线性规划的解

合集下载

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在经济管理、交通运输、工农业生产等领域都有着广泛的应用。

下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。

1、图解法适用于只有两个决策变量的线性规划问题。

步骤如下:画出直角坐标系。

画出约束条件所对应的直线。

确定可行域(满足所有约束条件的区域)。

画出目标函数的等值线。

移动等值线,找出最优解。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。

线性规划的解与最优解知识点总结

线性规划的解与最优解知识点总结

线性规划的解与最优解知识点总结在现实生活和工作中,我们经常会遇到需要最优化某个目标函数的问题。

线性规划作为一种常见的数学优化方法,在各个领域中得到了广泛应用。

它能够帮助我们在一定的约束条件下,找到目标函数的最佳解。

本文将对线性规划的解与最优解的相关知识点进行总结。

1. 基本概念线性规划问题由目标函数和一组线性约束条件组成。

目标函数的形式通常是最大化或最小化一些变量的线性组合,而约束条件则给出了这些变量的取值范围。

线性规划问题的一般形式如下:```max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0```其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件的右边常数,x₁,x₂, ..., xₙ为决策变量。

2. 解的存在性线性规划问题存在三种解的情况:无解、有界解和无界解。

如果约束条件与目标函数之间存在矛盾,例如出现一个约束条件为 a₁₁x₁ +a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,而目标函数的系数为 c₁ > a₁₁,那么这个线性规划问题就没有解。

有界解指的是线性规划问题在满足所有约束条件的情况下,能够找到目标函数的最大值或最小值。

无界解意味着目标函数可以无限制地增大或减小。

3. 最优解的性质线性规划问题的最优解具有以下性质:- 最优解必然出现在可行域的顶点上。

可行域是指所有满足约束条件的解的集合,而顶点则指可行域的边界上的点。

- 如果最优解存在,那么至少存在一个顶点是最优解。

- 如果可行域是有限的,则一定存在一个顶点是最优解。

- 如果最优解存在,那么一定有一条或多条约束条件在最优解上取等号。

线性规划问题解的概念和性质

线性规划问题解的概念和性质

线性规划问题解的应用之一是生产计划问题,通过合理安排生产计划,最大化利润并满足市场需 求。
线性规划问题解的生产计划问题需要考虑多种因素,如生产成本、市场需求、产品价格等,以制 定最优的生产计划。
线性规划问题解的生产计划问题可以通过建立数学模型进行求解,利用计算机软件进行优化和模 拟。
线性规划问题解的生产计划问题在实际应用中具有广泛的应用价值,可以提高企业的生产效率和 经济效益。
线性规划问题的标准形式
初始解的求解方法
初始解的判断准则
初始解的调整策略
迭代过程:通过不断迭代更新解,逐步逼近最优解 终止条件:当迭代过程中解的变化小于预设阈值或达到最大迭代次数时,终止迭代 收敛性:算法收敛于最优解的充分必要条件是所有约束条件都是“可行”的 算法复杂度:迭代次数与问题规模呈指数关系,需要选择合适的算法和参数
方案。
添加 标题
添加 标题
添加 标题
添加 标题
定义:在给定风险 水平下最大化收益, 或在给定收益水平
下最小化风险
应用场景:股票、 债券等金融资产的
投资组合配置
线性规划问题解的 应用:通过线性规 划方法找到最优投 资组合,实现风险
和收益的平衡
线性规划问题解的 概念和性质:在投 资组合优化问题中, 线性规划方法用于 求解最优解,其概 念和性质对于理解 和应用投资组合优
解的唯一性:线性 规划问题有唯一最 优解
解的稳定性:最优 解不会因约束条件 的微小变化而发生 大的改变
解的敏感性:当目 标函数系数或约束 条件发生变化时, 最优解可能会发生 改变
算法原理:通过 不断迭代,寻找 最优解
适用范围:线性 规划问题
求解步骤:确定 初始解,计算目 标函数值,迭代 更新解

线性规划问题的解法

线性规划问题的解法

线性规划问题的解法线性规划(Linear Programming,LP)是一种数学优化方法,用于求解线性约束条件下的最大化或最小化目标函数的问题。

线性规划问题在经济学、管理学、工程学等领域都具有广泛的应用,其求解方法也十分成熟。

本文将介绍线性规划问题的常用解法,包括单纯形法和内点法。

一、单纯形法单纯形法是解决线性规划问题最常用的方法之一。

它通过在可行解空间中不断移动,直到找到目标函数的最优解。

单纯形法的基本步骤如下:1. 标准化问题:将线性规划问题转化为标准形式,即将目标函数转化为最小化形式,所有约束条件均为等式形式,且变量的取值范围为非负数。

2. 初始可行解:选择一个初始可行解,可以通过人工选取或者其他启发式算法得到。

3. 进行迭代:通过不断移动至更优解来逼近最优解。

首先选择一个非基变量进行入基操作,然后选取一个基变量进行出基操作,使目标函数值更小。

通过迭代进行入基和出基操作,直到无法找到更优解为止。

4. 结束条件:判断迭代是否结束,即目标函数是否达到最小值或最大值,以及约束条件是否满足。

单纯形法的优点是易于理解和实现,而且在实际应用中通常具有较好的性能。

但是,对于某些问题,单纯形法可能会陷入循环或者运算效率较低。

二、内点法内点法是一种相对较新的线性规划求解方法,它通过在可行解空间的内部搜索来逼近最优解。

与单纯形法相比,内点法具有更好的数值稳定性和运算效率。

内点法的基本思想是通过将问题转化为求解一系列等价的非线性方程组来求解最优解。

首先,将线性规划问题转化为等价的非线性优化问题,然后通过迭代求解非线性方程组。

每次迭代时,内点法通过在可行解空间的内部搜索来逼近最优解,直到找到满足停止条件的解。

内点法的优点是在计算过程中不需要基变量和非基变量的切换,因此可以避免单纯形法中可能出现的循环问题。

此外,内点法还可以求解非线性约束条件下的最优解,具有更广泛的适用性。

三、其他方法除了单纯形法和内点法,还有一些其他的线性规划求解方法,如对偶方法、割平面法等。

线性规划问题的解

线性规划问题的解
因而 的取值可无限增大不受限制, z(1) 也可无限增大,表明线性
规划问题有无界解。
二、单纯形法的矩阵描述
在线性规划问题的标准型:
Max z CT X
s.t.

AX X
b 0
中,不妨设 B ( p1, p2 , , pm ) 是一个可行基,则系数矩阵A可分块为
(B,N)。对应于B的基变量
基:A中任何一组m个线性无关的列向量构 成的子矩阵,称为该问题的一个基(basis),
与中的这些列向量对应的变量称为基变量 (basic variable)
基本解:对于基,令非基变量为零,求得满足 (1-13)的解,称为基对应的基本解(basic solution)。
基本可行解:满足(1-14)的基本解 称为基本可行解(basic feasible solution);基本可行解所对应的基称 为可行基(feasible basis)。
为,X B (x1, x2 , , xm )T 为 X N (xm1, xm2 , , xn )T
,非基变量 ,N
= ( pm1, pm2 , , pn )
。并令C T

(C
T B
,
C
T N
)
,其
中 B 为基变量X B的系数列向量,N 为
非基变量的系数列向量。于是原问题可化

Max
0

x
0 l
a lj
由(1-22)式得
(1-22)
xi0
aij

0 0
(i l) (i l)
(1-23)
故 X (1) 是一个可行解
3、最优性检验和解的判别
将基本可行解 X (0) 和 X (1) 分别代入目标函数得

线性规划的解法

线性规划的解法

线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。

在现实生活中,许多问题都可以用线性规划求解。

如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。

线性规划的解法有多种,下面我们就来对其进行详细的介绍。

1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。

单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。

单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。

2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。

这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。

对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。

3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。

内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。

内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。

4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。

这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。

总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。

希望本文能够对您有所帮助。

线性规划问题的解法与最优解分析

线性规划问题的解法与最优解分析

线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。

它在工程、经济学、管理学等领域有着广泛的应用。

本文将介绍线性规划问题的解法和最优解分析。

一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。

线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。

二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。

1. 图形法图形法适用于二维或三维的线性规划问题。

它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。

首先,将约束条件转化为不等式,并将其绘制在坐标系上。

然后,确定目标函数的等高线或等高面,并绘制在坐标系上。

最后,通过观察等高线或等高面与约束条件的交点,找到最优解。

图形法简单直观,但只适用于低维的线性规划问题。

2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。

它通过在可行域内不断移动,直到找到最优解。

单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。

它通过选择一个基本变量和非基本变量,来构造一个新的可行解。

然后,通过计算目标函数的值来判断是否找到了最优解。

如果没有找到最优解,则继续迭代,直到找到最优解为止。

单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。

线性规划问题的四种求解方法

线性规划问题的四种求解方法
x +y ≤300 x ≤200 x ≥0 ,y ≥0
可出直线
l0
:y
=-
2 3
x
,
把直线
l0
向右上方
平移 , 当经过可行域上点 B 时 , 直线的截距最
大 .此时 z = 12x +18y 取最大值 .解方程组
z =6x +3y +5[ 300 -(x +y)] +5(200 -x ) +9(450 -y)+6(100 +x +y)=2 x -5y +
★解题方法与技巧
线性规划问题的四种求解方法
江 苏溧 阳中 学(2 13300) 吕清 平
线性规划问题是现实生活中一类重要的应 用问题 , 它常用来研究物资调运 、生产安排 、下
时 , zmax =12 ×5 +18 ×4 =132(万美元) 答 :购买第一种机器 5 台 , 第二种机器 4 台
料等工作的资源优化配制问题 , 寻求线性规划 时能使工厂获得的年利润最大 .
值线值的大小知 , 当等值线经过可行域上点 C 成本如下表 :
时 , 等值线的值最小 .z 有最小值 5650 元 , 此时 x =0 、y =300 , 故甲地产品运往 B 地 ;乙地产 品运往 A 、B 、C 三地分别为 200 吨 、150 吨 、400
甲乙丙 维生素 A(单位 / 千克) 600 700 400
解 设每天生产甲 、乙产品的件数分别是
维生素 B (单位 / 千克) 800 400 500
成本(单位 / 千克) 11 9 4
某食物营养所想用 x 千克甲种食物 , y 千 克乙种食物 , z 千克丙种食物配成 100 千克混合 物 , 并使混合物至少含有 56000 单位维生素 A 和 63000 单位维生素 B

解线性规划问题

解线性规划问题

解线性规划问题线性规划问题是数学中的一种重要问题,广泛应用于运筹学、经济学和管理学等领域。

它的求解方法有很多种,下面将介绍两种主要的解线性规划问题的方法:单纯形法和内点法。

一、单纯形法单纯形法是解线性规划问题最常用的方法之一。

它的基本思想是从一个可行解出发,通过不断调整进入和离开基变量,逐步接近最优解。

具体步骤如下:1. 设置线性规划问题的标准型:将目标函数和约束条件转化为标准形式,即目标函数为最小化形式的线性函数,约束条件为一组线性不等式。

2. 初始化:确定初始可行解,选择初始基变量。

3. 检验最优性:计算当前可行解的目标函数值,若满足最优性条件则终止算法,得到最优解;否则进入下一步。

4. 选取离开基变量:根据离开变量的选择准则,确定需要离开的基变量。

5. 选取进入基变量:根据进入变量的选择准则,确定需要进入的基变量。

6. 更新基变量:通过更新基变量,得到新的可行解。

7. 重复步骤3-6,直到找到最优解。

二、内点法内点法是一种通过变量逐渐趋近可行域内部,实现对线性规划问题的解的方法。

与单纯形法相比,内点法在渐近性和稳定性方面具有优势。

内点法的主要思想是引入一个惩罚函数,目标函数加上此惩罚函数之后,约束条件变成等式。

然后通过求解惩罚函数的极小值来逼近原问题的最优解。

具体步骤如下:1. 设置线性规划问题的标准型:将目标函数和约束条件转化为标准形式。

2. 初始化:确定初始可行解,选择初始内点。

3. 更新内点:通过逐步调整内点,使其逼近可行域内部。

4. 求解惩罚函数:将目标函数和约束条件转化为一个待求解的非线性优化问题,通过求解此问题来逼近原线性规划问题的最优解。

5. 重复步骤3-4,直到找到最优解。

通过使用单纯形法和内点法,我们可以解决各种线性规划问题。

无论是单纯形法还是内点法,都有其优缺点和适用范围,选择合适的方法来解决具体问题是非常重要的。

线性规划问题的解

线性规划问题的解

线性规划问题的解线性规划(Linear Programming, LP)是数学规划的一种重要方法,其应用领域十分广泛。

线性规划的目标是在给定的线性约束条件下,寻找使目标函数最大或最小的变量取值。

本文将介绍线性规划问题的解以及如何求解线性规划问题。

一、线性规划问题的解的基本概念1. 可行解:满足线性约束条件的变量取值被称为可行解。

可行解集合构成了解空间。

2. 最优解:在可行解集合中,使目标函数取得最大或最小值的可行解被称为最优解。

二、线性规划问题的求解方法线性规划问题的求解方法通常有两种:图形法和单纯形法。

1. 图形法:适用于二维或三维线性规划问题,即变量的个数较少,可以通过绘制图形来确定最优解。

图形法的基本思路是绘制等式约束和不等式约束的直线或平面,并通过观察它们的交点或交线来确定可行解和最优解。

2. 单纯形法:适用于多维线性规划问题,即变量的个数较多。

单纯形法通过迭代计算,逐步逼近最优解。

其基本思路是从一个初始可行解开始,通过调整变量的取值来提高目标函数的值,直到找到最优解或确定问题无解。

三、线性规划问题的示例下面以一个简单的线性规划问题为例。

假设有两种产品A和B,它们的生产需要使用以下资源:钢材、机器时数和人工时数。

每单位产品A需要2吨钢材、4机器时数和6人工时数;每单位产品B需要3吨钢材、5机器时数和4人工时数。

公司目前有100吨钢材、120机器时数和150人工时数可用。

已知产品A的利润为1000元/单位,产品B的利润为2000元/单位。

问如何安排生产,使得利润最大化?1. 建立数学模型:令x为产品A的产量,y为产品B的产量。

则目标函数为最大化利润:1000x+2000y。

约束条件为:2x+3y≤100(钢材约束),4x+5y≤120(机器时数约束),6x+4y≤150(人工时数约束),x≥0,y≥0。

2. 通过图形法找到可行解和最优解:先绘制钢材约束的直线2x+3y=100,机器时数约束的直线4x+5y=120,人工时数约束的直线6x+4y=150。

1.2线性规划的解

1.2线性规划的解

. ..
x2 .3 .
. x1 2x2 2 . . . . .
0
x1
解: (1)在直角坐标系上画出可行域
x1 4
x1 2x2 8
(2)做目标函数的等值线 x1 2x2 2
(3)最优值z* 8
求交点:
x1 x2
2x2 3
8
x1 x1
2x2 4
8
(x1, x2 ) (2,3)
(x1, x2 ) (4,2)
max z 7x1 x2
x1 2x2 6
s.t
x1 x2 1 x1 2
x1 , x2 0
其标准型为
max z 7x1 x2
x1 2x2 x3 6
s.t
x1 x2 x4 1 x1 x5 2
x1, x2 , x3 , x4 , x5 0
1 2 1 0 0
系数矩阵A
2x1 x2 3
可行域为空集
无可行解
该问题无最优解
图解法的基本步骤:
1、在直角坐标系x1ox2上做出可行域S的图形
(一般是一个凸多边形)
2、令目标函数值取一个给定的常数k,
做等值线Z c1x1 c2 x2 k 3、对max 问题,令目标函数值k由小变大, 即让等值线向上平移,
若它与可行域S最后交于一个点(一般是S的一个顶点), 则该点就是所求的最优点, 若与S的一条边界重合,此时边界线上的点均是最优点
退化基本可行解:基本可行解中,存在取0值的基变量
对应的基称为退化基
非退化基本可行解:基本可行解中,基变量的取值均>0
对应的基称为非退化基
线性规划问题
退化的线性规划问题:存在退化基 非退化的线性规划问:题 所有基均非退化

线性规划问题解的基本理论

线性规划问题解的基本理论
8.基本可行解(对应的基为可行基):满
足非负条件的基本解。
4
9.退化的基本可行解
非零分量个数小于m(至少有一个基变量 取值为0)。
10.最优基
该基对应的基本可行解为LP的最优解。
结论
基本解的个数≤Cmn
基本可行解的非零分量均为正分量 个数不超过m
5
皮肌炎图片——皮肌炎的症状表现
皮肌炎是一种引起皮肤、肌肉、 心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时 伴有恶性肿瘤。它的1症状表现如 下:
(即可行域)
D
X
n
Pj x j
j 1
b, x j
0是凸集。
定理3-2 线性规划几何理论基本定理

D
X
n
Pj x j
j 1
b,
x,j
0
则X是D的一个顶点的充分必要条件是X为线性
规 划的基本可行解。
8
定理3-3 若可行域非空有界,则线性规划问 题的目标函数一定可以在可行域的顶点上 达到最优值。
化为只在可行域的顶点中找,从而把一 个无限的问题转化为一个有限的问题。
☺ 若已知一个LP有两个或两个以上最
优解,那麽就一定有无穷多个最优解。
11
二、 线性规划问题 解的概念和性质
1
一、LP问题的各种解
1. 可行解:满足约束条件和非负条
件的决策变量的一组取值。
2. 可行解集:所有可行解的集合。 3. 可行域:LP问题可行解集构成n维
空间的区域,可以表示为:
D {X | AX b, X 0}
2
4.最优解:使目标函数达到最优值的可行解。 5.最优值:最优解对应目标函数的取值。 6.求解LP问题:求出问题的最优解和最优值。

几类线性规划问题的解法分析

几类线性规划问题的解法分析

线性规划问题经常出现在高考数学试题中.此类问题通常会要求同学们从实际问题中抽象出二元一次不等式,在了解二元一次不等式的几何意义的基础上,画出二元一次不等式组所表示的平面区域,并求出最优解.但问题中的目标函数经常会有所变化,常见的形式有直线型、分式型、平方型,且解法各不相同.下面结合实例,谈一谈三类线性规划问题的解法.一、直线型目标函数直线型的目标函数一般形如z =ax +by (ab ≠0),这类问题通常要求根据二元一次不等式组,求目标函数z =ax +by (ab ≠0)的最值.求解此类线性规划问题,一般需将函数z =ax +by 转化为直线的斜截式方程:y =-a b x +z b,根据二元一次不等式组画出可行域后,在可行域内讨论直线的截距zb的最值.通过求直线的截距zb的最值来间接求出z 的最值.例1.设x ,y 满足ìíîïïx -y ≥0,x +y -2≤0,y ≥-2,则z =2x +y 的最大值为.解:画出ìíîïïx -y ≥0,x +y -2≤0,y ≥-2,表示的可行域,如图1中的阴影部分所示,由{x +y -2≤0,y ≥-2,可得{x =4,y =-2,平移直线y =-2x +z ,可知当直线y =-2x +z 经过点()4,-2时,该直线在纵轴上的截距最大,即在()4,-2点处,z 取大值,可得z max =2×4-2=6.由于直线的截距有正有负,所以取最值的情形有所不同.当b >0时,截距zb取最大值,此时z 也取最大值,当截距zb 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值,此时z 取最小值,当截距z b取最小值时,z 取最大值.图1图2例2.某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5kg ,其中动物饲料不能少于谷物饲料的15.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅能保证供应谷物饲料50000kg ,问怎样混合饲料,才使成本最低.解:设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z 元,由题意可得ìíîïïïïx +y ≥35000,y ≥15x ,0≤x ≤50000,y ≥0,则z =0.28x +0.9y ,作出以上不等式组所表示的平面区域,如图2中阴影部分所示,联立x +y =35000和y =15x ,可得x =875003,y =175003,则A (875003,175003),作一组平行直线y =-2890+10z9(即图2中虚线),当直线经过可行域内的点A (875003,175003)时,直线的纵截距最小,此时z 最小.故当x =875003,y =175003时,即将谷物饲料和动物饲料按5:1的比例混合时,成本最低.本题是一道实际应用问题.解答此类线性规划问题,需首先仔细读题,根据题意设出变量,建立关于变量的不等关系式以及目标函数.而本题中的目标函数为直线型,所以需将其转化为直线的截距式,在可行域内寻找直线的截距取最小值时的点,即可解题.一般地,线性目标函数的最优解一般会在可行域的顶点或边界处取得,我们可以重点研究可行域的顶点或边界上的点.二、分式型目标函数分式型目标函数一般形如z =y -bx -a.求解此类线性规划问题,需根据目标函数的几何意义:已知点(a ,b )与可行域内的点(x ,y )连线的斜率.当斜率取最大值时,z 取最大值;当斜率取最小值时,z 取最小值.而直线的斜率k =tan a 受倾斜角a 影响:(1)当倾斜角a 为魏上茗43当直线经过点(1,6)时,直线的斜率取得最大值,最大值为6;当直线经过点直线的斜率最小,此时yx取得最小值,最小的取值范围是éëùû95,6,所以本题选A.本题的可行域在第一象限,所以只需讨论直线的范围内的变化情况,可将直线y=zx在可行域内找出直线的倾斜角最大或即斜率取最值时的点,即可解题.图4图5例5.设实数x,y满足ìíîïïx+y-6≥0,x+2y-14≤0,2x+y-10≤0,则x2+y的最小值为____.解:x2+y2表示可行域内的点P(x,y)到原点的距离,作出不等式组表示的平面区域,如图5中的阴影部分所示,过点O作OA垂直于直线x+y-6=0,垂足为A在可行域内),所以原点到直线x+y-6=0的距离,就是点P(x,y)到原点距离的最小值,由点到直线的图3。

线性规划解的概念

线性规划解的概念

§2.1 单纯形表
为计算方便,将系数提出来,形成表格:
x1
x2

a11
a12

………
am1 am2 … -c1 -c2 …
xn
a 0
设有一可行基,不妨设是前m个向量,则
线性方程组可化为如下形式
x1
x 1,m1 m1 1,nxn 1
x2
x 2,m1 m1 2,nxn 2
可行域:(LP)的所有可行解组成的集合K称为(LP) 的可行域。若可行域为空,则称不可行。对标 准型线性规划问题,其可行域为 K {x|A x b ,x0 }
最优解(optimal solution) :可行域中每个可行解 都对应一个目标值,其中对应的目标函数值最 小的可行解x*,称为(LP)的最优解,也称为(LP) 的解。即 x* K , x K ,cT x*cT x
i 1
i 1
i 1
若x是极点,但不是基可行解,正分量对应的列
k
线性相关。 i Pi 0,i不全为零
i1 k
对任意的实数 , (xi i)Pi b
i1
取充分小的 ,使 x ii 0 , x ii 0 .
得两可行解x1,x2 ,使x= x1/2+x2/2。
推论 线性规划可行域的顶点个数有限。
引理2 若K为有界闭凸集,则其中任何一点可表 示为其顶点的凸组合。
k
为满足下列条件的一组实数 i 0,i 1.
k
i0
则称 x i xi为 x1,x2, ,xk的凸组合。
极点 设iK0 为凸集,xK,若x不能表示成K
中不同的两点的凸组合,则称x为K的一
个极点(顶点)。
基本定理
定理1 任意一组凸集的交集仍为凸集。

线性规划的解法

线性规划的解法

线性规划的解法线性规划(Linear Programming)是数学优化的一个重要分支,旨在寻求一组最优解,以满足一系列线性约束条件。

在实际问题中,线性规划方法被广泛应用于资源分配、生产调度、运输计划等领域。

本文将介绍线性规划的解法及其应用。

一、线性规划问题的描述与模型建立线性规划问题可以用数学模型来描述,一般表示为:$max\{c^Tx | Ax \leq b, x \geq 0\}$其中,$c$表示目标函数的系数向量,$x$表示决策变量的值向量,$A$和$b$分别表示约束条件的系数矩阵和常数向量。

解决线性规划问题的关键是确定目标函数和约束条件,以及求解最优解的方法。

二、单纯形法(Simplex Method)单纯形法是解决线性规划问题最常用的方法之一,由乔治·丹尼格(George Dantzig)于1947年提出。

该方法基于下面的原理:从一个顶点出发,沿着边界不断移动到相邻的顶点,直到找到目标函数的最大(或最小)值。

具体而言,单纯形法的步骤如下:1. 将线性规划问题转化为标准形式(如果不满足标准形式)。

2. 选择一个初始基本可行解。

3. 判断当前解是否为最优解,若是,则结束;否则,进行下一步。

4. 选择一个进入变量和一个离开变量,即确定下一个顶点。

5. 进行变量的调整,即计算新的基本可行解。

6. 重复3-5步,直到找到最优解。

三、内点法(Interior Point Method)内点法是另一种常用的线性规划求解方法,其优点是能够在多项式时间内找到最优解。

与单纯形法相比,内点法不需要从一个顶点移动到相邻的顶点,而是通过在可行域内搜索,在每次迭代中逐渐接近最优解。

内点法的基本思路是通过寻找原问题的拉格朗日对偶问题的最优解来解决线性规划问题。

它通过引入一个额外的人工变量,将原问题转化为一个等价的凸二次规划问题,并通过迭代的方式逐步逼近最优解。

四、应用举例线性规划方法在各个领域都有广泛的应用。

线性规划问题解的概念和性质

线性规划问题解的概念和性质

第五节 线性规划问题解的概念和性质
第五节 线性规划问题解的概念和性质
非退化的基本(可行)解, 并恰有 n – m 个 0 分量。
基本可行解对应的基,称为可行基; 最优基本解对应的基,称为最优基。 如:基 B0= ( a2 ,a3 ,a4 ) 对应 X0 = ( 0,0,8,12,36 )T 可行 基 B1= ( a2 ,a3 ,a4 ) 对应 X1 = ( 0,9,8,- 6,0 )T 不可行 基 B2 = ( a1 ,a2 ,a3 ) 对应 X2 = ( 4,6,4,0,0 )T
恰有 m 个非 0 分量,
为可行基
为非可行基
为最优基
x*
x*
B*
第五节 线性规划问题解的概念和性质
解: 约束方程的系数矩阵为2×5矩阵
例: 求线性规划问题的所有基矩阵。
r(A)=2,2阶子矩阵有10个,其中基矩阵(不等于0)只有9个,即
第五节 线性规划问题解的概念和性质
凸性的几个基本概念 一、凸集 设S En,对任意两点X∈S ,Y∈S,若对满足0 ≤μ ≤1的一切 实数μ ,都有 μX+(1- μ)Y ∈ S 则称S为凸集。
X
Y
X
Y
凸集
凸集
非凸集

表示S 中两点 X,Y 连线上的任一点
凸集的几何意义:凸集S中任意两点 X,Y 连线上的点,都在凸集S中。
第五节 线性规划问题解的概念和性质
二、极点 设凸集S En, X∈S,如果X不能用S中不同的两点Y和Z 表示为 X =λY+(1-λ)Z (0<λ<1) 则称X为S的一个极点。 三、 凸组合 设Xi∈En, 实数μi ≥0,i = 1,2,… , s,且∑μi = 1,则称 X = μ1X1 + μ2X2 +…+ μsXs 为点 X1,X2,… ,Xs 的一个凸组合。

线性规划的解

线性规划的解

线性规划的解课本题中出现的线性规划都有唯一的最优解,其实线性规划的解有许多不同的情况,除了有唯一的最优解的情况外,还有(1)无可行解,从而无最优解.这就是约束条件不等式组无解的情况.(2)有无穷多个最优解例2我们用图解法求解.由于目标函数等高线和可行域的边界线平行,沿着目标函数值增加方向平行移动目标函数的等高线,最终停留在直线上,所以线段AB上的所有点都是最优解.线性规划如果有最优解,只会是有唯一最优解或者有无穷多个最优解这两种情况,不会出现其他情况,这就是下面的命题.命题1 如果线性规划有两个不同的最优解,那么对任意,是最优解.这个命题的证明可以在任何一本线性规划的书中找到,这里就不再证明了.事实上证明是平凡的,只要注意到在线段上,利用线性性质,读者就可以自己证明.(3)有可行解,无最优解.例3我们用图解法求解.从图中可以看出随着目标函数等高线的移动,目标函数值会越来越大,没有上界.有的书上称之为无界解.无界解的情况只会出现在可行域是开区域的时候.如果可行域是闭区域,就一定是有界的,于是有命题2 如果统性规划可行域是闭区域,那么一定有最优解.只要注意到线性函数是连续函数,上面的命题就是“有界闭区域上连续函数可以达到最大值或最小值”这一定理的一个推理.从上面的例子中我们可以看出,如果有最优解,那么就有可行域的顶点是最优解.所以也可以通过比较可行域顶点的目标函数值来求线性规划的最优解.例如,中的顶点的目标函数值是;的目标函数值是3;的目标函数值是于是通过比较可以知道是最优解.线性规划的单纯形算法,就是一种从顶点到顶点并使得目标函数值不断改进的迭代算法,由于可行域的顶点只有有限多个,所以经过有限次送代就可以求出线性规划的最优解.单纯形算法可以求解一般的(变量多于两个)线性规划问题.许多实际问题中变量和约束的个数都很多,有些规模比较大的问题中变量和约束的个数甚至可以上万,这样的问题当然是无法用手工计算的,需要用计算机和专门的软件求解.对于规模不是太大(如几十个变量)的线性规划,现在常用的数学软件如Mathematica,Matlab都可以解.下面介绍如何用Matematica解线性规划.用Mathematica解线性规划用的是ConstrainedMax或者函数,这两个函数的格式如下:[目标函数,][目标函数,]由于软件是用C语言编写的,所以它的函数带有C语言的风格.{}表示表格,和函数中都有两个表格,第一个表格是约束条件的表,第二个表格是变量表,表格中的项用逗号分隔.要指出的是由于一般的线性规划中的变量都是非负变量,这两个函数的变量也要求有非负约束,但是非负约束可以不在约束条件表格中列出.例如求解线性规划只要输入In[2]:=计算机就会给出计算结果最优值2,最优解:斜体的和自动加上的表示输入,表示输出,中的2表示行号.用求例l中的规划问题,在许多实际问题中都要求线性规划的最优整数解,课本中也出现了这样的例子和习题.但是笔者以为求最优整数解不应该成为教学的重点.因为求整数解的问题属于整数规划的范畴,而整数规划和线性规划是运筹学中两个不同的分支.教材的作者显然是知道这一点的,所以在教材的处理上回避了如何去求整数解这个问题.作者这样做一方面告诉大家求整数解不应该成为教学的重点,另一方面也给学生留下了一个自由发展的空间.事实上对于课本上出现的这样非常简单的问题只要在非整数优解的附近找出整数可行解,通过比较它们目标函数值的大小就可以求出最优整数解,学生完全可以自己想办法解决.在科普杂志《科学的美国人》(Scientific American)1981年第6期上有一篇介绍线性规划的文章,文章用了下面的一个例子(本文中的数量单位有改动):某啤酒厂生产两种啤酒,其中淡色啤酒A桶,啤酒B桶.粮食、啤酒花和麦芽是三种有约束的资源,每天分别可以提供480斤、160两和11 90斤.假设生产一桶淡色啤酒需要粮食5斤、啤酒花4两、麦芽20斤;生产一桶啤酒需要粮食15斤、啤酒花4两、麦芽35斤.售出后每桶淡色啤酒可获利13元,每桶啤酒可获利23元.问A,B等于多少时工厂的利润最大.这个例子的线性规划模型是和课本中的例子相比较这个例子有两个优点,一是它的数据更接近实际数据,有真实感,同时由于数字较大求出的最优解不是整数的问题被相对淡化了;另一方面例子中三种约束的单位不同,这在实际问题中经常出现,例子可以告诉学生列规划时并不需要统一各种约束条件的单位.笔者建议在教学中可以使用类似的例子.。

线性规划学习线性规划的解法

线性规划学习线性规划的解法

线性规划学习线性规划的解法线性规划是一种数学优化方法,用于解决一类特定的最优化问题。

线性规划的主要目标是在给定的线性约束条件下,找到一个线性目标函数的最大值或最小值。

本文将介绍线性规划的基本概念和解法。

Ⅰ. 线性规划的基本概念线性规划问题通常可以表示为以下形式:给定一组线性约束条件和一个线性目标函数,求解目标函数的最大值或最小值。

其中,线性约束条件可以表示为一组形如ax1 + bx2 + … + c ≤ d的不等式,线性目标函数为z = cx1 + dx2 + … + e。

Ⅱ. 线性规划的解法线性规划问题的求解方法有多种,下面将介绍其中两种常用的解法:单纯形法和内点法。

1. 单纯形法单纯形法是一种逐步改进的方法,通过迭代寻找最优解。

具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行基本解。

(2)选择进基变量:从非基变量中选择一个可以增大目标函数值的变量作为进基变量。

(3)选择出基变量:由于选择进基变量而产生的新的解是非可行解,需要选择一个基变量作为出基变量,并进行调整。

(4)迭代:重复进行步骤2和步骤3,直到找到满足条件的最优解。

2. 内点法内点法是一种基于迭代的方法,通过寻找线性规划问题的可行解来逼近最优解。

具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行解。

(2)构造路径方程:引入一个路径参数,并构造路径方程,将线性规划问题转化为一系列等价的非线性问题。

(3)迭代:通过求解路径方程的解,逐步逼近最优解。

Ⅲ. 实例分析下面通过一个实例来说明线性规划问题的解法。

假设有一家制造公司生产两种产品A和B,分别需要通过机器X和机器Y进行加工。

机器X每小时可工作6小时,机器Y每小时可工作4小时。

产品A通过机器X加工需要1小时,产品B需要2小时;产品A通过机器Y加工需要2小时,产品B需要1小时。

产品A的利润为3万元,产品B的利润为2万元。

问该公司如何安排生产,才能使利润最大化?解:首先,设产品A的产量为x,产品B的产量为y,则目标函数为z = 3x + 2y。

三类线性规划问题及其解法

三类线性规划问题及其解法

方法集锦线性规划问题是指在线性约束条件下求线性目标函数的最大值或最小值问题,重点考查同学们的建模、运算、分析能力.本文主要探讨三种不同类型目标函数的线性规划问题及其解法.一、z =ax +by 型若目标函数为z =ax +by 型(直线型),我们一般需先将目标函数变形为:y =-a b x +zb,通过求直线的截距的最值间接求出z 的最值,这样便将求目标函数最值问题转化为求直线的截距的最值.①若b >0,当y =-a b x +z b截距最大时z 最小,当截距最小时z 最大;若b <0,当y =-a b x +zb截距最大时z 最大,当截距最小时z 最小.例1.已知x ,y 满足约束条件ìíîïïïï2x +y ≤40,x +2y ≤50,x ≥0,y ≥0,则z =3x +2y 的最大值为_____.解:将z =3x +2y 变形为y =-32x +z2.作出如图1所示的可行域,由图可知当y =-32x +z 2过点A 时,直线的截距最大,则{2x +y =40,x +2y =50,解得ìíîx =10,y =20,此时z max =70.在画出可行域后,我们通过观察图形便能很快确定当直线经过A 点时y =-32x +z2的截距最大,此时z 最大,解方程组便可求得z 的最值.图1图2图3二、z =y -bx -a型对于目标函数为z =y -bx -a (斜率型)的线性规划问题,我们一般要依据y -bx -a的几何意义来求解.首先,根据线性约束条件画出可行域,将z 看作是可行域内的动点P (x ,y )与定点A (a ,b )连线的斜率,求得斜率的最值便可求出z 的最值.例2.已知x ,y 满足约束条件ìíîïïx -y +1≤0,x >0,x ≤1,求z =yx的最大值.解析:该目标函数为斜率型,可将z 看作是可行域内的动点P (x ,y )与原点连线的斜率,求出斜率的最值即可.解:作出如图2所示的可行域,将z =yx变形为z =y -0x -0,可将z 看作可行域内任意一点P (x ,y )与原点的连线的斜率.由图2可知当直线过交点A 时,PO 的斜率最大,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z max =2.三、z =(x -a )2+(y -b )2型当遇到目标函数为z =(x -a )2+(y -b )2(距离型)的线性规划问题时,我们可以把z 看作可行域内动点P (x ,y )与定点A (a ,b )的距离的平方,结合可行域找到最值点,利用两点间的距离公式便能求出z 的最值.例3.已知x ,y 满足约束条件ìíîïïx -y +1≤0,2x -y -2≤0,x ≥1,则z =x 2+y 2的最小值为_____.解析:该目标函数为距离型,可将z 看作是可行域内任意一点P (x ,y )到原点的距离的平方,求得PO 两点间距离的最小值,便可求得z 的最小值.解:将z =x 2+y 2变形为z =(x -0)2+(y -0)2,作出如图3所示的可行域,由图可知点A 到原点的距离最小,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z min =5.可见,解答线性规划类问题的基本思路是,(1)根据线性约束条件画出可行域;(2)将目标函数变形为直线型、斜率型、距离型;(3)在可行域内移动直线、点,找出最值点;(4)联立交点处的直线方程,求出最值点的坐标;(5)将点的坐标代入目标函数中求得最值.(作者单位:中国烟台赫尔曼·格迈纳尔中学)44。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划的解
课本题中出现的线性规划都有唯一的最优解,其实线性规划的解有许多不同的情况,除了有唯一的最优解的情况外,还有
(1)无可行解,从而无最优解.这就是约束条件不等式组无解的情况.
(2)有无穷多个最优解
例2,4max y x z -=
⎪⎩
⎪⎨⎧≥≤+≤-,1,2553,
34x y x y x
我们用图解法求解.
由于目标函数等高线和可行域的边界线34-=-y x 平行,沿着
目标函数值增加方向平行移动目标函数的等高线,最终停留在直线
34-=-y x 上,所以线段AB 上的所有点都是最优解.
线性规划如果有最优解,只会是有唯一最优解或者有无穷多个最优解这两种情况,不会出现其他情况,这就是下面的命题.
命题 1 如果线性规划有两个不同的最优解21,P P ,那么对任意10<<λ,
()211P P P λλ-+=是最优解.
这个命题的证明可以在任何一本线性规划的书中找到,这里就不再证明了.事实上证明是平凡的,只要注意到P 在线段21P P 上,利用线性性质,读者就可以自己证明.
(3)有可行解,无最优解.
例3 y 2x maxz +=
⎪⎩
⎪⎨⎧≥≥-≥-,00
,
34y x y x 我们用图解法求解.
从图中可以看出随着目标函数等高线的移动,目标函数值会越
来越大,没有上界.有的书上称之为无界解.
无界解的情况只会出现在可行域是开区域的时候.如果可行域
是闭区域,就一定是有界的,于是有
命题2 如果统性规划可行域是闭区域,那么一定有最优解.
只要注意到线性函数是连续函数,上面的命题就是“有界闭区
域上连续函数可以达到最大值或最小值”这一定理的一个推理.
从上面的例子中我们可以看出,如果有最优解,那么就有可行域的顶点是最优
解.所以也可以通过比较可行域顶点的目标函数值来求线性规划的最优解.例如
y x z +=2ma x ,⎪⎩
⎪⎨⎧≥≤+≤-,1,2553,
34x y x y x 中的顶点()2,5A 的目标函数值是12;()1,1B 的目标函数
值是3;()4.4,1C 的目标函数值是4.6于是通过比较可以知道()2,5A 是最优解.
线性规划的单纯形算法,就是一种从顶点到顶点并使得目标函数值不断改进的迭代算法,由于可行域的顶点只有有限多个,所以经过有限次送代就可以求出线性规划的最优解.单纯形算法可以求解一般的(变量多于两个)线性规划问题.
许多实际问题中变量和约束的个数都很多,有些规模比较大的问题中变量和约束的个数甚至可以上万,这样的问题当然是无法用手工计算的,需要用计算机和专门的软件求解.对于规模不是太大(如几十个变量)的线性规划,现在常用的数学软件如Mathematica ,Matlab 都可以解.下面介绍如何用Matematica 解线性规划.
用Mathematica 解线性规划用的是ConstrainedMax 或者dMin Constraine 函数,这两个函数的格式如下:
d M a x C o n s t r a i n
e [目标函数{}约束条件,{}变量] d M a x C o n s t r a i n e [目标函数{}约束条件,{}变量]
由于dMin Constraine 软件是用C 语言编写的,所以它的函数带有C 语言的风格.{}表示表格,dMax Constraine 和dMin Constraine 函数中都有两个表格,第一个表格是约束条件的表,第二个表格是变量表,表格中的项用逗号分隔.要指出的是由于一般的线性规划中的变量都是非负变量,这两个函数的变量也要求有非负约束,但是非负约束可以不在约束条件表格中列出.
例如求解线性规划
z y x v ++=min
⎪⎩
⎪⎨⎧≥≥≥≤+≥+.0,0,0,
5,
2z y x z x y x 只要输入
In [2]:=dMin
Constraine {}{}[]z y x z x y x z y x ,,,5,2,<=+>=+++计算机就会给
出计算结果
[]{}{}0,0,2,22>->->-=x y x Out 最优值2,最优解:.0,0,2===z y x 斜体的[]=:2In 和[]a Mathematic Out =:2自动加上的In 表示输入,Out 表示输出,[]2中的2表示行号.
用a Mathematic 求例l 中的规划问题,
[]{}{}[]
y x x y x y x y x dMin Constraine In ,,1,2553,34,2:3>=<=+-<=-+=
[]{}{}.2,5,123>->-=y x Out
在许多实际问题中都要求线性规划的最优整数解,课本中也出现了这样的例子和习题.但是笔者以为求最优整数解不应该成为教学的重点.因为求整数解的问题属于整数规划的范畴,而整数规划和线性规划是运筹学中两个不同的分支.教材的作者显然是知道这一点的,所以在教材的处理上回避了如何去求整数解这个问题.作者这样做一方面告诉大家求整数解不应该成为教学的重点,另一方面也给学生留下了一个自由发展的空间.事实上对于课本上出现的这样非常简单的问题只要在非整数优解的附近找出整数可行解,通过比较它们目标函数值的大小就可以求出最优整数解,学生完全可以自己想办法解决.
在科普杂志《科学的美国人》(Scientific American )1981年第6期上有一篇介绍线性规划的文章,文章用了下面的一个例子(本文中的数量单位有改动):
某啤酒厂生产两种啤酒,其中淡色啤酒A 桶,啤酒B 桶.粮食、啤酒花和麦芽是三种有约束的资源,每天分别可以提供480斤、160两和11 90斤.假设生产一桶淡色啤酒需要粮食5斤、啤酒花4两、麦芽20斤;生产一桶啤酒需要粮食15斤、啤酒花4两、麦芽35斤.售出后每桶淡色啤酒可获利13元,每桶啤酒可获利23元.问A ,B 等于多少时工厂的利润最大.
这个例子的线性规划模型是
,2313max B A z +=
⎪⎪⎩
⎪⎪⎨
⎧≥≥≤+≤+≤+.0,0,
11903520,16044,
480155B A B A B A B A 和课本中的例子相比较这个例子有两个优点,一是它的数据更接近实际数据,有真实感,同时由于数字较大求出的最优解不是整数的问题被相对淡化了;另一方面例子中三种约束的单位不同,这在实际问题中经常出现,例子可以告诉学生列规划时并不需要统一各种约束条件的单位.笔者建议在教学中可以使用类似的例子.
选自《中学数学月刊》2002第八期选节。

相关文档
最新文档