如何证明四点共圆

合集下载

四点共圆证法

四点共圆证法

四点共圆证法
四点共圆证法,又称为共圆定理或欧拉定理,是数学几何中的一个重要定理,也是圆的性质之一。

它表明如果在平面上给定四个不共线的点,并且这四个点可以构成一个不是直线的四边形,那么存在一个唯一的圆,此圆可以通过这四个点。

以下是四点共圆证法的步骤:
步骤1:首先,我们需要确定是否给定的四个点构成了一个四边形,而不是一个直线。

这可以通过计算四个点的坐标,确保它们不共线来判断。

步骤2:如果四个点构成了一个四边形,接下来我们需要找到四边形的任意一条对角线,即连接两个不相邻的点的线段。

步骤3:然后,我们需要找到对角线的中点,即将对角线平分的点。

对角线中点可以通过计算对角线两个端点的横纵坐标的平均值得到。

步骤4:最后,我们需要找到两条不相邻边的中垂线。

中垂线是与边垂直且通过边的中点的直线。

通过计算不相邻两条边的中点和斜率,我们可以得到中垂线的方程。

如果中垂线相交于步骤3中的对角线中点,那么这四个点共圆。

因为对于一个圆来说,它的任意一条直径的中点都在圆上,而中垂线的交点就是对角线中点,这样就证明了这
四个点是共圆的。

需要注意的是,四点共圆定理仅对于平面几何中的四边形成立,如果给定的四个点共线,那么它们显然不能构成一个不是直线的四边形,因此也不满足四点共圆的条件。

四点共圆的6种判定方法证明

四点共圆的6种判定方法证明

四点共圆的6种判定方法证明
证明四点共圆有下述6种方法:
方法1:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆。

方法2:把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆。

方法3:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。

方法4:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

方法5:把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成
的两线段之积,即可肯定这四点也共圆。

方法6:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆。

四点共圆判定条件

四点共圆判定条件

四点共圆判定条件一、什么是四点共圆嘿呀,小伙伴们,今天咱们来唠唠这个四点共圆判定条件。

那四点共圆呢,简单说就是四个点在同一个圆上。

你可以想象一下,有四个小伙伴手拉手,刚好能围成一个圆,这就是四点共圆啦。

二、判定条件有哪些呢1. 若四个点到一个定点的距离相等,那么这四个点共圆。

比如说,咱们有个中心位置,就像圆心一样,这四个点到这个中心的距离都一样,那就肯定能在同一个圆上啦。

就好比有个宝藏在中间,四个小伙伴离宝藏的距离都是10米,那他们四个的位置就刚好能构成一个圆啦。

2. 若一个四边形的对角互补,那么这个四边形的四个顶点共圆。

这就有趣啦,四边形的两个对角加起来是180度呢,就像是两个小伙伴的力量合起来刚刚好,那这四个顶点就能共圆。

比如说一个四边形的角A是120度,角C是60度,那这两个角互补,这个四边形的四个顶点就共圆咯。

3. 若一个四边形的一个外角等于它的内对角,这个四边形的四个顶点共圆。

这就像是四边形的一个小角落发生了特殊的事情,它的外角和内对角相等了,那这四个顶点也能在同一个圆上呢。

三、这些判定条件的用处这些判定条件可有用啦。

在做几何题的时候,如果能判断出四点共圆,那解题就会变得简单很多。

就像你在走迷宫的时候,突然发现了一条捷径。

而且在实际生活中,也会用到哦,比如建筑设计中,如果要设计圆形的建筑或者有圆形元素的建筑,就可能会用到四点共圆的知识,来确定各个点的位置,让建筑更稳固、美观呢。

四、如何更好地理解和记忆这些判定条件首先呢,可以多画图。

自己动手画一些四边形,然后按照判定条件去验证,这样能加深印象。

就像你认识新朋友,多相处就熟悉了。

然后呢,可以做一些相关的练习题,在练习中不断巩固。

也可以和小伙伴们一起讨论,互相分享自己的理解和解题技巧,说不定别人的一句话就能让你恍然大悟呢。

四点共圆怎么判定

四点共圆怎么判定

四点共圆怎么判定
四点共圆的判定方法:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆等。

扩展资料
判定定理
方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的`同侧,若能证明其顶角相等,从而即可肯定这四点共圆。

(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)
方法2:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)
相关计算
圆的半径:r。

直径:d。

圆周率:π(数值为3.1415926至3.1415927之间……无限不循环小数),通常采用3.14作为π的数值。

圆面积:S=πr2;S=π(d/2)2。

半圆的面积:S半圆=(πr2;)/2。

圆环面积:S大圆-S小圆=π(R2-r2)(R为大圆半径,r为小圆半径)。

圆的周长:C=2πr或c=πd。

半圆的周长:d+(πd)/2或者d+πr。

向你推荐的相关文章
相关文章列表
微信扫码分享。

证明四点共圆的基本方法

证明四点共圆的基本方法

证明四点共圆的基本方法1、利用圆的定义根据圆的定义可以知道,平面上到一个定点等距离的几个点在同一个圆上,这个圆是以定点为圆心,以定点到这几个点中任一点的距离为半径。

2、利用三角形的关系 (1)同斜边的直角三角形的各顶点共圆; (2)同底同侧张等角的三角形的各顶点共圆。

已知C 、D 在线段AB 的同侧,且∠ACB=∠ADB 。

求证:A ,B ,C ,D 四点共圆。

证明:如图7-39,过A ,B ,C 三点作⊙O 。

(1)如果D 点在⊙O 内部,则延长BD 交⊙O 于D ',连A D '。

∵∠D '=∠C ,且∠ADB >∠D '。

∴∠ADB <∠C ,这与∠ADB=∠ACB 矛盾。

因此D 点不可能在⊙O 的内部。

(2)如图7-40,如果D 点在⊙O 的外部,连AD ,BD 。

则必有一条线段与⊙O 相交,设BD 与⊙O 交于D ',连A D '。

∵∠A D 'B=∠ACB ,且∠D <∠A D 'B 。

∴∠D <∠ACB ,这与∠ADB=∠ACB 矛盾。

因此,D 点不可能在⊙O 的外部。

综上所述,D 点必在⊙O 上。

3、利用四边形的关系 (1)如果四边形的一组对角互补,那么它的两个顶点共圆(图7-41);(2)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆(7-42) 4、利用线段的乘积式的关系(1)线段AB ,CD 相交于P ,且PA ·PB=PC ·PD ,则A ,B ,C ,D 四点共圆。

证明:如图7-43,连AD ,BC ,AC 。

在△APD 和△BPC 中,∵PA ·PB=PC ·PD ,∴PBPDPC PA =。

又∠APD=∠BPC ,∴△APD ∽△BPC 。

∴∠B=∠D ,又B ,D 在线段AC 同侧。

因此,A ,C ,B ,D 四点共圆。

(2)两线段AB ,CD 的延长线相交于P ,且PA ·PB=PC ·PD ,则A ,B ,C ,D 四点共圆(图7-44)。

四点共圆的判定与性质

四点共圆的判定与性质

四点共圆的判定与性质一、四点共圆的判定〔一〕判定方法1、假设四个点到一个定点的距离相等,那么这四个点共圆。

2、假设一个四边形的一组对角互补〔和为180°〕,那么这个四边形的四个点共圆。

3、假设一个四边形的外角等于它的内对角,那么这个四边形的四个点共圆。

4、假设两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。

5、同斜边的直角三角形的顶点共圆。

6、假设AB、CD两线段相交于P点,且PA×PB=PC×PD,那么A、B、C、D四点共圆(相交弦定理的逆定理)。

7、假设AB、CD两线段延长后相交于P。

且PA×PB=PC×PD,那么A、B、C、D四点共圆(割线定理)。

8、假设四边形两组对边乘积的和等于对角线的乘积,那么四边形的四个顶点共圆(托勒密定理的逆定理。

〔二〕证明1、假设四个点到一个定点的距离相等,那么这四个点共圆。

假设可以判断出OA=OB=OC=OD,那么A、B、C、D四点在以O为圆心OA为半径的圆上。

2、假设一个四边形的一组对角互补〔和为180°〕,那么这个四边形的四个点共圆。

假设∠A+∠C=180°或∠B+∠D=180°,那么点A、B、C、D四点共圆。

3、假设一个四边形的外角等于它的内对角,那么这个四边形的四个点共圆。

假设∠B=∠CDE,那么A、B、C、D四点共圆证法同上。

4、假设两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。

假设∠A=∠D或∠ABD=∠ACD,那么A、B、C、D四点共圆。

5、同斜边的直角三角形的顶点共圆。

如图2,假设∠A=∠C=90°,那么A 、B 、C 、D 四点共圆。

6、假设AB 、CD 两线段相交于P 点,且PA ×PB=PC ×PD ,那么A 、B 、C 、D 四点共圆(相交弦定理的逆定理)。

四点共圆基本性质及证明

四点共圆基本性质及证明

四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。

以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。

定理1判定定理方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。

(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)托勒密定理若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么AB DC+BCAD=AC BD。

例题:证明对于任意正整数n 都存在n 个点使得所有点间两两距离为整数。

解答:归纳法。

我们用归纳法证明一个更强的定理:对于任意n 都存在n 个点使得所有点间两两距离为整数,且这n 个点共圆,并且有两点是一条直径的两端。

n=1,n=2很轻松。

当n=3 时,一个边长为整数的勾股三角形即可:比如说边长为3,4,5 的三角形。

我们发现这样的三个点共圆,边长最长的边是一条直径。

假设对于n 大于等于 3 成立,我们来证明n+1。

假设直径为r (整数)。

找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC (边长a<b<c)。

把原来的圆扩大到原来的 c 倍,并把一个边长为ra<rb<rc 的三角形放进去,使得rc 边和放大后的直径重合。

这个三角形在圆上面对应了第n+1 个点,记为P。

于是根据Ptolomy 定理,P和已存在的所有点的距离都是一个有理数。

(考虑P,这个点Q和直径两端的四个点,这四点共圆,于是PQ是一个有理数因为Ptolomy 定理里的其它数都是整数。

四点共圆基本性质及证明

四点共圆基本性质及证明

四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。

以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。

定理判定定理方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。

(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)托勒密定理若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么AB⨯DC+BC⨯AD=AC⨯BD。

例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。

解答:归纳法。

我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。

n=1,n=2很轻松。

当n=3时,一个边长为整数的勾股三角形即可:比如说边长为3,4,5的三角形。

我们发现这样的三个点共圆,边长最长的边是一条直径。

假设对于n大于等于3成立,我们来证明n+1。

假设直径为r(整数)。

找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC (边长a<b<c)。

把原来的圆扩大到原来的c倍,并把一个边长为ra<rb<rc的三角形放进去,使得rc边和放大后的直径重合。

这个三角形在圆上面对应了第n+1个点,记为P。

于是根据Ptolomy定理,P和已存在的所有点的距离都是一个有理数。

(考虑P,这个点Q和直径两端的四个点,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。

四点共圆的7种判定方法证明

四点共圆的7种判定方法证明

四点共圆的7种判定方法证明要证明四个点共圆,可以使用以下七种判定方法。

方法1:使用相交弧的性质假设四个点A、B、C、D共圆。

我们可以通过观察四个点连线所形成的相交弧的性质来进行判定。

即如果从A到B的弧和从C到D的弧的起点和终点重合,或者从B到C的弧和从D到A的弧的起点和终点重合,或者从C到D的弧和从A到B的弧的起点和终点重合,则可以证明四个点共圆。

方法2:使用余弦定理假设四个点A、B、C、D共圆,并且以A为圆心,AB为半径做圆,那么可以使用余弦定理证明。

首先,假设O为C到D的中点,我们可以根据余弦定理得出:AC² = AO² + OC² - 2 * AO * OC * cos∠AOC,同样地,我们可以得出:BD² = BO² + OD² - 2 * BO * OD * cos∠BOD。

由于共圆的性质,我们可以得到∠AOC = ∠BOD,因此AC² = BD²,从而可以证明四个点共圆。

方法3:使用向量运算假设四个点A、B、C、D共圆,我们可以使用向量运算进行证明。

首先,我们可以构建向量AB和向量AC,然后计算它们的叉乘,得到一个向量N。

同样地,我们可以构建向量AD和向量AC,并计算它们的叉乘,得到另一个向量M。

如果向量N和向量M垂直(即内积等于0),那么可以证明四个点共圆。

方法4:使用角平分线的性质假设四个点A、B、C、D共圆,并且AC和BD相交于点P。

那么根据角平分线的性质,我们可以得知∠APC=∠BPD。

同样地,由于共圆的性质,我们可以得到∠APC=∠BPC,因此∠BPD=∠BPC。

这意味着点P在角BPD的角平分线上,所以我们可以得出AD与BC也相交于点P,从而可以证明四个点共圆。

方法5:使用Miquel点的性质假设四个点A、B、C、D共圆,并且以AC为直径作圆,那么D一定在这个圆上。

同样地,以BD为直径作圆,C也一定在这个圆上。

四点共圆的定理

四点共圆的定理

四点共圆的定理
四点共圆的定理,也就是说当四个点在同一个平面内时,它们能否构成一个圆。

对于这个问题,古希腊人通过几何学的研究发现,只要这四个点构成的任何两条线段的交点不在这四个点之外,这四个点就能构成一个圆,这个结论被称为圆二三本质。

这个定理的研究可以从以下角度展开:
1.几何证明:通过轨迹法,来证明四个点共圆的定理。

即通过取点、画线、构造等方法,得到一系列形状相同的点和线段所构成图形,而这些图形中出现过的点、线段称为这些图形的公共元素或共变元,而包含这些共变元的曲线便是原曲线的轨迹。

从而通过轨迹法,证明四个点共圆的定理。

2.应用领域:四点共圆的定理在现实生活中有广泛应用。

比如:电路方面的研究、音响设备的调试和铁路道岔的设计。

都需要用到国前定理来实现。

3.历史与文化:欧几里得《几何原本》始于公元前300年左右,而至今已有2000多年的历史。

被誉为人类科学的珍宝之一。

其中圆二三定理作为欧几里得几何中最为基础的定理之一,几乎在所有使用到欧氏几何的领域都能看到它的身影。

4.拓展研究:尽管圆二三本质在三维空间中失效,但是四点共面的定义并不仅限于平面内,也可以推广到无限维空间。

因此,当前,较多的研究将局部定理推广至更高的维度之上。

总的来说,四点共圆的定理是几何学中一条基础定理,然而在应
用、文化和研究中它的重要性却超越了自身本身,因此,对四点共圆的定理展开多方面的研究和探讨具有积极的意义。

证明四点共圆方法

证明四点共圆方法

四点共圆证明四点共圆有下述一些基本方法:方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

)(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角。

那么这四点共圆)方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.方法6同斜边的两个RT三角形的四个顶点共圆,其斜边为圆的直径判定与性质:圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD 交于P,则A+C=π,B+D=π,角DBC=角DAC(同弧所对的圆周角相等)。

角CBE=角ADE(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP(相交弦定理)四点共圆的图片EB*EA=EC*ED(割线定理)EF*EF= EB*EA=EC*ED(切割线定理)(切割线定理,割线定理,相交弦定理统称圆幂定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)弦切角定理四点共圆的判定定理:用反证法证明现就“若平面上四点连成四边形的对角互补。

四点共圆的判定

四点共圆的判定

四点共圆的判定
四点共圆的判定方法为:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆;把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从
而即可肯定这四点共圆。

四点共圆的判定其他方法如下:
1、从被证共圆的四点中先选出三点作一圆,然后证另一点也在
这个圆周上,若能证明这一点,即可肯定这四点共圆。

推论:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆。

即连成的四边形三边中垂线有交点,可肯定这四点共圆。

2、把被证共圆的四个点连成共底边的两个三角形,且两三角形
都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

3、把被证共圆的四点两两连成相交的两条线段,若能证明它们
各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两
线段之积,即可肯定这四点也共圆。

证明四点共圆的基本方法

证明四点共圆的基本方法

证明四点共圆的基本方法之迟辟智美创作证明四点共圆有下述一些基本方法:方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角即是其邻补角的内对角时,即可肯定这四点共圆.方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积即是自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.上述五种基本方法中的每一种的根据,就是发生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.判定与性质:圆内接四边形的对角和为π,而且任何一个外角都即是它的内对角.如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π,角DBC=角DAC(同弧所对的圆周角相等).角CBE=角ADE(外角即是内对角)△ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP(相交弦定理)四点共圆的图片EB*EA=EC*ED(割线定理)EF*EF= EB*EA=EC*ED(切割线定理)(切割线定理,割线定理,相交弦定理统称圆幂定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)编纂本段证明四点共圆的原理四点共圆证明四点共圆基本方法:方法1把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.方法2把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角即是其邻补角的内对角时,即可肯定这四点共圆.四点共圆的判定是以四点共圆的性质的基础上进行证明的.编纂本段四点共圆的判定定理:方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(可以说成:若线段同侧二点到线段两端点连线夹角相等,那末这二点和线段二端点四点共圆)方法2 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角即是其邻补角的内对角时,即可肯定这四点共圆.(可以说成:若平面上四点连成四边形的对角互补或一个外角即是其内对角.那么这四点共圆)反证法证明现就“若平面上四点连成四边形的对角互补.那末这四点共圆”证明如下(其它画个证明图如后)已知:四边形ABCD中,∠A+∠C=π求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)证明:用反证法过A,B,D作圆O,假设C不在圆O上,刚C在圆外或圆内,若C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=π,∵∠A+∠C=π ∴∠DC’B=∠C这与三角形外角定理矛盾,故C不成能在圆外.类似地可证C不成能在圆内.∴C在圆O上,也即A,B,C,D四点共圆.。

四点共圆的判定和性质

四点共圆的判定和性质

四点共圆的判定和性质四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明四点共圆有下述一些基本方法:方法1:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2:把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆.方法3:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点.方法4:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.方法5:把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.方法6:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明.判定与性质:圆内接四边形的对角和为180度,并且任何一个外角都等于它的内对角。

如四边形ABCD内接于圆O,延长AB至E,AC、BD交于P,则A+C=180度,B+D=180°∠ABC=∠ADC(同弧所对的圆周角相等)∠CBE=∠D(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP×CP=BP×DP(相交弦定理)AB×CD+AD×CB=AC×BD(托勒密定理)托勒密定理及证明:如图,四边形ABCD内接于圆O,那么AB*CD+AD*BC=AC*BD证明:作∠BAE=∠CAD,交BD于点E∵∠ABE=∠ACD,∠BAE=∠CAD∴△ABE∽△ACD∴AB:AC=BE:CD∴AB×CD=AC×BE∵∠BAC=∠EAD,∠ACB=∠ADE∴△ABC∽△AED∴BC:DE=AC:AD∴BC×AD=AC×DE∴AB×CD+BC×AD=AC×BE+AC×DE=AC(BE+DE)=AC×BD拓展延伸:利用托勒密定理证明两角和公式:sin(α-β)=sinαcosβ-cosαsinβ作图设圆内接四边形ABCD中,AC是直径,∠BAC=α,∠DAC=β,则∠BAD=α+β作直径BE,连接DE,则∠BED+∠BAD=180°sinα=BC/AC,sinβ=CD/ACcosα=AB/AC,cosβ=AD/ACsin(α+β)=sin∠BED=BD/BE=BD/ACsinαcosβ+sinβcosα=(BC×AD+AB×CD)/AC=AC×BD/AC=BD/AC=sin(α+β)由诱导公式得sin(α-β)=sinαcosβ-sinβcosα。

四点共圆的证明的所有方法

四点共圆的证明的所有方法

四点共圆的证明的所有方法证明:“四点共圆”的概念是指四个点在同一个圆上。

下面将介绍六种不同的方法来证明四个点共圆的情况。

方法一:通过圆的定义证明1.过给定的四个点中任意三个点相互连接得到三条线段。

2.如果这三条线段的两个线段互相垂直,则可以得出结论:它们共同交于同一个圆心,因此四个点在一个圆上。

方法二:通过圆锥曲线性质证明1.给定四个点A、B、C、D,假设A、B为直径。

2.将直径完全平分,将A、B两点之间的弦平分。

3.如果C、D两点相等于刚才的这两个点之间的任意一点,则可以得出结论:四个点在同一个圆上。

方法三:通过三角形内角平分线性质证明1.给定四个点A、B、C、D,选择其中任意两个点A、B,并通过这两个点画出一个与直线CD平行的线段DE。

2.根据三角形的内角平分线性质,线段DE将角ADC与角BDC平分成两个相等的角。

3.如果这两个相等的角的顶点分别为A和B,则可以得出结论:四个点在同一个圆上。

方法四:通过周重圆定理证明1.给定四个点A、B、C、D。

2.假设AB与CD相交于点E,并假设AC与BD相交于点F。

3.如果EF垂直于CD,则可以得出结论:四个点在同一个圆上。

方法五:通过正交变换证明1.给定四个点A、B、C、D,假设A、B为直径。

2.进行适当的正交变换,将这个圆形变换为一个单位圆,使得A点位于单位圆的正上方并成为圆心,B点位于单位圆的负下方。

3.如果C、D两点与单位圆有相同的距离,则可以得出结论:四个点在同一个圆上。

方法六:通过托勒密定理证明1.给定四个点A、B、C、D,假设B、D两点在圆内,且BD为这个圆的直径。

2.根据托勒密定理,AB×CD+AD×BC=AC×BD。

3.如果AB×CD+AD×BC=AC×BD成立,则可以得出结论:四个点在同一个圆上。

综上所述,我们介绍了六种不同的方法来证明四个点共圆的情况。

通过不同的几何定理和性质,可以找到不同的路径来达到证明的目的。

四点共圆基本性质及证明

四点共圆基本性质及证明

四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。

以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。

1定理判定定理方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。

(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。

(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)托勒密定理若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么AB⨯DC+BC⨯AD=AC⨯BD。

例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。

解答:归纳法。

我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。

n=1,n=2很轻松。

当n=3时,一个边长为整数的勾股三角形即可:比如说边长为3,4,5的三角形。

我们发现这样的三个点共圆,边长最长的边是一条直径。

假设对于n大于等于3成立,我们来证明n+1。

假设直径为r(整数)。

找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC (边长a<b<c)。

把原来的圆扩大到原来的c倍,并把一个边长为ra<rb<rc的三角形放进去,使得rc边和放大后的直径重合。

这个三角形在圆上面对应了第n+1个点,记为P。

于是根据Ptolomy定理,P和已存在的所有点的距离都是一个有理数。

(考虑P,这个点Q和直径两端的四个点,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典题赏析
如何证明四点共圆
北京十二中初中数学竞赛辅导
田祥彪
七个基本判定方法集结
看到已知想性质,看到求证想判定
思路一:
连结EF,欲证B、C、F、E四点共圆,须证
思路2 欲证B、C、F、E四点共圆,只须
AE AB AF AC 由AE AB AD
2 2

AF AC AD 可得证法 证明过程略
法一,分而治之
合二为一法
同侧等角: 1 2则AOBD四点共圆
1 3则AOBE共圆 又不共线三点AOB确定一个圆 所以AOBED五点共圆 又OD=OE 命题得证
巩固,提高
例4 由圆周上任一点P引弦AB的垂线PQ,垂足为Q,再由P 点引过A、B两点的切线的垂线PR,PS,垂足分别为R、S, 求证: PQ 2 PR PS
相关文档
最新文档