高中数学 基本不等式培优讲义
高考数学一轮专项复习讲义-基本不等式(北师大版)
§1.4基本不等式课标要求1.了解基本不等式的推导过程.2.会用基本不等式解决简单的最值问题.知识梳理1.基本不等式:a +b2≥ab (1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时,等号成立.(3)其中a +b2称为a ,b 的算术平均值,ab 称为a ,b 的几何平均值.2.利用基本不等式求最值(1)若x +y =s (s 为定值),则当且仅当x =y 时,xy 取得最大值s 24;(2)若xy =p (p 为定值),则当且仅当x =y 时,x +y 取得最小值2p .注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.常用结论几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +ab ≥2(a ,b 同号).(3)ab (a ,b ∈R ).(4)a 2+b 22≥(a ,b ∈R ).以上不等式等号成立的条件均为a =b .自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)不等式ab 与ab ≤a +b2等号成立的条件是相同的.(×)(2)y =x +1x的最小值是2.(×)(3)若x >0,y >0且x +y =xy ,则xy 的最小值为4.(√)(4)函数y =sin x +4sin x,x 4.(×)2.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于()A .1+2B .1+3C .3D .4答案C解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时,取等号,即当f (x )取得最小值时x =3,即a =3.3.已知0<x <1,则x (1-x )的最大值为()A.14B.18C.116D .1答案A解析因为0<x <1,所以1-x >0,所以x (1-x )=14,当且仅当x =1-x ,即x =12时,等号成立,故x (1-x )的最大值为14.4.(2023·重庆模拟)已知x >0,y >0,x +y =1,则1x +1y 的最小值为________.答案4解析由x +y =1得1x +1y =x +y )=2+y x +xy≥2+2y x ·xy=4,当且仅当x =y =12时,等号成立,即1x +1y的最小值为4.题型一基本不等式的理解及常见变形例1(1)若0<a <b ,则下列不等式一定成立的是()A .b >a +b2>a >abB .b >ab >a +b2>aC .b >a +b 2>ab >aD .b >a >a +b2>ab答案C解析∵0<a <b ,∴2b >a +b ,∴b >a +b 2>ab .∵b >a >0,∴ab >a 2,∴ab >a .故b >a +b 2>ab >a .(2)《几何原本》中的几何代数法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于点D ,连接OD ,AD ,BD ,过点C 作OD 的垂线,垂足为点E ,则该图形可以完成的无字证明为()A.a +b2≤ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C.ab ≥21a +1b(a >0,b >0)D.a 2+b 22≥a +b 2(a >0,b >0)答案C解析根据图形,利用射影定理得CD 2=DE ·OD ,又OD =12AB =12(a +b ),CD 2=AC ·CB =ab ,所以DE =CD 2OD=ab a +b 2,由于OD ≥CD ,所以a +b2≥ab (a >0,b >0).由于CD ≥DE ,所以ab ≥2aba +b =21a +1b (a >0,b >0).思维升华基本不等式的常见变形(1)ab ≤a 2+b 22.(2)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).跟踪训练1(1)已知p :a >b >0,q :a 2+b 22>,则p 是q 成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A解析∵a >b >0,则a 2+b 2>2ab ,∴2(a 2+b 2)>a 2+b 2+2ab ,∴2(a 2+b 2)>(a +b )2,∴a 2+b 22>,∴由p 可推出q ;当a <0,b <0时,q 也成立,如a =-1,b =-3时,a 2+b 22==4,∴由q 推不出p ,∴p 是q 成立的充分不必要条件.(2)(多选)已知a ,b ∈R ,则下列不等式成立的是()A.a +b 2≥abB.a +b 2≤a 2+b 22C.2ab a +b ≤a +b 2D .ab ≤a 2+b 22答案BD解析A 选项,由选项可知a 与b 同号,当a >0且b >0时,由基本不等式可知a +b2≥ab 恒成立,当a <0且b <0时,a +b2<0,ab >0,该不等式不成立,故A 选项错误;B 选项,当a +b >0时,a +b2>0,则=a 2+b 2+2ab -2a 2-2b 24=-(a -b )24≤0恒成立,即a +b2≤a 2+b 22恒成立,当a +b ≤0时,原不等式恒成立,故B 选项正确;C 选项,当a +b >0时,2ab -(a +b )22=-(a -b )22≤0,即2ab ≤(a +b )22,2ab a +b ≤a +b2恒成立,当a +b <0时,2ab -(a +b )22=-(a -b )22≤0,即2ab ≤(a +b )22,2ab a +b ≥a +b2,故C 选项错误;D 选项,由重要不等式可知,a ,b ∈R ,ab ≤a 2+b 22恒成立,故D 选项正确.题型二利用基本不等式求最值命题点1直接法例2(1)(多选)下列代数式中最小值为2的是()A .x -1x B .2x +2-xC .x 2+1x 2D.x 2+2+1x 2+2答案BC解析选项A 中,当x <0时,函数y =x -1x单调递增,无最小值,不符合题意;选项B 中,2x +2-x ≥22x ·2-x =2,当且仅当x =0时,等号成立,满足题意;选项C 中,x 2+1x 2≥2x 2·1x 2=2,当且仅当x =±1时,等号成立,满足题意;选项D 中,x 2+2+1x 2+2≥2x 2+2·1x 2+2=2,当且仅当x 2+2=1x 2+2时,等号成立,但此方程无实数解,不符合题意.(2)已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.答案3解析由已知,得12=4x +3y ≥24x ·3y ,即12≥24x ·3y ,解得xy ≤3(当且仅当4x =3y 时取等号).命题点2配凑法例3(1)(2023·许昌模拟)已知a ,b 为正数,4a 2+b 2=7,则a 1+b 2的最大值为()A.7B.3C .22D .2答案D解析因为4a 2+b 2=7,则a 1+b 2=12×2a ×1+b 2=124a 2(1+b 2)≤12×4a 2+1+b 22=2,当且仅当4a 2=1+b 2,即a =1,b =3时,等号成立.(2)已知x >1,则x 2+3x -1的最小值为()A .6B .8C .10D .12答案A解析因为x >1,所以x -1>0,x 2+3x -1=(x -1)2+2(x -1)+4x -1=x -1+2+4x -1≥2+2(x -1)·4x -1=6,当且仅当x -1=4x -1,即x =3时,等号成立.与基本不等式模型结构相似的对勾函数模型如图,对于函数f (x )=x +kx,k >0,x ∈[a ,b ],[a ,b ]⊆(0,+∞).(1)当k ∈[a ,b ]时,f (x )=x +kx ≥2k ,f (x )min =f (k )=k +k k =2k ;(2)当k <a 时,f (x )=x +k x 在区间[a ,b ]上单调递增,f (x )min =f (a )=a +ka ;(3)当k >b 时,f (x )=x +k x 在区间[a ,b ]上单调递减,f (x )min =f (b )=b +kb.因此,只有当k ∈[a ,b ]时,才能使用基本不等式求最值,而当k ∉[a ,b ]时只能利用对勾函数的单调性求最值.典例函数f (x )=x 2+3x 2+2的最小值是______.答案32解析由f (x )=x 2+3x 2+2=x 2+2+3x 2+2-2,令x 2+2=t (t ≥2),则有f (t )=t +3t-2,由对勾函数的性质知,f (t )在[2,+∞)上单调递增,所以当t =2时,f (t )min =32,即当x =0时,f (x )min =32.命题点3代换法例4(1)已知正数a ,b 满足8b +4a =1,则8a +b 的最小值为()A .54B .56C .72D .81答案C解析8a +b =(8a +b =64a b +4ba+40≥264a b ·4ba+40=72,当且仅当64a b =4ba,即a =6,b =24时取等号.延伸探究已知正数a ,b 满足8a +4b =ab ,则8a +b 的最小值为________.答案72解析∵8a +4b =ab ,a >0,b >0,∴8b +4a=1,∴8a +b =(8a +b =64a b +4ba+40≥264a b ·4ba+40=72,当且仅当64a b =4ba,即a =6,b =24时取等号.(2)已知正数a ,b 满足a +2b =3恒成立,则1a +1+2b 的最小值为()A.32B.94C .2D .3答案B解析由a +2b =3得(a +1)+2b =4,于是1a +1+2b =·(a +1)+2b 4=141+4+2(a +1)b +2ba +1≥145+22(a +1)b ×2ba +1=94,当且仅当2(a +1)b=2b a +1,且a >0,b >0,即a =13,b =43时,等号成立.所以1a +1+2b的最小值为94.命题点4消元法例5已知正数a ,b 满足a 2-2ab +4=0,则b -a4的最小值为()A .1 B.2C .2D .22答案B解析∵a >0,b >0,a 2-2ab +4=0,则b =a 2+2a ,∴b -a 4=a 2+2a -a 4=a 4+2a ≥2a 4·2a=2,当且仅当a 4=2a ,即a =22时,等号成立,此时b =322.命题点5构造不等式法例6若a >0,b >0,且ab =a +b +3,则ab 的最小值为()A .9B .6C .3D .12答案A解析因为a >0,b >0,所以a +b ≥2ab ,当且仅当a =b 时,等号成立.又ab =a +b +3,所以ab =a +b +3≥2ab +3,整理可得ab -2ab -3≥0,解得ab ≥3或ab ≤-1(舍去).所以ab ≥3,所以ab ≥9.所以当a =b =3时,ab 的最小值为9.思维升华(1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.跟踪训练2(1)(多选)下列四个函数中,最小值为2的是()A .y =sin x xB .y =2-x -4x (x <0)C .y =x 2+6x 2+5D .y =4x +4-x答案AD解析对于A ,因为0<x ≤π2,所以0<sin x ≤1,则y =sin x +1sin x ≥2,当且仅当sin x =1sin x,即sin x =1时取等号,符合题意;对于B ,因为x <0,所以-x >0,-x =4,当且仅当-x =-4x ,即x =-2时等号成立,所以y =2-x -4x ≥2+4=6,即y =2-x -4x (x <0)的最小值为6,不符合题意;对于C ,y =x 2+6x 2+5=x 2+5+1x 2+5,设t =x 2+5,则t ≥5,则y ≥5+15=655,其最小值不是2,不符合题意;对于D ,y =4x +4-x =4x +14x≥24x ·14x =2,当且仅当x =0时取等号,故y =4x +4-x 的最小值为2,符合题意.(2)(多选)已知正实数a ,b 满足ab +a +b =8,下列说法正确的是()A .ab 的最大值为2B .a +b 的最小值为4C .a +2b 的最小值为62-3D.1a (b +1)+1b的最小值为12答案BCD解析对于A ,因为ab +a +b =8≥ab +2ab ,即(ab )2+2ab -8≤0,解得-4≤ab ≤2,又因为a >0,b >0,所以0<ab ≤2,则ab ≤4,当且仅当a =b =2时取等号,故A 错误;对于B ,ab +a +b =8≤(a +b )24+(a +b ),即(a +b )2+4(a +b )-32≥0,解得a +b ≤-8(舍)或a +b ≥4,当且仅当a =b =2时取等号,故B 正确;对于C ,由题意可得b (a +1)=8-a ,所以b =8-aa +1>0,解得0<a <8,所以a +2b =a +2×8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D,1a(b+1)+1b=181a(b+1)+1b[a(b+1)+b]=182+ba(b+1)+a(b+1)b≥18×(2+2)=12,当且仅当ba(b+1)=a(b+1)b,即b=4,a=45时取等号,故D正确.课时精练一、单项选择题1.已知m>0,n>0,mn=81,则m+n的最小值是() A.9B.18C.93D.27答案B解析因为m>0,n>0,由基本不等式m+n≥2mn得,m+n≥18,当且仅当m=n=9时,等号成立,所以m+n的最小值是18.2.已知a>0,b>0,且1a+1b=1,则4a+9b的最小值是() A.23B.26C.22D.25答案D解析由题意得a>0,b>0,1a+1b=1,故4a+9ba+9b)=9ba+4ab+13≥29ba·4ab+13=25,当且仅当9ba=4ab,即a=52,b=53时取等号,故4a+9b的最小值是25.3.若正数x,y满足x+3y=5xy,则3x+4y的最小值是() A.2B.3C.4D.5答案D解析对原条件式转化得3x+1y=5,则3x+4yx+4y)+4+12yx++5,当且仅当12yx=3xy且x+3y=5xy,即x =1,y =12时取等号.故3x +4y 的最小值为5.4.“∀x ∈(1,4],不等式x 2-mx +m >0恒成立”的充分不必要条件是()A .m >4B .m <163C .m <4D .m <2答案D解析已知∀x ∈(1,4],由不等式x 2-mx +m >0恒成立,得x 2x -1>m 恒成立,因为x 2x -1=(x -1)2+2(x -1)+1x -1=x -1+1x -1+2≥2(x -1)·1x -1+2=4,当且仅当x -1=1x -1,即x =2时取等号,所以m <4,所以m <2是m <4的充分不必要条件.5.若x >0,y >0,x +3y =1,则xy3x +y的最大值为()A.19B.112C.116D.120答案C解析因为x >0,y >0,x +3y =1,则3x +y xy=3y +1xx +3y )=3x y +3yx +10≥23x y ·3yx+10=16,当且仅当3x y =3yx ,即x =y =14时,等号成立,所以0<xy 3x +y ≤116,即xy 3x +y的最大值为116.6.已知x >y >0且4x +3y =1,则12x -y +2x +2y的最小值为()A .10B .9C .8D .7答案B解析由x >y >0得2x -y >0,x +2y >0,令a =2x -y ,b =x +2y ,则a +2b =4x +3y ,由4x +3y =1得a +2b =1,故12x -y +2x +2y=a +2b )=5+2b a +2ab ≥5+22b a ·2ab=9,当且仅当2b a =2ab,且a +2b =1,即a =b =13时取等号,也即2x -y =13,x +2y =13,即x =15,y =115时,等号成立,故12x -y +2x +2y的最小值为9.二、多项选择题7.已知x ,y 是正数,且x +y =2,则()A .x (x +2y )的最大值为4B .log 2x +log 2y 的最大值为0C .2x +2y 的最小值为4D.1x +2y 的最小值为32+2答案BCD解析由x ,y 是正数,且x +y =2,可得0<x <2,0<y <2,x (x +2y )=(x +y -y )(x +y +y )=(x +y )2-y 2=4-y 2,由0<y 2<4可得0<4-y 2<4,所以x (x +2y )无最大值,故A 错误;由x +y =2≥2xy ,得0<xy ≤1,当且仅当x =y =1时,等号成立,所以log 2x +log 2y =log 2xy ≤log 21=0,故B 正确;由基本不等式可得2x +2y ≥22x ·2y =22x +y =4,当且仅当x =y =1时取等号,故C 正确;1x +2y =x +y )+y x ++=32+2,当且仅当x =22-2,y =4-22时取等号,故D 正确.8.(2022·新高考全国Ⅱ)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析因为ab ≤a 2+b 22(a ,b ∈R ),由x 2+y 2-xy =1可变形为(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为(x 2+y 2)-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1可变形为+34y 2=1,设x -y 2=cos θ,32y =sin θ,所以x =cos θ+33sin θ,y =233sin θ,因此x 2+y 2=cos 2θ+53sin 2θ+233sin θcos θ=1+33sin 2θ-13cos 2θ+13=43+23sin θ∈23,2,所以D 错误.三、填空题9.若x <2,则x +9x -2的最大值为________.答案-4解析x +9x -2=x -2+9x -2+2,由于x <2,所以2-x >0,故2-x +92-x ≥6,当且仅当2-x =92-x,即x =-1时,等号成立,所以x -2+9x -2=--x -6,故x +9x -2=x -2+9x -2+2≤-4,所以x +9x -2的最大值为-4.10.函数f (x )=3x -32x 2-x +1在(1,+∞)上的最大值为________.答案37解析因为f (x )=3x -32x 2-x +1x ∈(1,+∞),令x -1=t ,则t >0,则f (t )=3t 2(t +1)2-(t +1)+1=3t2t 2+3t +2=32t +3+2t ≤322t ·2t+3=37,当且仅当2t =2t ,t =1,即x =2时,等号成立.故f (x )在(1,+∞)上的最大值为37.11.已知a >1,b >2,a +b =5,则1a -1+4b -2的最小值为________.答案92解析因为a >1,b >2,所以a -1>0,b -2>0,又a +b =5,所以(a -1)+(b -2)=2,即12[(a -1)+(b -2)]=1,所以1a -1+4b -2=12[(a -1)+(b -2)]·=121+b -2a -1+4(a -1)b -2+4≥125+2b -2a -1·4(a -1)b -2=12×(5+4)=92,当且仅当b-2a-1=4(a-1)b-2,即a=53,b=103时取等号,所以1a-1+4b-2的最小值为92.12.已知正数a,b满足(a+5b)(2a+b)=36,则a+2b的最小值为________.答案4解析因为a>0,b>0,所以36=(a+5b)(2a+b)≤(a+5b)+(2a+b)22=94(a+2b)2,所以a+2b≥4+5b=2a+b,a+5b)(2a+b)=36,即a=83,b=23时,等号成立,所以a+2b的最小值为4.四、解答题13.已知x>0,y>0,x+2y+xy=30,求:(1)xy的最大值;(2)2x+y的最小值.解(1)因为x>0,y>0,根据基本不等式,30=x+2y+xy≥22xy+xy(当且仅当x=2y=6时取等号),令xy=t(t>0),则t2+22t-30≤0,解得-52≤t≤32,又t>0,所以0<t≤32,即0<xy≤32,所以0<xy≤18,故xy的最大值为18.(2)由x+2y+xy=30可知,y=30-x2+x >0,0<x<30,2x+y=2x+30-x2+x=2(x+2)+322+x-5≥22(x+2)·322+x-5=11,当且仅当2(x+2)=322+x,即x=2时取等号,所以2x+y的最小值为11.14.中欧班列是推进“一带一路”沿线国家道路联通、贸易畅通的重要举措,作为中欧铁路在东北地区的始发站,沈阳某火车站正在不断建设,目前车站准备在某仓库外,利用其一侧原有墙体,建造一面高为3米,底面积为12平方米,且背面靠墙的长方体形状的保管员室,由于保管员室的后背靠墙,无需建造费用,因此甲工程队给出的报价如下:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体的报价为每平方米150元,屋顶和地面以及其他报价共计7200元,设屋子的左右两面墙的长度均为x米(2≤x≤6).(1)当左右两面墙的长度为多少米时,甲工程队的报价最低?(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为900a (1+x )x 元(a >5),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,求实数a 的取值范围.解(1)设甲工程队的总报价为y 元,依题意,左右两面墙的长度均为x 米(2≤x ≤6),则屋子前面新建墙体长为12x米,则y =×2x +4007200=7200≥900×2x ·16x+7200=14400,当且仅当x =16x,即x =4时,等号成立,故当左右两面墙的长度为4米时,甲工程队的报价最低为14400元.(2)由题意可知,7200>900a (1+x )x对任意的x ∈[2,6]恒成立,即(x +4)2x >a (1+x )x ,所以(x +4)2x +1>a ,即a <(x +4)2x +1min ,(x +4)2x +1=x +1+9x +1+6≥2(x +1)·9x +1+6=12,当且仅当x +1=9x +1,即x =2时,等号成立,则(x +4)2x +1的最小值为12,即0<a <12,又a >5,所以a 的取值范围是(5,12).15.已知x ,y 为正实数,则y x +16x2x +y 的最小值为()A .4B .5C .6D .8答案C解析由题得y x +16x 2x +y =y x +162+yx,设yx=t (t >0),则f (t )=t +162+t =t +2+162+t-2≥2(t +2)·162+t-2=8-2=6,当且仅当t +2=162+t,即t =2,即y =2x 时取等号.所以y x +16x 2x +y的最小值为6.16.设a >b >0,则a 2+1ab +1a (a -b )的最小值是________.答案4解析∵a >b >0,∴a -b >0,∴a (a -b )>0,a 2+1ab +1a (a -b )=a 2+ab -ab +1ab +1a (a -b )=a 2-ab +1a (a -b )+ab +1ab =a (a -b )+1a (a -b )+ab +1ab ≥2+2=4,(a -b )=1a (a -b ),=1ab,即a =2,b =22时,等号成立.∴a 2+1ab +1a (a -b )的最小值是4.。
基本不等式培优讲义
高中数学——基本不等式培优专题目录1.常规配凑法 (2)2.“1”的代换 (3)3.换元法 (4)4.和、积、平方和三量减元 (6)5.轮换对称与万能k法 (8)6.消元法(必要构造函数求异) (9)7.不等式算两次 (10)8.齐次化 (11)9.待定与技巧性强的配凑 (12)10.多元变量的不等式最值问题 (14)11.不等式综合应用 (16)1.常规配凑法1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________2. 已知实数x,y 满足11622=+y x ,则22y x +的最大值为_____________3.(2018春湖州模拟)已知不等式9)11)((≥++yx my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( )A.2B.4C.6D.84.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -+++11的最小值是_____________5.(2018江苏一模)已知a ﹥0,b ﹥0,且ab ba =+32,则ab 的最小值是_____________6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则bb a 214+-的最小值是_____________7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11111=+++b a ,则a+2b 的最小值 是( )A.23B.22C.3D.22.“1”的代换8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则ba b 1+的最小值为_____________此时a=______9.(2018浙江期中)已知正数a,b 满足112=+b a 则b a+2的最小值为( ) A.24 B.28 C.8 D.910.(2017西湖区校级期末)已知实数x,y 满足x ﹥y ﹥0,且x+y=2,则3yx 4y -x 1++的最小值是_____________11.(18届金华十校高一下期末)记max {x,y,z }表示x,y,z 中的最大数,若a ﹥0,b ﹥0,则max {a,b,ba 31+} 的最小值为( )A.2B.3C.2D.312. 已知a,b 为正实数,且a+b=2,则21222-+++b b a a 的最小值为_____________13. 已知正实数a,b 满足1)2(221=+++aa b b b a )(,则ab 的最大值为_____________(补充题)已知x,y ﹥0,则2222296y x xyy x xy +++的最大值是_____________3.换元法14.(2019届超级全能生2月)已知正数x,y 满足x+y=1,则yx 21111+++的最小值是( )A.2833 B.67C.5223+D.5615.(2019届模拟7)已知㏒2(a-2)+ ㏒2(b-1)≥1,则2a+b 取到最下值时ab=( )A.3B.4C.6D.9 16.(2018温州期中)已知实数x,y 满足2x ﹥y ﹥0,且12121=++-yx y x ,则x+y 的最小值为( )A.5323+ B.5324+ C.5342+ D.5343+17.(2018杭州期末)若正数a,b 满足a+b=1,则bba a +++11的最大值是_____________18.(2017湖州期末)若正实数x,y 满足2x+y=2,则221422+++x y y x 的最小值是_____________19.(2018河北区二模)若正数a,b 满足111=+b a ,则1911-+-b a 的最小值为( ) A.1 B.6 C.9 D.1620.(温岭市2016届高三5月高考模拟)已知实数x,y 满足xy-3=x+y,且x ﹥1,则y(x+8)的最小值是( )A.33B.26C.25D.21 21. 若正数x,y 满足111=+y x ,则1914-+-y y x x 的最小值为_____________22.(2018届嘉兴期末)已知实数x,y 满足194=+y x ,则1132+++y x 的取值范围是_____________23.(2018上海二模)若实数x,y 满足112244+++=+y x y x ,则S=y x 22+的取值范围是_____________4.和、积、平方和三量减元24.(2019届台州4月模拟)实数a,b 满足a+b=4,则ab 的最大值为_____________,则)1)(1(22++b a 的最小值是_____________25. (2019届镇海中学考前练习14)已知正数x,y 满足xy(x+y)=4,则xy 的最大值为_____________,2x+y 的最小值为_____________ 26.(2018春台州期末)已知a,b ∈R ,a+b=2,则的最大值为( )A.1B.56C.212+D.227.(2016宁2波期末14)若正数x,y 满足12422=+++y x y x ,则xy 的最大值是_____________28.(2018届诸暨市期中)已知实数x,y 满足214-=+xy x y y x ,则122-+y x xy 的最大值为( )A.332 B.23 C.1332+ D. 213+29.(2018台州一模)非负实数x,y 满足324442222=+++y x xy y x ,则x+2y 的最小值为_____________,xy y x 2)2(7++的最大值是_____________30.(2018春南京)若x,y ∈(0,+∞),,42=++xy yx 则172122+++xy y x xy 的取值范围是_____________31.(2017武进区模拟)已知正实数x,y 满足xy+2x+3y=42,则xy+5x+4y 的最小值为_____________32.(2017宁波期末)若正实数a,b 满足ab b a 61)2(2+=+,则12++b a ab的最大值为_____________5.轮换对称与万能k 法33.(2019嘉兴9月基础测试17)已知实数x,y 满足1422=++y xy x ,则x+2y 的最大值为_____________34.(2016暨阳联谊)已知正实数x,y 满足2x+y=2,则22y x x ++的最小值为_____________35. 已知正实数a,b 满足1922=+b a ,则ba ab+3的最大值为_____________36. 已知实数a,b,c 满足a+b+c=0, 1222=++c b a 则a 的最大值为_____________37.(2018届杭二高三下开学)若164922=++xy y x ,x ∈R ,y ∈R ,则9x+6y 的最大值为_____________6.消元法(必要构造函数求异)38.(2016十二校联考13)若存在正实数y,使得yx x y xy 451+=-,则实数x 的最大值为_____________39.(2019届镇海中学5月模拟13)已知a,b ∈+R ,且a+2b=3,则ba 21+的最小值是_____________,2221b a +的最小值是_____________40.(2019届金华一中5月模拟9)已知正实数a,b 满足a+b=1,则的最大值是( )A.2B.21+C.1332+ D. 2223+41.(2017西湖区校级模拟)已知正实数a,b 满足042≤+-b a ,则ba ba u ++=32( ) A.有最大值为514 B. 有最小值为514 C.没有最小值 D.有最大值为342.(2018湖州期末)已知a,b 都为正实数,且311=+ba ,则ab 的最小值是_____________abb+1的最大值是_____________7.不等式算两次43. 设a >b >0,那么)(12b a b a -+的最小值为( )A.2B.3C.4D.544. 设a >2b >0,则)2(9)(2b a b b a -+-的最小值为_____________45.(2017天津)若a,b ∈R,ab >0,则abb a 1444++的最小值为_____________46. 若x,y 是正数,则22)21()21(xy y x +++的最小值是_____________47. 已知a,b,c ∈(0,+∞),则acbc c b a ++++25)(2222的最小值为_____________48.(2018天津一模)已知a >b >0,则ba b a a -+++232的最小值为_____________49.(2017西湖区校级模拟)已知正实数a,b 满足042≤+-b a ,则ba ba u ++=32( ) A.有最大值为514 B. 有最小值为514 C.没有最小值 D.有最大值为350. 已知a >0,b >0,c >0且a+b=2,则252-+-+c c ab c b ac 的最小值是_____________8.齐次化51.(2019届杭高高三下开学考T17)若不等式)(222x y cx y x -≤-对满足x >y >0的任意实数x,y 恒成立,则实数c 的最大值为_____________52.(2019届绍兴一中4月模拟)已知x >0,y >0,x+2y=3,则xyyx 32+的最小值为( )A.223-B.122+C.12-D.12+53.(2018浙江模拟)已知a >0,b >0,则2222296b a abb a ab +++的最大值为_____________ 若25422=+-y xy x ,则223y x +的取值范围是_____________54.(2016新高考研究联盟二模)实数x,y 满足22222=+-y xy x ,则222y x +的最小值是_____________9.待定与技巧性强的配凑55.(2016大联考)若正数x,y,z 满足3x+4y+5z=6,则zx z++++2y 4z y 21的最小值为_____________56.(2016杭二最后一卷)若正数x,y 满足11x 1=+y,则2210y xy x +-的最小值为_____________57.(2016宁波二模)已知正数x,y 满足xy ≤1,则M=1211x 1+++y 的最小值为_____________58.(2016浙江模拟)已知实数a,b,c 满足14141222=++c b a ,则ab+2bc+2ca 的取值范围是( )A.(]4,∞- B. []44,- C. []42,- D. []41,-59.(2019江苏模拟)已知x,y,z ∈(0,+∞)且1222=++c b a ,则3xy+yz 的最大值为_____________60.(2016大联考)已知12222=+++d c b a ,则ab+2bc+cd 的最大值为_____________ 61.(2017学年杭二高三第三次月考)已知{}222)()()(min T z x y z y x +++=,,,且x+y+z=2,则T 的最大值是( ) A.38 B.8 C. 34D. 3262. 已知a,b,c ∈+R ,则bcab c b a 2222+++的最小值是_____________63. 已知a,b,c ∈R ,且4222=++c b a ,则bc ab 25+的最大值是_____________64. 已知a,b,c ∈R ,且4222=++c b a ,则ac+bc 的最大值为_____________,又若a+b+c=0,则c 的最大值是_____________10.多元变量的不等式最值问题65.(2019届浙江名校新高考研究联盟第9题)已知正实数abcd 满足a+b=1,c+d=1,则d1abc 1+的最小值是( ) A.10 B.9 C.24 D.3366.(2019届杭四仿真卷)已知实数x,y,z 满足⎩⎨⎧=++=+512222z y x z xy ,则xyz 的最小值为_____________67.(2019届慈溪中学5月模拟)若正实数a,b,c 满足a(a+b+c)=bc ,则cb +a的最大值为_____________68.(2017浙江期末)已知实数a,b,c 满足a+b+c=0,a ﹥b ﹥c,则22ca b +的取值范围是( )A.)55,55(-B. )51,51(-C.)2,2(-D. )55,2(- 69.(2018浦江县模拟)已知实数a,b,c 满足1222=++c b a ,则ab+c 的最小值为( )A.-2B.23- C.-1 D.-21 70.(2016秋湖州期末)已知实数a,b,c 满足132222=++c b a ,则a+2b 的最大值为( )A.3 B.2 C.5D.371.(2019江苏一模)若正实数a,b,c 满足ab=a+2b ,abc=a+2b+c ,则c 的最大值为_____________72.(2018秋辽宁期末)设a,b,c 是正实数且满足a+b ≥c ,则cb aa b ++的最小值为_____________73.(2017秋苏州期末)已知正实数a,b,c 满足11a 1=+b,11b a 1=++c ,则c 的取值范围是_____________74.(2019届浙江名校协作体高三下开学考17)若正数a,b,c 满足1222=--++bc ab c b a ,则c 的最大值为_____________75.(2018届衢州二中5月模拟12)已知非负实数a,b,c 满足a+b+c=1,则(c-a)(c-b)的取值范围是_____________ 76.(2018届上虞5月模拟16)若实数x,y,z 满足x+2y+3z=1, 194222=++z y x ,则z 的最小值为_____________11.不等式综合应用77.(2018春衢州期末)已知x,y >0,若,1464x y x y +=++ 则yx 14+的最小值是( )A.6B.7C.8D.9 78.(2018嘉兴模拟)已知,0x ,841x )>(y yx y ++=+则x+y 的最小值为( ) A.35 B.9 C.2624+ D.1079.(2018越城区校级)已知x,y >0,且,419211x =+++y x y 则y167x 3-的最小值是_____________80.(2016台州期末)已知a,b,c ∈(0,1),设ac c b b a -+-+-+112,112,112这三个数的最大值为M ,则M 的最小值为( )A.5B.223+C. 223-D.不存在81.(2019乐山模拟)已知实数x,y 满足x >1,y >0, ,111114x =+-++yx y 则y11-x 1+的最大值 为_____________82.(2019乐山模拟)已知x,y 为正实数,且满足)2)(23(12-+=-y y xy )(,则y1+x 的最大值为_____________83.(2019届镇海中学最后一卷)已知x,y >0,且1y 1x82=+,则x+y 的最小值为_____________。
高二数学《不等式》讲义
,.高二数学《不等式》讲义【学习目标】1 .认识实数运算的性质与大小次序之间的关系.2.会用差值法比较两实数的大小;3 .掌握不等式的基天性质,并能运用这些性质解决相关问题.【重点梳理】重点一、符号法例与比较大小实数的符号:随意 x R,则 x 0 (x为正数)、 x 0 或 x0 (x为负数)三种状况有且只有一种成立。
两实数的加、乘运算结果的符号拥有以下符号性质:①两个同号实数相加,和的符号不变符号语言: a 0, b 0 a b0 ;a 0,b 0 a b0②两个同号实数相乘,积是正数符号语言: a 0, b 0ab0 ;a 0,b 0ab0③两个异号实数相乘,积是负数符号语言: a 0, b 0ab0④任何实数的平方为非负数,0 的平方为 0符号语言: x R x20 , x 0x20 .比较两个实数大小的法例:对随意两个实数 a 、b① a b 0a b ;② a b 0a b ;③ a b 0a b .关于随意实数 a 、b,a b , a b , a b 三种关系有且只有一种成立。
重点解说:这三个式子实质是运用实数运算来比较两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依照。
重点二、不等式的性质不等式的性质可分为基天性质和运算性质两部分基天性质有:(1)对称性:(2)传达性:a>b b<a a>b, b>c a>c(3)可加性: a b a c b c(c∈ R)c0ac bc(4)可乘性: a>b ,c0ac bcc0ac bc运算性质有:(1)可加法例: a b, c d a c b d.(2)可乘法例: a b>0 , c d>0 a c b d>0(3)可乘方性: a b0, n N *a n b n0(4)可开方性: a b0, n N, n1n a n b重点解说:不等式的性质是不等式同解变形的依照.重点三、比较两代数式大小的方法作差法:随意两个代数式 a 、b,能够作差 a b 后比较 a b 与0的关系,进一步比较 a 与b的大小。
不等式-基本不等式辅导讲义(含详细解答)
例题1证明 ∵x >0,y >0,z >0,∴y x +z x ≥2 yz x >0,x y +z y ≥2 xzy >0, x z +y z ≥2 xyz >0, ∴⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥ 8 yz ·xz ·xyxyz=8.当且仅当x =y =z 时等号成立.训练1解:∵x ,y 都是正数 ∴yx >0,x y >0,x 2>0,y 2>0,x 3>0,y 3>0(1)xyy x x y y x ⋅≥+2=2即x y y x +≥2.(2)x +y ≥2xy >0 x 2+y 2≥222y x >0 x 3+y 3≥233y x >0∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·222y x ·233y x =8x 3y 3即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.例题2解析 (1)由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx -3. 又x ,y ,z 为正实数,∴x y +4yx ≥4, 当且仅当x =2y 时取等号,此时z =2y 2. ∴2x +1y -2z =22y +1y -22y 2=-⎝ ⎛⎭⎪⎫1y 2+2y=-⎝ ⎛⎭⎪⎫1y -12+1,当1y =1,即y =1时,上式有最大值1.(2)∵x >0,y >0,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2x +2y = 4+2⎝ ⎛⎭⎪⎫x y +y x ≥4+4x y ·yx =8.当且仅当x y =yx ,即x =y =4时取等号. 答案 (1)B (2)D训练2解析 (1)由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x=1,y=12时,等号成立),∴3x+4y的最小值是5.(2)由x>0,y>0,得4x2+9y2+3xy≥2×(2x)×(3y)+3xy(当且仅当2x=3y时等号成立),∴12xy+3xy≤30,即xy≤2,∴xy的最大值为2.答案(1)C(2)C解析由32+x+32+y=1可化为xy=8+x+y,∵x,y均为正实数,∴xy=8+x+y≥8+2xy(当且仅当x=y时等号成立),即xy-2xy-8≥0,解得xy≥4,即xy≥16,故xy的最小值为16.答案 D课堂练习1、解析因为ab>0,即ba>0,ab>0,所以ba+ab≥2ba×ab=2.答案 C2、解析由题意1a+1b=a+ba+a+bb=2+ba+ab≥2+2ba×ab=4,当且仅当ba=ab,即a=b=12时,取等号,所以最小值为4.答案 C3、解析y=x-4+9x+1=x+1+9x+1-5,由x>-1,得x+1>0,9x+1>0,所以由基本不等式得y=x+1+9x+1-5≥2(x+1)×9x+1-5=1,当且仅当x+1=9x+1,即(x+1)2=9,所以x+1=3,即x=2时取等号,所以a=2,b=1,a+b=3.答案 C4、解析(1+2a)(1+b)=5+2a+b≥5+22ab=9.当且仅当2a=b,即a=1,b =2时取等号.答案9解析 ∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y 4,即当x =32,y=2时取等号. 答案 3解析 ∵y =a 1-x 恒过点A (1,1),又∵A 在直线上,∴m +n =1.而1m +1n =m +n m +m +n n =2+n m +m n ≥2+2=4,当且仅当m =n =12时,取“=”,∴1m +1n 的最小值为4. 答案 4课后作业1、答案 C2、答案 A解析 由题意知,a <0,b a =-56,-1a =16,∴a =-6,b =5.∴x 2-5x +6<0的解是(2,3).3、答案 C解析 作出可行域如图所示 .由于2x +y =40、x +2y =50的斜率分别为-2、-12,而3x +2y =0的斜率为-32,故线性目标函数的倾斜角大于2x +y =40的倾斜角而小于x +2y =50的倾斜角,由图知,3x +2y =z 经过点A (10,20)时,z 有最大值,z 的最大值为70.4、答案 A解析 x -1x ≥2⇔x -1x -2≥0⇔-x -1x≥0⇔x +1x ≤0⇔⎩⎪⎨⎪⎧x (x +1)≤0x ≠0⇔-1≤x <0. 5、答案 A解析 ∵ab -(a +b )=1,ab ≤(a +b 2)2,∴(a +b 2)2-(a +b )≥1,它是关于a +b 的一元二次不等式,解得a +b ≥2(2+1)或a +b ≤2(1-2)(舍去). ∴a +b 有最小值2(2+1).又∵ab -(a +b )=1,a +b ≥2ab ,∴ab -2ab ≥1,它是关于ab 的一元二次不等式, 解得ab ≥2+1,或ab ≤1-2(舍去), ∴ab ≥3+22,即ab 有最小值3+2 2.6、答案 A 解析不等式表示的平面区域如图所示阴影部分,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b =(2a +3b )·2a +3b 6=136+(b a +a b )≥136+2=256(a =b=65时取等号).7、答案 [-1,0]解析 由f (x )=2x 2-2ax -a -1的定义域为R .可知2x 2-2ax -a ≥1恒成立,即x 2-2ax -a ≥0恒成立,则Δ=4a 2+4a ≤0,解得-1≤a ≤0.8答案 3解析 由x -2y +3z =0,得y =x +3z 2,将其代入y 2xz,得x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz =3,当且仅当x =3z 时取“=”,∴y 2xz的最小值为3.。
高中数学专题讲义:不等式
高中数学专题讲义:不等式第1讲不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知识梳理1.两个实数比较大小的方法(1)作差法⎩⎨⎧a-b>0⇔a>b,a-b=0⇔a=b,a-b<0⇔a<b;(2)作商法⎩⎪⎨⎪⎧ab>1⇔a>b(a∈R,b>0),ab=1⇔a=b(a∈R,b>0),ab<1⇔a<b(a∈R,b>0).2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方:a>b>0⇒na>nb(n∈N,n≥2).3.三个“二次”间的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c (a>0)的图象一元二次方程ax2+bx有两相异实根有两相等实根x1=没有实数根+c=0 (a>0)的根x1,x2(x1<x2)x2=-b 2aax2+bx+c>0(a>0)的解集{x|x>x2或x<x1}⎩⎨⎧⎭⎬⎫x|x≠-b2a Rax2+bx+c<0 (a>0)的解集{x|x1<x<x2}∅∅1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)a>b⇔ac2>bc2.()(2)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.()(3)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+bx+c>0的解集为R.()(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()解析(1)由不等式的性质,ac2>bc2⇒a>b;反之,c=0时,a>b ac2>bc2.(3)若方程ax2+bx+c=0(a<0)没有实根.则不等式ax2+bx+c>0的解集为∅.(4)当a=b=0,c≤0时,不等式ax2+bx+c≤0也在R上恒成立.答案(1)×(2)√(3)×(4)×2.若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bc C.ac>bd D.ac<bd解析因为c<d<0,所以0>1c>1d,两边同乘-1,得-1d>-1c>0,又a>b>0,故由不等式的性质可知-ad>-bc>0.两边同乘-1,得ad<bc.故选B.答案 B3.设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩N等于()A.(0,4]B.[0,4)C.[-1,0)D.(-1,0] 解析∵M={x|x2-3x-4<0}={x|-1<x<4},∴M∩N=[0,4).答案 B4.当x>0时,若不等式x2+ax+1≥0恒成立,则a的最小值为()A.-2B.-3C.-1D.-3 2解析当Δ=a2-4≤0,即-2≤a≤2时,不等式x2+ax+1≥0对任意x>0恒成立,当Δ=a2-4>0,则需⎩⎪⎨⎪⎧a 2-4>0,-a 2<0,解得a >2,所以使不等式x 2+ax +1≥0对任意x >0恒成立的实数a 的最小值是-2. 答案 A5.(必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________.解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞)考点一 比较大小及不等式的性质的应用【例1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A.c ≥b >a B.a >c ≥b C.c >b >aD.a >c >b(2)若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式是( ) A.①④B.②③C.①③D.②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1, ∴b -a =a 2-a +1=⎝ ⎛⎭⎪⎫a -122+34>0,∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A,B,D.法二 由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab ,即①正确;②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b ,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确. 答案 (1)A (2)C规律方法 (1)比较大小常用的方法: ①作差法;②作商法;③函数的单调性法.(2)判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.【训练1】 (1)(2017·松滋市校级期中)已知p =a +1a -2,q =⎝ ⎛⎭⎪⎫12x 2-2,其中a >2,x ∈R ,则p ,q 的大小关系是( ) A.p ≥qB.p >qC.p <qD.p ≤q(2)设a >b >1,c <0,给出下列三个结论:①c a >cb ;②ac <b c ;③log b (a -c )>log a (b -c ).其中所有的正确结论的序号是( ) A.①B.①②C.②③D.①②③解析 (1)由a >2,故p =a +1a -2=(a -2)+1a -2+2≥2+2=4,当且仅当a =3时取等号.因为x 2-2≥-2,所以q =⎝ ⎛⎭⎪⎫12x 2-2≤⎝ ⎛⎭⎪⎫12-2=4,当且仅当x =0时取等号,所以p ≥q .(2)由不等式性质及a >b >1知1a <1b ,又c <0,所以c a >cb ,①正确;构造函数y =xc ,∵c <0,∴y =x c 在(0,+∞)上是减函数,又a >b >1,∴a c <b c ,知②正确; ∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),知③正确. 答案 (1)A (2)D考点二 一元二次不等式的解法(多维探究) 命题角度一 不含参的不等式【例2-1】 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=32,∴不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞,即原不等式的解集为(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞.命题角度二 含参不等式【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (x ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0. ①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为⎝ ⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1满足题意; 当2a <-1,即-2<a <0,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a ,或x ≤-1; 当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1; 当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a . 规律方法 含有参数的不等式的求解,往往需要比较(相应方程)根的大小,对参数进行分类讨论: (1)若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易分解因式,则可对判别式进行分类讨论;(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零的情形,以便确定解集的形式;(3)其次对相应方程的根进行讨论,比较大小,以便写出解集.【训练2】 (1)已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A.-3B.1C.-1D.3(2)不等式2x 2-x <4的解集为________.解析 (1)由题意得,A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由题意知,-1,2为方程x 2+ax +b =0的两根,由根与系数的关系可知,a =-1,b =-2,则a +b =-3. (2)因为4=22且y =2x 在R 上单调递增,所以2x 2-x <4可化为x 2-x <2,解得-1<x <2,所以2x 2-x <4的解集是{x |-1<x <2}. 答案 (1)A (2){x |-1<x <2}考点三 一元二次不等式的恒成立问题(多维探究) 命题角度一 在R 上恒成立【例3-1】 若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( ) A.(-3,0]B.[-3,0)C.[-3,0]D.(-3,0)解析 2kx 2+kx -38<0对一切实数x 都成立, 则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解之得-3<k <0. 答案 D命题角度二 在给定区间上恒成立【例3-2】 设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________.解析 要使f (x )<-m +5在[1,3]上恒成立, 则mx 2-mx +m -6<0,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0.所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0. 法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 . 答案 ⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0命题角度三 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞)D.(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4, 则由f (a )>0对于任意的a ∈[-1,1]恒成立, 所以f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,解不等式组⎩⎨⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.答案 C规律方法 恒成立问题求解思路(1)一元二次不等式在R 上恒成立确定参数的范围时,结合一元二次方程,利用判别式来求解. (2)一元二次不等式在x ∈[a ,b ]上恒成立确定参数范围时,要根据函数的单调性,求其最小值,让最小值大于等于0,从而求参数的范围.(3)一元二次不等式对于参数m ∈[a ,b ]恒成立确定x 的范围,要注意变换主元,一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.【训练3】 (1)若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围是( ) A.[-1,4]B.(-∞,-2]∪[5,+∞)C.(-∞,-1]∪[4,+∞)D.[-2,5](2)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是______.解析 (1)由于x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4. (2)二次函数f (x )对于任意x ∈[m ,m +1], 都有f (x )<0成立,则⎩⎨⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 解得-22<m <0. 答案 (1)A (2)⎝ ⎛⎭⎪⎫-22,0[思想方法]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单.3.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.4.(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.(2)解决恒成立问题一定要搞清谁是主元,谁是参数.一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数. [易错防范]1.对于不等式ax 2+bx +c >0,求解时不要忘记讨论a =0时的情形.2.当Δ<0时,ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.3.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组 (建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A.f (x )=g (x ) B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ). 答案 B2.已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b 成立的有( )A.1个B.2个C.3个D.4个解析 运用倒数性质,由a >b ,ab >0可得1a <1b ,②、④正确.又正数大于负数,①正确,③错误,故选C. 答案 C3.(2017·河北省三市联考)若集合A ={x |3+2x -x 2>0},集合B ={x |2x <2},则A ∩B 等于( ) A.(1,3) B.(-∞,-1) C.(-1,1)D.(-3,1)解析 依题意,可求得A =(-1,3),B =(-∞,1),∴A ∩B =(-1,1). 答案 C4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的取值范围是( ) A.{a |0<a <4} B.{a |0≤a <4} C.{a |0<a ≤4}D.{a |0≤a ≤4}解析 由题意知a =0时,满足条件.a ≠0时,由⎩⎨⎧a >0,Δ=a 2-4a ≤0,得0<a ≤4,所以0≤a ≤4.答案 D5.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( ) A.(-1,0)B.(2,+∞)C.(-∞,-1)∪(2,+∞)D.不能确定解析 由f (1-x )=f (1+x )知f (x )的图象关于直线x =1对称,即a2=1,解得a =2.又因为f (x )开口向下,所以当x ∈[-1,1]时,f (x )为增函数,所以f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2, f (x )>0恒成立,即b 2-b -2>0恒成立, 解得b <-1或b >2. 答案 C 二、填空题6.已知函数f (x )=⎩⎨⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,则不等式f (x )>3的解集为________.解析 由题意知⎩⎨⎧x ≥0,x 2+2x >3或⎩⎨⎧x <0,-x 2+2x >3,解得x >1.故原不等式的解集为{x |x >1}. 答案 {x |x >1}7.(2016·重庆模拟)若关于x 的不等式ax >b 的解集为⎝ ⎛⎭⎪⎫-∞,15,则关于x 的不等式ax 2+bx -45a>0的解集为________.解析 由已知ax >b 的解集为⎝ ⎛⎭⎪⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a >0两边同除以a ,得x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,故不等式ax 2+bx -45a >0的解集为⎝ ⎛⎭⎪⎫-1,45. 答案 ⎝ ⎛⎭⎪⎫-1,458.不等式a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,则实数λ的取值范围为________. 解析 因为a 2+8b 2≥λb (a +b )对于任意的a ,b ∈R 恒成立,所以a 2+8b 2-λb (a +b )≥0对于任意的a ,b ∈R 恒成立,即a 2-λba +(8-λ)b 2≥0恒成立, 由二次不等式的性质可得,Δ=λ2b 2+4(λ-8)b 2=b 2(λ2+4λ-32)≤0, 所以(λ+8)(λ-4)≤0, 解得-8≤λ≤4. 答案 [-8,4] 三、解答题9.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎨⎧a =3±3,b =-3.即a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解 (1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0. 所以y =f (x )=40(10-x )(25+4x ), 定义域为x ∈[0,2].(2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0.解得12≤x ≤134. 所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.能力提升题组 (建议用时:20分钟)11.下面四个条件中,使a >b 成立的充分而不必要的条件是( ) A.a >b +1 B.a >b -1 C.a 2>b 2D.a 3>b 3解析 A 项:若a >b +1,则必有a >b ,反之,当a =2,b =1时,满足a >b ,但不能推出a >b +1,故a >b +1是a >b 成立的充分而不必要条件;B 项:当a =b =1时,满足a >b -1,反之,由a >b -1不能推出a >b ;C 项:当a =-2,b =1时,满足a 2>b 2,但a >b 不成立;D 项:a >b 是a 3>b 3的充要条件,综上所述答案选A. 答案 A12.(2017·湛江调研)已知函数f (x )=ax 2+bx +c (a ≠0),若不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <12或x >3,则f (e x )>0(e 是自然对数的底数)的解集是( ) A.{x |x <-ln 2或x >ln 3} B.{x |ln 2<x <ln 3} C.{x |x <ln 3}D.{x |-ln 2<x <ln 3}解析 法一 依题意可得f (x )=a ⎝ ⎛⎭⎪⎫x -12(x -3)(a <0),则f (e x )=a ⎝ ⎛⎭⎪⎫e x -12(e x -3)(a <0),由f (e x )=a ⎝ ⎛⎭⎪⎫e x -12(e x -3)>0,可得12<e x <3,解得-ln 2<x <ln 3,故选D. 法二 由题知,f (x )>0的解集为⎩⎨⎧⎭⎬⎫x |12<x <3,令12<e x <3,得-ln 2<x <ln 3,故选D.答案 D13.若不等式x 2+ax -2>0在区间[1,5]上有解,则实数a 的取值范围是________. 解析 设f (x )=x 2+ax -2,由题知:Δ=a 2+8>0, 所以方程x 2+ax -2=0恒有一正一负两根,于是不等式x 2+ax -2>0在区间[1,5]上有解的充要条件是f (5)>0,即a ∈⎝ ⎛⎭⎪⎫-235,+∞.答案 ⎝ ⎛⎭⎪⎫-235,+∞14.解关于x 的不等式ax 2-(2a +1)x +2<0(a ∈R ). 解 原不等式可化为(ax -1)(x -2)<0.(1)当a >0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a <0.因为方程(x -2)⎝ ⎛⎭⎪⎫x -1a =0的两个根分别是2,1a ,所以当0<a <12时,2<1a ,则原不等式的解集是⎩⎨⎧⎭⎬⎫x |2<x <1a ;当a =12时,原不等式的解集是∅;当a >12时,1a <2,则原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2. (2)当a =0时,原不等式为-(x -2)<0,解得x >2, 即原不等式的解集是{x |x >2}.(3)当a <0时,原不等式可以化为a (x -2)⎝ ⎛⎭⎪⎫x -1a <0,根据不等式的性质,这个不等式等价于(x -2)·⎝ ⎛⎭⎪⎫x -1a >0, 由于1a <2,故原不等式的解集是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <1a 或x >2. 综上所述,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1a 或x >2; 当a =0时,不等式的解集为{x |x >2};当0<a <12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <1a ;当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <2. 第2讲 二元一次不等式(组)与简单的线性规划问题最新考纲 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知 识 梳 理1.二元一次不等式(组)表示的平面区域(1)一般地,二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧的所有点组成的平面区域(半平面)不含边界直线.不等式Ax +By +C ≥0所表示的平面区域(半平面)包括边界直线.(2)对于直线Ax +By +C =0同一侧的所有点(x ,y ),使得Ax +By +C 的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax +By +C >0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax +By +C <0.(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.2.线性规划的有关概念名称意义线性约束条件 由x ,y 的一次不等式(或方程)组成的不等式组,是对x ,y 的约束条件 目标函数 关于x ,y 的解析式 线性目标函数 关于x ,y 的一次解析式 可行解 满足线性约束条件的解(x ,y ) 可行域所有可行解组成的集合最优解 使目标函数达到最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题诊 断 自 测1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( ) (5)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( )解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是zb . 答案 (1)× (2)√ (3)√ (4)× (5)√2.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A.(0,0)B.(-1,1)C.(-1,3)D.(2,-3)解析 把各点的坐标代入可得(-1,3)不适合,故选C. 答案 C3.(必修5P86T3)不等式组⎩⎨⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )解析 x -3y +6≥0表示直线x -3y +6=0及其右下方部分,x -y +2<0表示直线x -y +2=0左上方部分,故不等式表示的平面区域为选项B. 答案 B4.(2016·全国Ⅱ卷)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -55.若变量x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解析 作出不等式组表示的平面区域,如图中阴影部分所示,z =2x +y ,则y =-2x +z .易知当直线y =-2x +z 过点A (k ,k )时,z =2x +y 取得最小值,即3k =-6,所以k =-2.答案 -2考点一 二元一次不等式(组)表示的平面区域【例1】 (1)(2017·郑州预测)若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组⎩⎨⎧x -y ≥0,x +y ≥0,y ≥2x -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.(2)(2015·重庆卷)若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( ) A.-3B.1C.43D.3解析 (1)作出不等式组与不等式表示的可行域如图阴影部分所示,平面区域N 的面积为12×3×(6+2)=12,区域M 在区域N 内的面积为14π(2)2=π2,故所求概率P=π212=π24.(2)如图,要使不等式组表示的平面区域为三角形,则-2m<2,则m>-1,由⎩⎨⎧x+y-2=0,x-y+2m=0,解得⎩⎨⎧x=1-m,y=1+m,即A(1-m,1+m).由⎩⎨⎧x+2y-2=0,x-y+2m=0,解得⎩⎪⎨⎪⎧x=23-43m,y=23+23m,即B⎝⎛⎭⎪⎫23-43m,23+23m,所围成的区域为△ABC,则S△ABC=S△ADC-S△BDC=12(2+2m)(1+m)-12(2+2m)·23(1+m)=13(1+m)2=43,解得m=-3(舍去)或m=1.故选B.答案(1)π24(2)B规律方法二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域,注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.【训练1】若不等式组⎩⎨⎧x≥0,x+3y≥4,3x+y≤4所表示的平面区域被直线y=kx+43分为面积相等的两部分,则k的值是()A.73 B.37 C.43 D.34解析不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73. 答案 A考点二 线性规划相关问题(多维探究) 命题角度一 求目标函数的最值【例2-1】 (1)(2016·全国Ⅲ卷)设x ,y 满足约束条件⎩⎨⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.(2)(2015·全国Ⅰ卷)若x ,y 满足约束条件⎩⎨⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx 的最大值为________.解析 (1)画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.(2)作出可行域如图中阴影部分所示,由斜率的意义知,yx 是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx 的最大值为3. 答案 (1)-10 (2)3命题角度二 求参数的值或范围【例2-2】 (2015·福建卷)变量x ,y 满足约束条件⎩⎨⎧x +y ≥0,x -2y +2≥0,mx -y ≤0.若z =2x -y 的最大值为2,则实数m 等于( ) A.-2B.-1C.1D.2解析 如图所示,目标函数z =2x -y 取最大值2,即y =2x -2时,画出⎩⎨⎧x +y ≥0,x -2y +2≥0表示的区域,由于mx -y ≤0过定点(0,0),要使z =2x -y 取最大值2,则目标函数必过两直线x -2y +2=0与y =2x -2的交点A (2,2),因此直线mx -y =0过点A (2,2),故有2m -2=0,解得m =1. 答案 C规律方法 线性规划两类问题的解决方法(1)求目标函数的最值:画出可行域后,要根据目标函数的几何意义求解,常见的目标函数有:①截距型:形如z =ax +by ;②距离型:形如z =(x -a )2+(y -b )2.③斜率型:形如z =y -bx -a. (2)求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解. 【训练2】 (1)设x ,y 满足约束条件⎩⎨⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A.-5B.3C.-5或3D.5或-3(2)(2017·西安检测)已知变量x ,y 满足⎩⎨⎧2x -y ≤0,x -2y +3≥0,x ≥0,则z =(2)2x +y 的最大值为________.解析 (1)二元一次不等式组表示的平面区域如图所示,其中A ⎝ ⎛⎭⎪⎫a -12,a +12.由z =x +ay 得y =-1a x +za .由图可知当-1≤-1a≤1时,z可取得最小值,此时a≥1或a≤-1.又直线y=-1a x+za过A点时,z取得最小值,因此a-12+a×a+12=7,化简得a2+2a-15=0,解得a=3或a=-5,当a=3时,经检验知满足题意;当a=-5时,目标函数z=x+ay过点A时取得最大值,不满足题意,故选B.(2)作出不等式组所表示的平面区域,如图阴影部分所示.令m=2x+y,由图象可知当直线y=-2x+m经过点A时,直线y=-2x+m的纵截距最大,此时m最大,故z最大.由⎩⎨⎧2x-y=0,x-2y+3=0,解得⎩⎨⎧x=1,y=2,即A(1,2).代入目标函数z=(2)2x+y得,z=(2)2×1+2=4.答案(1)B(2)4考点三实际生活中的线性规划问题【例3】(2016·全国Ⅰ卷)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.解析设生产A产品x件,B产品y件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x+0.5y≤150,x+0.3y≤90,5x+3y≤600,x≥0,x∈N*,y≥0,y∈N*,目标函数z=2 100x+900y.作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元). 答案 216 000规律方法 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.【训练3】 (2015·陕西卷)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A.12万元B.16解析设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎨⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值. 由⎩⎨⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元). 答案 D[思想方法]1.求最值:求二元一次目标函数z =ax +by (ab ≠0)的最值,将z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.2.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.3.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [易错防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.基础巩固题组 (建议用时:30分钟)一、选择题1.不等式(x -2y +1)(x +y -3)≤0在直角坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )解析 法一 不等式(x -2y +1)(x +y -3)≤0等价于⎩⎨⎧x -2y +1≤0,x +y -3≥0或⎩⎨⎧x -2y +1≥0,x +y -3≤0,画出对应的平面区域,可知C 正确.法二 结合图形,由于点(0,0)和(0,4)都适合原不等式,所以点(0,0)和(0,4)必在区域内,故选C. 答案 C2.(2016·泰安模拟)不等式组⎩⎨⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为()A.1B.12C.13D.14解析 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎨⎧y =-x +2,y =x -1,得y D =12,所以S △BCD =12×(x C -x B )×12=14. 答案 D3.(2017·广州二测)不等式组⎩⎨⎧x -y ≤0,x +y ≥-2,x -2y ≥-2的解集记为D ,若(a ,b )∈D ,则z=2a -3b 的最小值是( ) A.-4B.-1C.1D.4解析 画出不等式组表示的平面区域,如图中阴影部分所示,当a =-2,b =0,z =2a -3b 取得最小值-4. 答案 A4.(2017·长春质量监测)若x ,y 满足约束条件⎩⎨⎧y ≤-x +1,y ≤x +1,y ≥0,则3x +5y 的取值范围是()A.[-5,3]B.[3,5]C.[-3,3]D.[-3,5]解析 作出如图所示的可行域及l 0:3x +5y =0,平行移动l 0到l 1过点A (0,1)时,3x +5y 有最大值5,平行移动l 0至l 2过点B (-1,0)时,3x +5y 有最小值-3,故选D.答案 D5.x,y 满足约束条件⎩⎨⎧x+y-2≤0,x-2y-2≤0,2x-y+2≥0.若z=y-ax取得最大值的最优解不唯一,则实数a的值为()A.12或-1 B.2或12 C.2或1 D.2或-1解析如图,由y=ax+z知z的几何意义是直线在y轴上的截距,故当a>0时,要使z=y-ax取得最大值的最优解不唯一,则a=2;当a<0时,要使z=y-ax取得最大值的最优解不唯一,则a=-1.答案 D6.若函数y=2x图象上存在点(x,y)满足约束条件⎩⎨⎧x+y-3≤0,x-2y-3≤0,x≥m,则实数m的最大值为() A.12 B.1 C.32 D.2解析在同一直角坐标系中作出函数y=2x的图象及⎩⎨⎧x+y-3≤0,x-2y-3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m≤1时,函数y=2x的图象上存在点(x,y)满足约束条件,故m的最大值为1.答案 B7.(2017·石家庄质检)已知x,y满足约束条件⎩⎨⎧x≥1,y≥-1,4x+y≤9,x+y≤3,若目标函数z=y-mx(m>0)的最大值为1,则m的值是()A.-209 B.1 C.2 D.5解析作出可行域,如图所示的阴影部分.化目标函数z=y-mx(m>0)为y=mx+z,由图可知,当直线y=mx+z过A 点时,直线在y 轴的截距最大,由⎩⎨⎧x =1,x +y =3,解得⎩⎨⎧x =1,y =2,即A (1,2),∴2-m =1,解得m =1.故选B. 答案 B8.(2016·贵州黔东南模拟)若变量x 、y 满足约束条件⎩⎨⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为( ) A.322B. 5C.92D.5解析 作出不等式组对应的平面区域如图中阴影部分所示.设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C 、D 间的距离最小,此时z 最小.由⎩⎨⎧y =1,x -y +1=0得⎩⎨⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5,故选D. 答案 D 二、填空题9.设变量x ,y 满足约束条件⎩⎨⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3. 答案 310.(2017·滕州模拟)已知O是坐标原点,点M的坐标为(2,1),若点N(x,y)为平面区域⎩⎪⎨⎪⎧x+y≤2,x≥12,y≥x上的一个动点,则OM→·ON→的最大值是________.解析依题意,得不等式组对应的平面区域如图中阴影部分所示,其中A⎝⎛⎭⎪⎫12,12,B⎝⎛⎭⎪⎫12,32,C(1,1).设z=OM→·ON→=2x+y,当目标函数z=2x+y过点C(1,1)时,z=2x+y取得最大值3.答案 311.已知-1<x+y<4且2<x-y<3,则z=2x-3y的取值范围是________(答案用区间表示).解析法一设2x-3y=a(x+y)+b(x-y),则由待定系数法可得⎩⎨⎧a+b=2,a-b=-3,解得⎩⎪⎨⎪⎧a=-12,b=52,所以z=-12(x+y)+52(x-y).又⎩⎪⎨⎪⎧-2<-12(x+y)<12,5<52(x-y)<152,所以两式相加可得z∈(3,8).法二作出不等式组⎩⎨⎧-1<x+y<4,2<x-y<3表示的可行域,如图中阴影部分所示.平移直线2x-3y=0,当相应直线经过x-y=2与x+y=4的交点A(3,1)时,z取得最小值,z min=2×3-3×1=3;当相应直线经过x+y=-1与x-y=3的交点B(1,-2)时,z取得最大值,z max=2×1+3×2=8.所以z∈(3,8).答案(3,8)12.已知实数x,y满足⎩⎨⎧2x+y≥0,x-y≥0,0≤x≤a,设b=x-2y,若b的最小值为-2,则b的最大值为________.解析 作出不等式组满足的可行域如图阴影部分所示.作出直线l 0:x -2y =0,∵y =x 2-b2,∴当l 0平移至A 点处时b 有最小值,b min =-a , 又b min =-2,∴a =2,当l 0平移至B (a ,-2a )时, b 有最大值b max =a -2×(-2a )=5a =10. 答案 10能力提升题组 (建议用时:15分钟)13.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A.1 800元 B.2 400元 C.2 800元D.3 100元解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎨⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元,则z =300x +400y .画出可行域如图.画直线l :300x +400y =0,即3x +4y =0. 平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值. 由⎩⎨⎧x +2y =12,2x +y =12,解得⎩⎨⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元),故选C. 答案 C14.(2017·许昌监测)设实数x ,y 满足⎩⎨⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是()A.-5B.-12C.12 D.5解析作出不等式对应的平面区域如图中阴影部分所示,则w=y-1x-1的几何意义是区域内的点P(x,y)与定点A(1,1)所在直线的斜率,由图象可知当P位于点⎝⎛⎭⎪⎫13,43时,直线AP的斜率最小,此时w=y-1x-1的最小值为43-113-1=-12,故选B.答案 B15.已知变量x,y满足约束条件⎩⎨⎧x+2y-3≤0,x+3y-3≥0,y-1≤0,若目标函数z=ax+y(其中a>0)仅在点(3,0)处取得最大值,则a的取值范围是________.解析画出x、y满足约束条件的可行域如图所示,要使目标函数z=ax+y仅在点(3,0)处取得最大值,则直线y=-ax+z的斜率应小于直线x+2y -3=0的斜率,即-a<-12,∴a>12.答案⎝⎛⎭⎪⎫12,+∞16.(2015·浙江卷)若实数x,y满足x2+y2≤1,则|2x+y-4|+|6-x-3y|的最大值是________.解析∵x2+y2≤1,∴2x+y-4<0,6-x-3y>0,∴|2x+y-4|+|6-x-3y|=4-2x-y+6-x-3y=10-3x-4y.令z=10-3x-4y,如图,设OA与直线-3x-4y=0垂直,∴直线OA的方程为y=43x,。
高中数学 第3章 不等式 3.1 基本不等式讲义教案 北师大版必修5
学习资料§3基本不等式3.1基本不等式学习目标核心素养1.了解基本不等式的证明过程及其几何解释.(难点)2.了解算术平均数,几何平均数的定义.(重点) 3.会用基本不等式推出与基本不等式有关的简单不等式.(重点) 1.通过基本不等式的推导,培养逻辑数学素养.2.通过基本不等式的应用,提升数学运算素养.1.基本不等式阅读教材P88~P89阅读材料以上部分,完成下列问题.(1)基本不等式如果a,b都是非负数,那么错误!≥错误!,当且仅当a=b时,等号成立,称上述不等式为基本不等式,其中错误!称为a,b的算术平均数,错误!称为a,b的几何平均数,该不等式又被称为均值不等式.(2)基本不等式的文字叙述两个非负数的算术平均数不小于它们的几何平均数.(3)意义①几何意义:半径不小于半弦.②数列意义:两个正数的等差中项不小于它们的等比中项.思考:(1)不等式a2+b2≥2ab(a,b∈R)成立吗?如何证明?[提示]成立,证明如下:由a2+b2-2ab=(a-b)2≥0,知a2+b2≥2ab.(2)当x,y满足什么条件时,错误!≥错误!?[提示]当lg x≥0,且lg y≥0,即x≥1,且y≥1时,不等式成立.2.基本不等式的证明一般地,对于任意实数a,b,我们有a2+b2≥2ab,当且仅当a=b时,等号成立.特别地,如果a>0,b〉0,我们用错误!,错误!分别代替a,b可得a+b≥2错误!,通常我们把上式写作错误!≤错误!(a〉0,b〉0).下面我们来证明一下:要证a+b2≥错误!, ①只要证a+b≥2错误!,②要证②只要证a+b-2错误!≥0,③要证③只要证(错误!-错误!)2≥0,④显然④成立,当且仅当a=b时④中的等号成立.1.给出下列条件:①ab>0;②ab<0;③a>0,b>0;④a<0,b<0,其中能使错误!+错误!≥2成立的条件有()A.1个B.2个C.3个D.4个C[当错误!,错误!均为正数时,错误!+错误!≥2,故只须a、b同号即可,∴①③④均可以.]2.不等式x+4≥4错误!(x>0)中等号成立的条件是.x=4[由a+b≥2错误!(a>0,b>0)中等号成立的条件是a=b知x=4.]3.比较大小:错误!错误!x.≥[在不等式错误!≥ab中令a=x,b=错误!,可得错误!≥错误!x,当x=错误!时等号成立.]4.设常数a〉0,若9x+错误!≥a+1对一切正实数x成立,则a的取值范围是.错误![由题意知,当x〉0时,ƒ(x)=9x+错误!≥2错误!=6a≥a+1⇒a≥错误!.]利用基本不等式比较大小【例1】,?[解]因为a〉0,b〉0,所以a+b≥2错误!,a2+b2≥2ab,所以四个数中最大数应为a+b 或a2+b2.又因为0〈a〈1,0〈b〈1,所以a2+b2-(a+b)=a2-a+b2-b=a(a-1)+b(b-1)〈0,所以a2+b2〈a+b,所以a+b最大.应用基本不等式的注意事项(1)在应用基本不等式时,一定要注意是否满足条件,即a≥0,b≥0.(2)若问题中一端出现“和式”,而另一端出现“积式”,这便是应用基本不等式的“题眼”,不妨运用基本不等式试试看,基本不等式是建立“和式"与“积式"不等关系的重要桥梁.错误!1.设a 〉0,b 〉0,试比较错误!,错误!,错误!,错误!的大小,并说明理由. [解] 因为a 〉0,b 〉0,所以1a +1b ≥错误!;即错误!≥错误!(当且仅当a =b 时取等号), 又错误!错误!=错误! ≤错误!=错误!,所以错误!≤错误!(当且仅当a =b 时等号成立),而错误!≤错误!,故错误!≥错误!≥错误!≥错误!(当且仅当a =b 时等号成立).用基本不等式证明不等式【例2】求证:(1)y x+错误!≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3. [证明] (1)∵x ,y 都是正数, ∴错误!>0,错误!>0,∴错误!+错误!≥2错误!=2,即错误!+错误!≥2, 当且仅当x =y 时,等号成立.(2)∵x ,y 都是正数,∴x +y ≥2错误!>0, x 2+y 2≥2错误!>0,x 3+y 3≥2错误!>0.∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·2错误!·2错误!=8x 3y 3, 即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3, 当且仅当x =y 时,等号成立.利用基本不等式证明不等式的注意点(1)在利用基本不等式证明时,要注意查看基本不等式成立的条件是否满足,若所证明的不等式中含有等号,还要注意等号是否能成立.(2)在证明过程中,常需要把数、式合理地拆成两项或多项,或恒等地变形配凑成适当的数、式,以便利用基本不等式。
培优讲义01不等式
培优讲义01:不等式补充知识:基本不等式:设12,,n a a a 是n个正实数,则有12n a a a n+++≥ 当12n a a a === 时取等号.)不等式链:2112a ba b+≤≤≤+柯西不等式:222111n n ni i i i i i i a b a b ===⎛⎫≤ ⎪⎝⎭∑∑∑(当且仅当i i a kb =(1)i n = ,2,,时取等号)(其中二元形式:22222()()()a b c d ac bd +≥++,当且仅当ad bc =时等号成立.)权方和不等式:22111i n i n i n i iii a a b b ===⎛⎫ ⎪⎝⎭≥∑∑∑(当且仅当i ia kb =(1)i n = ,2,,时取等号)一,权方和不等式应用【例1】已知20a b >>,1a b +=,则142a b b+-的最小值为.【例2】已知a >0,b >0,且21122a a b+=++,则a b +的最小值是.【练1】已知a >0,b >0,且1a b +=,则121aa b ++的最小值是.【练2】已知x >1,y >1,则2211x y y x +--的最小值是.【练3】已知()0,3x ∈,则28132x y x x-=+-的最小值为.二,柯西不等式应用【例1】已知2+2=16,求+2的最大值【例2】若实数x +2y +3z =1,则2+2+2的最小值【练1】已知32+42=12,求2+3的最小值【练2】已知32+22≤6,求2+的最值【练3】设,,0x y z ≥,且2x y z ++=,则2223x y z ++的最大值三、化为方程【例1】若实数,x y 满足3xy x y =++,求x y +的最小值【练1】若实数,x y 满足221x y xy ++=,求x y +的最大值(2011浙江文)【练2】若0,0a b >>,且26ab a b =++,则2+a b 的最小值.【例2】设,x y 为实数,若2227,x y xy -+=求22x y +的最小值(2013浙大自住招生)【练3】设,x y 为实数,若224555,x y xy +-=求22x y +的最值。
必修五基本不等式讲义
3.4 基本不等式ab ba ≥+2一、基本不等式:2ba ab +≤1、重要不等式:a 2+b 2≥2ab(a 、b ∈R) 当且仅当“a =b ”时“=”成立。
注意:(1)不等式成立的条件是“a =b ”,如果a 、b 不相等,则“=”不成立;(2)不等式的变形 :①a b ≤222b a + ②a b ≤2)2(b a + ③222b a + ≥2)2(b a +≥ab④2(a 2+b 2)≥(a +b)22、基本不等式:2b a +≥ab (a 、b ∈R +) 当且仅当“a =b ”时“=”成立。
注意:(1)内容:a >0, b >0,当且仅当“a =b ”时“=”成立;(2)其中2ba +叫做正数a 、b 的算术平均数,ab 叫做正数a 、b 的几何平均数,即两个正数的算术平均数不小于它们的几何平均数。
例1:求证对于任意实数a ,b ,c ,有a 2+b 2+c 2≥a b +bc +c a ,当且仅当a =b =c 时等号成立。
【证明】:∵ a 2+b 2≥2ab c 2+b 2≥2bc a 2+c 2≥2ac∴ 2(a 2+b 2+c 2) ≥2ab +2bc +2ac ,∴ a 2+b 2+c 2≥ab +bc +ca 当且仅当a =b =c 时等号成立。
变式练习1:若0<a <1,0<b <1,且a ≠b ,则a +b ,2ab ,2a b ,a 2+b 2中最大的一个是( )A :a 2+b 2B :2abC :2a bD :a +b变式练习2:下列不等式:(1)x +x 1≥2;(2)|x +x1|≥2;(3)若0<a <1<b ,则log a b +log b a ≤-2;(4)若0<a <1<b ,log a b +log b a ≥2。
其中正确的是_______________。
均值不等式推广:ba 112+ ≤ab ≤ 2ba + ≤222b a + 调和平均数 几何平均数 算术平均数 平方平均数 当仅且当“a =b ”时“=”成立。
高三一轮总复习高效讲义第1章第4节基本不等式课件
[对点练] 1.已知 a>0,b>0,3a+b=2ab,则 a+b 的最小值为________. 解析:因为 3a+b=2ab,所以23b +21a =1,又 a>0,b>0,故 a+b=(a+b)23b+21a =2+32ab +2ba ≥2+ 3 ,当且仅当32ab =2ba 时取等号时,a+b 的最小值为 2+ 3 . 答案:2+ 3
2.已知 x<54 ,则 f(x)=4x-2+4x-1 5 的最大值为________. 解析:因为 x<54 ,所以 5-4x>0, 则 f(x)=4x-2+4x-1 5 =-5-4x+5-14x +3≤-2 (5-4x)·5-14x +3=- 2+3=1. 当且仅当 5-4x=5-14x ,即 x=1 时,等号成立. 故 f(x)=4x-2+4x-1 5 的最大值为 1.
(2)已知 a>0,b>0,a+b=1,则1+1a 1+1b 的最小值为________. 解析:1+1a 1+1b =1+a+a b 1+a+b b = 2+ba ·2+ab =5+2ba+ab ≥5+4=9.当且仅当 a=b=12 时,取等号. 答案:9
(3)已知 x>0,y>0,x+3y+xy=9,则 x+3y 的最小值为________. 解析:法一(换元消元法) 由已知得 9-(x+3y)=13 ·x·3y≤13 ·x+23y 2 ,当且仅当 x=3y,即 x=3,y =1 时取等号. 即(x+3y)2+12(x+3y)-108≥0, 令 x+3y=t,则 t>0 且 t2+12t-108≥0, 得 t≥6,即 x+3y 的最小值为 6.
4,当且仅当 a=b=12 时等号成立. 答案:4
(2)(变条件)若本例(2)中条件变为已知 a>0,b>0,4a+b=4,则1+1a 1+1b 的最 小值为__________.
高中数学不等式讲义
6.1不等式的概念和性质〖考纲要求〗掌握不等式的性质及其证明,能正确使用这些概念解决一些简单问题.〖复习建议〗不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。
〖双基回顾〗常见的性质有8条: 1、反身性(也叫对称性):a >b ⇔b <a 2、传递性:a >b ,b >c ⇔a >c 3、平移性:a >b ⇔a +c >b +c 4、伸缩性:⎩⎨⎧>>0c b a ⇔ac >bc ;⎩⎨⎧<>0c ba ⇔ac <bc5、乘方性:a >b ≥0⇔a n >b n (n ∈N ,n ≥2)6、开方性:a >b ≥0⇔na >nb (n ∈N ,n ≥2)7、叠加性:a >b ,c >d ⇔a +c >b +d 8、叠乘性:a >b ≥0,c >d ≥0⇔a ·c >b ·d一、知识点训练:1、ba b a 11〈⇔〉成立的充要条件为2、用“>”“<”“=”填空:(1)a <b <c <0则ac bc ;a c bc; (2) 0<a <b <c <1,则a c b c ;a b a c ;log c a log c b ;a lg c b lg c ;a r c si na a r c si nb .二、典型例题分析:1、比较下面各小题中a 与b 的大小:(1)a =m 3-m 2n -3mn 2 与 b =2m 2n -6mn 2+n 3 (2)a =3x 2-x +1与b =2x 2+x -1 (3)10231=-=b a 与 .2、bxax x f -=)(,1≤)1(f ≤2,13≤)2(f ≤20,求)3(f 的取值范围. 三、课堂练习:1、若b a 〉,则下列不等式成立的是………………………………………………………………… ( ) (A )ba 11〈 (B ))0(22≠〉c bc ac (C ) 0)lg(〉-b a (D ) b a lg lg 〉 2、设d c b a ≥〉,,那么下列不等式成立的是……………………………………………………… ( ) (A )22)()(c b d a -〈- (B ) 22)()(c b d a -≥- (C ) 22)()(c b d a -≤- (D ) 以上都不对四、课堂小结:1、不等式的基本性质是解不等式与证明不等式的理论依据,必须透彻理解,特别要注意同向不等式可相加,也可相乘,但相乘时,两个不等式都需大于零.2、处理分式不等式时不要随便将不等式两边乘以含有字母的分式,如果需要去分母,一定要考虑所乘的代数式的正负.3、作差法是证明不等式的最基本也是很重要的方法,应引起高度注意.五、能力测试: 姓名 得分1、下列命题中正确的是……………………………………………………………………………… ( )(A )22,b a b a 〉〉则若 (B ) b a b a 〉〉则若,22(C ) 22,b a b a 〉〉则若 (D ) 22,b a b a 〉〉则若2、设011〈〈ba ,则有 …………………………………………………………………………………( ) (A ) 22b a 〉 (B ) ab b a 2〉+ (C ) 2b ab 〈 (D ) b a b a +〉+223、若0,=++〉〉c b a c b a ,则有…………………………………………………………………… ( ) (A ) ac ab 〉 (B ) bc ac 〉 (C ) bc ab 〉 (D )以上皆错4、若0,〉〉〉b a bd ac ,则 ………………………………………………………………………………( ) (A ) 0〉〉d c (B ) d c 〉 (C ) d c 〈 (D )c 、d 大小不确定5、以下命题:⑴a >b ⇒|a |>b ⑵a >b ⇒a 2>b 2 ⑶|a |>b ⇒ a >b ⑷a >|b | ⇒ a >b 正确的个数有………………………………………………………………………………………( ) (A ) 1个 (B ) 2个 (C ) 3个 (D )4个6、已知a >2,比较12++=a ab 与2的大小.7、比较下列各数的大小: (1))11(log ),1(log an a m a a +=+= (提示:分a >1,a <1讨论) (2)n n a -+=1与1--=n n b (提示:分子有理化后再比较)8、如果二次函数)(x f y =的图象过原点,并且1≤)1(-f ≤2,3≤)1(f ≤4,求)2(-f 的取值范围.6.2不等式的解法——分式与高次〖考纲要求〗在熟练掌握一元一次与一元二次不等式的解法的基础上初步分式与高次不等式的解法. 〖复习建议〗分式与高次不等式的一般解法:序轴标根法,能注意到其中的一些特殊点与解集的关系,能注意到区间端点与解集的关系.一、知识点训练:1、下列不等式与012≤+x x同解的是……………………………………………………………( ) (A) 01≤+xx (B)0)1(≤+x x(C)0)1lg(≤+x (D)21|1|≤+x x2、不等式(x -2)2·(x -1)>0的解集为 .3、不等式(x +1) ·(x -1)2≤0的解集为 .4、不等式x x<1的解集为 . 二、典型例题分析:1、解不等式:(x -1)·(x -2)·(x -3)·(x -4)>1202、解不等式:0)5)(1)(3()2(2>-+++x x x x 3、解不等式:232532≥-+-x x x 4、若不等式6163922<+--+<-x x mx x 对一切x 恒成立,求实数m 的范围 5、求适合不等式11)1(02<+-<x x 的整数x 的值. 6、解关于x 的不等式a x x-<-11三、课堂练习:1、不等式1213≥--x x 的解集为……………………………………………………………………( ) (A){x |43≤x ≤2} (B) {x |43≤x <2}(C) {x |x >2或者x ≤43} (D){x |x <2}2、不等式21≥+x x的解集为 . 3、如果不等式1122+-->++-x x b x x x a x 的解集为(21,1),则b a ⋅= .四、课堂小结:分式与高次不等式的解题基础是一元二次不等式的解法,常用方法是序轴标根法,但是要注意标根时的起点位置.五、能力测试:1、与不等式023≥--xx 同解的不等式是……………………………………………………………( )(A)(x -3)(2-x )≥0 (B)lg(x -2)≤0 (C) 032≥--x x(D)(x -3)(2-x )>02、如果x 1<x 2<…<x n ,n ≥2,并且{x |(x -x 1)(x -x 2)…(x -x n )>0}⊃{x |x 2-(x 1+x 2)x +x 1x 2<0},那么自然数n …………………………………………………………………………………………………( ) (A)等于2 (B)是大于2的奇数(C) 是大于2的偶数 (D)是大于1的任意自然数 3、不等式(x -1)(x +2)(3-x )>0的解集为 .4、不等式01)3()4)(1(2≤+---x x x x 的解集为 . 5、a >0,b >0,那么不等式a xb <<-1的解集为 . 6、已知不等式11<-x ax的解集为{x |x <1或x >2},那么a = . 7、解不等式:x xx x x <-+-+222322(提示:)1)(2(2223++-=---x x x x x x )8、不等式)(122322N n n x x x x ∈>++++对一切x 都成立,求n 的值.9、解关于x 的不等式)0( 12)1(>>--a x x a6.3不等式的证明—比较法〖考纲要求〗掌握不等式的性质及其证明,能正确使用这些性质解决一些简单问题. 〖复习建议〗掌握求差法与求商法比较两个数的大小。
高中数学 第三章 不等式 3.4 基本不等式讲义 新人教A版必修5
∴1������-1=1���-���������
=
������+������ ������
≥
2
������������������,
同理1������-1≥2
������������ ������
பைடு நூலகம்
,
1������-1≥2
������������������.
由上述三个不等式两边均为正,分别相乘,得
探究一
探究二
探究三
探究四
典型例题2
9 (1)若x>0,求f(x)=4x+������ 的最小值;
3 (2)设0<x<2 ,求函数y=4x(3-2x)的最大值;
4 (3)已知x>2,求x+������-2 的最小值;
(4)已知x>0,y>0,且
1 ������
+
9 ������
=1,求x+y的最小值.
(2)∵0<x<32,∴3-2x>0,
∴y=4x(3-2x)=2[2x(3-2x)]≤2
2������+(3-2������) 2
2
=
92.
当且仅当 2x=3-2x,即 x=34时,等号成立.
∴y 的最大值为92.
探究一
探究二
探究三
探究四
(3)∵x>2,∴x-2>0, ∴x+������4-2=(x-2)+������4-2+2
∴xy≤4,当且仅当x=y=2时,等号成立,
∴xy的最大值为4.
答案:4 4
探究一
探究二
探究三
探究四
探究一利用基本不等式证明不等式
人教版高中数学必修一基本不等式提优讲义
那么 + + 的最小值即 .
例 3:已知 + 2 = 6,求 + 的最小值.
解:令 + = ,则 = − ,代入 + 2 = 6可得 + 2( − ) = 6. 则3 − 4 + 2 − 6 = 0,Δ = 16 − 12(2 − 6) = −8 + 72 ≥ 0. 解得 ∈ [−3,3],即 + 的最小值为−3.
例 3:已知实数 , 满足 > 0,求 − 的最大值.
解:令 = + , = + 2 ,则 = 2 − , = − . 所以原式= − = 2 − − + 1 = 3 − + ≤ 3 − 2 × = 3 − 2√2.取等条件略.
即 − 的最大值为3 − 2√2.
例 4:已知 和 为正实数,求 + 的最大值.
1 / 12
需要注意的是,使用判别式法时,二次方程的主元的取值范围必须是实数范围(例如,例 1 中已知条件有 , ∈ ),否则需要进行根的分布讨论,反而使解题更繁琐.为了解决这个问 题,可以对判别式法进行范围拓广,见下一节.
2、判别式法的拓广
例 1:已知 , > 0,且4 + = ,求 + 的最小值.
例 2:已知 , ∈ (0,1)且 = ,求 + 的最小值.
高中数学基本不等式专题辅导(完整全面)
高中数学基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab+≤+≤≤+ 6、柯西不等式(1)若,,,abc d R ∈,则22222()()()a b c d a c b d ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有22212(n a a a ++⋅⋅⋅+)22212)n b b b ++⋅⋅⋅+(21122()n n a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、选修4—5:不等式选讲设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213xx y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
高中数学暑假初高衔接讲义15+基本不等式
练习主题 基本不等式知识点一:基本不等式如果a 、b 是正数,那么ab ≤2b a +(当且仅当a=b 时,等号成立),我们把不等式ab ≤2ba +(a 、b ≥0)称为基本不等式.证法一:对于正数a 、b 有2b a +-ab =21(a+b-ab 2) =21[(a )2+(b )2-2ab ]=21(a -b )2因为(a -b )2≥0,所以2b a +-ab ≥0,即ab ≤2ba +,当且仅当a =b ,即a=b 时,等号成立.当a 、b ∈R 时,由(a-b )2≥0可得:a 2+b 2≥2ab ,a 2+b 2+2ab ≥4ab ,即2b a 22+≥ab ,(2b a +)2≥ab ,当且仅当a=b 时,等号成立.从而得到:当a 、b ∈R 时,ab ≤2b a 22+(当且仅当a=b 时,等号成立)ab ≤(2b a +)2(当且仅当a=b 时,等号成立) 这两个不等式通常可以直接使用.例1、设a 、b 为正数,证明下列不等式成立.(1)a b +b a ≥2; (2)a+b+a 1+b1≥4;对应练习:1、下列不等式中正确的是( )A. a+a 4≥4 B. x 2+2x 3≥32 C. ab ≥2b a + D. a 2+b 2≥4ab2、不等式a+1≥a 2(a >0)中等号成立的条件是( )A. a=0B. a=21C. a=1D. a=2 3、证明: (1)a+1-a 1≥3(a >1); (2)x+x1≤-2(x <0)知识点二:基本不等式与最大(小)值 1、和积(最值)定理(1)已知a >0,b >0,则如果a+b=m (和为定值),那么当a=b 时,ab 有最大值:4m 2;(2)已知a >0,b >0,则如果a ·b=m (积为定值),那么当a=b 时,a+b 有最小值:m 2; 证明:因为a 、b 都是正数,所以2ba +≥ab ,当且仅当a=b 时,等号成立. (1)当a+b 为定值m 时,有ab ≤2m,所以xy ≤4m 2,当且仅当a=b 时,等号成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学——基本不等式培优专题目录1.常规配凑法 (2)2.“1”的代换 (3)3.换元法 (5)4.和、积、平方和三量减元 (7)5.轮换对称与万能k法 (10)6.消元法(必要构造函数求异) (11)7.不等式算两次 (13)8.齐次化 (14)9.待定与技巧性强的配凑 (15)10.多元变量的不等式最值问题 (17)11.不等式综合应用 (19)1.常规配凑法1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________2. 已知实数x,y 满足11622=+y x ,则22y x +的最大值为_____________3.(2018春湖州模拟)已知不等式9)11)((≥++yx my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( )A.2B.4C.6D.84.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -+++11的最小值是_____________5.(2018江苏一模)已知a ﹥0,b ﹥0,且ab ba =+32,则ab 的最小值是_____________6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则bb a 214+-的最小值是_____________7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11111=+++b a ,则a+2b 的最小值 是( )A.23B.22C.3D.22.“1”的代换8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则ba b 1+的最小值为_____________此时a=______9.(2018浙江期中)已知正数a,b 满足112=+b a 则b a+2的最小值为( ) A.24 B.28 C.8 D.910.(2017西湖区校级期末)已知实数x,y 满足x ﹥y ﹥0,且x+y=2,则3yx 4y -x 1++的最小值是_____________11.(18届金华十校高一下期末)记max {x,y,z }表示x,y,z 中的最大数,若a ﹥0,b ﹥0,则max {a,b,ba 31+} 的最小值为( )A.2B.3C.2D.312. 已知a,b 为正实数,且a+b=2,则21222-+++b b a a 的最小值为_____________13. 已知正实数a,b 满足1)2(221=+++aa b b b a )(,则ab 的最大值为_____________(补充题)已知x,y ﹥0,则2222296yx xyy x xy +++的最大值是_____________3.换元法14.(2019届超级全能生2月)已知正数x,y 满足x+y=1,则yx 21111+++的最小值是( )A. 2833B.67C.5223+D.5615.(2019届模拟7)已知㏒2(a-2)+ ㏒2(b-1)≥1,则2a+b 取到最下值时ab=( )A.3B.4C.6D.9 16.(2018温州期中)已知实数x,y 满足2x ﹥y ﹥0,且12121=++-yx y x ,则x+y 的最小值为( )A.5323+ B.5324+ C.5342+ D.5343+17.(2018杭州期末)若正数a,b 满足a+b=1,则bba a +++11的最大值是_____________18.(2017湖州期末)若正实数x,y 满足2x+y=2,则221422+++x y y x 的最小值是_____________19.(2018河北区二模)若正数a,b 满足111=+b a ,则1911-+-b a 的最小值为( ) A.1 B.6 C.9 D.1620.(温岭市2016届高三5月高考模拟)已知实数x,y 满足xy-3=x+y,且x ﹥1,则y(x+8)的最小值是( )A.33B.26C.25D.2121. 若正数x,y 满足111=+y x ,则1914-+-y y x x 的最小值为_____________22.(2018届嘉兴期末)已知实数x,y 满足194=+y x ,则1132+++y x 的取值范围是_____________23.(2018上海二模)若实数x,y 满足112244+++=+y x yx,则S=y x 22+的取值范围是_____________4.和、积、平方和三量减元24.(2019届台州4月模拟)实数a,b 满足a+b=4,则ab 的最大值为_____________,则)1)(1(22++b a 的最小值是_____________27.(2016宁2波期末14)若正数x,y 满足12422=+++y x y x ,则xy 的最大值是_____________28.(2018届诸暨市期中)已知实数x,y 满足214-=+xy x y y x ,则122-+y x xy 的最大值为( )A.332B.23C.1332+ D. 213+29.(2018台州一模)非负实数x,y 满足324442222=+++y x xy y x ,则x+2y 的最小值为_____________,xy y x 2)2(7++的最大值是_____________30.(2018春南京)若x,y ∈(0,+∞),,42=++xy yx 则172122+++xy y x xy 的取值范围是_____________31.(2017武进区模拟)已知正实数x,y 满足xy+2x+3y=42,则xy+5x+4y 的最小值为_____________32.(2017宁波期末)若正实数a,b 满足ab b a 61)2(2+=+,则12++b a ab的最大值为_____________5.轮换对称与万能k 法33.(2019嘉兴9月基础测试17)已知实数x,y 满足1422=++y xy x ,则x+2y 的最大值为_____________34.(2016暨阳联谊)已知正实数x,y 满足2x+y=2,则22y x x ++的最小值为_____________35. 已知正实数a,b 满足1922=+b a ,则ba ab+3的最大值为_____________36. 已知实数a,b,c 满足a+b+c=0, 1222=++c b a 则a 的最大值为_____________37.(2018届杭二高三下开学)若164922=++xy y x ,x ∈R ,y ∈R ,则9x+6y 的最大值为_____________6.消元法(必要构造函数求异)38.(2016十二校联考13)若存在正实数y,使得yx x y xy 451+=-,则实数x 的最大值为_____________39.(2019届镇海中学5月模拟13)已知a,b ∈+R ,且a+2b=3,则ba 21+的最小值是_____________,2221ba +的最小值是_____________40.(2019届金华一中5月模拟9)已知正实数a,b 满足a+b=1,则的最大值是( )A.2B.21+C. 1332+D. 2223+41.(2017西湖区校级模拟)已知正实数a,b 满足042≤+-b a ,则ba ba u ++=32( ) A.有最大值为514 B. 有最小值为514 C.没有最小值 D.有最大值为342.(2018湖州期末)已知a,b 都为正实数,且311=+ba ,则ab 的最小值是_____________abb+1的最大值是_____________7.不等式算两次43. 设a >b >0,那么)(12b a b a -+的最小值为( )A.2B.3C.4D.544. 设a >2b >0,则)2(9)(2b a b b a -+-的最小值为_____________45.(2017天津)若a,b ∈R,ab >0,则abb a 1444++的最小值为_____________46. 若x,y 是正数,则22)21()21(xy y x +++的最小值是_____________47. 已知a,b,c ∈(0,+∞),则acbc c b a ++++25)(2222的最小值为_____________48.(2018天津一模)已知a >b >0,则ba b a a -+++232的最小值为_____________49.(2017西湖区校级模拟)已知正实数a,b 满足042≤+-b a ,则ba ba u ++=32( ) A.有最大值为514 B. 有最小值为514 C.没有最小值 D.有最大值为350. 已知a >0,b >0,c >0且a+b=2,则252-+-+c c ab c b ac 的最小值是_____________8.齐次化51.(2019届杭高高三下开学考T17)若不等式)(222x y cx y x -≤-对满足x >y >0的任意实数x,y 恒成立,则实数c 的最大值为_____________52.(2019届绍兴一中4月模拟)已知x >0,y >0,x+2y=3,则xyyx 32+的最小值为( )A.223-B.122+C.12-D.12+53.(2018浙江模拟)已知a >0,b >0,则2222296ba abb a ab +++的最大值为_____________ 若25422=+-y xy x ,则223y x +的取值范围是_____________54.(2016新高考研究联盟二模)实数x,y 满足22222=+-y xy x ,则222y x +的最小值是_____________9.待定与技巧性强的配凑55.(2016大联考)若正数x,y,z 满足3x+4y+5z=6,则zx z++++2y 4z y 21的最小值为_____________56.(2016杭二最后一卷)若正数x,y 满足11x 1=+y,则2210y xy x +-的最小值为_____________57.(2016宁波二模)已知正数x,y 满足xy ≤1,则M=1211x 1+++y 的最小值为_____________58.(2016浙江模拟)已知实数a,b,c 满足14141222=++c b a ,则ab+2bc+2ca 的取值范围是( )A.(]4,∞- B. []44,- C. []42,- D. []41,-59.(2019江苏模拟)已知x,y,z ∈(0,+∞)且1222=++c b a ,则3xy+yz 的最大值为_____________60.(2016大联考)已知12222=+++d c b a ,则ab+2bc+cd 的最大值为_____________61.(2017学年杭二高三第三次月考)已知{}222)()()(min T z x y z y x +++=,,,且x+y+z=2,则T 的最大值是( )A.38 B.8 C. 34D. 3262. 已知a,b,c ∈+R ,则bcab c b a 2222+++的最小值是_____________63. 已知a,b,c ∈R ,且4222=++c b a ,则bc ab 25+的最大值是_____________64. 已知a,b,c ∈R ,且4222=++c b a ,则ac+bc 的最大值为_____________,又若a+b+c=0,则c 的最大值是_____________10.多元变量的不等式最值问题65.(2019届浙江名校新高考研究联盟第9题)已知正实数abcd 满足a+b=1,c+d=1,则d1abc 1+的最小值是( ) A.10 B.9 C.24 D.3366.(2019届杭四仿真卷)已知实数x,y,z 满足⎩⎨⎧=++=+512222z y x z xy ,则xyz 的最小值为_____________67.(2019届慈溪中学5月模拟)若正实数a,b,c 满足a(a+b+c)=bc ,则cb +a的最大值为_____________68.(2017浙江期末)已知实数a,b,c 满足a+b+c=0,a ﹥b ﹥c,则22ca b +的取值范围是( )A.)55,55(-B. )51,51(-C.)2,2(-D. )55,2(- 69.(2018浦江县模拟)已知实数a,b,c 满足1222=++c b a ,则ab+c 的最小值为( )A.-2B.23- C.-1 D.-21 70.(2016秋湖州期末)已知实数a,b,c 满足132222=++c b a ,则a+2b 的最大值为( )A.3 B.2 C.5D.371.(2019江苏一模)若正实数a,b,c 满足ab=a+2b ,abc=a+2b+c ,则c 的最大值为_____________72.(2018秋辽宁期末)设a,b,c 是正实数且满足a+b ≥c ,则cb aa b ++的最小值为_____________73.(2017秋苏州期末)已知正实数a,b,c 满足11a 1=+b,11b a 1=++c ,则c 的取值范围是_____________74.(2019届浙江名校协作体高三下开学考17)若正数a,b,c 满足1222=--++bc ab c b a ,则c 的最大值为_____________75.(2018届衢州二中5月模拟12)已知非负实数a,b,c 满足a+b+c=1,则(c-a)(c-b)的取值范围是_____________ 76.(2018届上虞5月模拟16)若实数x,y,z 满足x+2y+3z=1, 194222=++z y x ,则z 的最小值为_____________11.不等式综合应用77.(2018春衢州期末)已知x,y >0,若,1464x y x y +=++ 则yx 14+的最小值是( )A.6B.7C.8D.9 78.(2018嘉兴模拟)已知,0x ,841x )>(y yx y ++=+则x+y 的最小值为( ) A.35 B.9 C.2624+ D.1079.(2018越城区校级)已知x,y >0,且,419211x =+++y x y 则y167x 3-的最小值是_____________80.(2016台州期末)已知a,b,c ∈(0,1),设ac c b b a -+-+-+112,112,112这三个数的最大值为M ,则M 的最小值为( )A.5B.223+C. 223-D.不存在81.(2019乐山模拟)已知实数x,y 满足x >1,y >0, ,111114x =+-++yx y 则y11-x 1+的最大值 为_____________82.(2019乐山模拟)已知x,y 为正实数,且满足)2)(23(12-+=-y y xy )(,则y1+x 的最大值为_____________83.(2019届镇海中学最后一卷)已知x,y >0,且1y1x 82=+,则x+y 的最小值为_____________。