成人专升本高数二复习资料
成人高考—专升本—高等数学(二) 备考 知识点 复习
(4)如果 limx→x0f(x)=a,且 a>0(或 a<0),则必存在点 x0 的某一个邻域(x0 -δ,x0+δ),在该邻域内,有 f(x)>0(或 f(x)<0).
(5)如果在点 x0 的某一去心邻域(x0-δ,x0)∪(x0,x0+δ)内有 f(x)≥0(或 f(x) ≤0),且 limx→x0f(x)=a,则必有 a≥0(或 a≤0).
limn→∞Cxn=C·limn→∞xn=CA (C 为常数).
数列极限的四则运算法则的作用在于把求复杂数列的极限的运算化为简
单数列的极限值的代数运算,从而简化计算. 常用的数列极限有
limn→∞c=c limn→∞1nk=0 (k>0,常数),
(c 为常数),
limn→∞qn=0 (|q|<1),
limn→∞(1+1n)n=e.
二、函数的极限
1.函数极限的定义
(1)x→∞时函数极限的定义 如果对于任意给定的ε>0,存在 X=X(ε)>0, 使当|x|>X 时, 不等式|f(x) -A|<ε恒成立,则称常数 A 为 x→∞时函数 f(x)的极限,记为 limx→∞f(x)=A 或 f(x)→A(当 x→∞时). 如果对于任意给定的ε>0,存在 X=X(ε)>0,使当 x>X(或 x<-X)时, 不等式|f(x)-A|<ε恒成立,则称常数 A 为 x→+∞(或为 x→-∞)时函数 f(x) 的极限,记为 limx→+∞f(x)=A (或 limx→-∞f(x)=A). 定理 1 函数极限 limx→∞f(x)存在且等于 A 的充分必要条件是极限 limx →+∞f(x)和 limx→-∞f(x)都存在且都等于 A,即有 limx→∞f(x)=A limx→+∞
专升本《高等数学(二)》复习资料
2.无穷小量的比较 .
设和是同一过程中的无穷小 量,
即lim 0,lim 0
(1)如果lim
0,则称是比高阶的无穷小量.
(2)如果lim
C
0,则称 是与同阶的无穷小量 .
(3)如果lim
C
1,则称是与等价无穷小量,记作 等价于.
(4)如果lim
, 则称是比低阶的无穷小量 .
一、极限
(x) (x)
( x )
为未定型极限,并分别 简记为“0”或“”.
0
洛必达法则是求未定型 极限的一种有效方法。
其它类型未定式:0.; - 也可以变形
为“0”或“”来求解
0
五、导数应用
(二)曲线的切线方程与法线方程
若函数y f (x)在点x0处可导,由导数的几何意义,知f ' (x0 )
表示过曲线上点M (x0,f (x0 ))的切线斜率,所以,过曲线上点
lim f (x) (0 或lim f(x) 0)
x x0
x
在微积分中,常用希腊字母,,来表示无穷小量.
2.无穷大量概念
如果当自变量x x(0 或x )时,函数f (x)的绝对值可以 变得充分大(即无限得增大),则称在该变化过程中,f (x)为
无穷大量.记作 lim f (x) x x0
d ( cu ) cdu ( c 为常数); d (u v ) du dv
d (uv ) vdu
udv ; d ( u ) v
vdu udv v2
(v 0)
五、导数应用
(一)洛必达求导
如果当x a(或x )时,函数f (x)与F (x)
都趋于零或都趋于无穷
大,则称
lim
专升本资料成人高考(专科起点升本科)《高等数学(二)》
2020年全国各类成人高考(专科起点升本科)《高等数学(二)》题库【历年真题+章节题库+模拟试题】
完整版>精研学习䋞>免费试用20%资料
全国547所院校视频及题库资料
考研全套>视频资料>课后答案>往年真题>职称考试
目录
第一部分历年真题
2013年成人高考专科起点升本科《高等数学(二)》真题及详解2012年成人高考专科起点升本科《高等数学(二)》真题及详解2011年成人高考专科起点升本科《高等数学(二)》真题及详解2010年成人高考专科起点升本科《高等数学(二)》真题及详解2009年成人高考专科起点升本科《高等数学(二)》真题及详解第二部分章节题库
第1章极限与连续
第2章一元函数微分学
第3章一元函数积分学
第4章多元函数微分学
第5章概率论初步
第三部分模拟试题
成人高考专科起点升本科《高等数学(二)》模拟试题(一)成人高考专科起点升本科《高等数学(二)》模拟试题(二)。
成考专升本高等数学(二)重点及解析(精简版)
解: ∂z = 2x sin 2 y , ∂z = 2x2 cos 2 y
∂x
∂y
三、全微分
1、全微分公式:函数 z = f (x, y) 在点 (x, y) 处全微分公式为: dz = ∂z dx + ∂z dy ∂x ∂y
2、全微分求法:(1)、先求出两个一阶偏导数 ∂z 和 ∂z . (2)、然后代入上述公式即可. ∂x ∂y
一、多元函数的定义:由两个或两个以上的自变量所构成的函数,称为多.元.函.数.。其自 变量的变化范围称为定.义.域.,通常记作 D 。 例如:二元函数通常记作: z = f (x, y) , (x, y) ∈ D
二、二元函数的偏导数 1、偏导数的表示方法: (1)设二元函数 z = f (x, y) ,则函数 z 在区域 D 内对 x 和对 y 的偏导数记为:
或 dy
x= x0
dx
x = x0
(2)函数 f (x) 在区间(a,b)内的导数记作:
f '(x ) , y' 或 dy dx
二、求导公式(必须熟记) (1) (c)' = 0 (C 为常数) (3) (ex )' = ex (5) (sin x)' = cos x
(2) (xα )' = α xα −1 (4) (ln x)' = 1
x2
− 2x + x2 −1
1
.
……… 0未定式,提取公因式 0
解:原式=
lim
x→1
(
x
( x −1)2 −1)( x +1)
=
lim
x→1
( (
x x
−1) +1)
=
成考专升本高等数学(二(2024)
引言概述:高等数学是一门重要的学科,对于成考专升本考试来说,高等数学也是必考科目之一。
本文主要围绕成考专升本高等数学(二(二))这一题型展开,旨在帮助考生更好地理解相关知识点,从而提高考试成绩。
正文内容:一、数列与数学归纳法1.数列的概念及表示方法2.等差数列与等比数列的性质和求和公式3.数学归纳法的原理和应用4.数列极限的定义和性质5.数列极限的计算方法和常用极限二、函数与极限1.函数的概念和性质2.指数函数、对数函数和三角函数的性质和图像3.极限的概念和性质4.无穷小量与无穷大量的关系5.函数极限的计算方法和常用极限三、一元函数的导数与微分1.导数的概念和性质2.导数的计算方法:基本导函数法、导数的四则运算、复合函数和反函数的导数3.高阶导数和隐函数求导4.微分的概念和性质5.微分的应用:近似计算、最大值最小值和曲线的凹凸性四、一元函数的积分与定积分应用1.积分的概念和性质2.基本积分法和换元积分法3.分部积分法和有理函数的积分4.定积分的概念和性质5.定积分的应用:几何应用、物理应用和概率应用五、多元函数的偏导数与多元函数积分1.多元函数的概念和性质2.偏导数的概念和计算方法3.全微分的概念和性质4.多元函数的极值及其判定条件5.多元函数的重积分及其应用总结:通过对成考专升本高等数学(二(二))的内容进行全面的梳理和阐述,本文详细介绍了数列与数学归纳法、函数与极限、一元函数的导数与微分、一元函数的积分与定积分应用以及多元函数的偏导数与多元函数积分等五个大点。
每个大点下分别介绍了相应的小点,涵盖了相关知识点的定义、性质、计算方法和应用等方面。
希望通过本文的学习,考生能够对高等数学的相关知识有更深入的理解,从而提高成绩,顺利通过考试。
最新成考专升本高等数学二复习方法复习提纲优秀名师资料
成考专升本高等数学二复习方法复习提纲成考专升本高等数学复习方法1、考生要在成人高考中取得好成绩,必须深刻理解《复习考试大纲》所规定的内容及相关的考核要求,在知识内容上要分清主次、突出重点。
在考核要求方面,弄清要求的深度和广度。
要全面复习、夯实基础,要将相关知识点进行横向和纵向的梳理,建立知识网络,对考试大纲所列知识点,力求做到心中有数、融会贯通。
2、注意以《大纲》为依据,弄清《高等数学》(一)和《高等数学》(二)在知识内容及相关考核要求上的区别。
这种区别主要体现在两个方面:其一是在共有知识内容方面,同一章中要求掌握的知识点,或同一知识点要求掌握的程度不尽相同。
如在一元函数微分学中,《高等数学》(一)要求掌握求反函数的导数、掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,理解罗尔定理、拉格朗日中值定理,但上述知识点对《高等数学》(二)并不做要求;又如在一元函数积分学中,《高等数学》(一)要求掌握三角换元求不定积分,其中包括正弦变换、正切变换和正割变换,而《高等数学》(二)对正割变换不做考核要求。
其二是在不同的知识内容方面,《高等数学》(一)考核内容中有二重积分,而《高等数学》(二)对二重积分并不做考核要求;再有《高等数学》(一)有无穷级数、常微分方程,高数(二)均不做要求。
从试卷中可以看出,高等数学(一)比《高等数学》(二)多出来的这部分知识点,在考题中大约能占到30%的比例。
共计45分左右。
所以理科、工科类考生应按照《大纲》的要求全面认真复习3、考生要加强对高等数学中基本概念、基本方法和基本技能的理解和掌握,要努力提高运用数学知识分析问题和解决问题的能力,特别是综合运用知识解决实际问题的能力。
4、要在学习方法上追求学习效益。
加强练习,注重解题思路和解题技巧的培养和训练,对基本概念、基本理论、基本性质能进行多侧面、多层次、由此及彼、由表及里的思索和辨析,对基本公式、基本方法、基本技能要进行适度、适量的练习,在练习中加强理解和记忆,理解和记忆是相辅相承的,理解中加深记忆,记忆有助于更深入地理解,死记硬背是暂时的,只有理解愈深,才能记忆愈牢。
成考总复习专科起点升本科 高等数学(二)考点精解与真题总结
全国各类成人高考总复习教材专科起点升本科高等数学(二)考点精解与真题解析成人高考专科起点升本科经管类高数二第一章极限和连续一、常见的考试知识点1.极限(1)函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件.(2)极限的性质、极限的四则运算.(3)无穷小量的概念、性质及无穷小量阶的比较.等价无穷小量代换及其应用.(4)两个重要极限及其应用.2.连续(1)函数在一点处连续与间断的概念及连续的判定.(2)闭区间上连续函数的性质.3.试卷内容比例本章内容约占试卷总分的15%,共计22分左右.二、常用的解题方法与技巧(一)极限求函数(或数列)极限的常用方法主要有:(1)利用极限的四则运算法则.(2)(3)(4)(5)方法求解.(6)利用两个重要极限:注意两个重要极限的结构式分别为:其中方块“口”内可以为x,也可以为x的函数,只要满足上述结构形式,公式都正确.特别要记住下列常用的公式:其中的a,b,d为常数.(7)利用无穷小量的性质.主要是“无穷小量与有界变量之积为无穷小量”以及“无穷大量的倒数为无穷小量”.(8)利用等价无穷小量代换.利用等价无穷小量代换常能简化运算,但是等价无穷小量代换能在乘除法中使用,限于知识面的原因不要在加减法中使用.常用的等价无穷小量代换有:当x→0时,(9)求分段函数在分段点处的极限时,一定要分别求左极限与右极限,然后再判定极限是否存在.(二)连续1.判定ƒ (x)在点x。
处连续性的方法先考察ƒ(x)是否为初等函数,x0点是否为ƒ(x)的定义区间内的点.如果给定函数为分段函数,且x0又是分段点,则需利用连续性定义来判定,特别是在分段点两侧函数表达式不同的时候,应该用左连续、右连续判定.2.判定ƒ(x)间断点的方法连续性的三个要素之一得不到满足的点,即为函数的间断点,因此判定函数间断点的步骤通常是:(1)(2)断点.(3)三、常见的考试题型与评析(一)无穷小量的概念及无穷小量的比较本部分内容1994--2013年共考了8次,考到的概率为40%.1.典型试颢(1)A.高阶的无穷小量B.等价的无穷小量C.非等价的同阶无穷小量D.低阶的无穷小量(2)(0408)(3)(1012)2.解题方法与评析【解析】(I)选B.无穷小量阶的比较就是先求两个无穷小量之比的极限,再根据定义来确定选项.解法1利用等价无穷小量代换.解法2利用重要极限Ⅱ.(2)填1.利用等价无穷小量的定义.(3)填1.利用等价无穷小量的定义.(二)型不定式的极限本部分内容1994--2013年共考了20次,属于必考题.1.典型试题(1)(0521)(2)(0621)(3)(0721)(4)(0821)(5)(0921)(6)(1021)(7)(1221)(8)(1321)2.解题方法与评析【解析】型不定式极限的求法是每年专升本试题中必考的内容之一,考生必须熟练掌握.求型不定式极限的常用方法是利用等价无穷小量代换以及洛必达法则求解.对于极限式中有根式的,首先有理化,再进行计算较简捷.常用的等价无穷小量代换有:当x→0时,(1) 或(2) 或(3) 或或(4)或(5)(6)(7)(8)【评析】(1)(2)等价无穷小量代换:此方法常用于一些可直接用等价无穷小量代换的函数,如题(3).由于知识面的原因,希望考生不要在加减运算中使用等价无穷小量代换,只能在乘除运算中(3)(4)捷的方法.求极限的最佳方法是等价无穷小量代换与洛必达法则的混合使用.例如:(三)“”型不定式的极限本部分内容1994--2013年共考了5次,考到的概率为25%.1.典型试题(1)(0116)(2)(0308)(3)(0701)A.0B.1/2C.1D.2(4)(0801)A.1/4B.0C.2/3D.1(5)(1011)2.解题方法与评析【解析】型不定式极限的计算,常用的办法是约去分子与分母中最高阶无穷因子或直接用洛必达法则求解.(1)(2)填了1/3.或(3)选B.(4)选C.或(5)填0.或【评析】型不定式极限的计算,主要是约去分子与分母中最高阶的无穷因子或直接用洛必达法则求解.在用洛必达法则求解时,一定要注意分子与分母是否满足洛必达法则定理中的条件.本大题的题(1)与题(3)就不满足洛必达法则定理中的条件,因为分子与分母都是离散变量的函数,既不连续,也不可导.(四)重要极限I本部分内容1994—2013年共考了11次,考到的概率为55%.1.典型试题(1)(0403)A.1/3B.1C.2D.3(2)(0501)A.0B.1/5C.1D.5(3)(0612)(4)(0712)(5)(0812)(6)(1021)(7)(1112)(8)(1212)2.解题方法与评析【解析】(1)所以α=3.也可这样求解:(2)选D.或(3)填3.或(4)填1/2.或(5)填2.(6)与题(4)相同.(7)填1.(8)填2/3.【评析】重要极限I是特殊的型不定式极限,所以前面介绍的求型不定式极限的方法均适用.上述各题均可用洛必达法则求解.如果极限式中含有三角函数或反三角函数,应优先考虑用重要极限I求解.(五)重要极限Ⅱ本部分内容1994——2013年共考了13次,考到的概率为65%.1.典型试题(1)(0118)(2)(0521)(3)(0601)A.1B.EC.2eD.e2(4)(0912)(5)(1121)(6)(1315)2.解题方法与评析【解析】(1)(2)(3)选D.(4)(5)(6)【评析】(六)连续性本部分内容1994——2013年共考了12次,考到的概率为60%.1.典型试题(1)(9801)A.一1B.1C.2D.3(2)(0007)(3)(0209)(4)(0613)(5)(0811)(6)(0913)(7)(1013)(8)(1111)(9)(1213)(10)(1312)2.解题方法与评析【解析】(1)(2)填2.所以k=2.(3)填1.方法同题(2),可得α=1.(4)填2.方法同题(2),可得α=2.(5)填1.因为ƒ(0)=(2x+1)|x=0=1.(6)填8.因为则(7)填1.因为则由ƒ (0-0)= ƒ (0+0),得α=1.(8)填0.(9)填1.(10)填1.【评析】判定函数ƒ (x)在一点X0处连续,需依次检查连续性的三个要素.如果X0为ƒ (x)的分段点,且在X0两侧ƒ (x)的表达式不同,需分别计算X0的左极限与右极限以及在X0处的函数值,从而确定在点X0处的连续性.成人高考专科起点升本科经管类高数二第二章一元函数微分学一、常见的考试知识点1.导数与微分(1)导数的概念及几何意义,用定义求函数在一点处的导数值.(2)曲线上一点的切线方程和法线方程.(3)导数的四则运算及复合函数的求导.(4)隐函数的求导及对数求导法.(5)高阶导数的求法.(6)微分法则.2.洛必达法则及导数的应用(1)用洛必达法则求各类不定式的极限.(2)用导数求函数的单调区间.(3)函数的极值、最值.(4)曲线的凹凸性、拐点及曲线的水平渐近线与铅直渐近线.(5)证明不等式.3.试卷内容比例本章内容约占试卷总分的30%,共计45分左右.二、常用的解题方法与技巧(一)导数与微分1.导数的定义2.导数的几何意义3.可导与可微的关系可微必定可导,反之也对,且如果求微分dx可以先求出yˊ,再代入上式即可.4.求导数的常见方法(1)利用基本初等函数的求导公式与导数的四则运算法则.(2)利用复合函数链式法则,为了不遗漏每一个复合层次,可以由外到里一次求得一个层次的导数.(3)对隐函数求导时,只需将所给式子两端出现的y当作中间变量,两端分别关于x求导,整理并解出yˊ.(4)对数求导法,主要解决幂指函数求导与连乘除、乘幂形式的函数的求导问题.(二)导数的应用1.利用导数判定函数ƒ (x)单调性的通常步骤(1)求出ƒ(x)的定义域.(2)求出ƒˊ(x),令ƒˊ(x)=0,求出(x)的所有驻点,并求出ƒ(x)不可导的点.(3)判定上述两相邻点间ƒ '(x)的符号,其中ƒ (x)>0时名的取值范围即为ƒ (x)单调递增的范围; ƒˊ(x)<0时x的取值范围即为ƒ (x)单调递减的范围.2.利用导数判定函数f(x)极值的通常步骤(1)求出ƒ(x)的定义域.(2)求出ƒˊ(x),令ƒˊ(x)=0,求出八ƒ(x)的所有驻点,并求出定义域内ƒ(x)不可导的点.(3)若f(x)在上述点的某邻域内可导,可以利用极值的第一充分条件判定上述点是否为极值点.(4)若在ƒ(x)的驻点处ƒ(x)二阶可导,且二阶导数易求,则可以利用极值的第二充分条件判定驻点是否为极值点.3.利用导数求连续函数ƒ(x)在区间[a,b]上的最大、最小值的通常步骤(1)求出ƒ(x)在(a,b)内所有的驻点(即ƒˊ(x)=0的点)及不可导的点:x1,…,x k4.利用导数判定曲线y=ƒ (x)的凹凸性与拐点的通常步骤(1)求出ƒ (x)在(a,b)内二阶导数为0的点及二阶导数不存在的点.(2)判定ƒ″(x)在上述点的两侧是否异号.若在x0两侧ƒ″(x)异号,则点x0,ƒ (x0))为曲线的拐点.在ƒ″(x)<0的x取值范围内,曲线y=ƒ (x)为凸的;在ƒ″(x)>0的x取值范围内,曲线y=ƒ (x)为凹的.三、常见的考试题型与评析(一)利用导数的定义求极限或求函数在某点的导数值本部分内容1994--2013年共考了8次,考到的概率为40%.1.典型试题(1)(0222)(2)(0303)( ).A.0B.1C.2D.4(3)(0702)A.一2B.0C.2D.4(4)(0802)A.0B.1C.3D.62.解题方法与评析【解析】函数y=ƒ (x)在点X0处导数的定义,其结构式为x0处的导数.如果不符合上式结构,则应通过变形或化简后变成上式结构才成立.(1)(2)选D.(3)选D.方法同(1).(4)选C.方法同(1).(二)利用四则运算法则求函数的导数(微分)或求函数在某点的导数值本部分内容1994--2013年共考了20次,属于必考题.1.典型试题(1)(0210)(2)(0310)(3)(0419)(4)(0522)(5)(0622)(6)(0705)A.B.C.D.(7)(0822)(8)(0903)A.0B.1C.eD.2e(9)(1022)(10)(1122)(11)(1203)A.-1B.-1/2C.0D.1(12)(1302)A.B.C.1/3D.2.解题方法与评析【解析】这些题都可以利用基本初等函数的求导公式及导数的四则运算法则来计算.(1)(2)填1.(3)(4)(5)(6)选C.(7)(8)选C.因为(9)因为所以(10)(11)选A.(12)选A.【评析】这些试题都是考试大纲要求熟练掌握的基本运算,因此希望考生一定要牢记基本初等函数的导数公式及四则运算法则.对其他求微分的试题,考生可自行练习.(三)复合函数的求导本部分内容1994—2013年共考了18次,考到的概率为90%。
成人高考成考高等数学(二)(专升本)试卷及解答参考
成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。
成考专升本高数二知识点
成考专升本高数二知识点一、知识概述《成考专升本高数二知识点》①基本定义:成考专升本高数二包含很多内容呢,像函数、极限、导数、积分之类的。
函数就是像y = 2x这样,一个变量x通过一种规则确定另一个变量y。
极限嘛,简单说就是当自变量靠近某个值的时候,函数值接近的那个数。
导数则是函数在某一点上的变化率,就好比车的速度是路程函数的导数。
积分有点像是导数的逆运算,可以用来求面积这些。
②重要程度:在专升本学科里很重要,它是理工科类专业学习的基础,很多后续的专业课都会用到高数二的知识,像是工程力学之类的课程。
③前置知识:要掌握高中的基本数学知识,像代数式、方程、函数的简单概念,还有基本的运算,如加减乘除、幂运算等。
④应用价值:在实际生活中有用处,比如计算物体的运动速度、加速度,工程上计算材料的强度、工程量等。
像盖房子要计算建材用量就可能用到积分的知识。
二、知识体系①知识图谱:在高数整个学科里,高数二处于中级难度的地位,很多专升本的自然科学、工程类专业都会考查它。
它是建立在高数的一些基础概念之上,与后续的工程数学等又相关。
②关联知识:与高数一中的函数、极限概念联系紧密,都是在这个基础上深入和拓展的。
它还和一些工程课程中的物理、力学概念有联系,因为常常要用到高数二的计算。
③重难点分析:- 掌握难度:对一些从来没有接触过导数、积分概念的同学比较难。
导数的概念比较抽象,积分的计算规则比较复杂。
- 关键点:理解导数的定义和意义,掌握积分的基本计算方法,像换元积分法、分部积分法等。
④考点分析:- 在考试中的重要性:是成考专升本理工科类专业必考的科目,成绩对能否顺利升本很重要。
- 考查方式:主要以选择题、填空题、计算题、解答题等形式出现。
选择题考查基本概念,计算题主要考查导数、积分的计算能力。
三、详细讲解【理论概念类- 函数】①概念辨析:函数就是一种对应关系,对于定义域内每个自变量的值,通过某种规则都有唯一确定的函数值与之对应。
2024成人高考专升本《高等数学二》复习教程
2024成人高考专升本《高等数学二》复习教程高等数学二是成人高考专升本考试中的一门重要科目,也是考生普遍认为难度较大的科目之一、在备考过程中,合理安排时间、有针对性地进行复习是非常关键的。
下面是一份2024成人高考专升本《高等数学二》复习教程,供考生参考。
一、了解考纲和考题分布在开始复习之前,首先要了解考试的考纲和考题分布。
了解考纲可以明确要学习哪些内容,了解考题分布可以有针对性地进行复习。
根据考纲和考题分布,合理安排复习时间。
二、整理知识框架在开始复习之前,可以整理一份《高等数学二》的知识框架。
通过整理知识框架,可以将复杂的知识点归类整理,形成一个清晰的知识体系。
这样有助于理清思路,提高学习效率。
三、系统学习教材在复习《高等数学二》的过程中,首先要系统地学习教材。
对于不同的章节,需要花费不同的时间进行学习。
可以根据自己的学习进度,制定学习计划。
在学习教材的过程中,要注重理解概念、掌握基本原理和定理,一定要完成练习题。
四、重点突破难点在学习教材的过程中,会遇到一些理解困难、计算复杂的难点。
对于这些难点,要多花时间进行理解和巩固。
可以通过请教老师、参加辅导班、阅读相关参考书等方式,加深对难点的理解。
可以将难点整理成思维导图或笔记,方便查漏补缺。
五、多做试题《高等数学二》考试注重考察考生的解题能力。
在复习过程中,要多做试题,熟悉考试的题型和解题思路。
可以从历年考试真题、模拟题中选择一部分进行练习。
在做题过程中,要注意时间控制和解题方法的选择。
六、合理安排复习时间在复习《高等数学二》的过程中,要合理安排时间。
每一天的复习时间要有节奏,不能太过于松散或过于紧张。
可以制定一个每周的复习计划,按照计划进行复习。
可以将每天的复习内容分为多个阶段,分别进行复习和休息。
七、加强答题技巧在考试过程中,掌握一些答题技巧可以提高答题的准确性和效率。
例如,注意审题,理解题目的要求;合理运用公式和定理,简化计算过程;注意四舍五入和单位换算;注意检查和审题。
成人高考(专升本)高等数学2总复习资料汇总.汇总
2021年成人高考〔专升本〕高等数学二〔第一章样本,完整版共14页〕严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念〔对极限定义等形式的描述不作要求〕.会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.2.了解极限的有关性质,掌握极限的四那么运算法那么.3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系.会进展无穷小量阶的比拟〔高阶、低阶、同阶和等价〕.会运用等价无穷小量代换求极限.4.熟练掌握用两个重要极限求极限的方法.第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与连续的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数〔含分段函数〕在一点处连续性的方法.2.会求函数的连续点.3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题.4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限.第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数.2.会求曲线上一点处的切线方程与法线方程.3.熟练掌握导数的根本公式、四那么运算法那么以及复合函数的求导方法.4.掌握隐函数的求导法与对数求导法.会求分段函数的导数.5.了解高阶导数的概念.会求简单函数的高阶导数.6.理解微分的概念,掌握微分法那么,了解可微和可导的关系,会求函数的一阶微分.第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法那么求“0·∞〞、“∞-∞〞型未定式的极限的方法.2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法.会利用函数的单调性证明简单的不等式.3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题.4.会判断曲线的凹凸性,会求曲线的拐点.5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质.2.熟练掌握不定积分的根本公式.3.熟练掌握不定积分第一换元法,掌握第二换元法〔仅限三角代换与简单的根式代换〕.4.熟练掌握不定积分的分部积分法.5.掌握简单有理函数不定积分的计算.第二节定积分及其应用[复习考试要求]1.理解定积分的概念及其几何意义,了解函数可积的条件2.掌握定积分的根本性质3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法.4.熟练掌握牛顿—莱布尼茨公式.5.掌握定积分的换元积分法与分部积分法.6.理解无穷区间的广义积分的概念,掌握其计算方法.7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积.第四章多元函数微分学[复习考试要求]1.了解多元函数的概念,会求二元函数的定义域.了解二元函数的几何意义.2.了解二元函数的极限与连续的概念.3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法.掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法.4.掌握复合函数与隐函数的一阶偏导数的求法.5.会求二元函数的无条件极值和条件极值.6.会用二元函数的无条件极值及条件极值解简单的实际问题.第五章概率论初步[复习考试要求]1.了解随机现象、随机试验的根本特点;理解根本领件、样本空间、随机事件的概念.2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系.3.理解事件之间并〔和〕、交〔积〕、差运算的意义,掌握其运算规律.4.理解概率的古典型意义,掌握事件概率的根本性质及事件概率的计算.5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性.6.了解随机变量的概念及其分布函数.7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法.8.会求离散性随机变量的数学期望、方差和标准差.第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念〔对极限定义等形式的描述不作要求〕.会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.2.了解极限的有关性质,掌握极限的四那么运算法那么.3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系.会进展无穷小量阶的比拟〔高阶、低阶、同阶和等价〕.会运用等价无穷小量代换求极限.4.熟练掌握用两个重要极限求极限的方法.[主要知识内容]〔一〕数列的极限1.数列定义按一定顺序排列的无穷多个数称为无穷数列,简称数列,记作{x n},数列中每一个数称为数列的项,第n项x n为数列的一般项或通项,例如〔1〕1,3,5,…,〔2n-1〕,…〔等差数列〕〔2〕〔等比数列〕〔3〕〔递增数列〕〔4〕1,0,1,0,…,…〔震荡数列〕都是数列.它们的一般项分别为〔2n-1〕,.对于每一个正整数n,都有一个x n与之对应,所以说数列{x n}可看作自变量n的函数x n=f〔n〕,它的定义域是全体正整数,当自变量n依次取1,2,3…一切正整数时,对应的函数值就排列成数列.在几何上,数列{x n}可看作数轴上的一个动点,它依次取数轴上的点x1,x2,x3,...x n,….2.数列的极限定义对于数列{x n},如果当n→∞时,x n无限地趋于一个确定的常数A,那么称当n趋于无穷大时,数列{x n}以常数A为极限,或称数列收敛于A,记作比方:无限的趋向0,无限的趋向1否那么,对于数列{x n},如果当n→∞时,x n不是无限地趋于一个确定的常数,称数列{x n}没有极限,如果数列没有极限,就称数列是发散的.比方:1,3,5,…,〔2n-1〕,…1,0,1,0,…数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,假设数列{x n}以A为极限,就表示当n趋于无穷大时,点x n可以无限靠近点A,即点x n与点A之间的距离|x n-A|趋于0.比方:无限的趋向0无限的趋向1〔二〕数列极限的性质与运算法那么1.数列极限的性质定理1.1〔惟一性〕假设数列{x n}收敛,那么其极限值必定惟一.定理1.2〔有界性〕假设数列{x n}收敛,那么它必定有界.注意:这个定理反过来不成立,也就是说,有界数列不一定收敛.比方:1,0,1,0,…有界:0,12.数列极限的存在准那么定理1.3〔两面夹准那么〕假设数列{x n},{y n},{z n}满足以下条件:〔1〕,〔2〕,那么定理1.4假设数列{x n}单调有界,那么它必有极限.3.数列极限的四那么运算定理.定理1.5〔1〕〔2〕〔3〕当时,〔三〕函数极限的概念1.当x→x0时函数f〔x〕的极限〔1〕当x→x0时f〔x〕的极限定义对于函数y=f〔x〕,如果当x无限地趋于x0时,函数f〔x〕无限地趋于一个常数A,那么称当x→x0时,函数f〔x〕的极限是A,记作或f〔x〕→A〔当x→x0时〕例y=f〔x〕=2x+1x→1,f〔x〕→?x<1x→1x>1x→1〔2〕左极限当x→x0时f〔x〕的左极限定义对于函数y=f〔x〕,如果当x从x0的左边无限地趋于x0时,函数f〔x〕无限地趋于一个常数A,那么称当x→x0时,函数f〔x〕的左极限是A,记作或f〔x0-0〕=A〔3〕右极限当x→x0时,f〔x〕的右极限定义对于函数y=f〔x〕,如果当x从x0的右边无限地趋于x0时,函数f〔x〕无限地趋于一个常数A,那么称当x→x0时,函数f〔x〕的右极限是A,记作或f〔x0+0〕=A例子:分段函数,求,解:当x从0的左边无限地趋于0时f〔x〕无限地趋于一个常数1.我们称当x→0时,f〔x〕的左极限是1,即有当x从0的右边无限地趋于0时,f〔x〕无限地趋于一个常数-1.我们称当x→0时,f〔x〕的右极限是-1,即有显然,函数的左极限右极限与函数的极限之间有以下关系:定理1.6当x→x0时,函数f〔x〕的极限等于A的必要充分条件是反之,如果左、右极限都等于A,那么必有.x→1时f(x)→?x≠1x→1f(x)→2对于函数,当x→1时,f〔x〕的左极限是2,右极限也是2.2.当x→∞时,函数f〔x〕的极限〔1〕当x→∞时,函数f〔x〕的极限y=f(x)x→∞f(x)→?y=f(x)=1+x→∞f(x)=1+→1定义对于函数y=f〔x〕,如果当x→∞时,f〔x〕无限地趋于一个常数A,那么称当x→∞时,函数f〔x〕的极限是A,记作或f〔x〕→A〔当x→∞时〕〔2〕当x→+∞时,函数f〔x〕的极限定义对于函数y=f〔x〕,如果当x→+∞时,f〔x〕无限地趋于一个常数A,那么称当x→+∞时,函数f〔x〕的极限是A,记作这个定义与数列极限的定义根本上一样,数列极限的定义中n→+∞的n是正整数;而在这个定义中,那么要明确写出x→+∞,且其中的x不一定是正整数,而为任意实数.y=f(x)x→+∞f(x)x→?x→+∞,f(x)=2+→2例:函数f〔x〕=2+e-x,当x→+∞时,f〔x〕→?解:f〔x〕=2+e-x=2+,x→+∞,f〔x〕=2+→2所以〔3〕当x→-∞时,函数f〔x〕的极限定义对于函数y=f〔x〕,如果当x→-∞时,f〔x〕无限地趋于一个常数A,那么称当x→-∞时,f〔x〕的极限是A,记作x→-∞f(x)→?那么f(x)=2+(x<0)x→-∞,-x→+∞f(x)=2+→2例:函数,当x→-∞时,f〔x〕→?解:当x→-∞时,-x→+∞→2,即有由上述x→∞,x→+∞,x→-∞时,函数f〔x〕极限的定义,不难看出:x→∞时f〔x〕的极限是A充分必要条件是当x→+∞以及x→-∞时,函数f〔x〕有一样的极限A.例如函数,当x→-∞时,f〔x〕无限地趋于常数1,当x→+∞时,f〔x〕也无限地趋于同一个常数1,因此称当x→∞时的极限是1,记作其几何意义如图3所示.f(x)=1+y=arctanx不存在.但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f〔x〕的极限存在,当x→+∞时,f〔x〕的极限也存在,但这两个极限不一样,我们只能说,当x→∞时,y=arctanx的极限不存在. x)=1+y=arctanx不存在.但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f〔x〕的极限存在,当x→+∞时,f〔x〕的极限也存在,但这两个极限不一样,我们只能说,当x→∞时,y=arctanx的极限不存在. 〔四〕函数极限的定理定理1.7〔惟一性定理〕如果存在,那么极限值必定惟一.定理1.8〔两面夹定理〕设函数在点的某个邻域内〔可除外〕满足条件:〔1〕,〔2〕那么有.注意:上述定理1.7及定理1.8对也成立.下面我们给出函数极限的四那么运算定理定理1.9如果那么〔1〕〔2〕〔3〕当时,时,上述运算法那么可推广到有限多个函数的代数和及乘积的情形,有以下推论:〔1〕〔2〕〔3〕用极限的运算法那么求极限时,必须注意:这些法那么要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零.另外,上述极限的运算法那么对于的情形也都成立.〔五〕无穷小量和无穷大量1.无穷小量〔简称无穷小〕定义对于函数,如果自变量x在某个变化过程中,函数的极限为零,那么称在该变化过程中,为无穷小量,一般记作常用希腊字母,…来表示无穷小量.定理1.10函数以A为极限的必要充分条件是:可表示为A与一个无穷小量之和.注意:〔1〕无穷小量是变量,它不是表示量的大小,而是表示变量的变化趋势无限趋于为零.〔2〕要把无穷小量与很小的数严格区分开,一个很小的数,无论它多么小也不是无穷小量.〔3〕一个变量是否为无穷小量是与自变量的变化趋势严密相关的.在不同的变化过程中,同一个变量可以有不同的变化趋势,因此结论也不尽一样.例如:振荡型发散〔4〕越变越小的变量也不一定是无穷小量,例如当x越变越大时,就越变越小,但它不是无穷小量.〔5〕无穷小量不是一个常数,但数“0〞是无穷小量中惟一的一个数,这是因为.2.无穷大量〔简称无穷大〕定义;如果当自变量〔或∞〕时,的绝对值可以变得充分大〔也即无限地增大〕,那么称在该变化过程中,为无穷大量.记作.注意:无穷大〔∞〕不是一个数值,“∞〞是一个记号,绝不能写成或.3.无穷小量与无穷大量的关系无穷小量与无穷大量之间有一种简单的关系,见以下的定理.定理1.11在同一变化过程中,如果为无穷大量,那么为无穷小量;反之,如果为无穷小量,且,那么为无穷大量.当无穷大无穷小当为无穷小无穷大4.无穷小量的根本性质性质1有限个无穷小量的代数和仍是无穷小量;性质2有界函数〔变量〕与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量.性质3有限个无穷小量的乘积是无穷小量.性质4无穷小量除以极限不为零的变量所得的商是无穷小量.5.无穷小量的比拟定义设是同一变化过程中的无穷小量,即.〔1〕如果那么称是比拟高阶的无穷小量,记作;〔2〕如果那么称与为同阶的无穷小量;〔3〕如果那么称与为等价无穷小量,记为;〔4〕如果那么称是比拟低价的无穷小量.当等价无穷小量代换定理:如果当时,均为无穷小量,又有且存在,那么.均为无穷小又有这个性质常常使用在极限运算中,它能起到简化运算的作用.但是必须注意:等价无穷小量代换可以在极限的乘除运算中使用.常用的等价无穷小量代换有:当时,sinx~x;tan~x;arctanx~x;arcsinx~x;〔六〕两个重要极限1.重要极限Ⅰ重要极限Ⅰ是指下面的求极限公式令这个公式很重要,应用它可以计算三角函数的型的极限问题.其构造式为:2.重要极限Ⅱ重要极限Ⅱ是指下面的公式:其中e是个常数〔银行家常数〕,叫自然对数的底,它的值为e=2.718281828495045……其构造式为:重要极限Ⅰ是属于型的未定型式,重要极限Ⅱ是属于“〞型的未定式时,这两个重要极限在极限计算中起很重要的作用,熟练掌握它们是非常必要的. 〔七〕求极限的方法:1.利用极限的四那么运算法那么求极限;2.利用两个重要极限求极限;3.利用无穷小量的性质求极限;4.利用函数的连续性求极限;5.利用洛必达法那么求未定式的极限;6.利用等价无穷小代换定理求极限.根本极限公式〔2〕〔3〕〔4〕例1.无穷小量的有关概念〔1〕[9601]以下变量在给定变化过程中为无穷小量的是A. B.C. D. [答]CA.发散D.〔2〕[0202]当时,与x比拟是A.高阶的无穷小量B.等价的无穷小量C.非等价的同阶无穷小量D.低阶的无穷小量[答]B解:当,与x是极限的运算:[0611]解:[答案]-1例2.型因式分解约分求极限〔1〕[0208] [答]解:〔2〕[0621]计算[答]解:例3.型有理化约分求极限〔1〕[0316]计算 [答]解:〔2〕[9516] [答]解:例4.当时求型的极限 [答]〔1〕[0308]一般地,有例5.用重要极限Ⅰ求极限〔1〕[9603]以下极限中,成立的是A. B.C. D. [答]B〔2〕[0006] [答]解:例6.用重要极限Ⅱ求极限〔1〕[0416]计算 [答][解析]解一:令解二:[0306][0601]〔2〕[0118]计算 [答]解:例7.用函数的连续性求极限[0407] [答]0解:,例8.用等价无穷小代换定理求极限[0317] [答]0解:当例9.求分段函数在分段点处的极限〔1〕[0307]设那么在的左极限[答]1[解析]〔2〕[0406]设,那么 [答]1 [解析]例10.求极限的反问题〔1〕那么常数[解析]解法一:,即,得. 解法二:令,得,解得.解法三:〔洛必达法那么〕即,得.〔2〕假设求a,b的值.[解析]型未定式.当时,.令于是,得.即,所以.[0402][0017],那么k=_____.〔答:ln2〕[解析]前面我们讲的内容:极限的概念;极限的性质;极限的运算法那么;两个重要极限;无穷小量、无穷大量的概念;无穷小量的性质以及无穷小量阶的比拟.第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与连续的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数〔含分段函数〕在一点处连续性的方法.2.会求函数的连续点.3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题.4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限.[主要知识内容]〔一〕函数连续的概念1.函数在点x0处连续定义1设函数y=f〔x〕在点x0的某个邻域内有定义,如果当自变量的改变量△x 〔初值为x0〕趋近于0时,相应的函数的改变量△y也趋近于0,即那么称函数y=f〔x〕在点x0处连续.函数y=f〔x〕在点x0连续也可作如下定义:定义2设函数y=f〔x〕在点x0的某个邻域内有定义,如果当x→x0时,函数y=f 〔x〕的极限值存在,且等于x0处的函数值f〔x0〕,即定义3设函数y=f〔x〕,如果,那么称函数f〔x〕在点x0处左连续;如果,那么称函数f〔x〕在点x0处右连续.由上述定义2可知如果函数y=f〔x〕在点x0处连续,那么f〔x〕在点x0处左连续也右连续. 2.函数在区间[a,b]上连续定义如果函数f〔x〕在闭区间[a,b]上的每一点X处都连续,那么称f〔x〕在闭区间[a,b]上连续,并称f〔x〕为[a,b]上的连续函数.这里,f〔x〕在左端点a连续,是指满足关系:,在右端点b连续,是指满足关系:,即f〔x〕在左端点a处是右连续,在右端点b处是左连续.可以证明:初等函数在其定义的区间内都连续.3.函数的连续点定义如果函数f〔x〕在点x0处不连续那么称点x0为f〔x〕一个连续点.由函数在某点连续的定义可知,假设f〔x〕在点x0处有以下三种情况之一:〔1〕在点x0处,f〔x〕没有定义;〔2〕在点x0处,f〔x〕的极限不存在;〔3〕虽然在点x0处f〔x〕有定义,且存在,但,那么点x0是f〔x〕一个连续点.,那么f〔x〕在A.x=0,x=1处都连续B.x=0,x=1处都连续C.x=0处连续,x=1处连续D.x=0处连续,x=1处连续解:x=0处,f〔0〕=0∵f〔0-0〕≠f〔0+0〕x=0为f〔x〕的连续点x=1处,f〔1〕=1f〔1-0〕=f〔1+0〕=f〔1〕∴f〔x〕在x=1处连续[答案]C[9703]设,在x=0处连续,那么k等于A.0B.C.D.2分析:f〔0〕=k[答案]B例3[0209]设在x=0处连续,那么a=解:f〔0〕=e0=1∵f〔0〕=f〔0-0〕=f〔0+0〕∴a=1 [答案]1〔二〕函数在一点处连续的性质由于函数的连续性是通过极限来定义的,因而由极限的运算法那么,可以得到以下连续函数的性质.定理1.12〔四那么运算〕设函数f〔x〕,g〔x〕在x0处均连续,那么〔1〕f〔x〕±g〔x〕在x0处连续〔2〕f〔x〕·g〔x〕在x0处连续〔3〕假设g〔x0〕≠0,那么在x0处连续.定理1.13〔复合函数的连续性〕设函数u=g〔x〕在x=x0处连续,y=f〔u〕在u0=g 〔x0〕处连续,那么复合函数y=f[g〔x〕]在x=x0处连续.在求复合函数的极限时,如果u=g〔x〕,在x0处极限存在,又y=f〔u〕在对应的处连续,那么极限符号可以与函数符号交换.即定理1.14〔反函数的连续性〕设函数y=f〔x〕在某区间上连续,且严格单调增加〔或严格单调减少〕,那么它的反函数x=f-1〔y〕也在对应区间上连续,且严格单调增加〔或严格单调减少〕.〔三〕闭区间上连续函数的性质在闭区间[a,b]上连续的函数f〔x〕,有以下几个根本性质,这些性质以后都要用到.定理1.15〔有界性定理〕如果函数f〔x〕在闭区间[a,b]上连续,那么f〔x〕必在[a,b]上有界.定理1.16〔最大值和最小值定理〕如果函数f〔x〕在闭区间[a,b]上连续,那么在这个区间上一定存在最大值和最小值.定理1.17〔介值定理〕如果函数f〔x〕在闭区间[a,b]上连续,且其最大值和最小值分别为M和m,那么对于介于m和M之间的任何实数C,在[a,b]上至少存在一个ξ,使得推论〔零点定理〕如果函数f〔x〕在闭区间[a,b]上连续,且f〔a〕与f〔b〕异号,那么在[a,b]内至少存在一个点ξ,使得f〔ξ〕=0〔四〕初等函数的连续性由函数在一点处连续的定理知,连续函数经过有限次四那么运算或复合运算而得的函数在其定义的区间内是连续函数.又由于根本初等函数在其定义区间内是连续的,可以得到以下重要结论.定理1.18初等函数在其定义的区间内连续.利用初等函数连续性的结论可知:如果f〔x〕是初等函数,且x0是定义区间内的点,那么f〔x〕在x0处连续也就是说,求初等函数在定义区间内某点处的极限值,只要算出函数在该点的函数值即可.[0407][0611]例1.证明三次代数方程x3-5x+1=0在区间〔0,1〕内至少有一个实根.证:设f〔x〕=x3-5x+1f〔x〕在[0,1]上连续f〔0〕=1 f〔1〕=-3由零点定理可知,至少存在一点ξ∈〔0,1〕使得f〔ξ〕=0,ξ3-5ξ+1=0即方程在〔0,1〕内至少有一个实根.本章小结函数、极限与连续是微积分中最根本、最重要的概念之一,而极限运算又是微积分的三大运算中最根本的运算之一,必须熟练掌握,这会为以后的学习打下良好的根底.这一章的内容在考试中约占15%,约为22分左右.现将本章的主要内容总结归纳如下:一、概念局部重点:极限概念,无穷小量与等价无穷小量的概念,连续的概念.极限概念应该明确极限是描述在给定变化过程中函数变化的性态,极限值是一个确定的常数.函数在一点连续性的三个根本要素:〔1〕f〔x〕在点x0有定义.〔2〕存在.〔3〕.常用的是f〔x0-0〕=f〔x0+0〕=f〔x0〕.二、运算局部重点:求极限,函数的点连续性的判定.1.求函数极限的常用方法主要有:〔1〕利用极限的四那么运算法那么求极限;对于“〞型不定式,可考虑用因式分解或有理化消去零因子法.〔2〕利用两个重要极限求极限;〔3〕利用无穷小量的性质求极限;〔4〕利用函数的连续性求极限;假设f〔x〕在x0处连续,那么.〔5〕利用等价无穷小代换定理求极限;〔6〕会求分段函数在分段点处的极限;〔7〕利用洛必达法那么求未定式的极限.2.判定函数的连续性,利用闭区间上连续函数的零点定理证明方程的根的存在性.。
成人高考高等数学二复习资料汇总
成考专升本高数(二)复习资料汇总第一部分考点⅛解第一章极限和连续一.常见的考试知识点L ftffi(1)√Λtt的左扱阳与右极用以決函数在一点处极限"在的允分必箜茶件.(2)根浪的性JliM的四則运算+(3)无穷小啟的槪念、性质从无穷小秋阶的比较.辛价无穷小故代除及Jt应用・(4)MtIStt限及其应用.2» ⅛⅛(1)⅛JSft-AttS续与间断的槪念及连续的fl⅛+(2)闭KfHl I:连续甯故的性厳.3.试卷内容比例本就内容约占试总总分的∣5%t ft计22分左右・二、常用的解题方法与技巧(_) IftlKj R⅛ft(或數列)极限的席用方½1⅛⅛:(1)H用极限的四則运WffiNl(2)利用函数的违续性:«/(*)在*处O t MlInlΛt)√(χj.• ■苇⑶帖瑞r他式•町加呗"解消左讪子法无穷小【唯快⑷故利Jeit奥极限lim—^=I等方法*∙→fl X(4)⅛τ-"tt⅛不定式•可考Igifi去Je穷因子比对于4∙∣"9⅛i****11的不定式•还可以用洛必½ifeW∣求解.V ∞0 X(5)叶…”叭…为的不定式■应先化叫r或的梯式血泌方法求悴(6)利用两个Mft限:IinI 1 Jim( I+—) ≡c( ⅛lim( l+x)τ≡e) t∙∙∙o X ∙-*∙∖ XI∙-∙o注盘関个亀要极限的结构式分别为:Iim 迦口≡≡∣∙Iim(I÷□)r^c to∙*t O OY其中方块“口”内可以为*•也可以为*的甬数・只要涡足上述结构形式•公式都止堀• 特別菱记住下列常用的公式:lim( 1÷αx其中的a.b.d为4数・(7)利用无穷小■的性质•主刻r无穷小*与有界变■之积为无穷小Ir以及*无穷大It 的倒数为无穷小ιr∙(8)利用等价无穷小缺代换•利用等价无穷小備代换常能简化运算•但是等价无穷小:It 代换能在秦除法中便FlLRiTnliH面的廉因不聽在加减法中使用•常用的等价无穷小肚代换幻:当*->0时.Bin 1 * X t tan X -X t arCMIl X ^X t arCtan X -X t In( l+x) -XJ -COb X上述各式也应该理解为:当χ→χ0( × )时•口→0∙則有SinC□ J O ■ IanO * 口等■其中口内可以为Z •也可以为*的由败•(9)求分段师在分段点处的极IR时.•定要分别求左段限与右极限•然后押判定极限是否IimzU)=M的允分必要条件是Iim /(x)≡ Hm /(χ)≡ Λ.—6 ∙→∙∣(二)连续1.判定/(#)在点*•处连续性的方法先考察/(*)是否为初第⅞tt.χφ点是否为/("的宦义区间内的点•如果给定魚数为分段函ft.IL>∙又是分段点•则需利用连续性定义来判定•特别是在分段点两制甬数衣达式不同的时候,应该用左连续•右连续判定.2.n r s,f{×)何斯点的方法连续性的三个耍素之Ty不到満足的点•即为两数的间断点•因此押定两敌间斯点的步驟通tft:(1)⅝⅛∕(χ)在点*•处科无定义.ft∕(χβ)X定义•则"为“的间断点.(2)to∣jβ∕(x.)存在.再⅛Λlim∕(Jr)⅛⅛存在.如果Iim/(x)不存在•則*■必为/("的何∙∙∙∙ f ∙→∙⅜断点.第二章一元函数微分学一、常见的考试知识点1.导数与微分(1)导数的槪念及几何恿义•用定义求隕数在一点处的导数值.(2)曲线上一点的切线方程和法线方程.(3)导数的四则运算及复合隕数的求导.(4)隐丙数的求导及对数求导法.(5)高阶导数的求法.(6)微分法则.2.洛必达法则及导数的应用(1)用洛必达法则求各类不定式的极限•(2)用导数求函数的单调区间.(3)函数的极值、最fit(4)曲线的凹凸性、拐点及曲线的水平渐近线与铅直渐近线.(5)证明不等式.3.试卷内容比例本腹内容约占试卷总分的30% •共计45分左右.二、常用的解题方法与技巧(-)⅛tt⅛at分L#數的定义/≡∕(χ)在点X。
成人高考专升本高等数学(二)复习资料
第一阶段(3月初)主要任务是全面复习,夯实基础。
这个阶段,要按照考试大纲所列复习考试内容,全面系统地复习基础知识,对基本概念与基本原理狠下功夫,对两者的理解要深、透、不留死角。
复习基础知识时要讲究方法,注意各种知识点的归纳与类比、分析与综合,注意各知识点之间纵向与横向的联系,建立基础知识框架,总体把握基础知识的脉络。
第二阶段(8月初)主要任务是重点复习,强化练习。
这个阶段,要抓住复习重点,加强考试热点、常考知识点的复习,同时强化练习,掌握基本方法、基本技能,提高解题能力。
第三阶段(9月底10月初) 主要任务是冲刺复习,模拟测试。
这个阶段,在重点复习的同时,要进行模拟测试。
通过模拟测试能发现自己的薄弱环节,从而拾遗补缺,针对薄弱环节重点复习。
同时,通过模拟测试,有利于熟悉考试情景,合理安排答题时间,调整应考心里,从而提高应试能力。
第一节、函数(不单独考,了解即可)一、复合函数:要会判断一个复合函数是由哪几个简单函数复合而成的。
2ln sin y x =是由ln y u =,2u v =和sin v x =这三个简单函数复合而成.3arctan x y e =是由arctan y u =,v u e =和3v x =这三个简单函数复合而成. 该部分是后面求导的关键! 二、基本初等函数:(1)常值函数:y c = (2)幂函数:y x μ= (3)指数函数:x y a =(a 〉0,1)a ≠且 (4)对数函数:log a y x =(a 〉0,1)a ≠且(5)三角函数:sin y x =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =(6)反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x = 其中: (正割函数)1sec cos x x =, (余割函数)1csc sin x x= 三、初等函数:由基本初等函数经过有限次的四则运算和复合运算,并能用一个解析式表示的函数称为初等函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成人专升本高数二复习资料(部分)
一、极限计算方法 1、代入法
2、消除分子分母0因子
3、等价量的替换
4、洛必达法则
二、两个重要极限
三、常见的导数公式
(1) 0)(='C ,C 是常数 (2)
1)(-='αααx x
(3) a a a x x ln )(=', 当e a =时,
x x
e e =')
( (4) a x x a ln 1
)(log =', 当e a =
(5)
x x cos )(sin =' (6) x x sin )(cos -='
(7) x x x 2
2sec cos 1)(tan ==
' (8) x x
x 22
csc sin 1)(cot -=-=' (9) x x x tan )(sec )(sec =' (10) x x x cot )(csc )(csc -=' (11) =')(arcsin x 2
11x
- (12) 2
11)(arccos x
x --
='
(13)
(14) 21
(arccot )1x x '=-
+
四、导数应用
切线方程为:))((000x x x f y y -'=- 法线方程为)()
(1
000x x x f y y -'-=-
五、积分公式
(1) 0dx C =⎰
(2)
()为常数k C
kx kdx +=⎰
特别地:dx x C =+⎰
(3) ()11
1
-≠μ++μ=
+μμ
⎰C x dx x
(4)
C x dx x +=⎰||ln 1
(有时绝对值符号也可忽略不写)
...590457182818284.2)11(lim 1sin lim 0==+=∞
→→e x
x x x x x
(5) C a
a dx a x
x
+=⎰ln (6)
C e
dx e x
x +=⎰
(7) C x xdx +=⎰sin cos (8) C x xdx +-=⎰cos sin
(9)
⎰⎰+==C x xdx x dx tan sec cos 2
2 (10) ⎰⎰+-==C x xdx x dx
cot csc sin 22
(11) C x x dx +=+⎰arctan 12(或C x arc x
dx
+-=+⎰cot 12) (12) C x x
dx +=-⎰
arcsin 12
(或C x x
dx +-=-⎰
arccos 12
)
(13) C x xdx +-=⎰|cos |ln tan , (14)
C x xdx +=⎰|sin |ln cot ,
六、多元隐函数导数公式
二元方程(,)0F x y =所确定的隐函数:
x y F dy
dx F '=-'
三元方程F (x , y , z ) = 0所确定的二元隐函数:x z F z
x F ∂∂'=-',y z F z y F ∂∂'=-'
七、多元函数的极值及其求法:
⎪⎪⎪⎩
⎪⎪⎪
⎨⎧=-<-⎩⎨⎧><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22
000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x。