高中数学复习提升-三角形中的常见结论

合集下载

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法——王彦文 青铜峡一中1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。

由此,得sin sin abA B =,同理可得sin sin cbCB=,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。

由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin abAB=sin cC =.2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB中,ABAD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=•.同理,可证 S △ABC =A bc C ab sin 21sin 21=.∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB的夹角为90°-C .由向量的加法原则可得AB CB AC =+,ab DABCAB CDbaDC BA为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j •=+•)( 由分配律可得AB j CB j AC •=•+.B∴|j |AC Co s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j∴asinC=csinA.∴Cc A a sin sin =. A 另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得BbC c sin sin =. (此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角为90°-C ,j 与AB 的夹角为90°-B )∴CcB b A a sin sin sin ==.(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j ,则j 与AB 的夹角为A -90°,j 与CB 的夹角为90°-C .由ABCB AC =+,得j ·AC+j ·CB=j ·AB,j即a ·Cos(90°-C)=c ·Cos(A -90°),∴asinC=csinA.∴C cA a sin sin =另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB夹角为90°+B .同理,可得CcB b sin sin =.∴CcB b simA a sin sin == 4.外接圆证明正弦定理在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=R c B C 2sin sin ='=.∴R Cc2sin =. ACCBA同理,可得R B b R A a 2sin ,2sin ==.∴R CcB b A a 2sin sin sin ===. 这就是说,对于任意的三角形,我们得到等式C cB b A a sin sin sin ==. 法一(平面几何):在△ABC 中,已知,,AC b BC a C ==∠及,求c 。

高中数学50个常考的二级结论

高中数学50个常考的二级结论

高中数学50个常考的二级结论5. 平行四边形对角线平方之和等于四条边平方之和.12. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点.13. 圆锥曲线的切线方程求法:隐函数求导.推论:14.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程.22. 过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值.24. 抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦.25. 双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长).26. 对任意圆锥曲线,过其上任意一点作两直线,若两直线斜率之积为定值,两直线交曲线于A,B两点,则直线AB恒过定点.32. 角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例。

角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线.39. 帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上.45. 三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;(4)三角形的外心是它的中点三角形的垂心;(5)三角形的重心也是它的中点三角形的重心;(6)三角形的中点三角形的外心也是其垂足三角形的外心;(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.。

高中数学常见结论

高中数学常见结论

高中数学常见结论三角形中的结论 1、三角形中,任意两角的余弦之和大于零,即coscos 0,cos cos 0,cos cos 0A B A C B C +>+>+>2、三角形中,tan tan tan tan tan tan A B C A B C ++=⨯⨯3、三角形中,sin sin A B A B >⇔>,其他同理4、锐角三角形中,任意一个角的正弦值大于另一个角的余弦值,即sincos ,sin cos A B A C >>,其他同理5、钝角三角形中(角C 为钝角),一个锐角的正弦值小于另一个锐角的余弦值。

即sin cos ,sin cos A B B A <>6、直角三角形中的结论都有逆定理7、三角形内切圆的半径:2S r a b c ∆=++,特别地,直角三角形中:2a b cr +-=8、三角形中的射影定理:在△ABC 中,A c C a b cos cos ⋅+⋅=,…函数中的结论1、函数()y f x =在定义域D 上单调递增⇔对任意的12,,x x D ∈若12x x >,都有12()()f x f x >⇔对任意的12,,x x D ∈1212()(()())0x x f x f x -->⇔对任意的12,,x x D ∈1212()()0f x f x x x ->- ⇔对任意的,x D ∈/()0f x ≥恒成立⇔对任意的,x D ∈总存在t>0,使()()f x t f x +>2、函数()y f x =在定义域D 上单调递减,对应以上结论是什么?3、函数单调递增、递减的运算性质:(加、减、乘、除、开方) (1)增+增=增,减+减=减,增-减=增,减-增=减,(2)()k f x ⨯与()f x 的单调性的关系是 (3)1()f x 与()f x 的单调性的关系是 (4()f x 的单调性的关系是4、对称轴、对称中心、周期之间的结论是:(1)若函数y=f(x)满足:f(x+a)=f(a-x)↔x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x)=f(2a-x) ↔ x=a 是y=f(x)的一条对称轴.函数y=f(x)满足:f(x+a)=f(b-x) ↔ x=2a b+是y=f(x)的一条对称轴.(2)函数y=f(x)满足:f(x+a)=-f(a-x) ↔A (a,0)是y=f(x)的一个对称中心. 函数y=f(x)满足:f(x)=-f(2a-x) ↔A (a,0)是y=f(x)的一个对称中心.函数y=f(x)满足:f(x+a)=-f(b-x) ↔A(2a b+,0)是y=f(x)的一个对称中心 (3)函数y=f(x)满足:f(x+T)=f(x) ↔T 是y=f(x)的一个周期函数y=f(x)满足:f(x+a)=f(x+b) ↔T=a-b 是y=f(x)的一个周期(a >b ) 函数y=f(x)满足:f(x+a)=-f(x) ,则T=2a 是y=f(x)的一个周期(4)若x=a,x=b 是函数y=f(x)的两条对称轴,则T=2(a-b) (a >b ) ,反之也成立若A(a,0),B(b,0)是函数y=f(x)的两个对称中心,则T=2(a-b) (a >b ), 反之也成立 若x=a,B(b,0)分别是函数y=f(x)的对称轴和对称中心,则T=4(a-b) (a >b )5、若两个函数()y f x a =+,()y f b x =-有对称轴,则对称轴是2b a x -=6、函数奇偶性:函数y=f(x)是定义域D 上的偶函数⇔对任意的,x D ∈()()0f x f x --=恒成立⇔对任意的,x D ∈()1()f x f x -=恒成立7、函数y=f(x)是定义域D 上的奇函数⇔对任意的,x D ∈()()0f x f x -+=恒成立⇔对任意的,x D ∈()1()f x f x -=-恒成立8、函数奇偶性的运算性质:加减乘除:偶+偶=偶,偶-偶=偶,偶⨯偶=偶,偶÷偶=偶奇+奇=奇,奇-奇=奇,奇⨯奇=奇,奇÷奇=奇 偶⨯偶=偶,偶⨯奇=奇,奇⨯奇=偶 除法运算结论依然 9、奇偶性与单调性的关系:奇函数在关于原点对称的两区间上的单调性相同 偶函数在关于原点对称的两区间上的单调性相反 10、奇函数定义域中若有0,则(0)0f =11、奇函数定义域中若有最大值M 和最小值N ,则M+N=0 12、奇偶性与导数的关系:奇函数的导函数是偶函数 偶函数的导函数是奇函数 13、若函数y=f(x)是偶函数,则()()f x f x =14、若函数y=f(x)是D 上的上凸函数⇔对12,,x x D ∈有1212()()()22f x f x x x f ++<15、若函数y=f(x)是D 上的上凹函数⇔对12,,x x D ∈有1212()()()22f x f x x xf ++>16、二次函数2y ax bx c =++是偶函数⇔b=0三次函数32y ax bx cx d=+++是奇函数⇔b=d=017、二次函数在限定区间上的最值问题:讨论对称轴与区间的位置关系----大大小小(1)当a>0时,求最小值讨论对称轴在区间的左、内、右,求最大值讨论对称轴与区间中点的位置关系(2)当a<0时,求最大值讨论对称轴在区间的左、内、右,求最小值讨论对称轴与区间中点的位置关系18、二次函数2y ax bx c =++的对称轴是2b x a=-,三次函数32y ax bx cx d =+++的对称中心是,()33b b f aa ⎛⎫--⎪⎝⎭19、若函数y=f(x)在定义域D 上连续可导,且在定义域的任何子区间上导函数不恒为0,则/()0f x ≥⇔y=f(x)在D 上单调递增/()0f x ≤⇔y=f(x)在D 上单调递减20、若函数y=f(x)在定义域D 上连续可导,/0()0f x =不能保证0()f x 为极值,反之成立。

高中数学复习提升专题03 解三角形中的最值、范围问题(解析版)

高中数学复习提升专题03 解三角形中的最值、范围问题(解析版)

专题03 解三角形中的最值、范围问题高考对正弦定理和余弦定理的考查较为灵活,题型多变,选择题、填空题的形式往往独立考查正弦定理或余弦定理,解答题往往综合考查定理在确定三角形边角中的应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换、不等式、导数等结合考查,试题难度控制在中等以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.本专题围绕解三角形中的最值、范围问题精选例题,并给出针对性练习,以期求得热点难点的突破.【热点难点突破】例1.【2018年江苏卷】在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.例2.【2018年文北京卷】若的面积为,且∠C为钝角,则∠B=_________;的取值范围是_________.【答案】【解析】分析:根据题干结合三角形面积公式及余弦定理可得,可求得;再利用,将问题转化为求函数的取值范围问题.详解:,,即,,则,为钝角,,,故.例3.锐角的内角,,的对边分别为,,,已知的外接圆半径为,且满足.(1)求角的大小; (2)若,求周长的最大值.【答案】(1);(2)当为正三角形时,周长的最大值为6.【解析】(1)由正弦定理,得,再结合,得,解得,由为锐角三角形,得.(2)由、及余弦定理,得,即,结合,得,解得(当且仅当时取等号),所以(当且仅当时取等号),故当为正三角形时,周长的最大值为6.例4. 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且2a =,242cos sin 25B C A ++=. (1)若满足条件的ABC ∆有且只有一个,求b 的取值范围; (2)当ABC ∆的周长取最大值时,求b 的值. 【答案】(1)10(0,2]{}3;(210【解析】 (1)2442cossin 1cos()sin 255B C A B C A ++=⇒+++=,即1sin cos 5A A -=-, 又∵0A π<<,且22sin cos 1A A +=,有3sin 54cos 5A A ⎧=⎪⎪⎨⎪=⎪⎩,若满足条件的ABC ∆有且只有一个,则有sin a b A =或a b ≥,则b 的取值范围为10(0,2]{}3;(2)设ABC ∆的周长为l ,由正弦定理得 10(sin sin )2[sin sin()]sin 3a l abc a B C B A B A =++=++=+++102(sin sin cos cos sin )22(3sin cos )2210)3B A B A B B B B θ=+++=++=++, 其中θ为锐角,且10sin 10310cos θθ⎧=⎪⎪⎨⎪=⎪⎩,max 2210l =+10cos B =,310sin B = 此时sin 10sin ab B A==例5. 【2016年北京卷】在∆ABC 中,2222+=a c b ac . (1)求B ∠ 的大小;(22cos cos A C + 的最大值. 【答案】(1)4π;(2)1. 【解析】(1)由余弦定理及题设得22222cos 222a cb ac B ac ac +-===,又∵0B π<∠<,∴4B π∠=;(2)由(1)知34A C π∠+∠=, 32cos 2cos()4A C A A π+=+-22222A A A =-+ 22cos()4A A A π==-,因为304A π<∠<,所以当4A π∠=2cos A C +取得最大值1.例6. 如图,有一码头P 和三个岛屿,,A B C , 303,90mi ,30PC mile PB n le AB n mile ===,0120PCB ∠=, 090ABC ∠=.(1)求,B C 两个岛屿间的距离;(2)某游船拟载游客从码头P 前往这三个岛屿游玩,然后返回码头P .问该游船应按何路线航行,才能使得总航程最短?求出最短航程.【答案】(1)3mile (2)(30603307n mile +【解析】(1)在PBC ∆中, 090,3,120PB PC PCB ==∠=,由正弦定理得,sin sin PB PCPCB PBC=∠∠,即0903sin120sin PBC =∠, 解得1sin 2PBC ∠=, 又因为在PBC ∆中, 00060PBC <∠<,所以030PBC ∠=, 所以030BPC ∠=,从而303BC PC == 即,B C 两个岛屿间的距离为3mile ;(2)因为090,30ABC PBC ∠=∠=,所以000903060PBA ABC PBC ∠=∠-∠=-=, 在PAB ∆中, 90,30PB AB ==,由余弦定理得,2202212?cos609030290303072PA PB AB PB AB =+-=+-⨯⨯⨯= 根据“两点之间线段最短”可知,最短航线是“P A B C P →→→→”或“P C B A P →→→→”,其航程为3073030330330603307S PA AB BC CP =+++=+=+所以应按航线“P A B C P →→→→”或“P C B A P →→→→”航行, 其航程为(30603307n mile +. 【方法总结】1.已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.2.已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.3.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形关系式a <b sin Aa =b sin Ab sin A <a <ba ≥ba >ba ≤b解的个数无解一解两解一解一解无解4.在△ABC 中有如下结论sin A >sin B ⇔a >b .5.已知三边(a b c 如、、),由余弦定理求A B 、,再由180A B C ++=求角C ,在有解时只有一解. 已知两边和夹角(a b C 如、、),余弦定理求出对对边.5.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形; 当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形; 当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形.【精选精练】1. ABC ∆各角的对应边分别为c b a ,,,满足1≥+++ba cc a b ,则角A 的范围是( ) A .(0,]3πB .(0,]6πC .[,)3ππD .[,)6ππ 【答案】A 【解析】由1≥+++ba cc a b ,得()()()()b a c a c a c b a b ++≥+++,整理得bc a c b ≥-+222,由余弦定理得2122cos 222≥≥-+=bc bc bc a c b A ,⎥⎦⎤⎝⎛∈∴3,0πA . 2.为了竖一块广告牌,要制造三角形支架,如图,要求60ACB ∠=︒, BC 的长度大于1米,且AC 比AB 长0.5米,为了稳固广告牌,要求AC 越短越好,则AC 最短为( )A. 312⎛⎫+⎪ ⎪⎝⎭米 B. 2米 C. (13米 D. (23+米 【答案】D【解析】由题意设(1)BC x x =>米, (0)AC t t =>米,依题设0.50.5AB AC t =-=-米,在ABC 中,由余弦定理得: 22202cos60AB AC BC ACBC =+-,即()2220.5t t x tx -=+-,化简并整理得:20.25(1)1x t x x -=>-,即0.75121t x x =-++-,因1x >,故0.7512231t x x =-++≥+-312x =+时取等号),此时t 取最小值23,应选答案D 3.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c 满足222b c a bc +-=,0AB BC >,3a = 则b+c 的取值范围是( ) A. 31,2⎛⎫ ⎪⎝⎭B.3322⎛⎫ ⎪ ⎪⎝⎭C.13,22⎛⎫ ⎪⎝⎭D.13,22⎛⎤⎥⎝⎦ 【答案】B【解析】由222b c a bc +-=得:2221cos 22b c a A bc +-==,则A=3π,由0AB BC >可知:B 为钝角, 21sin aR A==,则sin ,sin b B c C ==,sin sin sin b c B C B +=+=+2sin(3π)B -33=sin cos 3sin()226B B B π+=+,由于223B ππ<<,25366B πππ<+<,所以13sin()23B π<+<332b c <+<,选B 4.在ABC ∆中,三内角A ,B ,C 的对边分别为a ,b ,c 且222a b c bc =++,3a S 为ABC ∆的面积,则3cos S B C 的最大值为( )(A )1 (B 31+ (C 3 (D )3 【答案】C【解析】∵222a b c bc =++,∴2221cos 22b c a A bc +-==-,∴23A π=,设ABC ∆外接圆的半径为R ,则3222sin sin 3a R A π===,∴1R =, ∴133cos sin 3cos 3cos 2S B C bc A B C B C ==+ 3sin 3cos 3)B C B C B C =+=-,故3cos S B C 3C .5.已知,,a b c 分别为内角,,A B C 的对边,其面积满足214ABC S a ∆=,则cb的最大值为( ) A.21 B. 2 C. 21 D. 22+【答案】C【解析】根据题意,有211sin 42ABC S a bc A ∆==,应用余弦定理,可得222cos 2sin b c bc A bc A +-=,于是212cos 2sin t t A t A +-=,其中c t b =.于是22sin 2cos 1t A t A t +=+,所以122sin 4A t t π⎛⎫+=+ ⎪⎝⎭,从而122t t+≤,解得t 21.选C.6.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC ∆的面积为32S =,则ab 的最小值为__________. 【答案】12【解析】由正弦定理可得()2sin cos 2sin sin 2sin sin C B A B B C B =+=++,即2sin cos 2sin cos 2sin cos sin C B B C C B B =++,∴2sin cos sin 0B C B +=,∴1cos 2C =-, 23C π=,由133sin 2S ab C =⋅==,∴12c ab =,再由余弦定理可得2222cos c a b ab C =+-⋅,整理可得2222134a b a b ab ab =++≥,当且仅当a b =时,取等号,∴12ab ≥故答案为12. 7.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】626+2)【解析】如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得sin sin BC BE E C =∠∠,即o o2sin 30sin 75BE=,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得BF =62-,所以AB 的取值范围为(62-,6+2).8. 在中,内角的对边分别为,且满足,为锐角,则的取值范围为__________. 【答案】【解析】分 由结合正弦定理可得:,且,为锐角,则:,即,据此有:,,,,即,,据此可得:,则的取值范围为.9.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()B A m cos ,cos =,()b c a n -=2,,且n m //.(1)求角A 的大小;(2)若4=a ,求ABC ∆面积的最大值. 【答案】(1)3π;(2)34. 【解析】 n m //,所以()0cos 2cos =--A b c B a ,由正弦定理得-B A cos sin ()0cos sin sin 2=-A B C ,A C AB B A cos sin 2cos sin cos sin =+∴()A C B A cos sin 2sin =+∴,由π=++C B A ,A C C cos sin 2sin =∴由于π<<C 0,因此0sin >C ,所以21cos =A ,由于π<<A 0,3π=∴A (2)由余弦定理得A bc c b a cos 2222-+=bc bc bc bc c b =-≥-+=∴21622,因此16≤bc ,当且仅当4==c b 时,等号成立;因此ABC ∆面积34sin 21≤=A bc S ,因此ABC ∆面积的最大值34. 10. 已知3x π=是函数()sin2cos2f x m x x =-的图象的一条对称轴.(1)求函数()f x 的单调递增区间;(2)设ABC ∆中角,,A B C 所对的边分别为,,a b c ,若()2f B =,且3b =2ca -的取值范围. 【答案】(1)(),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)33⎛ ⎝ 【解析】试题分析: (1)3x π=是函数()f x 的一条对称轴213f m π⎛⎫⇒=+⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭,根据三角函数的性质,即可求出单调性;(2)()2f B = 可得3B π=,又3b =由正弦定理得: 2sin sin(+=3sin 236c a A A A ππ⎛⎫-=-- ⎪⎝⎭,由230,3sin 3362A A ππ⎛⎛⎫⎛⎫∈⇒-∈- ⎪ ⎪ ⎝⎭⎝⎭⎝,即可求出结果. 试题解析: (1)3x π=是函数()sin2cos2f x m x x =-的一条对称轴213f m π⎛⎫⇒=+ ⎪⎝⎭21m -+3m ⇒=()2sin 26f x x π⎛⎫⇒=- ⎪⎝⎭⇒增区间: (),63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)()2f B = sin 2163B B ππ⎛⎫⇒-=⇒= ⎪⎝⎭ 又3b =2sin ,2sin 2sin 3a A c C A π⎛⎫===+ ⎪⎝⎭2sin sin(+=3sin 236c a A A A ππ⎛⎫⇒-=-- ⎪⎝⎭ 210,,sin ,1366262A A A πππππ⎛⎫⎛⎫⎛⎫⎛⎫∈⇒-∈-⇒-∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭33sin 36A π⎛⎛⎫⇒-∈ ⎪ ⎝⎭⎝,即332c a ⎛⇒-∈ ⎝ 11. 在锐角ABC ∆中,内角,,A B C 的对边分别是,,a b c ,满足cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭.(1)求角A 的值; (2)若3b =b a ≤,求a 的取值范围.【答案】(1) 3A π=;(2) )3,3a ∈.【解析】试题分析:(1)根据余弦的二倍角公式以及两角和与差的余弦公式化简cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,可得sin A 的值,从而求得A 的值;(2)3b a =≤,∴c a ≥,∴32C ππ≤<,63B ππ<≤,再由正弦定理可得结果.试题解析:(1)由已知cos2cos22cos cos 066A B B B ππ⎛⎫⎛⎫-+-+=⎪ ⎪⎝⎭⎝⎭得2222312sin 2sin 2cos sin 044B A B B ⎛⎫-+-=⎪⎝⎭化简得3sin 2A =,又三角形ABC 为锐角三角形,故原创精品资源学科网独家享有版权,侵权必究! 11 3A π=. (2)∵3b a =≤,∴c a ≥,∴32C ππ≤<, 63B ππ<≤由正弦定理得: sin sin a b A B =即: 3sin 32a B =,即32sin a B =由13sin ,22B ⎛⎤∈ ⎥ ⎝⎦知)3,3a ⎡∈⎣. 12. 如图,是两个小区所在地,到一条公路的垂直距离分别为,两端之间的距离为.(1)某移动公司将在之间找一点,在处建造一个信号塔,使得对的张角与对的张角相等,试确定点的位置;(2)环保部门将在之间找一点,在处建造一个垃圾处理厂,使得对所张角最大,试确定点的位置.【答案】(1)4;(2). 【解析】试题分析:(1)利用张角相等的相似性即可确定点P 的位置;(2)由题意得到三角函数,换元之后结合对勾函数的性质可得当时满足题意. 试题解析:(1)张角相等,∴,∴ (2)设,∴, ∴,, ,设,,,, ∴,,当且仅当时,等号成立,此时,即。

高中数学-解三角形知识点汇总及典型例题

高中数学-解三角形知识点汇总及典型例题

解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

高中数学复习课一解三角形新人教A版必修

高中数学复习课一解三角形新人教A版必修

学 习 资 料 汇编复习课(一) 解三角形其中以求边或角的取值范围为主,以解三角形与三角函数的结合为命题热点,试题多以大题的形式出现,难度中等.[考点精要]解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A +B +C =π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B +C =π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边. [典例] 设锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且有a =2b sin A . (1)求B 的大小;(2)若a =33,c =5,求b . [解] (1)由a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,所以sin B =12,由于△ABC 是锐角三角形,所以B =π6.(2)根据余弦定理,得b 2=a 2+c 2-2ac cos B =27+25-45=7,所以b =7. [类题通法]利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.[题组训练]1.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sinB ,则A =( )A .30°B .60°C .120°D .150°解析:选 A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc=-3bc +23bc 2bc =32,所以A =30°,故选A.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B=________.解析:依题意得,由正弦定理知:1sinπ6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3. 答案:π3或2π33.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立. ∴cos B 的最小值为12.判断三角形的形状是一种常见的题型,就是利用条件寻找边的关系或角的关系,题型多为选择题、解答题,难度中等.[考点精要] 三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.[典例] 在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sinA cosB .由正弦定理得2sin 2A cos A sinB =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形. [类题通法]根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有: ①通过正弦定理实现边角转化; ②通过余弦定理实现边角转化; ③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.[题组训练]1.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cosA -sinB cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B=A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.2.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量m =⎝ ⎛⎭⎪⎫cos 3A 2,sin 3A 2,n =⎝ ⎛⎭⎪⎫cos A2,sin A 2,且满足|m +n |= 3.(1)求角A 的大小;(2)若b +c =3a ,试判断△ABC 的形状.解:(1)因为|m +n |=3,所以|m +n |2=3,即m 2+n 2+2m ·n =3.又因为m 2=n 2=1,所以m ·n =12,所以cos 3A 2cos A 2+sin 3A 2sin A 2=12,所以cos A =12,又0<A <π,所以A =π3.(2)因为b +c =3a ,所以sin B +sin C =3sin A =32.所以sin B +sin ⎝⎛⎭⎪⎫2π3-B =32,化简得sin ⎝ ⎛⎭⎪⎫B +π6=32. 因为0<B <2π3,0<B +π6<5π6,所以B +π6=π3或2π3,所以B =π6,C =π2或B =π2,C =π6,所以△ABC 为直角三角形.题以解答题为主,难度一般.[考点精要](1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的. (2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.[典例] 如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度; (2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α. 在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得ABsin α=BCsin 120°.即sin α=AB sin 120°BC =12×3228=3314. 故sin α的值为3314.[类题通法]应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.[题组训练]1.要测量底部不能到达的电视塔AB 的高度,如图,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( )A .10 2 mB .20 mC .20 3 mD .40 m解析:选D 设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,根据余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =40或x =-20(舍去).故电视塔的高度为40 m.2.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m ,则旗杆的高度为________m.解析:设旗杆高为h m ,最后一排为点A ,第一排为点B ,旗杆顶端为点C ,则BC =hsin 60°=233h .在△ABC 中,AB =106,∠CAB =45°,∠ABC =105°, 所以∠ACB =30°,由正弦定理,得106sin 30°=233h sin 45°,故h =30(m).答案:303.某高速公路旁边B 处有一栋楼房,某人在距地面100米的32楼阳台A 处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C 处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D 处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E 处,问此时客车距离楼房多远? 解:(1)在Rt △ABC 中,∠BAC =60°,AB =100米,则BC =1003米. 在Rt △ABD 中,∠BAD =45°,AB =100米,则BD =100米. 在△BCD 中,∠DBC =75°+15°=90°, 则DC =BD 2+BC 2=200米,所以客车的速度v =CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt △BCD 中,∠BCD =30°, 又因为∠DBE =15°,所以∠CBE =105°, 所以∠CEB =45°.在△BCE 中,由正弦定理可知EB sin 30°=BCsin 45°,所以EB =BC sin 30°sin 45°=506米,即此时客车距楼房506米.1.在△ABC 中,若a =7,b =3,c =8,则其面积等于( ) A .12 B.212C .28D .6 3解析:选D 由余弦定理得cos A =b 2+c 2-a 22bc =32+82-722×3×8=12,所以sin A =32,则S△ABC=12bc sin A =12×3×8×32=6 3. 2.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若3a =2b ,则2sin 2B -sin 2A sin 2A的值为( )A.19B.13 C .1D.72解析:选D 由正弦定理可得2sin 2B -sin 2A sin 2A =2b 2-a 2a 2=2·⎝ ⎛⎭⎪⎫32a 2-a2a 2=72. 3.在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,则cos θ等于( )A.35 B .-35C .±35D .±45解析:选C ∵S △ABC =12AB ·BC sin ∠ABC =12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.4.某人从出发点A 向正东走x m 后到B ,向左转150°再向前走3 m 到C ,测得△ABC的面积为334m 2,则此人这时离开出发点的距离为( )A .3 m B. 2 m C .2 3 mD. 3 m解析:选D 在△ABC 中,S =12AB ×BC sin B ,∴334=12×x ×3×sin 30°,∴x = 3. 由余弦定理,得AC =AB 2+BC 2-2AB ×BC ×cos B =3+9-9=3(m). 5.在△ABC 中,A =60°,AB =2,且△ABC 的面积S △ABC =32,则边BC 的边长为( ) A. 3 B .3 C.7D .7解析:选A ∵S △ABC =12AB ·AC sin A =32,∴AC =1,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos A =4+1-2×2×1×cos 60°=3,即BC = 3.6.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a =80,b =100,A =30°,则此三角形( )A .一定是锐角三角形B .可能是直角三角形,也可能是锐角三角形C .一定是钝角三角形D .一定是直角三角形 解析:选C 由正弦定理a sin A =bsin B 得80sin A =100sin B ,所以sin B =58.因为a <b ,所以B 有两种可能:锐角或钝角.若B 为锐角时, cos C =-cos (A +B )=sin A sin B -cos A cos B =12×58-32×398<0,所以C 为钝角,即△ABC 为钝角三角形;若B 为钝角时,则△ABC 是钝角三角形,所以此三角形一定为钝角三角形.故选C.7.在△ABC 中,a =b +2,b =c +2,又知最大角的正弦等于32,则三边长为________. 解析:由题意知a 边最大,sin A =32,∴A =120°, ∴a 2=b 2+c 2-2bc cos A .∴a 2=(a -2)2+(a -4)2+(a -2)(a -4). ∴a 2-9a +14=0,解得a =2(舍去)或a =7.∴b =a -2=5,c =b -2=3. 答案:a =7,b =5,c =38.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知8b =5c ,C =2B ,则cos C =________.解析:因为C =2B ,所以sin C =sin 2B =2sin B ·cos B ,所以cos B =sin C 2sin B =c 2b =12×85=45, 所以cos C =2cos 2B -1=2×⎝ ⎛⎭⎪⎫452-1=725.答案:7259.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =23,C =45°,1+tan Atan B =2cb,则边c 的值为________.解析:由1+tan A tan B =2c b ,得1+sin A cos Bcos A sin B=sin A cos B +cos A sin B cos A sin B =A +B cos A sin B =sin Ccos A sin B=cb cos A =2c b ,所以cos A =12,故A =60°.由正弦定理得23sin 60°=c sin 45°,所以c =2 2.答案:2 210.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解:(1)因为0<A <π,cos A =23,所以sin A =1-cos 2A =53, 又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C , 所以253cos C =23sin C ,tan C = 5.(2)由tan C =5得sin C =56,cos C =16,于是sin B =5cos C =56.由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sin B =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B ) =sin ∠ADC cos B -cos ∠ADC sin B =437×12-17×32=3314. (2)在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49.所以AC =7.12.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c 且a cos C ,b cos B ,c cos A 成等差数列.(1)求B 的值;(2)求2sin 2A +cos(A -C )的范围.解:(1)∵a cos C ,b cos B ,c cos A 成等差数列,金戈出品 ∴a cos C +c cos A =2b cos B .由正弦定理,得sin A cos C +sin C cos A =2sin B cos B , 即sin(A +C )=sin B =2sin B cos B .又在△ABC 中,sin B ≠0,∴cos B =12. ∵0<B <π,∴B =π3. (2)∵B =π3,∴A +C =2π3, ∴2sin 2A +cos(A -C )=1-cos 2A +cos ⎝⎛⎭⎪⎫2A -2π3 =1-cos 2A -12cos 2A +32sin 2A =1+32sin 2A -32cos 2A =1+3sin ⎝⎛⎭⎪⎫2A -π3. ∵0<A <2π3,-π3<2A -π3<π, ∴-32<sin ⎝⎛⎭⎪⎫2A -π3≤1. ∴2sin 2A +cos(A -C )的范围是⎝ ⎛⎦⎥⎤-12,1+3. 敬请批评指正。

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。

作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。

懒人满分必背高中数学二级结论

懒人满分必背高中数学二级结论

懒人满分必背高中数学二级结论高中数学二级结论是高中数学中的重要内容,也是考试中的重点。

但是,对于一些懒惰的学生来说,背诵这些结论可能会感到很烦恼。

因此,本文将为大家介绍一些懒人必背的高中数学二级结论。

1. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。

2. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。

3. 直角三角形的勾股定理:在直角三角形ABC中,有c²=a²+b²。

4. 三角函数的基本关系式:sin²x+cos²x=1,tanx=sinx/cosx,cotx=1/tanx。

5. 二次函数的顶点公式:对于二次函数y=ax²+bx+c,其顶点坐标为(-b/2a,c-b²/4a)。

6. 二次函数的判别式:对于二次函数y=ax²+bx+c,其判别式为Δ=b²-4ac。

7. 一次函数的斜率公式:对于一次函数y=kx+b,其斜率为k。

8. 一次函数的截距公式:对于一次函数y=kx+b,其截距为b。

9. 平面直角坐标系中两点间距离公式:对于平面直角坐标系中的两点A(x1,y1)和B(x2,y2),其距离为AB=sqrt((x2-x1)²+(y2-y1)²)。

10. 平面直角坐标系中两点间中点公式:对于平面直角坐标系中的两点A(x1,y1)和B(x2,y2),其中点坐标为((x1+x2)/2,(y1+y2)/2)。

以上是一些懒人必背的高中数学二级结论,掌握这些结论可以帮助我们更好地理解和解决数学问题。

当然,这些结论只是数学知识的一部分,还需要我们在学习中不断积累和总结,才能真正掌握数学的精髓。

高中数学常用二级结论汇总

高中数学常用二级结论汇总

高中数学常用二级结论汇总1.数列相关的二级结论:(1)等差数列的常用二级结论:-等差数列的前n项和公式:Sn = (a1 + an) * n / 2;-等差数列通项公式:an = a1 + (n - 1)d;-等差数列前n项和与末项的关系:Sn = (a1 + an) * n / 2 = an * n - (n - 1) * d / 2(2)等比数列的常用二级结论:-等比数列的前n项和公式:Sn=a1*(q^n-1)/(q-1),其中q≠1;-等比数列前n项和与末项的关系:Sn=a1*(1-q^n)/(1-q)。

2.几何相关的二级结论:(1)平行线与三角形的二级结论:-平行线分割三角形的比线段互等;-平行线分割三角形的比面积互等;-平行线分割三角形的比任意两条边互等。

(2)相似三角形的二级结论:-三角形内部的直线与角平分线的交点分割三角形的比线段互等;-三角形内部的直线与角平分线的交点分割三角形的比面积互等。

(3)圆的二级结论:-圆心角的度数等于其所对弧的度数;-同弧所对的圆心角相等;-两圆相交弧的度数等于相对的圆心角的度数。

3.解析几何相关的二级结论:(1)直线的方程二级结论:-斜率相等的两条直线平行;-两直线相交于一点的充要条件是斜率不相等。

(2)圆的方程二级结论:-到圆心距离等于半径的点在所述圆上;-圆心到直线的距离等于半径的相交点所对的弦的中点到圆心的距离。

(3)抛物线的二级结论:-在对称轴上等距离的两点与焦点和顶点的距离相等;-抛物线的顶点坐标为(h,k),则焦点的坐标为(h,k+p),其中p为焦距。

4.概率与统计相关的二级结论:(1)事件的二级结论:-随机事件A的对立事件记为A',则P(A')=1-P(A);-若A与B互斥,则P(AUB)=P(A)+P(B)。

(2)条件概率的二级结论:-若事件B发生的条件下,事件A发生的概率为P(A,B),则P(A,B)=P(A∩B)/P(B);(3)独立事件的二级结论:-若事件A与事件B相互独立,则P(A∩B)=P(A)*P(B)。

三角形中的常见结论

三角形中的常见结论

c CBAba三角形中的常见结论(高二理科数学)以下很多结论都是只有在三角形中才成立的,离开三角形......................... 这个前提条件就不一定成立!.............在ABC ∆中,内角,,A B C 的对边分别为,,a b c 。

1、内角和定理:A B C π++=。

2、边角关系:大边对大角,等边对等角,小边对小角,反之亦成立, 即:a b A B >⇔>,a b A B =⇔=,a b A B <⇔<。

3、三边关系:任意两边之和大于第三边,任意两边之差小于第三边,即:a b c +>,a c b +>,b c a +> a b c -<,a c b +<,b c a -<4、三角形的四心:外心:外接圆圆心,三边中垂线的交点。

内心:内切圆圆心,三内角角平分线的交点。

垂心:三边高线的交点。

重心:三边中线的交点。

重心G 的性质:(1)重心G 是中线的三等分点; (2)0GA GB GC ++=;(3)若11(,)A x y 、22(,)B x y 、33(,)C x y ,则123123,33x x x y y y G ++++⎛⎫⎪⎝⎭。

等腰三角形中顶角角平分线、底边中线、底边高线三线合一。

等边三角形四心合一。

5、正弦定理:2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径)。

正弦定理的变形:(1)sin sin a b A B =,sin sin b c B C =,sin sin a cA C=; (2)sin sin a B b A =,sin sin b A a B =,sin sin a BA b=;(3)2sin a R A =,2sin b R B =,2sin c R C =; (4)sin 2a A R =,sin 2b B R =,sin 2cC R=; (5)::sin :sin :sin a b c A B C =; (6)2sin sin sin sin a b c aR A B C A++==++。

高中数学二级结论(经典实用)

高中数学二级结论(经典实用)

高中数学二级结论(经典实用)1、余弦定理:在任何三角形中,$a^2=b^2+c^2-2bc\cos A$,$b^2=a^2+c^2-2ac\cos B$,$c^2=a^2+b^2-2ab\cos C$。

2、正弦定理:在任何三角形中,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中$R$为该三角形的外接圆半径。

3、勾股定理:对于任意直角三角形,斜边的平方等于两条直角边平方和。

4、解二元一次方程组:当方程组$ax+by=c$,$dx+ey=f$的系数矩阵的行列式不为零时,解得$x=\frac{ce-bf}{ae-bd}$,$y=\frac{af-cd}{ae-bd}$。

5、解二次方程:对于方程$ax^2+bx+c=0$,当$\Delta=b^2-4ac>0$时,有两个不同实根$x_1=\frac{-b+\sqrt{\Delta}}{2a}$,$x_2=\frac{-b-\sqrt{\Delta}}{2a}$;当$\Delta=0$时,有一个实根$x=-\frac{b}{2a}$;当$\Delta<0$时,有两个虚根$x_1=\frac{-b+\sqrt{-\Delta}}{2a}i$,$x_2=\frac{-b-\sqrt{-\Delta}}{2a}i$。

6、二次函数的解析式:对于二次函数$y=ax^2+bx+c$,它的顶点坐标为$\left(-\frac{b}{2a},-\frac{\Delta}{4a}\right)$,其中$\Delta=b^2-4ac$;当$a>0$时,开口向上,当$a<0$时,开口向下。

7、解一元高次方程:对于方程$a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0=0$,如果存在有理根$p/q$,则必有$p\mid a_0$,$q\mid a_n$,且$p,q$互质。

圆锥曲线阿基米德三角形常用结论高中

圆锥曲线阿基米德三角形常用结论高中

圆锥曲线阿基米德三角形常用结论高中示例文章篇一:哎呀,亲爱的同学们,你们知道圆锥曲线里那个神奇的阿基米德三角形吗?这玩意儿可把我给难住好一阵子呢!咱先来说说什么是阿基米德三角形。

就好像我们搭积木,每一块积木都有它特定的位置和作用,阿基米德三角形在圆锥曲线里也是这样独特又重要的存在。

你看啊,当圆锥曲线和一条过它的焦点的直线相交,产生的两个交点和这条直线在准线上的射影,这三个点构成的三角形,就是阿基米德三角形啦!那它有啥常用结论呢?比如说,这个三角形的底边,也就是两个交点连成的线段,它的中点和抛物线的对称轴是平行的哟!这就好像我们走路,两条腿一左一右,保持平衡,而这个中点就像是平衡的中心点。

还有呢,阿基米德三角形的面积也有特别的算法。

这就好比我们计算自己零花钱的总数,得有个特定的公式才能算清楚。

老师在课堂上讲的时候,我同桌小明一脸懵,他悄悄跟我说:“这咋这么难啊?”我心里也嘀咕:“可不是嘛,这可真让人头疼!”但咱们不能被它吓倒啊,对不对?再比如说,阿基米德三角形的两条边和抛物线的切线之间还有特殊的关系。

这就好像是好朋友之间有着只有他们才懂的小秘密。

班上的学霸小红每次都能很快搞懂这些,我可羡慕啦,我就问她:“小红,你咋这么厉害,能教教我不?”小红耐心地给我讲解,我这才慢慢有点明白了。

总之,阿基米德三角形的这些常用结论虽然复杂,但只要我们认真去琢磨,多做练习题,就一定能掌握!难道我们还会被这点小困难打倒吗?肯定不会!我相信,只要我们努力,就一定能在圆锥曲线的世界里游刃有余!示例文章篇二:哎呀呀,一听到“圆锥曲线阿基米德三角形常用结论”这几个字,我就感觉脑袋嗡嗡的,这对于我这个小学生来说,简直就是超级大难题嘛!不过呢,为了搞清楚它,我还是硬着头皮去请教了我们学校的数学老师。

我记得那天,我小心翼翼地走进老师的办公室,心里像揣了只小兔子似的,怦怦直跳。

我怯生生地问老师:“老师,圆锥曲线阿基米德三角形常用结论到底是啥呀?”老师微微一笑,耐心地跟我解释起来。

高中数学等边三角形的性质及相关题目解析

高中数学等边三角形的性质及相关题目解析

高中数学等边三角形的性质及相关题目解析高中数学:等边三角形的性质及相关题目解析等边三角形是高中数学中常见的几何图形,它具有独特的性质和特点。

本文将介绍等边三角形的性质,并通过具体的题目解析,帮助读者更好地理解和应用这些知识。

一、等边三角形的性质1. 边长相等:等边三角形的三条边长度相等,记作a。

2. 角度相等:等边三角形的三个内角都是60度。

3. 对称性:等边三角形具有三个对称轴,即三条中线,它们相互垂直,交于三角形的重心。

4. 高度和中线:等边三角形的高度和中线重合,且都经过重心。

二、等边三角形的相关题目解析1. 题目一:已知等边三角形的边长为a,求其面积。

解析:等边三角形的面积可以通过公式S = (a^2 * √3) / 4求得。

其中,a为等边三角形的边长。

例如,若等边三角形的边长为6,则其面积为(6^2 * √3) / 4 = 9√3。

2. 题目二:已知等边三角形的高为h,求其边长。

解析:等边三角形的高和边长之间存在特殊的关系,即h = a * √3 / 2。

通过这个关系,我们可以求得等边三角形的边长。

例如,若等边三角形的高为4,则其边长为4 * 2 / √3 = 8 /√3。

3. 题目三:已知等边三角形ABC的边长为a,点D是BC边上的一个点,且AD平分∠BAC,求∠ADC的度数。

解析:由于等边三角形的三个内角都是60度,所以∠BAC = 60度。

又因为AD平分∠BAC,所以∠CAD = ∠BAD = 30度。

由于三角形ADC的内角和为180度,所以∠ADC = 180度 - ∠CAD - ∠CAD = 180度 - 30度 - 30度 = 120度。

三、题目解析的思路和技巧在解决等边三角形相关题目时,我们可以运用以下的思路和技巧:1. 利用等边三角形的性质:等边三角形的边长相等,内角都是60度,这些性质可以帮助我们推导和解决问题。

2. 运用三角形的基本定理:如角平分线定理、高线定理等,结合等边三角形的特点,可以推导出更多的结论。

三角形内切圆的几个结论及应用

三角形内切圆的几个结论及应用

当C G上 A G时 , 结 H 联 由 上 A 知 A G F、 B, 、 、 ,四点 共 圆.
又 为内心 , 则
AFG =

结论 1 如 图 1 △ A C的 内切 圆 o, , B 分 别 切边 B C A C、A、B于点 D、 F, E、 . s和 、 和 N、 G和 日分 别 为角平 分 线 A 、 、 所 在 直 ,

HC + C A= B H+ C B A C A=9 B 0。
C H上 A B
j H为△ A C的垂 心. B
必要 性.
当 日为 △ A C的垂心 时 , B 由
21 0 2年第 6 期



E 图8

图 7
证 明 设 A B △ A 的 内切 圆 与 A X、 C
BH BF BD 疋 ’ CH —CE — C ‘ D
B C上 的 高 线 A 与 F 交 于 点 则 日 为 P E △A C B 的垂心 的充分 必要条 件是 D j F . H - E
证明 如 图 5 不 妨设 A A . , B> C
从 而 , H平 分 B C D H.
由 C =C F E
/ T DE = T ED = C E F
B X分别 切 于点 D、 与 A F, 分 别 切 于 点 E 、
G 则 D ∥F , D 、 G与 A B的平分线 . E G且 E F X
垂直.
o /c 历 T/ c G D=

又 由结论 4知丽 B E=
BA = H HC = C HCC
从而 , 、 四点共 圆. M、 、 例 2 如 图 7 已知 △ A C X是直 线 B , B , C 上 的动点 , 且点 C在 点 B、f 间 , △ A X、 J之 ] j 又 B △ A X 的内切 圆有 两个 不 同 的交 点 P、 . C Q 证 明 :Q经过一 个不依 赖 于 的定 点. P ( 4 第 5届 I MO预选题 )

高中数学重要二级结论

高中数学重要二级结论

高中数学重要二级结论高中数学重要的二级结论有很多,涉及各个数学领域的知识点。

下面将对其中一些重要的二级结论进行详细介绍。

1.平行线的性质:平行线的性质是几何学中的基础内容之一。

平行线具有以下重要的二级结论:-平行线与直线交角为180度:如果两条直线分别与一条第三条直线平行,那么这两条直线与第三条直线的交角为180度。

-平行线的夹角相等:如果两条直线分别与一条第三条直线平行,并且与第三条直线分别都有一条共同的交线,那么这两条线之间的夹角相等。

2.相似三角形的性质:相似三角形的性质在几何学中也是非常重要的。

相似三角形具有以下重要的二级结论:-三角形的对应角相等:如果两个三角形的对应角分别相等,那么它们是相似的。

-边的比例:在两个相似三角形中,对应边的比例相等。

3.圆的性质:圆是几何学中的重要概念,它具有以下二级结论:-切线垂直于半径:圆上切线与半径的连线垂直。

-弧与圆心角的关系:同一个圆上的任意两个弧所对应的圆心角相等。

4.三角函数和三角恒等式的性质:三角函数和三角恒等式是高中数学重要的内容,其中一些重要的二级结论如下:-同角三角函数的大小关系:对于给定角度,正弦函数的值不超过1,余弦函数的值不超过1,而正切函数的绝对值没有上限。

-三角函数的周期性:正弦函数和余弦函数的周期为360度(或2π弧度),而正切函数的周期为180度(或π弧度)。

5.常用数列的特征:数列是数学中重要的内容之一,一些常用数列的特征如下:-等差数列等差:一个数列如果满足每一相邻两项之差相等,那么这个数列是等差数列。

-等比数列等比:一个数列如果满足每一相邻两项之比相等,那么这个数列是等比数列。

-斐波那契数列的特征:斐波那契数列是一个递归数列,其中每一项是前两项之和。

6.二次函数的性质:二次函数是高中数学中重要的内容,其中一些重要的二级结论如下:-二次函数的对称轴:二次函数的对称轴是一个垂直于x轴的直线。

-二次函数的顶点:二次函数的顶点是对称轴上的一个点,是函数的极值点。

人教课标版高中数学必修5《解三角形》章末总结

人教课标版高中数学必修5《解三角形》章末总结

人教A 版必修五第一章《解三角形》章末复习知识梳理1.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.2.余弦定理:(1)形式一:A cos bc 2c b a 222⋅-+=,B cos ac 2c a b 222⋅-+=,C cos ab 2b a c 222⋅-+=形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)3.S △ABC =21absinC=21bcsinA=21acsinB,S △=))()((c S b S a S S ---=Sr (S=2cb a ++,r 为内切圆半径)=R abc 4(R 为外接圆半径).4.在三角形中大边对大角,反之亦然.5.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.6.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos 2C =sin 2BA +,sin 2C =cos 2BA ……在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°;(3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.7.解三角形常见的四种类型(1)已知两角A 、B 与一边a,由A+B+C=180°及A a sin =B b sin =C c sin ,可求出角C ,再求b 、c.(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2bccosA ,求出a ,再由余弦定理,求出角B 、C.(3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C.(4)已知两边a 、b 及其中一边的对角A ,由正弦定理A a sin =B bsin ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由A a sin =C c sin 求出C ,而通过A a sin =Bbsin 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表:A>90° A=90° A<90° a>b 一解 一解 一解 a=b无解 无解 一解a<ba>bsinA 两解 无解 无解 a=bsinA 一解a<bsinA无解9.三角形的分类或形状判断的思路,主要从边或角两方面入手.专题一:正、余弦定理的应用1.正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2.余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角.例1..(2011江西卷17).(本小题满分12分)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,23a =,tantan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c例2..(2009北京理) 在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,35A b ==。

高中数学-解三角形知识点汇总及典型例题

高中数学-解三角形知识点汇总及典型例题

解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.00sin 20sin7630().sin sin40==≈a C c cm A②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

高中三角形中的常见结论

高中三角形中的常见结论

高中三角形中的常见结论A以下很多结论都是只有在三角形中才成立的,离开三角形 .........................这个前提条件就不一定成立! cb.............在ABC 中,内角 A, B,C 的对边分别为 a, b,c 。

1、内角和定理:A B C 。

BaC2、边角关系:大边对大角,等边对等角,小边对小角,反之亦成立,即: abA B , a b A B , a bA B 。

3、三边关系:任意两边之和大于第三边,任意两边之差小于第三边, 即: ab c , ac b , b c aa bc , a c b , b c a4、三角形的四心:外心:外接圆圆心,三边中垂线的交点。

内心:内切圆圆心,三内角角平分线的交点。

垂心:三边高线的交点。

重心:三边中线的交点。

重心 G 的性质:(1)重心 G 是中线的三等分点;uuur uuuruuur 0 ;(2) GA GBGC( 3)若 A( x 1 , y 1) 、 B( x 2 , y 2 ) 、 C ( x 3, y 3 ) ,则 Gx 1x 2x 3 ,y 1y 2y3。

33等腰三角形中顶角角平分线、底边中线、底边高线三线合一。

等边三角形四心合一。

ab c 2R ( R 为 ABC 外接圆的半径) 。

5、正弦定理:sin Csin A sin B正弦定理的变形: ( 1)ab bcacsin B,,;sin Asin Bsin C sin A sin C(2) a sin Bbsin A , absin Aa sin B, sin A;sin Bb(3) a 2Rsin A , b 2Rsin B , c2Rsin C ;(4) sin Aab c ;, sin B, sin C2R2R2R(5) a : b : c sin A :sin B :sin C ;(6)ab ca 。

sin C2Rsin A sin Bsin A正弦定理的用途: ( 1)已知两角和任一边,求其他两边和一角;( 2)已知两边及其中一边的对角,求另一边和另两角; (此种情况一定要注意如何取舍角,利用内角和定理、边角关系进行取舍! )( 3)判断三角形的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c C B
A b
a 三角形中的常见结论
以下很多结论都是只有在三角形中才成立的,离开三角形.........................
这个前提条件就不一定成立!.............
在ABC ∆中,内角,,A B C 的对边分别为,,a b c 。

1、内角和定理:A B C π++=。

2、边角关系:大边对大角,等边对等角,小边对小角,反之亦成立,
即:a b A B >⇔>,a b A B =⇔=,a b A B <⇔<。

3、三边关系:任意两边之和大于第三边,任意两边之差小于第三边,
即:a b c +>,a c b +>,b c a +>
a b c -<,a c b +<,b c a -<
4、三角形的四心:
外心:外接圆圆心,三边中垂线的交点。

内心:内切圆圆心,三内角角平分线的交点。

垂心:三边高线的交点。

重心:三边中线的交点。

重心G 的性质:(1)重心G 是中线的三等分点;
(2)0GA GB GC ++=;
(3)若11(,)A x y 、22(,)B x y 、33(,)C x y ,则123123,33x x x y y y G ++++⎛⎫
⎪⎝⎭。

等腰三角形中顶角角平分线、底边中线、底边高线三线合一。

等边三角形四心合一。

5、正弦定理:
2sin sin sin a b c R A B C
===(R 为ABC ∆外接圆的半径)。

正弦定理的变形:(1)sin sin a b A B =,sin sin b c B C =,sin sin a c A C
=; (2)sin sin a B b A =,sin sin b A a B =,sin sin a B A b
=; (3)2sin a R A =,2sin b R B =,2sin c R C =;
(4)sin 2a A R =,sin 2b B R =,sin 2c C R
=; (5)::sin :sin :sin a b c A B C =;
(6)2sin sin sin sin a b c a R A B C A ++==++。

正弦定理的用途:(1)已知两角和任一边,求其他两边和一角;
(2)已知两边及其中一边的对角,求另一边和另两角;(此种情况一定要注意如何取
6、余弦定理:2222cos a b c bc A =+-,2222cos b a c ac B =+-,222
2cos c a b ab C =+- 或222cos 2b c a A bc +-=,222
cos 2a c b B ac
+-=,222cos 2a b c C ab +-=。

余弦定理的用途:(1)已知三边,求三角;
(2)已知两边及其夹角,求另一边和另两角;
(3)判断三角形的形状。

余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

cos 0C >⇔C ∠为锐角⇔222c a b <+
cos 0C =⇔C ∠为直角⇔222c a b =+
cos 0C <⇔C ∠为钝角⇔222c a b >+
7、三角形内的诱导公式:
sin()sin A B C += cos()cos A B C +=- tan()tan A B C +=-
sin
cos 22A B C += cos sin 22A B C += tan cot 22
A B C += 8、对任意三角形ABC ,都有sin 0A >。

9、sin sin A B A B a b >⇔>⇔>,
sin sin A B A B a b =⇔=⇔=,
sin sin A B A B a b <⇔<⇔<。

10、若sin 2sin 2A B =,则A B =或2A B π+=。

11、sin()0A B A B -=⇔=
12、在ABC ∆中,给定A 、B 的正弦或余弦值,则C 的正弦或余弦有解(即存在)的充要条件是
cos cos 0A B +>。

(也可以用9中的结论来判断) 13、在ABC ∆中,tan tan tan tan tan tan A B C A B C ++=⋅⋅。

14、在ABC ∆中,A 、B 、C 成等差数列⇔60B =。

15、ABC ∆为正三角形⇔A 、B 、C 成等差数列且a 、b 、c 成等比数列。

16、ABC ∆的面积公式:(1)111222
a b c S ah bh ch ===(a h ,b h ,c h 分别为,,a b c 边上的高) (2)111sin sin sin 222
S ab C bc A ac B ===
D C B
A
17、正余弦定理综合:222sin sin sin 2sin sin cos A B C B C A =+-
222sin sin sin 2sin sin cos B A C A C B =+-
222sin sin sin 2sin sin cos C A B A B C =+-
18、射影定理:cos cos a b C c B =+
cos cos b a C c A =+
cos cos c a B b A =+
19、角平分线定理:AD 为ABC ∆的角平分线,则 AB BD AC CD
= 20、ABC ∆的面积公式:(1)111222
a b c S ah bh ch ===(a h ,b h ,c h 分别为,,a b c 边上的高) (2)111sin sin sin 222
S ab C bc A ac B === (3)22sin sin sin S R A B C =(R 为ABC ∆外接圆的半径)
(4)4abc S R =
(5
)S =(其中2
a b c p ++=) (6)1()2
S rp r a b c ==++(r 为ABC ∆内切圆的半径) 21、直角三角形中的结论:(1)两锐角互余,即90A B +=。

(2)30角所对的直角边等于斜边的一半。

(3)勾股定理:222
a b c +=。

(4)斜边上的中线等于斜边的一半,外接圆的圆心为斜边的中点,垂心为直角顶
点。

(5)如图可得: Rt ABC Rt ACD Rt CBD ∆∆∆∽∽
(6)由(22AC AD AB =⋅
2BC BD BA =⋅
2CD DA DB =⋅。

相关文档
最新文档