溶液中加入NaCl后沉淀 溶解—盐溶
• 原因?
分子在等电点时,相互吸引,聚合沉淀,加入少
许盐离子后破坏了这种吸引力,使分子分散,溶
于水中 蛋白质的分离纯化和表征
第9页
盐析 盐析((NH4)2SO4)
• 向蛋白质溶液中加入大量硫酸铵后蛋白质 会沉淀析出
• 原因?
蛋白质脱去水化层而聚集沉淀
蛋白质的分离纯化和表征
第46页
蛋白质含量测定Ⅱ
3.Folin-酚法(Lowry法) 蛋白质中酪氨酸或半胱氨酸,能与Folin-酚试
剂起氧化还原反应,生成蓝色化合物,500nm比 色测定。
Folin-酚试剂配制比较复杂。 4.BCA法
蛋白质还原Cu2 +成Cu+,与4,4’-二羧基-2,2’-二 喹啉(BCA)形成配合物,显紫色,比色测定。
到达最高值。
蛋白质的分离纯化和表征
第13页
三、蛋白质分离纯化普通标准
总目标:增加制品纯度或比活 1.前处理:因动/植物/细菌而异 2.粗分级分离:采取盐析/等电点沉淀/有 机溶剂分级分离等方法 3.细分级分离:采取凝胶过滤、离子交换 层析、吸附层析以及亲和层析等 4.结晶
蛋白质的分离纯化和表征
第21页
2. 盐析 在蛋白质水溶液中,加入大量高浓度强
电解质盐如硫酸铵、氯化钠、硫酸钠等, 可破坏蛋质分子表面水化层,中和它们电 荷,因而使蛋白质沉淀析出,这种现象称 为盐析。
而低浓度盐溶液加入蛋白质溶液中,会 造成蛋白质溶解度增加,该现象称为盐溶。
盐析机理:破坏蛋白质水化膜,中和表面 净电荷。
灵敏度高,能检测1微克蛋白,重复性好。
蛋白质的分离纯化和表征
第48页
蛋白质纯度判定
各种层析单峰,电泳单带,双向电泳单点, 末端氨基酸测定一个,溶解度曲线单转折。
蛋白质的分离纯化和表征
第49页
盐溶盐溶—盐析
• 等电点沉淀蛋白质溶液中加入NaCl后沉淀 溶解—盐溶
• 原因?
分子在等电点时,相互吸引,聚合沉淀,加入少
许盐离子后破坏了这种吸引力,使分子分散,溶
于水中 蛋白质的分离纯化和表征
第9页
盐析 盐析((NH4)2SO4)
• 向蛋白质溶液中加入大量硫酸铵后蛋白质 会沉淀析出
• 原因?
蛋白质脱去水化层而聚集沉淀
蛋白质的分离纯化和表征
第46页
蛋白质含量测定Ⅱ
3.Folin-酚法(Lowry法) 蛋白质中酪氨酸或半胱氨酸,能与Folin-酚试
剂起氧化还原反应,生成蓝色化合物,500nm比 色测定。
Folin-酚试剂配制比较复杂。 4.BCA法
蛋白质还原Cu2 +成Cu+,与4,4’-二羧基-2,2’-二 喹啉(BCA)形成配合物,显紫色,比色测定。
到达最高值。
蛋白质的分离纯化和表征
第13页
三、蛋白质分离纯化普通标准
总目标:增加制品纯度或比活 1.前处理:因动/植物/细菌而异 2.粗分级分离:采取盐析/等电点沉淀/有 机溶剂分级分离等方法 3.细分级分离:采取凝胶过滤、离子交换 层析、吸附层析以及亲和层析等 4.结晶
蛋白质分离纯化和表征优秀课件
2)也与蛋白质分子形状、溶液的密度 和粘度有关。
超速离心法的二个用途 1、测定蛋白质的分子量; 2、分离纯化蛋白质。
超速离心基本原理
1、离心力(Fc)
离心作用是根据在一定角度速度下作 圆周运动的任何物体都受到一个向外的离 心力进行的。离心力的大小等于离心加速 度ω2X与颗粒质量m的乘积,即:
FC=mω2X 其中ω是旋转角速度,以弧度/秒为 单位;X是颗粒离开旋转中心的距离,以 cm为单位:m是质量,以克为单位。
1、什么叫扩散?
如小心地把纯水放在蛋白质溶液的上面, 则蛋白质分子将从下面的高浓度区向上面的 低浓度区迁移,直至达到平衡为止。由于浓 度差引起的这种溶质分子的迁移称为扩散。 扩散是高浓度向低浓度方向进行的。
2、扩散系数
它在数值上等于当浓度为一个单位时,在 一秒钟内通过1厘米2面积而扩散的溶质量
3、影响扩散系数的因素
Sephadex
G-25
G-75
G-100
1000-5000
3000—80000 4000—150000
2、聚丙烯酰胺凝胶: (Bio-gel) Bio-Rad公司(美国)
Bio-gel
P-4
P-10
P-100-150000
3、琼脂糖凝胶:(Sepharose) pharmacia公司(瑞典)
利用渗透压的测定来计算蛋白质分子量时,是通过测 定几个不同浓度的渗透压,用范霍夫公式(略)求出蛋白质分 子量。
渗透压法测定蛋白质分子量的优缺点
优点: 所用的实验装置简单。
缺点: 要求被测蛋白质纯度要高,如果蛋白质样品中含有其他
杂质蛋白,那么由渗透压测得的结果实际上代表几种蛋白质 的平均分子量。
(三)蛋白质的扩散和扩散系数
超速离心法的二个用途 1、测定蛋白质的分子量; 2、分离纯化蛋白质。
超速离心基本原理
1、离心力(Fc)
离心作用是根据在一定角度速度下作 圆周运动的任何物体都受到一个向外的离 心力进行的。离心力的大小等于离心加速 度ω2X与颗粒质量m的乘积,即:
FC=mω2X 其中ω是旋转角速度,以弧度/秒为 单位;X是颗粒离开旋转中心的距离,以 cm为单位:m是质量,以克为单位。
1、什么叫扩散?
如小心地把纯水放在蛋白质溶液的上面, 则蛋白质分子将从下面的高浓度区向上面的 低浓度区迁移,直至达到平衡为止。由于浓 度差引起的这种溶质分子的迁移称为扩散。 扩散是高浓度向低浓度方向进行的。
2、扩散系数
它在数值上等于当浓度为一个单位时,在 一秒钟内通过1厘米2面积而扩散的溶质量
3、影响扩散系数的因素
Sephadex
G-25
G-75
G-100
1000-5000
3000—80000 4000—150000
2、聚丙烯酰胺凝胶: (Bio-gel) Bio-Rad公司(美国)
Bio-gel
P-4
P-10
P-100-150000
3、琼脂糖凝胶:(Sepharose) pharmacia公司(瑞典)
利用渗透压的测定来计算蛋白质分子量时,是通过测 定几个不同浓度的渗透压,用范霍夫公式(略)求出蛋白质分 子量。
渗透压法测定蛋白质分子量的优缺点
优点: 所用的实验装置简单。
缺点: 要求被测蛋白质纯度要高,如果蛋白质样品中含有其他
杂质蛋白,那么由渗透压测得的结果实际上代表几种蛋白质 的平均分子量。
(三)蛋白质的扩散和扩散系数
蛋白质的分离纯化.ppt
logMr
三、SDS聚丙烯酰胺凝胶电泳 法测定相对分子质量
聚丙烯酰胺凝胶电泳,(简称PAGE),也称 圆盘电泳,它以聚丙烯酰胺凝胶(单体丙烯 酰胺Arc和交联剂甲叉双丙烯酰胺Bis共聚而 成)为支持物 。
蛋白质颗粒在各种介质中电泳时,它的迁移率
决定于它所带的电荷以及分子大小和形状(电 荷效应、分子筛效应)。
v =沉降速度(dx/dt)
s
=
—ω—v2x——
ω=离心机转子角速度(弧度/s) x =蛋白质界面中点与转子中心的
距离(cm)
沉降系数的单位常用S,1S=1×10-13(s)
蛋白质分子量(M)与沉降系数(s)的关系
M = —D—(—1R-—TsV—ρ)—
R—气体常数(8.314×107ergs·mol -1 ·度-1) T—绝对温度 D—扩散常数(蛋白质分子量很大,离心机 转速很快,则忽略不计) V—蛋白质的微分比容(m3·g-1) ρ—溶剂密度(20℃,g·ml-1) s—沉降系数
二、凝胶过滤法测定相对分子质量
凝胶过滤原理
分子筛色谱 (凝胶过滤)
利用Andrews的实验经验式:
logMr = a/b—Ve/bVo
Ve(elution volume)为某一溶质组分的洗脱 体积。它是自加样品开始到该组分的洗脱峰 (峰顶)出现时所流出的体积。
V0 (outer volume)为外水体积,即存在于柱床 中凝胶珠外孔隙的水相体积。测定出不能被 凝胶滞留的大分子溶质如蓝色葡聚糖—2000 的洗脱体积可以决定V0。
在强烈沉淀条件下,不仅破坏了蛋白质 胶体溶液的稳定性,而且也破坏了蛋白 质的结构和性质,产生的蛋白质沉淀不 可能再重新溶解于水。
由于沉淀过程发生了蛋白质的结构和性 质的变化,所以又称为变性沉淀。
蛋白质化学蛋白质的分离纯化和表征标准版PPT
蛋白质的纯化是基于其结构和功能的研究需求,旨在获得高度纯化且具有生物活性的蛋白质。纯化过程中需考虑蛋白质的酸碱性质,特别是等电点,此时蛋白质溶解度最低,有利于沉淀分离。根据蛋白质的分子大小和形状,可采用渗透压法、沉降分析法、凝胶过滤法及SDS聚丙烯酰胺凝胶电泳法等方法测定其分子量,进而指导纯化策略。蛋白质的胶体性质使其在溶液中稳定分散,而通过破坏这一稳定性,如盐析法、有机溶剂沉淀法、重金Байду номын сангаас沉淀法等,可实现蛋白质的沉淀分离。纯化时还应结合结晶分析、溶解度分析和光吸收等手段,综合评估纯化效果。最终,通过一系列分离纯化步骤,获得满足研究需求的纯蛋白质。
第5章蛋白质的分离纯化名师编辑PPT课件
透析法
Dialysis此法是利用蛋白质分子不能透过半
2 透膜,而使它与其它小分子化合物,如无 . 机盐、单糖、双糖、氨基酸、小肽以及表 蛋 面活性剂等分离。 白 常用的半透膜有玻璃纸或高分子合成材料, 质 截止分子量一般为一万。 的 纯 化 方 法
透析法
透析是将待纯化的蛋白质溶液装在用半透膜制成的
5 大部分蛋白质均含有带芳香环的苯丙氨
蛋 酸、酪氨酸和色氨酸。
白 这三种氨基酸的在280nm 附近有最大吸
质 的
收。因此,大多数蛋白质在280nm 附近
紫 显示强的吸收。
外 吸
利用这个性质,可以对蛋白质进行定性
收 鉴定。
研究蛋白质的结构、性质和功能,
二 首先需要得到纯的蛋白质样品。
、 (1)蛋白质来源:微生物细胞、动
法
等电点沉淀法
蛋白质分子在等电点时,净电荷为零,
2 分子之间的静电排斥力最小,因而容
. 蛋 白
易聚集形成沉淀。 当蛋白质混合物溶液的pH 被调到某
质 一成分的等电点时,则该蛋白质大部
的 或全部将沉淀出来。而那些等电点高
纯 化 方
于或低于该pH 的蛋白质仍然留在溶 液中。
法 该法适用于在等电点pH稳定的蛋白质。
白 白用稀碱性溶液抽提,脂溶性蛋白用表面
质 活性剂抽提等。
的 分 离 步 骤
(3)粗提: 离心除去固体杂质后,可通过沉 淀法、超滤法、萃取法等处理,得到蛋白 质粗制品。
(4)精制:可用层析法、电泳法等进行精制。
(5)成品加工:测定蛋白质的性质并干燥成 成品。
根据蛋白质的亲水胶体性质,当其环
2 境发生改变时,蛋白质会发生沉淀作
方
法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种蛋白质等电点
二、蛋白质的分子大小与分子量的测定
蛋白质的分子量的范围: 6×103~1×106 Da
测定蛋白质相对分子量的原理和方法
(一)根据化学组成测定最低相对分子量
用化学分析方法测出蛋白质中某一微量元素的 含量。并假设蛋白质分子中含有一个被测元素的原 子,则可由此计算出蛋白质的最低分子量。
➢ 单位离心场强度的沉降速度称为沉降系数, 用s(小写)表示:
蛋白质、核酸、核糖体和病毒等的沉降系数介于1×10- 13到200×10-13秒之间。为了使用方便,以10-13秒为一个沉 降系数的单位,称为斯维得贝格单位(Svedberg unit),或 称沉降系数单位,用S表示。如人血红蛋白的S为4.46×10-13 秒,即4.46S。
➢ 有中性盐时,蛋白质等电点在一定程度上决定于介质中离 子的组成。如Ca2+、Mg2+、Cl-、等可与蛋白质某些可解离 基团结合,影响等电点。
➢ 无盐类干扰时,蛋白质分子本身的质子供体基团解离出来 的质子数与它的质子受体基团结合的质子数相等时的溶液 pH称为等离子点(isoionic point,或称等离点)。等离子点是 每种蛋白质的一个特征常数。
盐溶(salting in):稀盐溶液中蛋白质溶解度增 加的现象。
② 有机溶剂沉淀法: 极性有机溶剂(甲醇,乙醇,丙酮)→脱去水化层以及
降低介电常数 而增加带电质点间的相互作用。 条件:低温操作,缩短时间。
③ 重金属盐沉淀法:当溶液pH>pI,蛋白质颗粒带负电荷,易与 重金属离子
(Hg2+,Pb2+,Cu2+,Ag+等) →生成沉淀。
V测
(五)SDS-PAGE法测定Mr
聚丙烯酰胺凝胶电泳具有较高分辨率,用它分离、 检测蛋白质混合样品,主要是根据各蛋白质各组分的 电泳迁移率的不同。这种差异就蛋白质分子本身而言, 主要与其所带净电荷以及分子量和形状有关。
当电泳体系中含有一定浓度的十二烷基硫酸钠 (SDS)时,则得电泳迁移率的大小只取决于蛋白质 的分子量,从而可直接由电泳迁移率推算出蛋白质的 分子量。
蛋白质的沉降系数(s)与相对分子质量(Mr)的关系可 用斯维得贝格方程表达:
摩尔气体常数(8.314J·K-1·mol-1);
蛋白质的扩散系数(cm2/s), 数值上等于当 Байду номын сангаас度梯度为1个单位时在1 s内通过1 cm2面 积的蛋白质质量
RTs
M r D(1 v)
偏微比体积(cm3/g) 又称偏微比容,蛋白质 溶于水的偏微比容约0.74 cm3/g
2.蛋白质的沉淀
蛋白质胶体溶液的稳定性是有条件的,相对的。假若改 变环境条件,破坏其水化膜和双电层,蛋白质亲水胶体便失 去稳定性,发生絮结沉淀现象,这既是所谓的蛋白质沉淀作 用。
① 盐析法(salting out) : 中性盐(NH4SO4,NaSO4,NaCl等)→ 蛋白质脱去水
化层。 优点:不引起蛋白质变性。
渗透压公式: Mr =
RT
lim π
c→0 c
(c=质量浓度,g/mol)
(三)沉降分析测定Mr
➢ 超速离心机最大转速: 60000~80 000r/min, 相当于位于距 转轴中心10 cm处、单位质量(1g)分子所受到的离心力(离 心场强度)为400 000 ×g~700 000 ×g.
➢ 沉降速度与蛋白质分子大小、密度和形状有关,且与溶剂 密度和黏度有关.
热力学温度(K),旧称绝对温度 沉降系数
溶剂的密度(g/cm3)
(四)凝胶过滤法测定Mr
凝胶过滤(层析)可按照蛋白质分子量大小进行分离 的技术,同时可以测定蛋白质分子量。 蛋白质通过凝胶柱的速度即洗脱体积与其分子量有关:
Log M
LogM 测
A B
C
先测得几种标准蛋白质的 Ve (Ve为洗脱体积) ,并 以其分子量对数对Ve作图得 一直线,再测出待测样品的 Ve,查标准曲线即可确定分 子量。
SDS-PAGE,迁移率不受蛋 白质原有的电荷、分子形 状等因素影响, 但凝胶具分 子筛效应. 因此,迁移率与 相对分子质量(Mr)之关系:
lg M r a br
常数
相对迁移率: 样品迁移距离 /前沿(染料)
三、胶体性质与蛋白质的沉淀
1.蛋白质胶体溶液的稳定性
蛋白质颗粒大小属于胶体粒子的范围(1-100nm)。又由 于其分子表面有许多极性基团,亲水性极强,易溶于水 成为稳定的亲水胶体溶液。 蛋白质亲水胶体的稳定性主要取决于两个因素: ➢ 双电层 ➢ 水化层
P291
第5章 蛋白质的分离、纯化和表征
1
一、蛋白质的酸碱性质
蛋白质分子中有很多酸性和碱性解离基团,是 具有两性解离性质的化合物。各种解离基团的解离 度与溶液的pH有关,pH越低,碱性解离度越大, 蛋白质分子带正电荷越多,负电荷越少;pH升高,
则解离情况相反。
蛋白质的等电点
在特定pH条件下,某种蛋白质分子所带正负电荷 相等,静电荷为零,这一pH 称为该蛋白质的等 电点(pI)。
例:肌红蛋白和血红蛋白含铁量均为0.335%, 计算二者的相对分子质量。
最低相对分子量=铁的原子量 铁的百分含量
x 100
=
55.8 x 100 =16700
0.335
也可以利用蛋白质中含量特少的aa,用同样的原 理计算蛋白质的最低分子量。
(二)渗透压法测定相对分子量
渗透压法测定Mr操作简单, Mr 在10-100 kDa时较准,但不能区别 蛋白质分子是否均一 。
➢ SDS破坏蛋白氢键和疏水相互作用, 巯基乙醇能打开二硫 键, SDS和巯基乙醇存在下,单体蛋白或亚基(寡聚蛋白质解 离成亚基) 处展开状态.
➢ SDS 烃链与蛋白质侧链通过疏水相互作用形成复合体. 在 一定条件下, SDS与大多数蛋白质的结合比: 1.4g SDS / 1 g 蛋白质,相当于每两分子氨基酸残基结合一分子SDS.
➢ SDS 与蛋白质结合后: 第一, SDS 阴离子使多肽链覆盖上 相同密度的负电荷, 远超过蛋白质原有电荷量, 掩盖了不同 蛋白质间原有的电荷差别; 第二, 改变蛋白质的天然构象, 使大多数蛋白质采取类似的形状. 因此在 SDS 存在下的电 泳几乎是完全基于相对分子质量分离蛋白质的.
聚丙烯酰胺凝胶电泳 ( SDS-PAGE)