信号分析与处理练习2

合集下载

信号分析与处理答案第二版完整版

信号分析与处理答案第二版完整版

信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。

(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。

特征方程,解得特征根为。

所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。

所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。

…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。

(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。

当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。

(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。

当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。

解已知系统的微分方程及初始状态如下,试求系统的零输入响应。

(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。

解由于电容器二端的电压在t=0时不会发生突变,所以。

信号分析与处理习题

信号分析与处理习题

2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。

试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。

解:已知采样角频率Ωs =6π,则由香农采样定理,可得因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。

3.2 设x (n )的傅里叶变换为X (e j ω),试利用X (e j ω)表示下列序列的傅里叶变换: (1) )1()1()(1n x n x n x --+-= (2) )]()([21)(2n x n x n x -+=* 分析:利用序列翻褶后的时移性质和线性性质来求解,即)()(ωj e X n x ⇔,)()(ωj e X n x -⇔-)()(ωωj mj e X e n m x --⇔-解:(1)由于)()]([ωj eX n x DTFT =,)()]([ωj e X n x DTFT -=-,则)()]1([ωωj j e X e n x DTFT --=- )()]1([ωωj j e X e n x DTFT -=--故ωωωωωcos )(2])[()]([1j j j j e X e e eX n x DTFT ---=+=(2)由于)()]([ωj e X n x DTFT **=-故)](Re[2)()()]([2ωωωj j j e X e X e X n x DTFT =+=*3.7 试求下列有限长序列的N 点离散傅里叶变换(闭合形式表达式):(1) )()(n R a n x N n =(2) N n n n n x <<-=000)()(,δ (3) )()(n nR n x N = (4) )()(2n R n n x N =分析:利用有限长序列的DFT 的定义,即10)()(10-≤≤=∑-=N k W n x k X N n knN ,解:(1)因为)()(n R a n x N n =,所以k Nj N N n nk NjnN n knNnaea ea Wa k X ππ212111)(--=--=--===∑∑(2)因为N n n n n x <<-=000)()(,δ,所以k n Nj n n knNN n knNeW W n n k X 002100)()(πδ-=-===-=∑(3)由)()(n nR n x N =,得∑-==1)(N n knNnW k X 注意:为了便于求解,必须利用代数简化法消除掉上式中的变量.........................n .。

信号分析与处理习题

信号分析与处理习题

一、选择题:1、下列哪个系统不属于因果系统( )。

A 、]1[][][+-=n x n x n yB 、12()(0)2(0)3()y t x x f t =+-C 、[][]nk y n x k =-∞=∑ D 、()()(1)y t cf t df t =+-2、设激励为f 1(t )、f 2(t )时系统产生的响应分别为y l (t )、y 2(t ),并设a 、b 为任意实常数,若系统具有如下性质:af 1(t )+bf 2(t )↔ay l (t )+by 2(t ),则系统为( )。

A 、线性系统 B 、因果系统 C 、非线性系统D 、时不变系统3、右图所示f (t )的表达式为(C )。

A 、[]()(1)(1)t t t t εεε--+- B 、[]()(1)t t t εε--- C 、[](1)()(1)t t t εε---- D 、[]()(2)t t t εε--4、结构组成和元件参数不随时间变化的系统称为( )系统。

A 、时变 B 、时不变 C 、线性 D 、非线性5、积分f (t )=13-⎰(2t 2+1)δ(t -2)dt 的结果为( )。

A 、1B 、3C 、0D 、9 6、积分55(4)()t t dt δ--⎰等于( )。

A 、-4B 、4C 、3D 、-37、已知信号()f t 的最高频率0f Hz ,则对信号(/2)f t 取样时,其频谱不混叠的最大取样间隔max T 等于( )。

A 、02f B 、 01f C 、012f D 、014f 8线性常系数微分方程()2()3()2()()y t y t y t x t x t ''''++=+表征的LTI 系统,其单位冲激响应h (t )中( )。

A 、包括()t δ项B 、不包括()t δ项C 、不能确认D 、包括()t δ'项 9、以下分别是4个信号的拉普拉斯变换,其中(C )不存在傅里叶变换?A 、1sB 、1C 、12s -D 、12s +10、周期信号的频谱特点是( )。

信号分析与处理_绝密模拟试卷1_(2)

信号分析与处理_绝密模拟试卷1_(2)

以下面题目来复习,考个好成绩很容易一、选择题(10分,每题2分)1. 若f (t) 是已录制在磁带的声音信号,则下列表述错误的是 Ba) f (−t) 表示将磁带倒转播放产生的信号b) f (2t) 表示将磁带以二倍速度播放的信号c)f (2t) 表示将磁带速度降低一半播放的信号d) 2 f (t) 表示将磁带音量放大一倍播放的信号2.一个理想低通滤波器由h(t) = sin c( Bt) 冲激响应描述。

由于这个h(t) 在t<0时不为零,且s in c 函数不是绝对可积的,故 Ca) 该滤波器物理上不可实现,但它是稳的。

b) 该滤波器物理上可实现,但它不稳定。

c) 该滤波器物理上可实现,也是稳定的。

d) 该滤波器物理上不可实现,也不稳定。

3. z 变换的收敛域决定了序列x(n) 的性质。

在下列关于序列x(n) 的性质的表述中,错误的是a) 有限长序列x(n) 的z 变换X( z) 的收敛域是整个z 平面,有时要除去z= 0 或z为无穷。

b) 右边序列x(n) 的z变换X( z) 的收敛域位于以最大极点的模为半径的圆外部分c) 左边序列x(n) 的z变换X( z) 的收敛域位于以最大极点的模为半径的圆内部分d) 双边序列x(n) 的z变换X( z) 的收敛域是以最大和最小极点半径为界的环形4.周期性非正弦连续时间信号的频谱,其特点为( A) 。

(a) 频谱是连续的,收敛的(b) 频谱是离散的,谐波的,周期的(c) 频谱是离散的,谐波的,收敛的(d) 频谱是连续的,周期的5. 如某一因果线性时不变系统的系统函数H(S) 的所有极点的实部都小于零,则( C) 。

(a) 系统为非稳定系统(b)|h(t)|< ∞(c) 系统为稳定系统(d) |h(t)| =03)IIR数字滤波的基本网络结构有直接型、级联型、并联型FIR数字滤波的基本网络结构有直接型、级联型、线性型。

4)计算积分的结果为 8 。

信号分析与处理第2章习题答案[山东大学]

信号分析与处理第2章习题答案[山东大学]

2-1 画出下列各时间函数的波形图,注意它们的区别(注意标上横坐标的值以及波形与横坐标的交点。

较简单,出错的不多)1)x 1(t) = sin Ω t ·u(t )2)x 2(t) = sin[ Ω ( t – t 0 ) ]·u(t )3)x 3(t) = sin Ω t ·u ( t – t 0 )-14)x2(t) = sin[ ( t – t0) ]·u( t – t0)2-2 已知波形图如图2-76所示,试画出经下列各种运算后的波形图(6.7.8较容易出错,其中8出错的最多,没有标明微分;其他题出错的很少)(1)x ( t-2 )(2)x ( t+2 )(3)x (2t)(4)x ( t/2 )(5)x (-t)(6)x (-t-2)(出错较多,对负号的处理不正确)(7)x ( -t/2-2 )(出错较多,对负号的处理不正确)(8)dx/dt(出错较多,主要是忘记-δ (t-2)部分)2-3 应用脉冲函数的抽样特性,求下列表达式的函数值(第(7)题注意化简,其他题目出错的很少)(1)⎰+∞∞--)(0t t x δ(t) dt = x(-t 0) (2)⎰+∞∞--)(0t t x δ(t) dt = x(t 0) (3)⎰+∞∞--)(0t t δ u(t -2t ) dt = u(2t )(4)⎰+∞∞--)(0t t δ u(t – 2t 0) dt = u(-t 0) (5)()⎰+∞∞--+t etδ(t+2) dt = e 2-2(6)()⎰+∞∞-+t t sin δ(t-6π) dt =6π+21(7) ()()[]⎰+∞∞-Ω---dt t t t e t j 0δδ=()⎰+∞∞-Ω-dt t etj δ–⎰+∞∞-Ω--dt t t e t j )(0δ= 1-0t j eΩ- = 1 – cos Ωt 0 + jsin Ωt 02-4 求下列各函数x 1(t)与x 2(t) 之卷积,x 1(t)* x 2(t) (1) x 1(t) = u(t), x 2(t) = e -at · u(t) ( a>0 ) x 1(t)* x 2(t) =⎰+∞∞---ττττd t u eu a )()( =⎰-ta d e 0ττ = )1(1ate a--x 1(t)* x 2(t) =ττδτδτπd t t u t )]1()1([)]()4[cos(---+-+Ω⎰+∞∞-= cos[Ω(t+1)+4π]u(t+1) – cos[Ω(t-1)+4π]u(t-1)(3) x 1(t) = u(t) – u(t-1) , x 2(t) = u(t) – u(t-2) (一部分同学没有根据t 的范围分情况讨论) x 1(t)* x 2(t) =⎰+∞∞-+-----τττττd t u t u u u )]1()()][2()([当 t <0时,x 1(t)* x 2(t) = 0 当 0<t <1时,x 1(t)* x 2(t) =0td τ⎰= t 当 1<t <2时,x 1(t)* x 2(t) =21d τ⎰= 1当 2<t<3时,x 1(t)* x 2(t) = 12t d τ-⎰=3-t当 3<t 时,x 1(t)* x 2(t) = 0(4) x 1(t) = u(t-1) , x 2(t) = sin t · u(t) x 1(t)* x 2(t) =⎰+∞∞---ττττd t u u )1( )( )sin(=⎰⎰∞==01-t 01-t 0| cos - d sin 1)d --u(t sin ττττττ= 1- cos(t-1)2-5 已知周期函数x(t)前1/4周期的波形如图2-77所示,根据下列各种情况的要求画出x(t)在一个周期( 0<t<T )的波形((3).(6)出错较多)(1) x(t)是偶函数,只含有偶次谐波分量f(t) = f(-t), f(t) = f(t±T/2)(2) x(t)是偶函数,只含有奇次谐波分量f(t) = f(-t), f(t) = -f(t±T/2)(3) x(t)是偶函数,含有偶次和奇次谐波分量(出错较多)f(t) = f(-t)(4) x(t)是奇函数,只含有奇次谐波分量f(t) = -f(-t), f(t) = -f(t±T/2)(5) x(t)是奇函数,只含有偶次谐波分量f(t) = -f(-t), f(t) = f(t±T/2)(6) x(t)是奇函数,含有偶次和奇次谐波分量f(t) = -f(-t)2-6 利用信号x(t)的对称性,定性判断图2-78所示各周期信号的傅里叶级数中所含有的频率分量(该题全部做对的同学不是很多:有的同学会忽略直流分量)(a)这是一个非奇、非偶、非奇偶谐波函数,且正负半波不对称,所以含有直流、正弦等所有谐波分量,因为去除直流后为奇函数,所以不含余弦分量。

信号分析与处理第2版-赵光宙习题答案(第1-2章)

信号分析与处理第2版-赵光宙习题答案(第1-2章)

再利用 Fourier 变换的频移性质有:
F
f(3-2t) F(
)
= F( )
(9)
解:
F jwF(w)
F -j sgn(w)
利用 Fourier 变换的时域卷积性质有: F jwF(w)= jwF(w)[-j
]=wF(w)sgn(w)
16. 试求图 2-63 所示周期信号的频谱函数。图 2-63b 中冲击函数的强度均为 1. (a)(方法一 )
+3 4 jkπ
e− jk 2π − e− jkπ
= 3 1 − e− jkπ 2 jkπ
=
3 kπ
e− jk (π
2)
sin⎜⎛ ⎝
kπ 2
⎟⎞ ⎠
= 3 e− jk(π 2) sin⎜⎛ kπ ⎟⎞ ⎜⎛ kπ ⎟⎞, k = ±1, ± 2L
2
⎝2⎠ ⎝2⎠
∫ ∫ a0
=1 2
1
1.5dt

1
2
10.利用对偶性质求下列函数的傅里叶变换
(1) X(t)=
,
解:g(t)= 由 Fourier 变换的对偶性质有:

(2) X(t)=
解: f(
a
=
,a
,a
P63 11.求下列信号的傅立叶变换。(说明:同学应尽量用 Fourier 变换的性质求解)
⑴ x(t)= δ(t-2)
解:(方法 1) F(w)=
(或翻转
)特性:f
(−
t
)
F

F
(−
ω
)
再利用时移特性:
f [− (t −1)]↔F e− jω F (− ω )
(6) f(2t-5)

信号分析与处理(杨育霞许珉廖晓辉著)中国电力出版社习题2

信号分析与处理(杨育霞许珉廖晓辉著)中国电力出版社习题2

⎡⎛ T ⎞⎤ 0 ⎞ ⎛ ⎢⎜ cos kω t ⎥ = A ⎡ 2 − 2 cos ⎛ kω1T ⎞ ⎤ ⎟ ⎜ ( 1 ) T ⎟ − ⎜ cos ( kω1t ) 2 ⎟ ⎜ ⎟⎥ ⎢ ⎢⎜ ⎥ ⎟ − ⎟ ⎜ ⎝ 2 ⎠⎦ ⎜ ⎟ ⎥ 2 kπ ⎣ 0 ⎢ 2⎠ ⎝ ⎠⎦ ⎣⎝ A ⎡ A ⎡ k ⎛ kω T ⎞ ⎤ A = = 1 − cos ⎜ 1 ⎟ ⎥ = 1 − cos ( kπ ) ⎤ 1 − ( −1) ⎤ ⎡ ⎢ ⎣ ⎦ ⎣ ⎦ kπ ⎣ kπ ⎝ 2 ⎠ ⎦ kπ
(c) x (t ) = ( t + 2 ) [ε (t + 2) − ε (t + 1)] + [ε (t + 1) − ε (t − 1)] + ( −t + 2 ) [ε (t − 1) − ε (t − 2)]
6
课后答案网
x (t )
1 1 1 2 t -2 -1
(3)
X 1k X 2k
A1τ 1 kπτ 1 A1τ 1 kπ sinc( ) sinc( ) T T1 T 2 A 1 = 1 = 1 = 1 = A2τ 2 kπτ 2 A2τ 2 kπ sinc( ) sinc( ) A2 3 T2 T2 T2 2
5
课后答案网
| X 11 | 1 = | X 21 | 3
A = kω1T
1
课后答案网
x ( t ) = a0 + ∑ ( ak cos ( kω1t ) + bk sin ( kω1t ) )
k =1


= ∑ bk sin ( kω1t )
k =1

A k =1 kπ ∞ A =∑ k =1 kπ

信号分析与处理 杨西侠 第2章习题答案

信号分析与处理 杨西侠 第2章习题答案

2-1 画出下列各时间函数的波形图,注意它们的区别1)x 1(t) = sin Ω t ·u(t )2)x 2(t) = sin[ Ω ( t – t 0 ) ]·u(t )3)x 3(t) = sin Ω t ·u ( t – t 0 )-14)x2(t) = sin[ ( t – t0) ]·u( t – t0)2-2 已知波形图如图2-76所示,试画出经下列各种运算后的波形图(1)x ( t-2 )(2)x ( t+2 )(3)x (2t)(4)x ( t/2 )(5)x (-t)(6)x (-t-2)(7)x ( -t/2-2 )(8)dx/dt2-3 应用脉冲函数的抽样特性,求下列表达式的函数值(1)⎰+∞∞--)(0t t x δ(t) dt = x(-t 0) (2)⎰+∞∞--)(0t t x δ(t) dt = x(t 0) (3)⎰+∞∞--)(0t t δ u(t -20t ) dt = u(2t )(4)⎰+∞∞--)(0t t δ u(t – 2t 0) dt = u(-t 0) (5)()⎰+∞∞--+t etδ(t+2) dt = e 2-2(6)()⎰+∞∞-+t t sin δ(t-6π) dt =6π+21(7) ()()[]⎰+∞∞-Ω---dt t t t e tj 0δδ=()⎰+∞∞-Ω-dt t etj δ–⎰+∞∞-Ω--dt t t e t j )(0δ= 1-0t j eΩ- = 1 – cos Ωt 0 + jsin Ωt 02-4 求下列各函数x 1(t)与x 2(t) 之卷积,x 1(t)* x 2(t) (1) x 1(t) = u(t), x 2(t) = e -at · u(t) ( a>0 ) x 1(t)* x 2(t) =⎰+∞∞---ττττd t ue u a )()( =⎰-ta d e 0ττ = )1(1ate a--x 1(t)* x 2(t) =ττδτδτπd t t u t )]1()1([)]()4[cos(---+-+Ω⎰+∞∞-= cos[Ω(t+1)+4π]u(t+1) – cos[Ω(t-1)+4π]u(t-1)(3) x 1(t) = u(t) – u(t-1) , x 2(t) = u(t) – u(t-2) x 1(t)* x 2(t) =⎰+∞∞-+-----τττττd t u t u u u )]1()()][2()([当 t <0时,x 1(t)* x 2(t) = 0 当 0<t <1时,x 1(t)* x 2(t) =0td τ⎰ = t 当 1<t <2时,x 1(t)* x 2(t) =21d τ⎰= 1当 2<t<3时,x 1(t)* x 2(t) = 12t d τ-⎰=3-t 当 3<t 时,x 1(t)* x 2(t) = 0(4) x 1(t) = u(t-1) , x 2(t) = sin t · u(t) x 1(t)* x 2(t) =⎰+∞∞---ττττd t u u )1( )( )sin(=⎰⎰∞==01-t 01-t 0| cos - d sin 1)d --u(t sin ττττττ= 1- cos(t-1)2-5 已知周期函数x(t)前1/4周期的波形如图2-77所示,根据下列各种情况的要求画出x(t)在一个周期( 0<t<T )的波形(1) x(t)是偶函数,只含有偶次谐波分量f(t) = f(-t), f(t) = f(t ±T/2)(2) x(t)是偶函数,只含有奇次谐波分量 f(t) = f(-t), f(t) = -f(t ±T/2)(3) x(t)是偶函数,含有偶次和奇次谐波分量f(t) = f(-t)(4) x(t)是奇函数,只含有奇次谐波分量f(t) = -f(-t), f(t) = -f(t±T/2)(5) x(t)是奇函数,只含有偶次谐波分量f(t) = -f(-t), f(t) = f(t±T/2)(6) x(t)是奇函数,含有偶次和奇次谐波分量f(t) = -f(-t)2-6 利用信号x(t)的对称性,定性判断图2-78所示各周期信号的傅里叶级数中所含有的频率分量(a)这是一个非奇、非偶、非奇偶谐波函数,且正负半波不对称,所以含有直流、正弦等所有谐波分量,因为去除直流后为奇函数。

信号分析与处理 模拟试卷2

信号分析与处理 模拟试卷2

信号分析与处理 模拟试卷2一、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(10分,每小题2分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )二.填空题(15分,每空1分)1)数字信号处理的步骤:预滤波、模数转换器、数字信号处理、数模转换器、平缓滤波2)计算积分dt t t t )3(')142(23-++⎰+∞∞-δ的结果为 -78 。

3)系统阶跃响应的上升时间和系统的 截止频率 成反比。

4)若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8Hz 。

5)白噪声是指 功率谱密度在整个频率范围内均匀分布的噪声 。

6))()(5241n R x n R x ==,只有当循环卷积长度L =8 时,二者的循环卷积等于线性卷计。

7)数字角频率ω与模拟角频率Ω的关系式T *Ω=ω 。

8)当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

9)激励为单位脉冲信号)(t δ作用下所产生的 零状态响应 ,简称冲激响应。

10)从采样信号(s f )中无失真的恢复原连续信号(c f ),采样频率与原连续信号的应满足c s f f 2≥ 。

三.简答题(30分,每小题6分)1..请简述傅里叶变换的意义,并写出非周期连续信号的傅里叶变换和逆变换表达式; 答:傅里叶变换将时域问题转化到频域中解答,从而简化了问题的处理。

(回答这些就给满分,多答更好)傅里叶变换:dtet f w F jwt⎰+∞∞--=)()(傅里叶逆变换:dwew F t f jwt⎰∞+∞-=)(21)(π2.若要让抽样后的信号不产生频谱混叠,在抽样过程中应该满足什么条件答:抽样频率满足奈奎斯特采样定理,信号频谱的最高频率小于折叠频率。

信号分析与处理-2_物理_自然科学_专业资料19页PPT

信号分析与处理-2_物理_自然科学_专业资料19页PPT
信号分析与处理-2_物理_自然科学_专业 资料
31、园日涉以成趣,门虽设而常关。 32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
Байду номын сангаас

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
19

北邮随机信号分析与处理第2章习题解答_2

北邮随机信号分析与处理第2章习题解答_2

不满足严格平稳。
思考:是否满足广义平稳?
3
2.17
随机过程由下述三个样本函数组成,且等概率发生:
X (t, e1 ) 1, X (t, e2 ) sin t, X (t, e3 ) cos t (1)计算均值 mX (t ) 和自相关函数 RX (t1 , t2 );
(2)该过程是否为平稳随机过程? 解: 1 1 1
ftp服务器地址
ftp://10.108.142.57
用户名和密码均为:sjxhfx
包括每次课的课件和部分习题解答
1
2.14
广义平稳随机过程 Y (t ) 的自相关矩阵如下,试确定矩阵中用 表示的元素。 2 1.3 0.4 2 1.2 0.8 RY 0.4 1.2 1.1 0.9 2 解:由自相关函数的性质
2
2.15
根据掷骰子试验,定义随机过程为
K X (t ) cos t ( K 1, 2,3, 4,5,6) 3 (1)求 X (1) 、X (2) 的概率密度; (2) X (t ) 是否为平稳随机过程?
解:
1/ 2, K 1,5 1/ 2, K 2, 4 K X (1) cos 1, K 3 3 1, K 6
E[ A(t1 ) A(t2 )cos t1 cos t2 ] E[ A(t1 ) B(t2 )cos t1 sin t2 ] E[ B(t1 ) A(t2 )sin t1 cos t2 ] E[ B(t1 ) B(t2 )sin t1 sin t2 ] RA (t1, t2 )cos t1 cos t2 RB (t1, t2 )sin t1 sin t2 R( )cos t1 cos t2 R( )sin t1 sin t2 R( )cos(t1 t2 ) R( )cos( )

信号分析与处理答案(苪坤生 潘孟贤 丁志中 第二版)习题答案

信号分析与处理答案(苪坤生 潘孟贤 丁志中 第二版)习题答案

第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。

(1) )()1(31)(n x n y n y =--解 当激励为)(n δ时,响应为)(n h ,即:)()1(31)(n n h n h δ+-=由于方程简单,可利用迭代法求解:1)0()1(31)0(=+-=δh h ,31)0(31)1()0(31)1(==+=h h h δ,231)1(31)2()1(31)2(⎪⎭⎫ ⎝⎛==+=h h h δ…,由此可归纳出)(n h 的表达式:)()31()(n n h n ε=利用阶跃响应和冲激响应的关系,可以求得阶跃响应:)(])31(2123[311)31(1)31()()(10n k h n s n n k nk nk ε-=--===+=-∞=∑∑(2) )()2(41)(n x n y n y =--解 (a)求冲激响应)()2(41)(n n h n h δ=--,当0>n 时,0)2(41)(=--n h n h 。

特征方程0412=-λ,解得特征根为21,2121-==λλ。

所以: n n C C n h )21()21()(21-+= …(2.1.2.1)通过原方程迭代知,1)0()2(41)0(=+-=δh h ,0)1()1(41)1(=+-=δh h ,代入式(2.1.2.1)中得:121=+C C0212121=-C C 解得2121==C C , 代入式(2.1.2.1):0,)21(21)21(21)(>-+=n n h n n …(2.1.2.2)可验证)0(h 满足式(2.1.2.2),所以:)(])21()21[(21)(n n h n n ε-+=(b)求阶跃响应通解为 n n c C C n s )21()21()(21-+=特解形式为 K n s p =)(,K n s p =-)2(,代入原方程有 141=-K K , 即34=K完全解为34)21()21()()()(21+-+=+=n n p c C C n s n s n s通过原方程迭代之1)0(=s ,1)1(=s ,由此可得13421=++C C134212121=+-C C 解得211-=C ,612=C 。

信号分析与处理课程习题2参考解答-2010(共5篇)

信号分析与处理课程习题2参考解答-2010(共5篇)

信号分析与处理课程习题2参考解答-2010(共5篇)第一篇:信号分析与处理课程习题2参考解答-2010P57-101Ω-j52-j5Ω(1)方法1:先时移→F[x(t-5)]=X(Ω)e,后尺度→F[x(2t-5)]=X()eΩt05Ω-j-j1Ω1Ω方法2:P40时移+尺度→F[x(at-t0)]=X()ea→F[x(2t-5)]=X()e2 |a|a221Ω-j(2)方法2:P40时移+尺度→F[x(at-t0)]=X()e|a|aΩt0aΩ→F[x(-t+1)]=X(-Ω)ejΩ(3)P42频域卷积定理→F[x1(t)⋅x2(t)]=X1(Ω)*X2(Ω)2π→F[x(t)⋅cos(t)]=X(Ω)*[πδ(Ω+1)+πδ(Ω-1)]=X(Ω+1)+X(Ω-1)2π22P57-12F[x(t)]=⎰x(t)e-∞∞-jΩtdt=⎰τ-2E(t+)eτ2ττdt+⎰22Eτ8ωττωτ(-t+)e-jΩtdt=2sin2()=Sa2()τ2424ωτP57-13假设矩形脉冲为g(t)=u(t+)-u(t-),其傅里叶变换为G(Ω),则22F[x(t)]=F[E⋅g(t+)-E⋅g(t-)]=E⋅G(Ω)eEΩτ=⋅G(Ω))2j2P57-15ττττjΩτ-E⋅G(Ω)e-jΩτ=E⋅G(Ω)(ejΩτ-e-jΩτ)图a)X(Ω)=|X(Ω)|e-1jΩ⎧AejΩt0,|Ω|<Ω0=⎨|Ω|>Ω0⎩0,→x(t)=F[X(Ω)]=2π⎰Ω0AejΩt0ejΩtdΩ=AΩ0Asin(Ω0(t+t0))=Sa(Ω0(t+t0))π(t+t0)π图b)X(Ω)=|X(Ω)|ejΩ⎧-jπ⎪Ae,-Ω0<Ω<0⎪jπ⎪=⎨Ae2,0<Ω<Ω0⎪0,|Ω|>Ω0⎪⎪⎩→x(t)=F[X(Ω)]=2π-1⎰-Ω0Ae-jπejΩt1dΩ+2π⎰Ω0Ae2ejΩtdΩ=jπA2A2Ω0t(cos(Ω0t-1))=-sin()πtπt2第二篇:高频电子信号第四章习题解答第四章习题解答4-1 为什么低频功率放大器不能工作于丙类?而高频功率放大器则可工作于丙类?分析:本题主要考察两种放大器的信号带宽、导通角和负载等工作参数和工作原理。

2017山东理工大学信号分析与处理作业

2017山东理工大学信号分析与处理作业
标准答案:B
学员答案:
本题得分:0
题号:9题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:9.09
内容:
下列序列中z变换收敛域包括z=0的是___。
A、u(n)
B、-u(n)
C、u(-n)
D、u(n-1)
标准答案:C
学员答案:
本题得分:0
题号:10题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:9.09
A、零点为z=0.5,极点为z=0
B、零点为z=0,极点为z=0.5
C、零点为z=0.5,极点为z=1
D、零点为z=0.5,极点为z=2
标准答案:B
学员答案:
本题得分:0
题号:9题型:单选题(请在以下几个选项中选择唯一正确答案)本题分数:10
内容:
若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为___。
内容:
对于频域衰减较慢的信号,可以在采样前,用一截止频率fm的抗混叠滤波器,先将信号进行低通滤波,然后再进行采样和数据处理。
1、错
2、对
标准答案:2
学员答案:
本题得分:0
题号:4题型:是非题本题分数:10
内容:
因果系统一定是稳定系统___。
1、错
2、对
标准答案:1
学员答案:
本题得分:0
题号:5题型:是非题本题分数:10
1、错
2、对
标准答案:1
学员答案:
本题得分:0
题号:2题型:是非题本题分数:10
内容:
一个具有有限能量的带限信号x(t)最高频率分量为fm,则该信号在时域里完全可以由一系列时间间隔Ts等于或小于1/(2fm)的采样点所确定。

(仅供参考)随机信号分析与处理简明教程--第二章习题答案

(仅供参考)随机信号分析与处理简明教程--第二章习题答案
x≥2
⎧ 0,
(2)
FX
⎜⎛ ⎝
x1
,
x2
;
1 2
,1⎟⎞ ⎠
=
⎪⎩⎪⎨ 121,,
x1 < 0,−∞ < x2 < ∞; 0 ≤ x1 < 1, x2 ≥ −1;
x1 ≥ 1,
x1 ≥ 0, x2 < −1 x1 ≥ 1,−1 ≤ x2 < 2
x2 ≥ 2
2.3 设某信号源,每 T 秒产生一个幅度为 A 的方波脉冲,其脉冲宽度 X 为均匀分布于[0,T ]
当 ti
=
0 时,
fX
( x, t )
=
⎧1 ⎨⎩ 0
0< x <1 else
当 ti
=
π 4ω
时,
fX (x,t)
=
⎧⎪ ⎨ ⎪⎩
2 0
0<x< π 4ω
时,
fX (x,t)
=
⎧⎪ ⎨ ⎪⎩
2 0
− 2 2<x<0 else
当 ti
=
π ω
时,
fX
( x, t )
=
⎧1 ⎨⎩ 0
当kl时有rtsx2????????????eakutkt0utkt01uskt0uskt01ea2eut?k?t?ut?k?t?1us?k?t?us?k?t?1k0000eut?k?t0?ut?k?t0?1us?k?t0?us?k?t0?1kt00faa?2??0a0是在02中均匀分布的随机变量且与a统计独立为常量
D[ X (t)] = D[ Acosωt + B sin ωt] = D[ A]cos2 ωt + D[B]sin2 ωt = σ 2

信号分析与处理答案(第二版)

信号分析与处理答案(第二版)

第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。

(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。

特征方程,解得特征根为。

所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。

所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。

…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、 (2.1.3.2)式代入原方程,比较两边的系数得:阶跃响应:2.2 求下列离散序列的卷积和。

(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。

当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8),解参见右图当时:当时:当时:当时:(9),解(10) ,解或写作:2.3 求下列连续信号的卷积。

(1) ,解参见右图:当时:当时:当时:当时:Array当时:当时:解当时:当时:当时:当时:当时:解(4) ,解(5) ,解参见右图。

当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解2.4 试求题图2.4示系统的总冲激响应表达式。

解2.5 已知系统的微分方程及初始状态如下,试求系统的零输入响应。

(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出2.6 某一阶电路如题图2.6所示,电路达到稳定状态后,开关S于时闭合,试求输出响应。

解由于电容器二端的电压在t=0时不会发生突变,所以。

根据电路可以立出t>0时的微分方程:,整理得齐次解:非齐次特解:设代入原方程可定出B=2则:,2.7 积分电路如题图2.7所示,已知激励信号为,试求零状态响应。

信号分析与处理_习题答案.

信号分析与处理_习题答案.

= ay1 (t ) + by2 (t )
,线性系统。
T x (t − t0 )= x(t − t0 − 2) + x(2 − t − t0 ) ≠ y(t − t0 ) ,时变系统。
t 有可能小于 2 − t ,故为非因果系统。
t
∫ (2) y(t) = x(τ )dτ −∞
T ax1 (t ) + bx2 (t )= aT x1 (t ) + bT x2 (t ) ,线性系统。
2
O
n
-2
-2
题 1.4 图 3
1.5 信号 x(t) 的波形如题 1.5 所示。
∫ (1)画出 y(t) = dx(t) 的波形;(2)画出 y(t) = t x(x )dx 的波形。
dt
−∞
-10
x(t) 2 1
-1 O 1 t
题 1-5 图
1
-1
O
-1
1t
-2
2.5 2
1
-1
O
1t
1.6 判定下列系统是否为线性的,时不变的? (1) y(t) = x(t − 2) + x(2 − t)
T {ax1[n] + bx2[n=]} ax1[n] + bx2[n] + 2{ax1[n −1] + bx2[n −1]} = a{x1[n] + 2x1[n −1]} + b{x2[n] + 2x2[n −1]}
= ay1[n] + by2[n]
,线性系统。
T {x[n − n0 ]}= x[n − n0 ] + 2x[n − n0 −1]= y[n − n0 ] ,时不变系统。

信号分析报告与处理(第二版)

信号分析报告与处理(第二版)

第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。

(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。

特征方程,解得特征根为。

所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。

所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。

…(2.1.3.1)…(2.1.3.2) 将(2.1.3.1)、 (2.1.3.2)式代入原方程,比较两边的系数得:阶跃响应:2.2 求下列离散序列的卷积和。

(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。

当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9),解(10) ,解或写作:2.3 求下列连续信号的卷积。

(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。

当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解2.4 试求题图2.4示系统的总冲激响应表达式。

解2.5 已知系统的微分方程及初始状态如下,试求系统的零输入响应。

(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出2.6 某一阶电路如题图2.6所示,电路达到稳定状态后,开关S于时闭合,试求输出响应。

解由于电容器二端的电压在t=0时不会发生突变,所以。

根据电路可以立出t>0时的微分方程:,整理得齐次解:非齐次特解:设代入原方程可定出B=2则:,2.7 积分电路如题图2.7所示,已知激励信号为,试求零状态响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知}{}{
()1,2,3,4,()3,1,2x n h n ↑
==, y[n]=()()x n h n *,则y[n]等于:
2.如图所示,x[n]为一离散信号,则x[n]的表达式是:
3. 已知 210()(2)(3)z
H z z z =-+ ,试判断该序列有几种可能的收敛域,并写出在每种收敛域下的x (n )表达式。

4.已知某离散系统的系统函数为
2()(0.5)(2)z H z z z =-+ 0.52z <<
(1)判断系统的因果性与稳定性(说明理由);
(2)系统的单位样值响应()h n 是否存在傅里叶变换?为什么?
(3)写出系统的差分方程。

5. 差分方程为:y(n)-0.7y(n-1)+0.12y(n-2)=2x(n)-x(n-1)
(1)若激励X[n]=u[n],y[-1]=1, y[0]=-1.
求系统的零状态响应,零输入响应,自由响应和强迫响应;
(2)求系统的单位样值响应()h n ;写出该系统对应的系统函数;
(3)画出该系统的信号流图;
n
(4)画出该系统的频响特性曲线。

6.已知某系统如图所示,输入信号)(
t
Sa
x=,理想低通滤波器的频响特性
)
(t
为)6
=
Ωu
Ω
j
H。

u
+
(
-
)6
(
Ω
(-
)
(1)求x(t)的傅里叶变换,并画出其幅度谱;
的表达式并作出其波形图;
(2)求)(t
x
s
(3)求)(t
的傅里叶变换,并画出其幅度谱;;
x
s
(4)画出y(t)傅里叶变换的幅度谱。

相关文档
最新文档