工程力学压杆稳定课件
合集下载
压杆稳定(工程力学课件)
压杆稳定的概念
桁架结构
在轴向压力作用下,
短粗压杆 只要满足杆受压时的强度
条件,就能正常工作
细长压杆
破坏形式呈现出与强度问题 截然不同的现象
FN [ ]
A
压杆失稳
细长压杆:
临界压力或临界力ห้องสมุดไป่ตู้Fcr
F Fcr F Fcr
稳定的平衡 不稳定的平衡
压杆失稳
在轴向压力 F 由小逐渐增大 的过程中,压杆由稳定的平衡 转变为不稳定平衡,这种现象 称为压杆失稳。
首先判断压杆的失稳方向
(1)两端约束 1
(2)截面形状
Fcr (2 El)I2
Iz
hb3 12
140 803 12
597.3104
mm4
Iy
bh3 12
80 1403 12
1829.3104
mm4
Fcr1
2 EImin
(l)2
2 10 103 MPa 597.3104 (1 3103 mm)2
mm4
65 435 N 65.44 kN
(N、mm、MPa)
【例 1】 细长压杆,两端为球形铰支,
矩形横截面, E 10 GPa ,求其临界力。
Fcr (2 El)I2
长度影响
【例 2】细长压杆,上端约束为球形铰支,
下端约束在 xOz平面内可视为两端铰支,
Fcr (2 El)I2
在 xOy 平面内可视为一端铰支、一端固定
M
Wz
[ ]
81.67
πD4 i I 64 D 40mm
A πD2 4 4
l 1 3103 75
i
40
查表: 0.54
81.67
桁架结构
在轴向压力作用下,
短粗压杆 只要满足杆受压时的强度
条件,就能正常工作
细长压杆
破坏形式呈现出与强度问题 截然不同的现象
FN [ ]
A
压杆失稳
细长压杆:
临界压力或临界力ห้องสมุดไป่ตู้Fcr
F Fcr F Fcr
稳定的平衡 不稳定的平衡
压杆失稳
在轴向压力 F 由小逐渐增大 的过程中,压杆由稳定的平衡 转变为不稳定平衡,这种现象 称为压杆失稳。
首先判断压杆的失稳方向
(1)两端约束 1
(2)截面形状
Fcr (2 El)I2
Iz
hb3 12
140 803 12
597.3104
mm4
Iy
bh3 12
80 1403 12
1829.3104
mm4
Fcr1
2 EImin
(l)2
2 10 103 MPa 597.3104 (1 3103 mm)2
mm4
65 435 N 65.44 kN
(N、mm、MPa)
【例 1】 细长压杆,两端为球形铰支,
矩形横截面, E 10 GPa ,求其临界力。
Fcr (2 El)I2
长度影响
【例 2】细长压杆,上端约束为球形铰支,
下端约束在 xOz平面内可视为两端铰支,
Fcr (2 El)I2
在 xOy 平面内可视为一端铰支、一端固定
M
Wz
[ ]
81.67
πD4 i I 64 D 40mm
A πD2 4 4
l 1 3103 75
i
40
查表: 0.54
81.67
《工程力学》课件——22 压杆稳定问题
X
Z
Y
《工程力学》
《 压杆稳定问题 》
PART
1
压杆稳定的概念
压杆稳定的概念
问题思考 已知: • 木杆横截面积 = 150mm2 • 抗压强度极限 σb = 40MPa • 短木杆长度 = 30mm • 长木杆长度 = 1000mm
长木杆折断破坏: 细长压杆承载能力不仅取决于轴向压缩抗压 强度 且与杆件在轴向压力作用下突然变弯,丧失 原有直线形状有关
压杆稳定的概念
加拿大魁北克省圣劳伦斯河钢铁结构大桥 事故照片 经验教训:桥梁等结构设计必须考虑强度、刚度与稳定性并重的体系
压杆稳定的概念
压杆的稳定性
稳定平衡状态: 当 P < Pcr 时杆件保持直线平衡状态 微小横向力干扰 → 杆件弯曲 干扰力去掉 → 杆件恢复原有直线状态
压杆稳定的概念
cr a b
式中:λ 为压杆的柔度,α为与材料有关的系数
➢ 抛物线型经验公式
• 我国钢结构规范中规定采用抛物线经验公式: cr s 2
式中:a、b 值是与材料性能有关的常数 适用于合金钢、铝合金、铸铁与松木等
X
Z
Y
感谢聆听!
《 压杆稳定问题 》
平衡状态稳定性与压力大小有关: P < Pcr 时为稳定平衡 P > Pcr 时是不稳定的 P = Pcr 时为临界状态
PART
2
临界力的欧拉公式
临界力的欧拉公式
临界状态: 压杆从稳定平衡过渡到不稳定平衡的特定状态
临界力 Pcr: 压杆处于临界状态时所受的轴向压力
临界力欧拉公式: 临界力的稳定性
临界平衡状态: 当 P 增加到 Pcr 时对 微小横向力干扰 → 杆件弯曲 干扰力去掉 → 杆件不能恢复原来直线形状 (压杆将保持一种微弯的平衡状态)
Z
Y
《工程力学》
《 压杆稳定问题 》
PART
1
压杆稳定的概念
压杆稳定的概念
问题思考 已知: • 木杆横截面积 = 150mm2 • 抗压强度极限 σb = 40MPa • 短木杆长度 = 30mm • 长木杆长度 = 1000mm
长木杆折断破坏: 细长压杆承载能力不仅取决于轴向压缩抗压 强度 且与杆件在轴向压力作用下突然变弯,丧失 原有直线形状有关
压杆稳定的概念
加拿大魁北克省圣劳伦斯河钢铁结构大桥 事故照片 经验教训:桥梁等结构设计必须考虑强度、刚度与稳定性并重的体系
压杆稳定的概念
压杆的稳定性
稳定平衡状态: 当 P < Pcr 时杆件保持直线平衡状态 微小横向力干扰 → 杆件弯曲 干扰力去掉 → 杆件恢复原有直线状态
压杆稳定的概念
cr a b
式中:λ 为压杆的柔度,α为与材料有关的系数
➢ 抛物线型经验公式
• 我国钢结构规范中规定采用抛物线经验公式: cr s 2
式中:a、b 值是与材料性能有关的常数 适用于合金钢、铝合金、铸铁与松木等
X
Z
Y
感谢聆听!
《 压杆稳定问题 》
平衡状态稳定性与压力大小有关: P < Pcr 时为稳定平衡 P > Pcr 时是不稳定的 P = Pcr 时为临界状态
PART
2
临界力的欧拉公式
临界力的欧拉公式
临界状态: 压杆从稳定平衡过渡到不稳定平衡的特定状态
临界力 Pcr: 压杆处于临界状态时所受的轴向压力
临界力欧拉公式: 临界力的稳定性
临界平衡状态: 当 P 增加到 Pcr 时对 微小横向力干扰 → 杆件弯曲 干扰力去掉 → 杆件不能恢复原来直线形状 (压杆将保持一种微弯的平衡状态)
工程力学中压杆稳定PPT课件
端约束情况下的相当长度 l。
29
两杆均为细长杆的杆系如图示,若杆件在ABC面内 因失稳而引起破坏,试求载荷F为最大值时的θ角(设 0<θ<π/2)。设AB杆和BC杆材料截面相同。
细长压杆的失稳往往产生很大的变形甚至导致 整个结构破坏。
16
1875年俄国开伏达河上同名桥,在安装完毕后, 仅当工作车通过时,受压上弦杆发生偏离桁架平面的屈 曲而毁坏。
17
1925年2月13日,修复后的莫济里桥在试车时出现 了问题。幸好桁架落在为试车准备的临时支座上,人 们才可看到斜杆失稳后的情景。
小球在不同 的位置状态 保持平衡状 态的能力不 同。
13
如何判断压杆的稳定与不稳定?
F<Fcr :在扰动作用下,
直线平衡构形转变为弯曲
平衡构形,扰动除去后, 能够恢复到直线平衡构形,
直 线
则称原来的直线平衡构形
平
是稳定的。
衡
构
形
弯弯 曲曲 平平 衡衡 构构 形形
14
如何判断压杆的稳定与不稳定?
F>Fcr :在扰动作用下,
表中将求临界力的欧拉公式写成了同一的形式:
Fcr
π 2 EI
l 2
式中, 称为压杆的长度因数,它与杆端约束情况有关; l
称为压杆的相当长度(equivalent length),它表示某种杆端约束
情况下几何长度为l的压杆,其临界力相当于长度为 l 的两端
铰支压杆的临界力。表13-1的图中从几何意义上标出了各种杆
1
§13-1 压杆稳定性的概念
工程中把承受轴向压力的直杆称为压杆 压杆
2
工程中把承受轴向压力的直杆称为压杆
液压缸顶杆
3
压杆稳定教学课件PPT
P
cr
2E 2
细长压杆。
粗短杆 中柔度杆
o
s
大柔度杆
P
l
i
粗短杆 中长杆 细长杆
细长杆—发生弹性屈曲 (p) 中长杆—发生弹塑性屈曲 (s < p) 粗短杆—不发生屈曲,而发生屈服 (< s)
四、注意问题:
1、计算临界力、临界应力时,先计算柔度,判断所用公式。
2、对局部面积有削弱的压杆,计算临界力、临界应力时, 其截面面积和惯性距按未削弱的尺寸计算。但进行强度 计算时需按削弱后的尺寸计算。
小球平衡的三种状态
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
受压直杆平衡的三种形式
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
电子式万能试
验机上的压杆稳定 实验
工程项目的 压杆稳定试验
§9-2 细长压杆临界压力的欧拉公式 一、两端铰支细长压杆的临界载荷
当达到临界压力时,压杆处于微弯状态下的平衡
1.287
91(kN)
例:图示立柱,L=6m,由两根10号槽型A3钢组成,下端固定,上 端为球铰支座,p 100 ,试 a=?时,截面最为合理。并求立柱的 临界压力最大值为多少?
解:1、对于单个10号槽钢,形心在C1点。 A1 12.74cm2, z0 1.52cm, Iz1 198.3cm4, I y1 25.6cm4.
细长压杆的破坏形式:突然产生显著的弯
曲变形而使结构丧失工作能力,并非因强度不
够,而是由于压杆不能保持原有直线平衡状态
(a)
(b) 所致。这种现象称为失稳。
1907年加拿大圣劳伦斯河上的魁北克桥 (倒塌前正在进行悬臂法架设中跨施工)
压杆的稳定性PPT课件
l 2
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。
即
cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩
l 表示把压杆折算成两端铰支的长度,称为相当长度。
称为长度系数,它反映了杆端不同支座情况对临界压力
的影响。
第28页/共68页
支座情况 两端铰支
一端固定 一端自由
一端固定 一端铰支
两端固定
压杆简图
临界压力 公式
2EI
l2
1.0
2EI
2l 2
2
2EI
0.7l 2
0.7
第29页/共68页
约小100倍!杆件先发生失稳现象!
F
第30页/共68页
8.3 压杆的临界应力、经验公式
1 临界应力
压杆处于临界状态时,近似认为压杆横截面上的轴向 正应力临界压力Fcr 与压杆的横截面面积A之比,该正应
力称为临界应力,以 cr 表示。
即
cr
Fcr A
2EI l2 A
式中,I i2 ,
A
i为截面的惯性半径,是一个与截面形状和尺寸
第13页/共68页
载 荷 更 大 的 状 态
第14页/共68页
压杆的平衡稳定性
F Fcr
临界力
F Fcr
F Fcr
微小横 向力Q
微小横 向力Q
上界
下界
稳定平衡
临界状态
不稳定平衡
稳定的直线平
微弯平衡状态
衡状态
第15页/共68页
压杆的平衡稳定性 F
F FFcr F F F Fcr
当 P Pcr 当 P Pcr
第19页/共68页
8.2 压杆的稳定性分析、欧拉公式
1 两端铰支细长杆的临界压力
如图所示细长等直杆
当压杆在压力F作用下处于临界状态时,杆件发生“微弯” 变形,x截面处的弯矩
第十章压杆稳定ppt课件
2E 0.56 S
②s < 时: cr s
临界应力的特点
•它的实质: 象强度中的比例极限、屈服极限类似,除以 安全因数就是稳定中的应力极限
•同作为常数的比例极限、屈服极限不同,变化 的临界应力依赖压杆自身因素而变
例102 截面为 120mm200mm 的矩形 木柱,长l=7m,材料的弹性模量E = 10GPa,
Fcr
2 EImin
l2
此公式的应用条件:
•理想压杆
•线弹性范围内
•两端为球铰支座
§10-3 不同杆端约束下细长压杆 临界力的欧拉公式
其它端约束情况,分析思路与两端铰支的相同, 并得出了临界力公式
Fcr
2 EImin (l)2
即压杆临界力欧拉公式的一般形式
—长度系数(或约束系数) l—相当长度
•求临界力有两种途径:实验测定及理论计算。
•实验以及理论计算表明:压杆的临界力,与压杆 两端的支承情况有关,与压杆材料性质有关,与 压杆横截面的几何尺寸形状有关,也与压杆的长 度有关。
压杆一般称为柱,压杆的稳定也称为柱的稳 定,压杆的失稳现象是在纵向力作用下,使 杆产生突然弯曲的,在纵向力作用下的弯曲, 称为纵弯曲。
AB杆 l
1
i
l
1.5 cos30
1.732m
i
I A
D4 d4 4 64 D2 d2
D2 d 2 16mm 4
得
1 1.7 3 2 1 03
16
108 P
AB为大柔度杆
Fcr
2EI
l 2
118kN
n
Fcr FN
118 26.6
4.42 nst
3
AB杆满足稳定性要求
《压杆稳定》课件
《压杆稳定》PPT课件
压杆稳定是工程结构中的重要问题,掌握这一原理对于建筑、电力和汽车等 领域都至关重要。
概述
定义
压杆稳定是指结构中的杆件在受压作用下仍能够保持平衡的状态。
原理
受压杆件会发生弯曲和屈曲变形,从而形成侧向支撑力,从而保持杆件的稳定。
应用场景
建筑、桥梁、电力塔和汽车等诸多领域都运用了压杆稳定的原理。
电力工业
电力塔和支架上的压杆稳定设 计,可以防止杆件失去平衡而 导致高压线路的断裂。
总结
1
优缺点
压杆稳定有着较高的稳定性和安全性,但是对材料和结构的要求比较高。
2
发展趋势
随着结构材料和设计技术的不断进步,压杆稳定的设计方法也将日趋完善。
3
应用前景
压杆稳定在建筑、汽车和电力等领域有较广泛的应用前景,是未来工程结构的重 要发展方向。
参考资料
1. 《结构力学》 王兆院 2. 《结构稳定理论》 蔡景达 3. 《Mechanics of Materials》 R.C. Hibbeler
压杆稳定的计算
1
计算模型
压杆稳定的计算通常采用欧拉公式和能量
压力、应力和变形的计算
2
原理来进行分析。
压力、应力和变形是计算压杆稳定所必需
的核心参数。
3
临界负载
临界负载是指杆件失去稳定的负载情况, 其计算方法取决于结构和边界条件。
压杆稳定的优化设计
材料选择
不同材料的强度和刚度各不相同, 选择合适的材料对于杆件的稳定性 至关重要。
结构设计
良好的结构设计可以有效地降低压 杆的压力和应力,从而提高其稳定 性。
优化方法
优化方法可以使得压杆在保证结构 强度的同时,达到最佳的性能和稳 定状态。
压杆稳定是工程结构中的重要问题,掌握这一原理对于建筑、电力和汽车等 领域都至关重要。
概述
定义
压杆稳定是指结构中的杆件在受压作用下仍能够保持平衡的状态。
原理
受压杆件会发生弯曲和屈曲变形,从而形成侧向支撑力,从而保持杆件的稳定。
应用场景
建筑、桥梁、电力塔和汽车等诸多领域都运用了压杆稳定的原理。
电力工业
电力塔和支架上的压杆稳定设 计,可以防止杆件失去平衡而 导致高压线路的断裂。
总结
1
优缺点
压杆稳定有着较高的稳定性和安全性,但是对材料和结构的要求比较高。
2
发展趋势
随着结构材料和设计技术的不断进步,压杆稳定的设计方法也将日趋完善。
3
应用前景
压杆稳定在建筑、汽车和电力等领域有较广泛的应用前景,是未来工程结构的重 要发展方向。
参考资料
1. 《结构力学》 王兆院 2. 《结构稳定理论》 蔡景达 3. 《Mechanics of Materials》 R.C. Hibbeler
压杆稳定的计算
1
计算模型
压杆稳定的计算通常采用欧拉公式和能量
压力、应力和变形的计算
2
原理来进行分析。
压力、应力和变形是计算压杆稳定所必需
的核心参数。
3
临界负载
临界负载是指杆件失去稳定的负载情况, 其计算方法取决于结构和边界条件。
压杆稳定的优化设计
材料选择
不同材料的强度和刚度各不相同, 选择合适的材料对于杆件的稳定性 至关重要。
结构设计
良好的结构设计可以有效地降低压 杆的压力和应力,从而提高其稳定 性。
优化方法
优化方法可以使得压杆在保证结构 强度的同时,达到最佳的性能和稳 定状态。
工程力学精品课程压杆稳定.ppt
第 10 章
压杆稳定
Stability of columns
一。稳定性概念
细长杆件承受轴向压缩载荷作用时,会表现出与强度失效性质全然不同的失效现象, 即将会由于平衡的不稳定性而发生失效,这种失效称为稳定性失效,简称失稳,又称为 屈曲失效。
内燃机配气机构中的挺杆
磨床液压装置的活塞杆
细长压杆随受力的改变,平衡的稳定性会发生改变,由稳定平衡转为不稳定平衡的 临界值称为压杆的临界压力或临界力;它是压杆保持稳定的直线平衡的最大值,或是 压杆保持微曲平衡的最小值。
b
经验公式: cr a b
其中,a,b是由杆件材料决定的常数
2)小柔度杆的临界应力
小柔度杆或短杆: λ < λ2 此时压杆属强度问题,临界应力就是屈服极限或强度极限,即
cr s
或
b
3) 临界应力总图
σ σcr=σs
σs σp
σcr=a-bλ σcr=π2E/λ2
O
λ2
λ1
可以明显地看出,短杆的临界应力与柔度λ无关,而中、长杆的临界应力则随柔度 λ的增加而减小。
例10-4图示钢结构,承受载荷F作用,试校核斜撑杆的稳定性。已知载荷F=12kN,其
外径D=45mm,内径d=36 mm,稳定安全系数nst=2.5。斜撑杆材料是Q235钢,弹性模 量E=210 GPa, σp=200 MPa, σs=235 MPa,
1m A
1m B
F 解:(a) 受力分析。以梁AC为研究对象,由静力
1.减小压杆的支承长度;因为临界应力与杆长平方成反比,因此可以显著地提高压杆承 载能力。 2. 改变压杆两端的约束;使长度系数减小,相应地减小柔度,从而增大临界应力。 3. 选择合理的截面形状;可以在不增加截面面积的情况下,增加横截面的惯性矩I, 从而减小压杆柔度,起到提高压杆稳定性的作用。图10.10是起重臂合理截面。
压杆稳定
Stability of columns
一。稳定性概念
细长杆件承受轴向压缩载荷作用时,会表现出与强度失效性质全然不同的失效现象, 即将会由于平衡的不稳定性而发生失效,这种失效称为稳定性失效,简称失稳,又称为 屈曲失效。
内燃机配气机构中的挺杆
磨床液压装置的活塞杆
细长压杆随受力的改变,平衡的稳定性会发生改变,由稳定平衡转为不稳定平衡的 临界值称为压杆的临界压力或临界力;它是压杆保持稳定的直线平衡的最大值,或是 压杆保持微曲平衡的最小值。
b
经验公式: cr a b
其中,a,b是由杆件材料决定的常数
2)小柔度杆的临界应力
小柔度杆或短杆: λ < λ2 此时压杆属强度问题,临界应力就是屈服极限或强度极限,即
cr s
或
b
3) 临界应力总图
σ σcr=σs
σs σp
σcr=a-bλ σcr=π2E/λ2
O
λ2
λ1
可以明显地看出,短杆的临界应力与柔度λ无关,而中、长杆的临界应力则随柔度 λ的增加而减小。
例10-4图示钢结构,承受载荷F作用,试校核斜撑杆的稳定性。已知载荷F=12kN,其
外径D=45mm,内径d=36 mm,稳定安全系数nst=2.5。斜撑杆材料是Q235钢,弹性模 量E=210 GPa, σp=200 MPa, σs=235 MPa,
1m A
1m B
F 解:(a) 受力分析。以梁AC为研究对象,由静力
1.减小压杆的支承长度;因为临界应力与杆长平方成反比,因此可以显著地提高压杆承 载能力。 2. 改变压杆两端的约束;使长度系数减小,相应地减小柔度,从而增大临界应力。 3. 选择合理的截面形状;可以在不增加截面面积的情况下,增加横截面的惯性矩I, 从而减小压杆柔度,起到提高压杆稳定性的作用。图10.10是起重臂合理截面。
《工程力学压杆稳定》课件
压杆的应用案例
建筑
机械
压杆广泛应用于建筑领域,提供 结构稳定和支撑。
在机械工程中,压杆用于连接零 部件和传递力量。
通过案例演示,加深对压杆稳定的理解和应用。
桥梁
桥梁结构中的压杆可以增加桥梁 的稳定性和承重能力。
压杆稳定的条件
压杆稳定是杆件不发生屈曲的状态,包括杆件的截面形状、材料性质、长度等因素。
压杆的计算方法
1
确定杆件的受力状态
根据杆件受力情况进行分析。
2
计算杆件的临界压力
使用适当的公式计算杆件的临界压力。
3
判断是否稳定
根据计算结果判断杆件是否稳定。
压杆稳定的公式有等弯曲时压杆稳定公式和弯矩影响时压杆稳定公式。
《工程力学压杆稳定》 PPT课件
以图文并茂的方式介绍《工程力学压杆稳定》,让你轻松学习压杆的定义、 分类、稳定条件、计算方法和应用案例。
目录
1. 压杆的定义和分类 3. 压杆的计算方法
2. 压杆稳定的条件 4. 压杆的应用案例
压杆的定义和分类
压杆是指受到力作用的细长构件,可分为圆杆、方杆、角杆等多个分类。
《压杆稳定教学》课件
临界载荷法:通过临界载荷 计算,判断系统稳定性
稳定性图解法:通过稳定性 图解,判断系统稳定性
压杆稳定实验方法
第五章
实验目的
验证压杆稳定理论 掌握压杆稳定实验的基本操作 学习压杆稳定实验数据分析方法 提高压杆稳定实验的实践能力
实验原理
压杆稳定实验是研究压杆在受力作用下的稳定性问题
实验原理基于欧拉-伯努利梁理论,通过测量压杆在不同载荷下的变形和应力分布,分析 压杆的稳定性
第二章
课件背景
压杆稳定是工程力学中的重要概念 课件旨在帮助学生理解压杆稳定的原理和应用 课件包括理论讲解、实例分析、习题练习等环节 课件适用于工程力学、土木工程等专业的学生
教学目标
掌握压杆稳定的 基本概念和原理
学会分析压杆稳 定问题
掌握压杆稳定计 算的基本方法
提高学生的工程 实践能力
适用对象
工程力学专业的学生
结构工程专业的学生
土木工程专业的学生
机械工程专业的学生
相关领域的研究人员 和工程师
内容结构
压杆稳定理 论基础
压杆稳定设 计方法
压杆稳定分 析方法
压杆稳定实 验与验证
压杆稳定实 例分析
压杆稳定发 展趋势
压杆稳定基本概念
第三章
压杆定义
压杆:承受轴向压力的杆件 压杆的种类:直杆、曲杆、斜杆等 压杆的受力:轴向压力、剪切力、弯矩等 压杆的稳定性:压杆在受力作用下的稳定性能,包括临界载荷、临界应力等。
感谢您的观 看
汇报人:PPT
案例总结与启示
案例背景:某建筑工程中,压杆稳定性问题 案例分析:通过理论分析和实验验证,确定压杆稳定性的影响因素 案例启示:在实际工程中,应充分考虑压杆稳定性的影响因素,确保工程安全 案例应用:在工程设计中,采用压杆稳定性分析方法,提高工程安全性能
《压杆稳定教学》课件
增加约束
总结词
通过增加支撑、固定或增加附加约束,可以 提高压杆的稳定性。
详细描述
约束是影响压杆稳定性的重要因素。通过增 加支撑、固定或附加约束,可以限制压杆的 自由度,从而增强其稳定性。例如,在压杆 的适当位置增加支撑或固定点,可以减小压 杆的弯曲变形,提高其稳定性。此外,通过 增加附加约束,如套箍或加强筋等,也可以 提高压杆的稳定性。
实验结果与分析
实验结果
通过实验观察和数据记录,得到不同条件下 压杆的稳定性表现。
结果分析
根据实验数据,分析影响压杆稳定性的因素 ,如压杆的材料、截面形状、长度、直径等 。通过对比不同条件下的实验结果,总结出
压杆稳定性的一般规律和特点。
THANKS
感谢观看
REPORTING
稳定性安全系数
通过比较临界载荷与实际载荷的大小,来判断压杆的 稳定性。
稳定性试验
通过试验的方法,对压杆进行稳定性测试,以验证其 在实际使用中的稳定性。
PART 02
压杆的分类与计算
REPORTING
长细比较小的压杆
弹性失稳
当受到垂直于杆轴的压力时,杆件会 弯曲并丧失承载能力。
临界压力
当压杆达到临界压力时,杆件将发生 屈曲。
PART 05
压杆稳定性的实验研究
REPORTING
实验目的与原理
实验目的
通过实验研究,掌握压杆稳定性的基本概念和原理,了解影响压杆稳定性的因 素。
实验原理
压杆稳定性是指细长杆在受到轴向压力时,抵抗弯曲变形的能力。当轴向压力 超过某一临界值时,压杆会发生弯曲变形,丧失稳定性。本实验通过观察不同 条件下压杆的变形情况,分析影响压杆稳定性的因素。
根据欧拉公式计算临界应力:$sigma_{cr} = frac{EI}{A}$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
cr
2E 2
细长压杆。
o
s
P
l
i
cr a b ——直线型经验公式
a, b 是与材料性能有关的常数。
s
a
s
b
直线公式适合合金钢、铝合金、铸铁与 松木等中柔度压杆。
材料 a(MPa) b(MPa) p
s
硅钢 577 3.74 100 60
二、支承对压杆临界载荷的影响
两端铰支
一端自由 一端固定
一端铰支 一端固定
两端固定
临界载荷欧拉公式的一般形式:
Fcr
2EI ( l ) 2
一端自由,一端固定 : 一端铰支,一端固定 :
两端固定 : 两端铰支 :
= 2.0 = 0.7 = 0.5 = 1.0
欧拉临界力公式
Fcr
2 EImin ( l ) 2
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
受压直杆平衡的三种形式
F Fcr
F Fcr
F Fcr
稳定平衡
随遇平衡 ( 临界状态 )
不稳定平衡
电子式万能
试验机上的压杆 稳定实验
第二节 细长压杆临界压力的欧拉公式 一、两端铰支细长压杆的临界载荷
当达到临界压力时,压杆处于微弯状态下的平衡。
,
p
称大柔度杆(细长压杆 )
o
例:Q235钢,E 200GPa, p 200MPa.
有效 cr
2E 2
p
l i
p
2E p
2 200 103
200
99.35 100
三、临界应力总图:临界应力与柔度之间的变化关系图。
1、大柔度杆(细长压杆)采用欧拉公式计算。
p ( p )
Fcr
yB
z
24.2 (kN )
l
2、从强度分析 s 235MPa
Fs
A s
0.022
4
235106
73.8
(kN )
A
第三节 欧拉公式的使用范围 临界应力总图
一、临界应力与柔度
cr
Fcr A
2EI (l)2 A
2E (l)2
i 2
2E ( l )2
2E 2
i
——临界应力的欧拉公式
弯曲变形而使结构丧失工件能力,并非因强
度不够,而是由于压杆不能保持原有直线平
(a)
(b)
衡状态所致。这种现象称为失稳。
稳定问题:主要针对细长压杆
课堂小实验:横截面为26mm×1mm的钢尺,求其能承受的 Fmax=?
F
l
若取l 2cm, 按屈服强度 s 235MPa计算,
Fmax 235 106 26 106 6110N
y FN
y Fcr
y FN
Fcr
考察微弯状态下局部压杆的平衡:
M (x) = Fcr y (x)
d2y
M (x) = –EI
d x2
令 k 2 Fcr EI
d2y k2y 0 dx 2
二阶常系数线性奇次微分方程
微分方程的解: y =Asinkx + Bcoskx
y 边界条件: y ( 0 ) = 0 , y ( l ) = 0
临界压力:
Fcr
2EI ( l ) 2
cr
临界压应力:
cr
2E 2
P
o
cr
2E 2
细长压杆。
l
P
i
2:中柔度杆(中长压杆)采用经验公式计算。
s p ( p s ) cr a b ——直线型经验公式a s
b
cr
cr ab ——直线型经验公式
由 k 2 Fcr 可得 EI
Fcr
n2 2 EI
l2
临界载荷:
Fcr
n2 2 EI
l2
屈曲位移函数 :y(x) A sin nx
l
临界力 F c r 是微弯下的最小压 力,故取 n = 1。且杆将绕惯性矩最
小的轴弯曲。
最小临界载荷:
Fcr
2 EImin
l2
——两端铰支细长压杆的临界载荷 的欧拉公式
0•A+1•B=0 sinkl • A +coskl • B=0
B=0 sinkl • A =0
y FN
y Fcr
0•A+1•B=0 sinkl • A +coskl • B=0
B=0 sinkl • A =0
若 A = 0,则与压杆处于微弯状态 的假设不符,因此可得:
sinkl = 0
kl n (n = 0、1、2、3……)
若取l 30cm, 按两端铰接方式使其受轴向压力, 当产生明显变形时,Fmax 180N
若取l 100cm,则产生明显变形时, Fmax 50N
若取l 200cm,则产生明显变形时,
1mm
26mm
Fmax 12.80N
1983年10月4日,高 54.2m、长17.25m、 总重565.4KN大型脚 手架局部失稳坍塌,
中的 Imin 如何确定 ?
定性确定 Imin
例:图示细长圆截面连杆,长度 l 800 mm,直径 d 20 mm,材 料为Q235钢,E=200GPa.试计算连杆的临界载荷 Fcr .
解:1、细长压杆的临界载荷
Fcr
2 EI
l2
2E
l2
d4
64
3
200 109 0.82 64
0.024
l ——压杆的柔度(长细比)
i
柔度是影响压杆承载能力的综合指标。
i I A
——惯性半径 I z A iz2, I y A iy2.
cr 压杆容易失稳
二、欧拉公式的适用范围
p,
cr p
cr
2E 2
p
.
2E p
p
2E p
cr
无效
(细长压杆临界柔度)
p
欧拉公式的适用围:
5人死亡、7人受伤。
2000年10月25日上午10时许南京电视台演播厅工程封顶,由于脚手
架失稳,模板倒塌,造成6人死亡,35人受伤,其中一名死者是南京电 视台的摄象记者。
稳定性:平衡物体在其原来平衡状态下抵抗干扰的能力。 失 稳:不稳定的平衡物体在任意微小的外界干扰下的变 化或破坏过程。
小球平衡的三种状态
压杆的稳定概念
拉压杆的强度条件为:
= —F—N [ ] A
(a): 木杆的横截面为矩形(12cm),高为 3cm,当荷载重量为6kN时杆还不致破坏。
(b):木杆的横截面与(a)相同,高为1.4m (细长压杆),当压力为0.1KN时杆被压弯, 导致破坏。
(a)和(b)竟相差60倍,为什么?
细长压杆的破坏形式:突然产生显著的
第十一章 压杆稳定
§11-1 压杆的稳定概念 §11-2 细长压杆临界压力的欧拉公式 §11-3 欧拉公式的使用范围 临界应力总图 §11-4 压杆的稳定计算 §11-5 提高压杆稳定性的措施
工程实例 工程中把承受轴向压力的直杆称为压杆.
压杆
液压缸顶杆
木结构中的压杆
脚手架中的压杆
桁架中的压杆
第一节 问题的提出