“abc猜想”讲义(十四)

合集下载

“abc猜想”讲义(十三)

“abc猜想”讲义(十三)

“abc猜想”讲义(十三)第十三讲证明“abc猜想”主讲王若仲在第九讲中,(iv)对于等式m+g=n,m和g以及n均不为恒定的值。

我们现在就分析第(iv)的情形。

(iv)对于m+g=n,当m,g,n均不为恒定的值时,由第七讲中的定理4.1和推论4.1可知,随着m和g以及n的变化,rad(m)和rad(g)以及rad(n)必为下列情形之一:①rad(m)和rad(g)均为恒定的值,rad(n)不可能为恒定的值。

②rad(n)和rad(g)均为恒定的值,rad(m)不可能为恒定的值。

③rad(n)和rad(m)均为恒定的值,rad(g)不可能为恒定的值。

④rad(n)为恒定的值,rad(m)和rad(g)均不为恒定的值。

⑤rad(m)为恒定的值,rad(n)和rad(g)均不为恒定的值。

⑥rad(g)为恒定的值,rad(m)和rad(n)均不为恒定的值。

⑦rad(n)和rad(m)以rad(g)均不为恒定的值。

我们注意观察,从第(iv)中的①,②,③,④,⑤,⑥,⑦等情形来看,我们不难发现:①和⑤以及⑥和⑦的情形中,rad(n)均不为恒定的值。

那么①和⑤以及⑥和⑦这几种情形就与(ii)中(三)的情形同理可得出同样的结论。

②和③的情形可互换,即②和③为同类型的情形。

⑤和⑥的情形可互换,即⑤和⑥为同类型的情形。

我们下面逐步分析研究:(一)对于①,rad(m)和rad(g)均为恒定的值,由第七讲中的不定方lim 程定理4.1和推论4.1可知,rad(n)不可能为恒定的值。

因n÷n=1,那么+∞→n lim(n)=1。

(n)÷n→+∞又因n=[rad(n)]·H;当正整数n不断增大时,那么根数rad(n)总趋势也是随着正整数n的不断增大而不断增大,那么这种情形下,当正整数n趋向于正无穷大时,根数rad(n)也趋向于正无穷大;而n÷{[rad(n)]·H}=1恒成立。

数论中的费马大定理和ABC猜想

数论中的费马大定理和ABC猜想

数论是研究整数性质和整数关系的数学分支。

它是数学中最古老和最基本的学科之一,也是现代密码学和计算机科学的基础。

数论中有两个重要的猜想,分别是费马大定理和ABC猜想。

本文将介绍这两个猜想的相关概念和研究进展。

费马大定理是以法国数学家费马命名的。

它提出了一个有关整数解的问题。

具体来说,费马大定理指出没有大于2的正整数 n 可以使得 a^n + b^n = c^n 成立。

这个定理最早是在1637年由费马提出的,但他只在他的笔记中给出了一个简短的注释,没有给出具体的证明。

这个问题在接下来的几个世纪中引起了数学家们的强烈兴趣,直到1995年才被英国数学家安德鲁·怀尔斯给出了完整的证明。

费马大定理的证明过程非常复杂,涉及到多个数学领域,包括代数学,几何学和数理逻辑等。

怀尔斯的证明使用了模形式理论和黎曼尤尔查德假设,这使得证明变得非常复杂和抽象。

费马大定理的证明是数论史上的一个重要里程碑,它的证明方法对于其他问题的解决也具有重要的启示作用。

ABC猜想是由日本数学家筒井康隆于1985年提出的。

它是一个与素数有关的猜想。

ABC猜想涉及到三个正整数 a,b,c,使得 a + b = c。

其中 a,b,c 互质(即它们没有公因子),且 c 的质因子不超过 a + b 的质因子个数的某个固定常数 K。

ABC猜想表述了对于任意小于1的正实数ε,存在一个正常数常数Cε,使得abc > Cε (a + b)^(1 + ε) 对所有符合 a+b=c 条件的 a、b 和 c 都成立。

简单来说,这个猜想指出对于一个满足 a + b = c 的三个数,如何确定它们之间的质因子分布。

ABC猜想的证明至今未能得到,但已有一些部分性质被证明。

例如,2012年,法国数学家尼科勒纳广义了ABC猜想,提出了Mochizuki的证明方法,陈述为IUT理论。

但这个证明方法现在仍然争议纷纭并存在争议,尚未达成共识。

尽管如此,ABC猜想仍然被广泛研究,并且在数论领域中具有重要的地位。

中考数学勾股定理(讲义及答案)附解析

中考数学勾股定理(讲义及答案)附解析

一、选择题1.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .9 2.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .63.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③4.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1525.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .826.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )A .3B .3.3C .4D .4.58.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .610.有下列的判断: ①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形③如果△ABC 是直角三角形,那么a 2+b 2=c 2以下说法正确的是( )A .①②B .②③C .①③D .②二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.14.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.18.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.19.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.28.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠.求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.29.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.30.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 2.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 3.A解析:A【分析】作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形;由割补法可知四边形CDFE 的面积保持不变;△DEF 是等腰直角三角形2DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值42,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.4.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S 1,S 2,S 3,再利用S 1+S 2+S 3=15求解是解决问题的关键.5.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=12×CD×BC=12×3×4=6,∵P是BD的中点,∴S△PBC=12S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.9.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.12.45【分析】如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可【详解】如下图,延长BA 至网络中的点D 处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14.【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,BD BE DE64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.15.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.1671【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N 22''OM ON +. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.18.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD , ∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.19.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解. 【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ , 12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.20.【分析】根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4,∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DMBM ,进而可得BE +CF(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC ﹣∠AED =45°,理由如下:∵∠AED =∠ABE =α,∴∠BAE =180°﹣2α,∴∠CAE =∠BAE ﹣∠BAC =90°﹣2α,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =45°+α,∴∠AEC ﹣∠AED =45°;(3)如图,过点C 作CG ⊥AH 于G ,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;③在Rt AHB 中,由①知:6EH HB ==∴622 AH AE EH=+=+,22222256623AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN∠+∠=︒,∴AN DE⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为2033或1235. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=22236c a b a ∴=++根据优三角形的定义,分以下三种情况:当2a b c +=时,26236a a +=+,整理得24360a a -+=,此方程没有实数根。

第14讲 简单的轴对称图形与利用轴对称进行设计八年级数学下册同步精品讲义

第14讲  简单的轴对称图形与利用轴对称进行设计八年级数学下册同步精品讲义

第14讲简单的轴对称图形与利用轴对称进行设计目标导航知识精讲知识点01 角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C 在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE【知识拓展】(2021秋•昌吉市校级期末)如图,∠A=90°,CD平分∠ACB,DE⊥BC于E,且AB=3cm,BD=2cm,则DE=cm.【即学即练1】(2021秋•顺平县期末)如图(1),三角形ABC中,BD是∠ABC的角平分线.(1)若∠A=80°,∠ABC=58°,则∠ADB=°.(2)若AB=6,设△ABD和△CBD的面积分别为S1和S2,已知,则BC的长为.(3)如图(2),∠ACE是△ABC的一个外角,CF平分∠ACE,BD的延长线与CF相交于点F,CG平分∠ACB,交BD于点H,连接AF,设∠BAC=α,求∠BHC与∠HFC的度数(用含α的式子表示).【即学即练2】(2022春•江都区月考)如图,在△ABC中,∠ACB=2∠B,CD平分∠ACB,AD=2,BD =3,则AC的长为()A.3B.C.4D.知识点02线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.【知识拓展1】(2021秋•曲阳县期末)如图,AB比AC长3cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14cm,则AB=,AC=.【即学即练1】(2022•珠海二模)如图,在△ABC中,BC的垂直平分线交AC,BC于点D,E.若△ABC 的周长为30,BE=5,则△ABD的周长为()A.10B.15C.20D.25【即学即练2】(2021秋•长丰县期末)如图,在△ABC中,∠C=90°,分别以A、B为圆心画弧,所画的弧交于两点,再连接该两点所在直线交BC于点D,连接AD.若BD=2,则AD的长为()A.B.C.1D.2【知识拓展2】(2021秋•汉阴县校级期末);如图,已知△ACD的周长是14,AB﹣AC=2,BC的垂直平分线交AB于点D,BC交AB于点D,交BC于点E,求AB和AC的长.【即学即练1】(2021秋•怀柔区期末)如图,在△ABC中,DE垂直平分BC,垂足为E,交AC于点D,连接BD.若∠A=100°,∠ABD=22°,求∠C的度数.知识点03 等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.【知识拓展1】如图,在△ABC中,∠A=70°,AB=15cm,AC=10cm,点P从点B出发以3cm/s的速度向点A运动,点Q从点A同时出发以2cm/s的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2s B.3s C.4s D.5s【即学即练1】(2021秋•鼓楼区校级期末)量角器测角度时摆放的位置如图所示,在△AOB中,OA=OB,射线OC交边AB于点D,则∠ADC=°.【知识拓展2】(2022•拱墅区模拟)如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.(1)若∠ABC=80°,求∠DCA的度数;(2)若∠DCA=x°,求∠EBC的度数(用含x的代数式表示).【即学即练1】(2021秋•自贡期末)在△ABC中,AB=AC,过点C作CD⊥BC,垂足为C,∠BDC=∠BAC,AC与BD交于点E.(1)如图1,∠ABC=60°,BD=6,求DC的长;(2)如图2,AM⊥BD,AN⊥CD,垂足分别为M,N,CN=4,求DB+DC的长.知识点04等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.【知识拓展1】(2022春•江都区月考)如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为24,则PD+PE+PF=()A.8B.9C.12D.15【即学即练1】(2022春•泰州月考)如图,已知∠XOY=60°,点A在边OX上,OA=4.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC内(不包括各边)的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=m,OE=n,则m+2n的取值范围是.【知识拓展2】(2021秋•连江县期末)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D,E,AE,BD相交点O,连接DE.(1)判断△CDE的形状,并说明理由;(2)求证:S△AOB=2S△OBE.【即学即练1】(2021秋•绵竹市期末)在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.知识点05 作图-轴对称变换几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.【知识拓展1】(2021秋•昌吉市校级期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B(3,﹣3),C(1,﹣1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)写出△A1B1C1各顶点的坐标;(3)求△ABC的面积.【即学即练1】(2021•安徽模拟)如图,在四边形ABCD中,请在所给的图形中进行操作:①作点A关于BD的对称点P;②作射线PC交BD于点Q;③连接AQ.试用所作图形进行判断,下列选项中正确的是()A.∠PCB=∠AQB B.∠PCB<∠AQBC.∠PCB>∠AQB D.以上三种情况都有可能【即学即练2】(2021秋•广饶县期中)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A'B'C',并在所画图中标明字母;(2)△ABC的面积为;(3)在直线l上找一点P,连接PB、PC,当PB+PC最小时,这个最小值是.知识点06 利用轴对称设计图案利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.【知识拓展1】(2021秋•吐鲁番市期末)在6×6的网格中已经涂黑了三个小正方形,请在图中涂黑一块(或两块)小正方形,使涂黑的四个(或五个)小正方形组成一个轴对称图形.【即学即练1】(2022春•海淀区校级月考)北京2022年冬奥会的举办,再次点亮了北京这座千年古都.在下列北京建筑的简笔画图案中,是轴对称图形的是()A.国家体育场B.国家游泳中心C.天安门D.国家大剧院【即学即练2】(2021秋•兴化市期末)如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形构成一个轴对称图形,那么涂法共有种.【即学即练3】(2021秋•黄石港区期末)如图a,网格中的每一个正方形的边长为1,△ABC为格点三角形,直线MN为格点直线(点A、B、C、M、N在小正方形的顶点上).(1)仅用直尺在图a中作出△ABC关于直线MN的对称图形△A′B′C′.(2)如图b,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影.(3)如图c,仅用直尺作三角形ABC的边AC上的高,简单说明你的理由.能力拓展一.选择题(共6小题)1.(2020•西安自主招生)已知等腰三角形一个外角是110°,则它的底角的度数为()A.110°B.70°C.55°D.70°或55°2.(2020•郎溪县校级自主招生)如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P(A、P、C三点不共线),记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A.S1+S3=S2+S4B.S1+S2=S3+S4C.S1+S4=S2+S3D.S1=S33.(2018•市南区校级自主招生)如图,在△ABC中,∠BAC的平分线与BC边的中垂线交于点D,DE⊥AB于E,连接CD.若CD=2,DE =,则∠ACD=()A.150°B.135°C.120°D.110°4.(2021•黄州区校级自主招生)直线a∥b,A、B分别在直线a、b上,△ABC为等边三角形,点C在直线a、b之间,∠1=10°,则∠2=()A.30°B.40°C.50°D.70°5.(2019•汉阳区校级自主招生)如图,已知等边△ABC外有一点P,P落在∠BAC内,设点P到BC、CA、AB三边的距离分别为h1,h2,h3且满足h2+h3﹣h1=18,那么等边△ABC的面积为()A.B.C.D.6.(2019•柯桥区自主招生)平面上任意一点到边长为的等边三角形三顶点距离之和不可能的是()A.3B.6C.4D.8二.填空题(共7小题)7.(2019•和平区校级自主招生)把3,6,10,15,…这些数叫做三角形数,这是因为用这些数目的点可以排成正三角形,如图所示,则第6个三角形数是.8.(2020•浙江自主招生)设锐角△ABC的边BC上有一点D,使得AD把△ABC分成两个等腰三角形,试求△ABC的最小内角的取值范围为.9.(2020•武昌区校级自主招生)如图1是个轴对称图形,且每个角都是直角,长度如图所示,小王按照如图2所示的方法玩拼图游戏,两两相扣,相互不留空隙,那么小王用2020个这样的图形(图1)拼出来的图形的总长度是.(结果用m,n表示)10.(2020•浙江自主招生)如图,在△ABC中,AB=AC,CM平分∠ACB,与AB交于点M,AD⊥BC于点D,ME⊥BC于点E,MF⊥MC与BC交于点F,若CF=10,则DE=.11.(2019•顺庆区校级自主招生)已知△ABC中,AB=AC,线段AB的垂直平分线与直线AC相交形成的锐角是50°,则∠BAC=.12.已知直线AB和△DEF,作△DEF关于直线AB的对称图形,将作图步骤补充完整:(如图所示)(1)分别过点D,E,F作直线AB的垂线,垂足分别是点;(2)分别延长DM,EP,FN至,使=,=,=;(3)顺次连接,,,得△DEF关于直线AB的对称图形△GHI.13.(2008•合肥开学)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格占为顶点的三角形,这样的三角形共有个,请在下面所给的格纸中一一画出.(所给的六个格纸未必全用).三.解答题(共4小题)14.(2021秋•寻乌县期末)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1;B1,;C1;(2)△ABC的面积为;(4)在y轴上画出点P,使PB+PC最小.15.(2021秋•绵竹市期末)在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB 的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.16.(2021秋•木兰县期末)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.建立如图所示平面直角坐标系,点A的坐标为(﹣5,2).(1)画出与△ABC关于y轴对称的A1B1C1;(2)通过画图在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB并直接写出点Q的坐标.Q 的坐标为.17.(2021秋•开封期末)在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.分层提分题组A 基础过关练一.选择题(共6小题)1.(2021秋•普兰店区期末)如图,DE,DF分别是线段AB,BC的垂直平分线,连接DA,DC,则()A.∠A=∠C B.∠B=∠ADC C.DA=DC D.DE=DF2.(2021秋•细河区期末)如图,已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(在B,C不与点O重合)连接AB,连AC交射线OE于点D,且AB∥ON,当△OCD是等腰三角形时,则∠OAC=()A.60°或40°或120°B.80°或40°C.60°或120°D.70°或120°3.(2022•宝鸡模拟)如图,在△ABC中,AB=AC,AD平分∠BAC,点E是AD上的点,且AE=EC,若∠BAC=45°,BD=3,则CE的长为()A.3B.3C.2D.44.(2021秋•嵊州市期末)如图,在△ABC中,CA=CB,∠ACB=110°,延长BC到D,在∠ACD内作射线CE,使得∠ECD=15°.过点A作AF⊥CE,垂足为F.若AF=,则AB的长为()A.B.2C.4D.65.(2021秋•雁江区期末)等腰三角形一边长等于2,一边长等于3,则它的周长是()A.5B.7C.8D.7或86.(2021秋•信都区期末)如图,在等边三角形ABC中,AB=4,D是边BC上一点,且∠BAD=30°,则CD的长为()A.1B.C.2D.3二.解答题(共6小题)7.(2021秋•定陶区期末)如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠C=35°,求∠BAE的度数.8.(2021秋•濮阳期末)如图,AB=AC=AD,且AD∥BC,∠BAC=28°,求∠D的度数.9.(2021秋•岑溪市期末)已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE交AC于点D,交AB 于点E,∠C=75°.(1)求∠A的度数;(2)求∠CBD的度数.10.(2021秋•嘉鱼县期末)(1)如图1,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数;(2)如图2,在△ABC中,AB=AD=DC,且AC=BC,求∠C的度数.11.(2021秋•岑溪市期末)在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(0,1),B(2,﹣1),C(4,4).(1)请在所给的坐标系中画出△ABC;(2)画出△ABC关于y轴对称的△A′B′C′(其中A′、B′、C′分别是A、B、C的对应点).12.(2021秋•利通区校级期末)如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴的对称图形△A1B1C1,并直接写出△ABC关于x轴对称的△A2B2C2的各点坐标.试求出△ABC的面积.题组B 能力提升练一.选择题(共3小题)1.(2021秋•望城区期末)如图,在等腰△ABC中,∠ABC=116°,AB的垂直平分线DE交AB于点D,交AC于点E,BC的垂直平分线PQ交BC于点P,交AC于点Q,连接BE,BQ,则∠EBQ=()A.62°B.58°C.52°D.46°2.(2021秋•南昌期末)如图,在△ABC中,AB=AC,∠ABM=∠CBN,MN=BN,则∠MBC的度数为()A.45°B.50°C.55°D.60°3.(2021秋•西城区校级期中)如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形,一共有()种涂法.A.1B.2C.3D.4二.填空题(共6小题)4.(2021秋•鹿邑县期末)如图,在四边形ABCD中,∠BAD=60°,CD⊥AD,CB⊥AB,AC的延长线与∠ADC、∠ABC相邻的两个角的平分线交于点E,若CD=CB,则∠CED的度数为.5.(2021秋•钢城区期末)如图,BD垂直平分AC,交AC于E,∠BCD=∠ADF,F A⊥AC,垂足为A,AF =DF=5,AD=6,则AC的长为.6.(2022•鼓楼区校级开学)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是.7.(2021秋•道县期末)如图,已知∠MON=30°,A、B、C、D在射线ON上,点E、F、G在射线OM 上,△ABE、△BCF、△CDG均为等边三角形,若OA=1,则△CDG的周长为.8.(2021春•城阳区期末)(1)已知:线段a,∠α,∠β.求作:△ABC,使AB=a,∠A=α,∠B=β.(请用直尺、圆规作图,不写作法,但要保留作图痕迹)结论:.(2)如图,在长度为1个单位的小正方形组成的网格中,点A,B,C在小正方形的顶点上,在图中画出与△ABC关于直线l成轴对称的△A'B'C'.结论:.9.(2021春•大洼区月考)在4×4的方格中,有五个同样大小的正方形如图摆放,移动其中的小正方形A 到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形.这样的移法共有种.三.解答题(共4小题)10.(2021秋•道县期末)如图,在△ABC中,∠ABC=60°,∠ACB=40°,点P为∠ABC、∠ACB的角平分线的交点.(1)∠BPC的度数是.(2)请问点P是否在∠BAC的角平分线上?请说明理由.(3)证明:AB=PC.11.(2021秋•安庆期末)教材呈现,如图是华师版八年级上册数学教材第96页的部分内容.定理证明:请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:如图②,△ABC的周长是10,BO、CO分别平分∠ABC和∠ACB,OD⊥BC于点D,若OD =3,求△ABC的面积.12.(2021秋•宜州区期末)如图,点D在等边△ABC的外部,E为BC边上的一点,AD=CD,DE交AC 于点F,AB∥DE.(1)判断△CEF的形状,并说明理由;(2)若BC=10,CF=4,求DE的长.13.(2022•黄陂区模拟)在8×6的网格中,A,B,C是格点,D是AB与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示:(1)在线段AC上取点E,使DE=CD;(2)画格点F,使EF∥AB;(3)画点E关于AB的对称点G;(4)在射线AG上画点P,使∠PDE与∠GAE互补.题组C 培优拔尖练一.解答题(共12小题)1.(2021秋•仓山区期末)如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.2.(2021秋•伊川县期末)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.3.(2021秋•南阳期末)在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=.(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=.(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?并给予证明.4.(2021秋•沂源县期末)如图,在△ABC中,点E,F在BC上,EM垂直平分AB交AB于点M,FN垂直平分AC交AC于点N,∠EAF=90°,BC=12,EF=5.(1)求∠BAC的度数;(2)求S△EAF.5.(2021秋•武城县期末)已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.6.(2021秋•黄石期末)如图,平面直角坐标系中,△AOB的顶点均在边长为1的正方形在顶点上.(1)求△AOB的面积;(2)若点B关于y轴的对称点为C,点A关于x轴的对称点为D,求四边形ABCD的面积.7.(2021秋•尚志市期末)如图,△ABC的三个顶点的坐标分别为A(0,6),B(﹣4,2),C(﹣1,3).(1)画出与△ABC关于y轴对称的△AB1C1,并写出点B1的坐标;(2)在x轴上找出点P,使PC+PB1最小,并直接写出点P的坐标.(保留必要作图痕迹)8.(2021秋•垦利区期末)在如图的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在网格平面内画出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)分别写出点A′、B′、C′的坐标.9.(2020秋•澄海区期末)直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、F.(1)如果∠AFE=65°,求∠CDF的度数;(2)若折叠后的△CDF与△BDE均为等腰三角形,那么纸片中∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.10.(2021秋•滑县校级期末)已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB 于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.11.(2020秋•大足区期末)在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.(1)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE 的数量关系,并证明你的猜想.(2)当点D在直线BC上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,求∠CDE 的度数(直接写出结果).12.(2021秋•常州期中)如图,正方形网格中的每个小正方形边长都是1.请同学们利用网格线进行画图:(1)在图1中,画一个顶点为格点、面积为5的正方形;(2)在图2中,已知线段AB、CD,画线段EF,使它与AB、CD组成轴对称图形;(要求画出所有符合题意的线段)(3)在图3中,找一格点D,满足:①到CB、CA的距离相等;②到点A、C的距离相等.。

“abc猜想”讲义(17)

“abc猜想”讲义(17)

相同的正实数(z11,z12,z13,…,z1e,y11)和(z21,z22,z23,…,z2e,y12), 即至少有一个 z1i≠z2i(i=1,2,3,…,e)或者 y11≠y12,那么必然存在两
2
个正实数
x11

x12(x11≠x12),使得(
g z11 11
·
g z12 12
·
g z13 13
函数ψ(zi,y)=
g z1 11
·
g z2 12
·
g z3 13
·…·
g ze 1e
-
d
y
,由第六讲中的定义
3.2

知,定义域中任一一组 zi 和 y 的确定值有唯一函数ψ(zi,y)的值与之对应,
同时任一函数ψ(zi,y)的值有唯一
rad(
g z1 11
·
g z2 12
·
g z3 13
·…·
g ze 1e
·
g v2 11
·
g v3 11
·…·
g ve 1e
)÷m}存在正实数极限。令
x+
d
y
=
g z1 11
·
g z2 12
·
g z3 13
·…·
g ze 1e
,x

y
以及
zi
均为不小于
1
的正实数。设
函数
f ( zi , y ) = (
g z1 11
·
g z2 12
·
g z3 13
·…·
g ze 1e
)÷
g ve 1e
) ÷m , 不 管
m

1

“abc猜想”讲义(14)

“abc猜想”讲义(14)

“abc 猜想”讲义(14)第十四讲证明“abc 猜想”主讲王若仲第九讲中,(iv )对于等式m +g =n ,m 和g 以及n 均不为恒定的值。

我们现在就分析第(iv )的情形。

(iv )对于m +g =n ,当m ,g ,n 均不为恒定的值时,由前面第七讲中的不定方程定理4.1和推论4.1可知,随着m 和g 以及n 的变化,rad(m )和rad (g )以及rad(n )必为下列情形之一:①rad(m )和rad(g )均为恒定的值,rad(n )不可能为恒定的值。

②rad(n )和rad(g )均为恒定的值,rad(m )不可能为恒定的值。

③rad(n )和rad(m )均为恒定的值,rad(g )不可能为恒定的值。

④rad(n )为恒定的值,rad(m )和rad(g )均不为恒定的值。

⑤rad(m )为恒定的值,rad(n )和rad(g )均不为恒定的值。

⑥rad(g )为恒定的值,rad(m )和rad(n )均不为恒定的值。

⑦rad(n )和rad(m )以rad(g )均不为恒定的值。

我们注意观察第(iv )中①,②,③,④,⑤,⑥,⑦的情形,可得出这样的结论;①和⑤以及⑥和⑦中,rad(n )均不为恒定的值,那么①和⑤以及⑥和⑦这几种情形与第(ii )中(三)的情形同理可得出同样的结论。

②和③的情形可互换,只分析其中的一种情形即可。

⑤和⑥的情形可互换,只分析其中的一种情形即可。

(一)对于第(iv )中①的情形,rad(m )和rad(g )均为恒定的值,由前面第七讲中的不定方程定理4.1和推论4.1可知,rad (n )不可能为恒定的值。

因n ÷n=1,那么+∞→n lim (n )÷+∞→n lim (n )=1。

又因n=[rad(n )]·H;当正整数n 不断增大时,那么根数rad(n )总趋势也是随着正整数n 的不断增大而不断增大,那么这种情形下,当正整数n 趋向于正无穷大时,根数rad(n )也趋向于正无穷大;而n÷{[rad(n )]·H }=1恒成立。

“abc猜想”讲义(21)

“abc猜想”讲义(21)

·
g v3 11
·…·
g ve 1e
-g)}=(
g11
·
g12
·
g13
·…·
g1e
)÷( g11 · g12 · g13 ·…· g1e -1)。
则函数 f(zi,y)在 ziϵ[1+ε,+∞-ε],yϵ[1+ε,+∞-ε]的闭区域中有界。
即存在恒定的正实数 E(1<E<+∞),使得 1<f(zi,y)≤E 或者 1<f(zi,y)
<E
恒成立。那么对于(
g v1 11
·
g v2 11
·
g v3 11
·…·
g ve 1e
) ÷m , 不 管
m

g v1 11
·
g v2 11
·
g v3 11
·…·
g ve 1e
以及
g
如何变化,1<

g v1 11
·
g v2 11
·
g v3 11
·…·
g ve 1e
) ÷m ≤ E
或者
1<

g v1 11
·…·
g ze 1e
)]=1÷[1-y÷(
g z1 11
·
g z2 12
·
g z3 13
·…·
g ze 1e
)]
=1 。 因 为
1<(
g z1 11
·
g z2 12
·
g z3 13
·…·
g ze 1e
) ÷x < 2 ,
g z1 11
·
g z2 12
·
g z3 13
·…·

(晨鸟)初一数学秋季讲义第14讲图形中的观察、归纳与猜想

(晨鸟)初一数学秋季讲义第14讲图形中的观察、归纳与猜想

1壮壮饿了…满分晋级阶梯漫画释义14图形中的观察、归纳与猜想图形的认识9级平行线构造与等积变换图形的认识8级图形中的观察、归纳与猜想图形的认识7级平行线的性质及判定寒假班第三讲秋季班第十四讲秋季班第十三讲2从一个简单的、基本的图形开始,按照一定的规律,变化成复杂、有趣而美丽的图形,并探寻图形的边长、周长、面积的变化规律,这类图形变化的问题是近年中考、竞赛的一个热点问题.【引例】用火柴棍像如图这样搭三角形:你能找出规律猜想出下列两个问题吗?我们可以发现搭1个图形需要3根火柴,搭2个图形需要5根火柴,……①搭7个三角形需要根火柴.②搭n 个三角形需要根火柴.【解析】法一:通过数量关系找规律,如图,第1、2、3、4……个图形中火柴的个数依次是3、5、7、9……所以第7个三角形需要15根火柴,第n 个三角形需要21n 根火柴;法二:第一个图形中有3根火柴,第2个图形中有321个根火柴,第3个图形中有322根火柴,第4个图形中有323根火柴,………第n 个图形中有32(1)21n n 根火柴.【点评】解决图形规律问题思路众多,此处不一一列举.知识互联网思路导航例题精讲题型一:探究图形规律3【例1】⑴按下图方式摆放餐桌和椅子:如果按照图的方式继续排列餐桌,请完成下表:桌子张数 1 2 3 10n可坐人数61014⑵观察下列图案:第1个图案第2个图案第3个图案它们是按照一定规律排列的,依照此规律,第5个图案中共有个三角形,第n (1n ≥,且n 为整数)个图案中三角形的个数为(用含有n 的式子表示).(昌平区一模)⑶图1是一个三角形,分别连接这个三角形三边的中点得到图2,再分别连接图2中间小三角形三边的中点,得到图3.图3图2图1①图2有个三角形;图3有个三角形;②按上面的方法继续下去,第n 个图形中有多少个三角形?⑷已知:如图, 互相全等的平行四边形按一定的规律排列.其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,第④个图形中一共有个平行四边形,……,第n 个图形中一共有平行四边形的个数为个.【解析】⑴42,42n;⑵22,42n;⑶①5,9.②43n .典题精练4⑷19,21nn 【备选】如图是由大小相同的小立方体木块叠加而成的几何体,图1中有1个立方体,图2中有4个立方体,图3中有9个立方体,……,按这样的规律叠放下去,第8个图中小立方体个数是.【解析】2864.【例2】⑴观察下列图形(每幅图中最小的三角形都是一样的),请写出第n 个图中最小的三角形的个数有个.⑵如图摆放在地上的正方体的大小均相等,现在把露在外面的表面涂成红色,从上向下数,每层正方体被涂成红色的面数分别为:第一层:侧面个数上面个数1415;第二层:侧面个数上面个数24311;第三层:侧面个数上面个数34517;第四层:侧面个数上面个数44723;…………根据上述的计算方法,总结规律,并完成下列问题:①求第6层有多少个面被涂成了红色?②求第n 层有多少个面被涂成了红色?(用含n 的式子表示)③若第m 层有89个面被涂成红色,请你判断这是第几层?并说明理由.【解析】⑴14n ;⑵①第6层:侧面个数上面个数6411241135,故第6层有35个面被涂成了红色.②第n 层:被涂成了红色的面的个数为:4(21)(61)nn n .③依题意可得:6189m ,∴690m ∴15m ,故这是第15层.【例3】如图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去:图1图2 图3第一层第二层第三层第1个图第2个图第3个图第4个图5⑴填表:⑵如果剪了100次,共剪出多少个小正方形?⑶如果剪n 次,共剪出多少个小正方形?⑷观察图形,你还能得出什么规律?【解析】⑴如表.剪的次数12345正方形个数47101316⑵如果剪了100次,共剪出11003301个小正方形;⑶如果剪n 次,共剪出13n 个小正方形;⑷观察图形,还能得出的规律是:剪n 次,最小正方形的边长为原来的12n.【例4】⑴假设有足够多的黑白围棋子,按照一定的规律排成一行,如图:……那么请问第2007个棋子是黑的还是白的?答:.⑵在数学活动课上,小红同学准备用两种不同颜色的布拼接一个正方形杯垫,杯垫的图案设计如图所示,最后应选择下图中的哪一个才能使其与上图拼接后符合图案的设计模式?().DC BA⑶在数学活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是,跳动第2012次到达的顶点是.⑷如图所示,圆圈内分别标有1,2,…,12,这12个数字,电子跳蚤每跳一步,可以从一个圆圈逆时针跳到相邻的圆圈,若电子跳蚤所在圆圈的数字为n ,则电子跳蚤连续跳(32n )步作为一次跳跃,例如:电子跳蚤从标有数字1的圆圈需跳3121步到标有数字2的圆圈内,完成一次跳跃,第二次则要连续跳3224步到达标有数字6的圆圈,…依此规律,若电子跳蚤从①开始,那么第3次能跳到的圆圈内所标的数字为;第2012次电子跳蚤能跳到的圆圈内所标的数字为.【解析】⑴黑的;⑵A ;⑶B ;C ;⑷10;6.剪的次数12345正方形个数47A DCB1112109876543216有效的数学学习不是单纯地依赖模仿与记忆,动手实践、自主探索是学习数学的重要方法.解实验操作题的关键是:在实验与操作获得直观形象经验的基础上,能发现规律,将其转化为一个数学问题.图形的翻折与剪拼是实验与操作题中经常遇到的问题,学生应熟练掌握.【例5】选择填空.⑴如图,等边ABC △的边长为1cm ,D 、E 分别是AB 、AC 上的点,将ADE △沿直线DE 折叠,点A 落在点A 处,且点A 在ABC △外部,则阴影部分图形的周长为cm .⑵甲乙两人各用一张正方形的纸片ABCD 折出一个45的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则145;乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则45MAN对于两人的做法,下列判断正确的是().NM1PABCDACD(B)DCBAA .甲乙都对B .甲对乙错C .甲错乙对D .甲乙都错⑶把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时,阴影部分的面积为S 2,则S 1S 2(填“>”、“<”或“=”).【解析】⑴3;⑵A ;⑶S 1 = S 2.【例6】⑴如图所示,把一个正方形纸片三次对折后沿虚线剪下,则展平后所得的图形是().思路导航典题精练题型二:实验与操作图1ACBCBA 图2AB C DEA ′7C ′B ′EDCBA沿虚线剪开右下方折右折上折A .B .C .D .(西城区期末)⑵如下图①,小强拿一张正方形的纸,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线剪去一个角,再打开后的形状是()①②③A .B .C .D .⑶将一正方形纸片按图中①、②的方式依次对折后,再沿③中的虚线裁剪,最后将④中的纸片打开铺平,所得图案应该是下面图案中的()④①②③①②③④A .B .C .D .(人大附中期末)【解析】⑴ C ;⑵ C ;⑶ B .【点评】既可以亲自剪裁,又可以按照折纸的先后顺序逐步倒推.8【例7】⑴如图,将一长方形纸片按图折叠,AE 、DE 为折痕,20C EB °,则AED 度数为.⑵当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD ,我们按如下步骤操作可以得到一个特定的角:①以点A 所在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ;②将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF交AD 于F .则AFE =.【解析】⑴80°;⑵67.5°.训练1. 对于大于或等于2的自然数n 的平方进行如下“分裂”,分裂成n 个连续奇数的和,则自然数72的分裂数中最大的数是,自然数n 2的分裂数中最大的数是.(通州区一模)【解析】13,2n -1.训练2. 如下图是某同学在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第n 个小房子用了块石子.【解析】24nn .训练3. 如图,把一张长方形纸片对折,折痕为AB ,以AB 的中点O 为顶点把平角AOB 三等分,沿平角的三等分线折叠,将折叠的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是().BAOABABOOABCD131 3 5思维拓展训练(选讲)91+8=?1+8+16=?⑶1+8+16+24=?……(1)(2)(3)A .正三角形B .正方形C .正五边形D .正六边形【解析】D.【点评】既可以亲自剪裁,又可以按照折纸的先后顺序逐步倒推.训练4. 图⑴是一个水平摆放的小正方体木块,图⑵、⑶是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是.【解析】91.题型一探索图形规律巩固练习【练习1】用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第3个图形中有黑色瓷砖块,第n 个图形中需要黑色瓷砖块(用含有n 的整式表示).图3图2图1【解析】10,31n .【练习2】观察下列图形及图形所对应的算式,根据你发现的规律计算1816248n …+(n 是正整数)的结果为()A .2(21)nB .2(21)n C .2(2)nD .2n复习巩固10【解析】A .【练习3】图1是棱长为a 的小正方体,图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…、第n 层,第n 层的小正方体的个数为s .解答下列问题:①按照要求填表:n 1234…s136…②写出当10n时,s.【解析】①123410;②123.题型二实验与操作巩固练习【练习4】如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()【解析】D .【练习5】如图,一个42的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个53的矩形用不同的方式分割后,小正方形的个数可以是.?□□□□□□□□或□□□□或【解析】4或7或9或12或15.图1 图2 图3AB C D第十三种品格:公平一根手指成就一座大桥1883年,富有创造精神的工程师约翰·罗布林雄心勃勃地意欲建造一座横跨曼哈顿和布鲁克林的大桥。

2018六年级奥数.杂题.逻辑推理(ABC级).学生版

2018六年级奥数.杂题.逻辑推理(ABC级).学生版

知识框架逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。

对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。

本讲我们主要从各个角度总结逻辑推理的解题方法。

一、列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲逻辑推理一、列表推理法【例1】刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【巩固】王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?欢迎关注:奥数轻松学余老师薇芯:69039270【例2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【巩固】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【例3】甲、乙、丙、丁四个人的职业分别是教师、医生、律师、警察.已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问(经常见面);⑷丁不是律师;⑸乙和丙从未见过面.那么甲、乙、丙、丁的职业依次是:.【巩固】甲、乙、丙三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴丙比大队长的成绩好.⑵甲和中队长的成绩不相同.⑶中队长比乙的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?欢迎关注:奥数轻松学余老师薇芯:69039270【例4】六年级四个班进行数学竞赛,小明猜想比赛的结果是:3班第一名,2班第二名,1班第三名,4班第四名.小华猜想比赛的结果是:2班第一名,4班第二名,3班第三名,1班第四名.结果只有小华猜到的4班为第二名是正确的.那么这次竞赛的名次是班第一名,班第二名,班第三名,班第四名。

“abc猜想”讲义(十五)

“abc猜想”讲义(十五)

“abc 猜想”讲义(十五)第十五讲证明“abc 猜想”主讲王若仲对于第(iv )中②的情形我们分成四种情形,第十四讲我们讲解了(1)和(2)的情形,这一讲我们讲解(3)和(4)的情形。

(3)b=g=111h q ·212h q ·313h q ·…·s h s q 1,c=n=v p ,因为m+111h q ·212h q ·313hq ·…·s h s q 1=v p ,m=[rad(m )]t ·H;其中t 为正整数,rad(m )>rad(H)。

当正整数n 和g 不断增大时,由第七讲中的定理4.2和定理4.3可知,幂差极值n-max (g )总趋势是随着正整数n 的不断增大而不断增大,那么正整数m 总趋势也是随着正整数n 的不断增大而不断增大,当正整数n 不断增大,而正整数g 不断减小时,那么正整数m 也是不断增大。

那么根数rad(m )总趋势也是随着正整数n 的不断增大而不断增大,那么这种情形下,当正整数n 趋向于正无穷大时,根数rad(m )也趋向于正无穷大。

这种情形下,因为v p ÷(v p -111h q ·212h q ·313h q ·…·s h s q 1)=1÷[1-(111h q ·212h q ·313h q ·…·s h s q 1)÷v p ],设函数f(x )=x 1,x 为不小于1的实数。

函数f(x )=x 1的情形包含了(111h q ·212h q ·313h q ·…·s h s q 1)÷v p 的情形。

函数f(x )=x 1是连续函数,因为-+∞→x lim f(x )=-+∞→x lim x 1=0,+→1lim x f(x )=+→1lim x x 1=1,那么函数f (x )在xϵ[1+ε,+∞-ε]中有界,即存在恒定的正实数E (0<E <1),存在恒定的正实数L (0<L <1),E <L 。

“abc猜想”讲义(十七)

“abc猜想”讲义(十七)

“abc 猜想”讲义(十七)第十七讲证明“abc 猜想”主讲王若仲对于第(iv )中⑤的情形,rad(m )为恒定的值,rad(n )和rad(g )均不为恒定的值;对于第(iv )中⑥的情形,rad(g )为恒定的值,rad(n )和rad (m )均不为恒定的值;对于第(iv )中⑦的情形,rad(m )和rad(g )以及rad(n )均不为恒定的值。

这一讲我们主要讲解⑤的情形。

⑥的情形和⑦的情形同理可得。

(五)对于⑤,rad(m )为恒定的值,rad(n )和rad(g )均不为恒定的值;当正整数n 和g 不断增大时,由第七讲中的定理4.2和定理4.3可知,n-max (m )总趋势是随着正整数n 的不断增大而不断增大,那么正整数g 总趋势也是随着正整数n 的不断增大而不断增大,当正整数n 不断增大,而正整数m 不断减小时,那么正整数g 也是不断增大。

那么根数rad(g )总趋势也是随着正整数n 的不断增大而不断增大,那么这种情形下,当正整数n 趋向于正无穷大时,根数rad (g )和根数rad (n )也趋向于正无穷大。

因n ÷n=1,那么+∞→n lim (n )÷+∞→n lim (n )=1。

由第六讲中的引理3.3可知,n=rad(n )·H,H∈N 。

当正整数n 不断增大时,那么根数rad(n )总趋势也是随着正整数n 的不断增大而不断增大,那么这种情形下,当正整数n 趋向于正无穷大时,根数rad(n )也趋向于正无穷大;而n÷{[rad(n )]·H }=1恒成立。

令m=k q 或m=111k p ·212k p ·313k p ·…·r k r p 1,其中11p ,12p ,13p ,…,r p 1均为素数,q 为大于1的正整数,i p 1≠j p 1(i ≠j );i ,j=1,2,3,…,r 。

哥德巴赫猜想通俗讲义

哥德巴赫猜想通俗讲义

两百多年前,彼得堡科学院院士哥德巴赫曾研究过“将一个数表示成几个素数的和”的问题,他取了很多数做试验,想把它们分解成几个素数的和,结果得到一个断语:“总可将任何一个数分解成不超过三个素数之和.”但是哥德巴赫不能证明这个问题,甚至连如何证明的方法也没有,于是他写信给另一名彼得堡科学院院士、著名数学家欧拉,他在1742年6月7日的信中写道:“我想冒险发表下列假定‘大于5的任何数都是三个素数的和’.”这就是后来举世闻名的哥德巴赫猜想.同年6月30日,欧拉在给哥德巴赫的回信中说:“我认为‘每一个偶数都是两个素数之和’,虽然我还不能证明它,但我确信这个论断是完全正确的.”这两个数学家的通信内容传播出来之后,人们就称这个猜想为哥德巴赫猜想或者哥德巴赫-欧拉猜想.完整地说,哥德巴赫猜想是:大于1的任何数都是三个素数的和.后来,人们把它归纳为:命题A:每一个大于或者等于6的偶数,都可以表示为两个奇素数的和;命题B:每一个大于或者等于9的奇数,都可以表示为三个奇素数的和.例如:50=19+31;51=7+13+31;52=23+29;53=3+19+31.或50=3+47=7+43=13+37=19+31等.1900年,著名数学家希尔伯特在巴黎国际数学家会议上提出了国际数学要研究的23个题目(后被称为希尔伯特问题),其中哥德巴赫猜想命题A与另外两个有关问题一起,被概括成希尔伯特第8问题.这是著名的世界难题.1912年,第五届国际数学家会议上,著名数论大师兰道发言说,有四个数论上的问题是当时的科学水平不能解决的,其中一个是哥德巴赫猜想,即使把它改为较弱的命题:不论是不超过3个,还是不超过30个,只要证明存在着这样的正数C,而能使每一个大于或等于2的整数,都可以表示为不超过C个素数之和”(称为命题C),也是当代数学家力所不能及的.1921年,著名数论大师哈代,在哥本哈根召开的国际数学会议上说,哥德巴赫猜想的困难程度,可以与任何没有解决的数学问题相比,是极其困难的,但是他没有说是不可能的.事情出乎意料,哥德巴赫猜想问题的解决出现了一些转机,坚不可摧的哥德巴赫堡垒正在逐个被攻破.1930年,25岁的苏联数学家列夫·格里高维奇·西涅日尔曼(1905—1938),用他创造的“正密率法”证明了兰道认为当代数学家力所不能及的命题C,还估算出这个数C不会超过S,并算出S≤800000.人们称S为西涅日尔曼常数.这是哥德巴赫猜想的第一个重大突破,可惜这位天才数学家只活了33岁.1930年以后,数学家兰道、罗曼诺夫、赫力邦、李奇等对西涅日尔曼方法作了最准确的分析,竞相缩小S的估值,到1937年,得到S≤67,又是一大进步.重要的是,不论一个数是多么大,都可将它分解成素数的和的问题已被证明了,如对于数835042000000000000000000000或者对于我们已知的999(这个数之大可以写出来编成30大卷的书),我们同样可以断定,它们可以表示成不超过67个素数的和.甚至休克斯提出的“空前的数”这种比999大得多的数,也能根据西涅日尔曼的证明,表示成不超过67个素数的和的形状.1937年,苏联科学院院士伊凡·马特维奇·维诺格拉多夫,应用英国数学家哈代与李脱伍特创造的“圆法”和他创造的“三角和法”证明了:对于充分大的奇数,西涅日尔曼常数不超过3.或者说成:对于充分大的奇数,都可表示为三个奇数之和.维诺格拉多夫基本上解决了命题B、通常称为“三素数定理”.他的工作,相当于证明了西涅日尔曼常数S≤4.命题B基本上被解决了,然而到命题A的证明竟是如此困难,有人从6~3300000中的任何偶数,发现都能表示成两个奇素数之和,但这仅是验证,人们追求的仍然是从数学上证明,每个大于或等于6的偶数都可表示为两个奇素数之和,再多的有限数,即使大到无法想象的数也无用,除非找到反例否定哥德巴赫猜想.人们在研究命题A的过程中,开始引进了“殆素数”的概念.所谓“殆素数”就是素数因子(包括相同的和不同的)的个数不超过某一固定常数的自然数.我们知道,除1以外,任何一个正整数,一定能表示成若干素数的乘积,其中每一个素数,都叫做这个正整数的素因子.相同的素因子要重复计算,它有多少素因子是一个确定的数.例如,从25~30这六个数中,25=5×5 有2个素因子,26=2×13 有2个素因子,27=3×3×3 有3个素因子,23=2×2×7 有3个素因子,29是素数有1个素因子,30=2×3×5 有3个素因子.于是可说25、26、29是素因子不超过2的殆素数,27、28、30是素因子不超过3的殆素数.用殆素数的新概念,可以提出命题D来接近命题A.命题D:每一个充分大的偶数,都是素因子的个数不超过m与n的两个殆素数之和.这个命题简化为“m+n”.这样,哥德巴赫猜想的最后证明的方向就更明朗化了:如果能证明,凡是比某一个正整数大的任何偶教,都能表示成一个素数加上两个素数相乘,或者表示成一个素数加上一个素数,就算证明了“1+2”.当然如果能证明“1+1”就基本上证明了命题A,也就基本解决了哥德巴赫猜想了.1920年,挪威数学家布朗证明了“9+9”.1924年,德国数学家拉代马哈证明了“7+7”.1932年,英国数学家埃斯特曼证明了“6+6”.1938年,苏联数学家布赫雪托布证明了“5+5”.1940年,苏联数学家布赫雪托布证明了“4+4”.1938年,中国数学家华罗庚证明了几乎全体偶数都能表示成两个素数之和,即几乎所有偶数“1+1”成立.1956年,中国数学家王元证明了“3+4”.1956年,苏联数学家维诺格拉多夫证明了“3+3”.1957年,中国数学家王元又证明了“2+3”.1962年,中国年轻数学家潘承桐证明了“1+5”,这是证明了相加的两个数中,有一个肯定是素数的成果,而另一个殆素数的因子小到不超过5.1962年,苏联数学家巴尔巴恩也证明了”1+5”.1963年,中国数学家王元、潘承桐及苏联数学家巴尔巴恩分别证明了“1+4”.1965年,维诺格拉多夫、布赫雪托布证明了“1+3”.1965年,意大利数学家朋比尼也证明了“1+3”.1966年,中国数学家陈景润宣布证明了“1+2”.这是在经历了240年的漫长的历程中所取得的全世界公认的最好的研究成果,可是由于没有发表详细的证明,因此在国际上反响不大.1973年,陈景润在极其困难的条件下,继续奋战,发表了他的著名论文:《大偶数表为一个素数及一个不超过二个素数的乘积之和》,公布了全部详细的论证.这一成就立即轰动了全世界,在数学界引起了强烈的反响.人们都称道中国年轻数学家陈景润的巨大贡献.英国数学家哈勃斯丹和西德数学家李希特合著的数论著作《筛法》已在印刷厂排印,当见到陈景润的论文后,立即增补了专章,并冠以“陈氏定理”,基本上全文转载了陈景润的论文.这使我国在哥德巴赫猜想研究上居于世界领先的地位.当然,从陈景润的“1+2”到“1+1”似乎只差最后的一步就可以摘取数学皇冠上的这颗明珠——哥德巴赫猜想的证明了,可这最后的冲刺有多少艰难险阻谁也难以预料,从1966年陈景润证明了“1+2”到现在,多少数论学家、数学家努力改进证明方法,但至今仍无明显进展.。

“Abc猜想”证明(完整版)

“Abc猜想”证明(完整版)
“abc 猜想”证明
王若仲 (王洪)
贵州省务川自治县实验学校
贵州 564300
摘要:“abc 猜想”最先由英国数学家大卫·马瑟(DavidMasser)和法国数学家乔瑟夫·奥 斯达利(JosephOesterlé)于 1985 年彼此独立提出。它说明对于任何ε>0,存在常数 kε >0,并对于任何三个满足 a+b=c 以及 a 和 b 互质的正整数 a,b,c。有:c<kεrad(abc)1+ ε,rad(abc)表示(abc)中质因数的积。2012 年日本数学家望月新一在日本东都大学公布了 “abc 猜想”长达 500 页的证明,我猜测望月新一的证明有很大的可能性是正确的。但是“abc 猜想”还有一种更为简捷的证明方法,这种证明很直接,使人易懂明了。十七世纪那场旷世 最降速问题的挑战,当时莱布尼兹,牛顿,雅可布·伯努利,洛比达,约翰·伯努利都分别 作出了自己的解,其中约翰·伯努利解法最漂亮,雅可布·伯努利的解法虽繁琐,但是方法 最一般化,体现了变分思想。后来欧拉给出了这类问题的普遍解法,并产生了变分法这一新 的数学分支。虽然我们用简捷的方法证明了“abc 猜想”,我认为思想比方法更重要。我猜 测望月新一的证明一定有一些思想更重要。
我们假定 b 为奇素数,又假定对于任何ε>0,存在常数 kε>0,有 kε
rad[p21h1
·
p h2 22
·
p h3 23
·

·
p hs 2s
·

2v
·
p k1 11
·
p k2 12
·
p k3 13
·

·
p1r
1
kr-p21h1·p22h2·p23h3·…·p2shs)·2v·p11k1·p12k2·p13k3·…·p1r kr ]1+ε>2v·p11k1·p12k2·p13k3·…·p1r

卡普雷卡尔黑洞数证明abc

卡普雷卡尔黑洞数证明abc

卡普雷卡尔黑洞数证明abc文章标题:探秘卡普雷卡尔黑洞数证明abc:从简单到复杂的数学奇迹引言:在数学的广袤宇宙中,隐藏着许多令人着迷的数学奇迹,而卡普雷卡尔黑洞数证明abc便是其中之一。

abc猜想自从被提出以来,一直挑战着数学家们的智慧和想象力。

本文将以从简到繁、由浅入深的方式,带领读者揭开这个奇妙数学现象的面纱。

第一部分:初识卡普雷卡尔黑洞数与abc猜想1.1 卡普雷卡尔黑洞数的背景卡普雷卡尔黑洞数,亦称为卡普雷卡尔数,最早由维克托·卡普雷卡尔于1985年提出。

它是一个与数论密切相关的数列,定义为将每个正整数的数字按递增顺序排列后所得到的数。

数1234的卡普雷卡尔黑洞数即为1234。

1.2 abc猜想的由来与关键概念abc猜想是由法国数学家乔志尧在1985年提出的。

它涉及到三个正整数a,b,c,满足条件a+b=c,并且a,b,c没有大于1的公共因子。

猜想认为,对于任意给定的正整数ε>0,存在一个常数K(ε),当abc满足上述条件时,成立不等式:c<K(ε)·rad(abc)^{1+ε},其中rad(abc)是a,b,c的乘积的正因子的乘积。

第二部分:揭开卡普雷卡尔黑洞数与abc猜想的奇妙关联2.1 卡普雷卡尔黑洞数与高指数初等代数近年来,数学家们通过研究卡普雷卡尔黑洞数与高指数初等代数的关系,发现了它们之间的奇妙联系。

具体来说,他们发现了某种情况下,abc猜想与卡普雷卡尔黑洞数的性质相吻合。

2.2 卡普雷卡尔黑洞数证明abc的较简单策略根据数学家们的研究成果,他们提出了一种相对较简单的策略来证明abc猜想与卡普雷卡尔黑洞数的关联。

该策略通过引入一系列数论结构和代数理论,追溯卡普雷卡尔黑洞数的数学规律,并将其与abc猜想的条件进行对比和分析。

第三部分:个人观点与进一步思考3.1 我对卡普雷卡尔黑洞数与abc猜想的理解卡普雷卡尔黑洞数与abc猜想的奇妙关联使我对数学的美妙之处有了更深刻的认识。

模型14 截长补短模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型14 截长补短模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型介绍有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系.这一类题目一般可以采取“截长”或“补短”的方法来进行求解.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系.所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等.然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.①截长:在较长的线段上截取另外两条较短的线段.如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS).②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破.如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS).例题精讲考点一:截长型【例1】.如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C等于_______.变式训练【变式1-1】.如图,△ABC中,AC=BC,AD平分∠BAC,若AC+CD=AB,求∠C的度数.【变式1-2】.如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且∠B+∠D=180°,若BE=3,CE=4,S△ACE=14,则S△ACD=________.【变式1-3】.已知在△ABC中,∠B=2∠C,∠BAC的平分线AD交BC边于点D.求证:AC=AB+BD.考点二:补短型【例2】.已知:如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°求证:BD+DC=AB.变式训练【变式2-1】.如图,四边形ABCD中,AB∥DC,点E为AD上一点,连接BE,CE,且BE、CE分别平分∠ABC、∠BCD.求证:BC=AB+DC.【变式2-2】.【问题背景】如图1:在四边形ABCD 中,AB AD =,120BAD ∠=︒,E 、F 分别是BC 、CD 上的点,且60EAF ∠=︒,小王同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG ,再证明AEF AGF ≅△△,可得出结论.【探索延伸】如图2,若在四边形ABCD 中,AB AD =,E 、F 分别是BC ,CD 上的点12BAD ∠,上述结论是否仍然成立【学以致用】如图3,四边形ABCD 是边长为5的正方形,45EBF ∠=︒,求DEF 的周长.实战演练1.如图,在△ABC 中,BD 平分∠ABC ,∠C =2∠CDB ,AB =12,CD =3,则△ABC 的周长为()A .21B .24C .27D .302.如图,AD⊥BC,AB+BD=DC,∠B=54°,则∠C=.3.已知:如图,在△ABC中,AC=BC,∠C=100°,AD平分∠CAB.求证:AD+CD=AB.4.如图,△ABC中,∠BAC=60°,点D、E分别在AB、AC上,∠BCD=∠CBE=30°,BE、CD相交于点O,OG⊥BC于点G,求证:OE+OD=2OG.5.如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证:(1)BQ=CQ;(2)BQ+AQ=AB+BP.6.如图,△ABC两条角平分线BD,CE相交于点O,∠A=60°,求证:CD+BE=BC.7.如图,梯形ABCD中,AB∥CD,∠ABC和∠BCD的平分线的交点E在AD上.求证:(1)点E是AD的中点;(2)BC=AB+CD.8.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.9.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.10.在菱形ABCD中,∠BAD=60°,点E、F分别在边AB、AD上,且AE=DF,BF与DE交于点G.(1)如图①,连接BD.求证:△ADE≌△DBF;(2)如图②,连接CG.求证:BG+DG=CG.11.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠EAF=∠BAD.(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由;(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.12.如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE 交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.13.如图1,点A和点B分别在y轴正半轴和x轴正半轴上,且OA=OB,点C和点D分别在第三象限和第二象限上,且OC⊥OD,OC=OD,点C的坐标为(m,n),且满足(m﹣2n)2+|n+2|=0.(1)求点C坐标;(2)求证:AC=BD,AC⊥BD;(3)求∠BEO度数;(4)如图2,点P在OA上,点Q在OB上且OP=OQ,直线ON⊥BP,交AB于点N,MN⊥AQ交BP延长线于点M,请猜想ON,MN,BM的数量关系并证明.14.如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B 在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.。

“abc猜想”讲义(3)

“abc猜想”讲义(3)

“abc猜想”讲义第三讲“abc猜想”证明(1)主讲王若仲有了前面有界函数一些性质的储备,现在探讨求证“abc猜想”。

abc定理:任何三个满足a+b=c以及a和b互质的正整数a,b,c。

对于任何ε>0,存在常数kε>0,有:kεrad(abc)1+ε>c。

其中rad(abc)表示(a·b·c) 中无重复质因数的积。

证明:对于“abc猜想”中的正整数a,b,c。

从表象看似乎没有什么规律可循,只要仔细研究不等式,可以设置任意两个素数p和q,设b=p k·n-q h·m,且(p k·n-q h·m)和p k·n以及q h·m两两互质,p k·n>q h·m,p k>q h,k为正整数,h为非负正整数。

再按照n≥m和n≤m这两种情形进行分析讨论:下面就根据这两种类型,从一般化的角度逐一分析讨论:首先分析讨论第一种情形:设置任意两个素数p和q(p≠q),设b=p k·n-q h·m,且p k·n和q h·m互质,p k>q h,p k·n>q h·m(n≥m)。

设c=p k·n,a=q h·m(n≥m),p和q为任意两个素数(p≠q),且p k>q h,p k·n >q h·m,p k·n和q h·m互质,则b=p k·n-q h·m。

假定p和q均为设定的两个素数,k为设定的正整数,h为设定的非负正整数时。

因为c>a>0,c>b>0,那么在这种情形下,则有p k-q h≤(p k·n-q h·m)÷n<p k;说明对于任意两个正整数n和m(n≥m),[(p k·n-q h·m)÷n]不大于某一定值H,[(p k·n-q h·m)÷n]不小于某一定值H′。

走进重高 培优讲义 八下 第十四讲 正方形

走进重高 培优讲义 八下 第十四讲 正方形

第十四讲 正方形例1 如图,正方形ABCD 的边长为,23对角线AC ,BD 相交于点0,将AC 向两个方向延长,分别至点E 和点F ,且,3==CF AE 则四边形BEDF 的周长为( ).512.A 312.B 24.C 20.D例2 如图,在矩形ABCD 中,BE 平分∠ABC,CE 平分//,BF DCB ∠.//,BE CF CE 求证:四边形BECF 是正方形,例3 如图,在正方形ABCD 中,E 为对角线AC 上一点,连结EB ,ED. (1)求证:△BEC≌ △DEC.(2)延长BE 交AD 于点F ,若,140oDEB =∠求∠AFE 的度数.例4 如图,G 是正方形ABCD 对角线CA 的延长线上任意一点,以线段AG 为边作一个正方形AEFG ,线段EB 和GD 相交于点H. (1)求证:.GD EB =(2)判断EB 与GD 的位置关系,并说明理由. (3)若,2,2==AG AB 求EB 的长.例5如图,M 是正方形ABCD 的边BC 上一点,连结AM ,E 是线段AM 上一点,∠CDE 的平分线交AM 的延长线于点F .(1)如图1,若E 为线段AM 的中点,,10,2:1:==BE CM BM 求AB 的长. (2)如图2,若,DE DA =求证:.2AF DF BF =+例 如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD(不含点B)上任意一点,将BM 绕点B 逆时针旋转60得到BN ,连结EN ,AM,CM.(1)求证:△AMB≌ △EN B.(2)①当点M 在何处时,CM AM +的值最小.②当点M 在何处时,CM BM AM ++的值最小,并说明理由.(3)当CM BM AM ++的最小值为13+时,求正方形的边长.拓展训练 A 组1.下列说法中不正确的是( ).A.组邻边相等的矩形是正方形 B .对角线相等的菱形是正方形C .对角线互相垂直的矩形是正方形D .有一个角是直角的平行四边形是正方形2.已知四边形ABCD 中,,90=∠=∠=∠C B A 如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( ).90.=∠D A CD AB B =. BC AD C =. CD BC D =.3.如图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 周长为( ).2.A 22.B 12.+C 122.+D(第3题) (第4题) (第5题)4.如图1,将边长为2的正方形ABCD 沿对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到///C B A ∆如图2).若两个三角形的重叠部分的面积为1,则它移动的距离/AA 等于( ).5.0.A 1.B 5.1.C 2.D5.如图,P 是正方形ABCD 的边AB 上一点(不与点A ,B 重合),连结PD 并将线段PD 绕点P 顺时针旋转,90 得线段PE ,连结BE ,则∠CBE 的度数为( ).75.A 60.B 45.C 30.D6.【咸宁】如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为__________.(第6题) (第7题) (第8题)7.如图为正三角形ABC 与正方形DEFG 的重叠情形,其中D ,E 两点分别在AB ,BC 上,且BD .BE =若,6,18==GF AC 则点F 到AC 的距离为__________.8.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图1摆放时,阴影部分的面积为;1S 按图2摆放时,阴影部分的面积为,2s 则1s ______2s (填“>”“<”或“=”).9.如图,正方形ABCD 的边长为2,E 是BC 边的中点,过点B 作,AE BG ⊥垂足为点G ,延长BG 交AC 于点F ,则=CF ________.10.如图,在四边形ABCD 中,,BC AB =对角线BD 平分∠ABC ,P 是BD 上一点,过点P 作,,CD PN AD PM ⊥⊥垂足分别为点M ,N.(1)求证:.CDB ADB ∠=∠(2)若,90 =∠ADC 求证:四边形MPND 是正方形.(第9题) (第10题)11.【盐城】如图,在正方形ABCD 中,对角线BD 所在的直线上有两点E ,F 满足,DF BE =连结.,,,CF CE AF AE(1)求证:△ABF ≌ △ADF.(2)试判断四边形AECF 的形状,并说明理由.(第11题)12.如图,在正方形ABCD 中,线段CE 交四边形的边于点E ,H 为BD 的中点,BF ,DG 分别垂直CE 于点F ,G ,连结HF ,HG. (1)若,2,3EB AE AB ==求BF 的长. (2)求证:.2FH FG =(第12题)B 组13.如图,在正方形ABCD 中,分别以点B ,C 为圆心,BC 长为半径画弧,两弧相交于点E ,连结AE .BE 得到△ABE,则△ABE 与正方形ABCD 的面积之比为( ).2:1.A 3:1.B 4:1.C 3:1.D(第13题) (第14题) (第15题) (第16题)14.如图,在一个边长不超过8 cm 的大正方形ABCD 中,放入3张面积都是220cm 的小正方形纸片.,,IQKJ OPNC BEFG 已知3张小正方形纸片盖住的总面积为,442cm 那么大正方形ABCD 和小正方形BEFG 的边长之比为( ).3:5.A 2:3.B 7:10.C 5:8.D15.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,H CE BC ,3,1==是AF 的中点,EH 与CF 交于点0,则HE 的长为( ).2.A 2.B 22.C 2.D 或2216.如图,正方形纸片ABCD 的边长为3,点E ,F 分别在边BC ,CD 上,将AB ,AD 分别沿AE ,AF 折叠,点B ,D 恰好都落在点G 处,已知,1=BE 则EF 的长为________. 17.如图,在正方形ABCD 中,P AB ,2=为边AB 上一动点(不与点A ,B 重合),过点A ,P 在正方形内部作正方形APEF ,交边AD 于点F ,连结DE ,EC ,当△CDE 为等腰三角形时,=AP _________.(第17题) (第18题)18.如图,四边形ABCD 是正方形,点E ,F 分别在BC ,AB 上,点M 在BA 的延长线上,且.AM BF CE ==过点M ,E 分别作DE NE DM NM ⊥⊥,交于点N ,连结NF.(1)求证:.DM DE ⊥(2)猜想并写出四边形CENF 是怎样的特殊四边形,并证明你的猜想.19.如图,在边长为1的正方形ABCD 中,P 是对角线AC 上的一个动点(与点A ,C 不重合),过点P 作PE PB PE ,⊥交边CD 于点E ,过点E 作,AC EF ⊥垂足为F .(1)求证:.PE PB =(2)在点P 的运动过程中,PF 的长度是否发生变化?若不变,试求出这个不变的值,写出解答过程;若变化,试说明理由.(第19题)20.如图1,已知A ,B 为直线Z 上两点,C 为直线Z 上方一动点,连结AC ,BC ,分别以AC ,BC 为边向△ABC 外作正方形CADF 和正方形CBEG ,过点D 作i DD ⊥1于点,1D 过点E 作1EE l ⊥于点⋅1E (1)如图2,当点E 恰好在直线Z 上时(此时点1E 与E 重合),试说明.1AB DD =(2)在图1中,当D ,E 两点都在直线Z 的上方时,试探求三条线段AB EE DD ,,11之间的数量关系,并说明理由.(3)如图3,当点E 在直线Z 的下方时,请直接写出三条线段AB EE DD ,,11之间的数量关系.(不需要证明)(第20题)走进重高1.【宜昌】如图,正方形ABCD 的边长为1,E ,F 分别是对角线AC 上的两点,,,AD EI AB EG ⊥⊥,,AD FJ AB FH ⊥⊥垂足分别为,,,,J H I G 则图中阴影部分的面积等于( ). 1.A 21.B 31.C 41.D(第1题) (第2题) (第3题) (第4题)2.【郴州】如图,在正方形ABCD 中,△ABE 和△CDF 为直角三角形,5,90===∠=∠CF AE CFD AEB o,12,==DF BE 则EF 的长是( ). 7.A 8.B 27.C 37.D3.【菏泽】如图,E ,F 是正方形ABCD 的对角线AC 上的两点,,2,8===CF AE AC 则四边形BEDF 的周长是________.4.【扬州】如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连结DF ,M ,N 分别是DC ,DF 的中点,连结MN.若,5,7==BE AB 则MN=____________.5.【天门】如图,E ,F 分别是正方形ABCD 的边CB ,DC 延长线上的点,且,CF BE =过点E 作,//BF EG 交正方形外角的平分线CG 于点G ,连结GF.求证:.)1(BF AE ⊥(2)四边形BEGF 是平行四边形.(第5题)6.【北京】如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A ,B 重合),连结DE ,点A 关于直线DE 的对称点为F ,连结EF 并延长交BC 于点G ,连结DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连结BH .(1)求证:.GC GF =(2)用等式表示线段BH 与AE 的数量关系,并证明.(第6题)高分夺冠1.如图,在等腰直角三角形ABC 中,F AC C ,8,90==∠ 是AB 边上的中点,点D ,E 分别在AC ,BC 边上运动,且保持.CE AD =连结DE ,DF ,EF.在此运动变化的过程中,下列结论中:①△DFE 是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( ).①②③.A ①④⑤.B ①③④.C ③④⑤.D(第1题) (第3题) (第4题)2.【江西】在正方形ABCD 中,,6=AB 连结AC ,BD ,P 是正方形边上或对角线上一点,若=PD ,2AP 则AP 的长为_________.3.如图,在正方形ABCD 中,对角线AC ,BD 相交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到F ADE ,/∆是DE 的中点,连结,2..,,/=AE F E BF AF 若则四边形/ABFE 的面积是_________.4.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足.DF AE =连结CF 交BD 于点G ,连结BE 交AG 于点H.若正方形的边长为2,则线段DH 长度的最小值是__________.5.如图,在正方形ABCD 中,0是对角线DB 的中点,P 是DB 所在直线上的一个动点,BC PE ⊥于点DC PF E ⊥,于点F ,连结AP .(1)当点P 与点0重合时(如图1),猜测AP 与EF 的数量及位置关系,并证明你的结论. (2)当点P 在线段DB 上(不与点D ,0,B 重合)时(如图2),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.(3)当点P在DB的延长线上时,请将图3补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.(第5题)答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“abc 猜想”讲义(十四)第十四讲证明“abc 猜想”主讲王若仲对于第(iv )中②的情形我们仍然是分成四种情形来讲解,这四种情形分别如下:(1)b=g=h d ,c=n=v p ,其中d 和p 均为大于1的恒定的正整数,h ,v 均为不小于1的整数;(2)b=g=h d ,c=n=111v g ·212v g ·313v g ·…·e v e g 1,其中11g ,12g ,13g ,…,e g 1均为恒定的素数,d 为大于1的恒定的正整数,s g 1≠t g 1(s≠t);s,t =1,2,3,…,e 。

h ,v ,1v ,2v ,3v ,…,e v 均为不小于1的整数;(3)b=g=111h q ·212h q ·313h q ·…·s h s q 1,c=n=v p ,其中11q ,12q ,13q ,…,s q 1均为恒定的素数,w q 1≠u q 1(w ≠u );w ,u=1,2,3,…,s 。

p 均为大于1的恒定的正整数;(4)b=g=111h q ·212h q ·313h q ·…·s h s q 1,c=n=111v g ·212v g ·313v g ·…·e v e g 1,其中11q ,12q ,13q ,…,s q 1,11g ,12g ,13g ,…,e g 1均为恒定的素数,w q 1≠u q 1(w ≠u );w ,u=1,2,3,…,s 。

s g 1≠t g 1(s≠t);s,t =1,2,3,…,e 。

1h ,2h ,3h ,…,s h ,1v ,2v ,3v ,…,e v 均为不小于1的整数。

这一讲我们就只分析第(1)和第(2)的情形:(二)对于②,rad(n )和rad(g )均为恒定的值,由第七讲中的不定方程定理4.1和推论4.1可知,那么rad(m )不可能为恒定的值。

令b=g=h d 或b=g=111h q ·212h q ·313h q ·…·s h s q 1,c=n=v p 或c=n=111v g ·212v g ·313v g ·…·e v e g 1,其中11q ,12q ,13q ,…,s q 1,11g ,12g ,13g ,…,e g 1均为素数,w q 1≠u q 1(w ≠u );w ,u=1,2,3,…,s 。

d 和p 均为大于1的正整数,s g 1≠t g 1(s≠t);s,t =1,2,3,…,e 。

h ,1h ,2h ,3h ,…,s h ,v ,1v ,2v ,3v ,…,e v 均为不小于1的整数;当d 或11q ,12q ,13q ,…,s q 1恒定不变,只是指数变化时;1h ,2h ,3h ,…,s h 非全相等,1v ,2v ,3v ,…,e v 非全相等。

p 或11g ,12g ,13g ,…,e g 1恒定不变,只是指数变化时;由第七讲中的定理4.1和推论4.1可知,rad (m )不可能为恒定的值。

在此情形下,当正整数n 和g 不断增大时,由第七讲中的定理4.2和定理4.3可知,幂差极值n-max (g )总趋势是随着正整数n 的不断增大而不断增大,那么正整数m 总趋势也是随着正整数n 的不断增大而不断增大,当正整数n 不断增大,而正整数g 不断减小时,那么正整数m 也是不断增大。

那么根数rad(m )总趋势也是随着正整数n 的不断增大而不断增大,那么这种情形下,当正整数n 趋向于正无穷大时,根数rad (m )也趋向于正无穷大。

(1)b=g=h d ,c=n=v p ,v p >h d ,因为m+g=n ,m=[rad(m )]·H。

这种情形下,因为h v vd P p -=1÷(1-v h p d ),设函数f(x )=(e q )x ,q 和e 均为正整数,q<e,x 为不小于1的实数。

函数f(x )=(e q )x 的情形包含了v hp d 的情形。

函数f(x )=(e q )x 是连续函数,因为-+∞→x lim f(x )=-+∞→x lim (e q )x =0,+→1lim x f(x )=+→1lim x (e q )x =(e q ),那么函数f(x )在xϵ[1+ε,+∞-ε]中有界,即存在恒定的正实数E (0<E <1),存在恒定的正实数L (0<L <1),E <L 。

使得x 属于闭区间[1+ε,+∞-ε]中的元素时,不等式E ≤ψ(x)≤L 恒成立。

因为函数f(x )=(e q )x 的情形包含了v h p d 的情形,那么不等式E ≤v hp d ≤L 恒成立。

故由此可知,这种情形下,不管m 和v p 以及h d 如何变化,不等式1÷(1-E )≤v p ÷{[rad(m )]·H }≤1÷(1-L )恒成立。

对于m 和rad(m ),因为m=v p -h d ,设函数ψ(x)=)(x rad x ,x 为不小于1的实数,函数ψ(x)=)(x rad x 的情形包含了)(m rad m 的情形,同时也包含了)(h v hv d p rad d p --的情形。

由第六讲中的定义3.2可知,函数ψ(x)=)(x rad x 是连续函数,那么由第十讲和由第十一讲中的证明可知,函数ψ(x)=)(x rad x 为x 属于闭区间[1+ε,+∞-ε]上的有界函数。

即存在恒定的正实数F (0<F <1),存在恒定的正实数G (1<G <+∞),使得x 属于闭区间[1+ε,+∞-ε]中的元素时,不等式F ≤ψ(x)≤G 恒成立。

因为函数ψ(x)的情形包含了m ÷rad(m )的情形,那么在m 属于闭区间[1+ε,+∞-ε]中的元素时,不等式F ≤m ÷rad(m )≤G 恒成立。

因为m=rad (m )·H,H∈N,那么F ≤H≤G 恒成立。

又因为不等式1÷(1-E )≤v p ÷{[rad(m )]·H }≤1÷(1-L )恒成立。

所以这种情形下,不管m 和v p 以及h d 如何变化,则有不等式)1(1E G -≤v p ÷rad(m )≤)1(1L F -恒成立。

因为rad (n )≥1,rad (g )≥1,那么这种情形下,不等式)1(1L F -·rad (n )·rad (m )·rad(g )≥v p 恒成立。

(2)b=g=h d ,c=n=111v g ·212v g ·313v g ·…·e v e g 1,111v g ·212v g ·313v g ·…·e v e g 1>h d ,因为m+g=n ,这种情形下,因为(111v g ·212v g ·313v g ·…·e v e g 1)÷(111v g ·212v g ·313v g ·…·e v e g 1-h d )=1÷[1-h d ÷(111v g ·212v g ·313v g ·…·e v e g 1)],设函数f(x )=(eq )x ,q 和e 均为正整数,q<e,x 为不小于1的实数。

函数f (x )=(e q )x 的情形包含了h d ÷(111v g ·212v g ·313v g ·…·e v e g 1)的情形。

函数f(x )=(eq )x 是连续函数,因为-+∞→x lim f(x )=-+∞→x lim (e q )x =0,+→1lim x f(x )=+→1lim x (e q )x =(e q ),那么函数f(x )在xϵ[1+ε,+∞-ε]中有界,即存在恒定的正实数E (0<E <1),存在恒定的正实数L (0<L <1),E <L 。

使得x 属于闭区间[1+ε,+∞-ε]中的元素时,不等式E ≤ψ(x)≤L 恒成立。

因为函数f(x )=(eq )x 的情形包含了h d ÷(111v g ·212v g ·313v g ·…·e v e g 1)的情形,那么不等式E ≤h d ÷(111v g ·212v g ·313v g ·…·e v e g 1)≤L 恒成立。

故由此可知,这种情形下,不管m 和111v g ·212v g ·313v g ·…·e ve g 1以及h d 如何变化,不等式1÷(1-E )≤111v g ·212v g ·313v g ·…·e v e g 1÷{[rad(m )]·H }≤1÷(1-L )恒成立。

对于m 和rad(m ),因为m=111v g ·212v g ·313v g ·…·e v e g 1-h d ,设函数ψ(x)=)(x rad x ,x 为不小于1的实数,函数ψ(x)=)(x rad x 的情形包含了)(m rad m 的情形,同时也包含了)(13132121111313212111h e v e v v v he v e v v v d g g g g rad d g g g g -∙∙∙∙-∙∙∙∙ 的情形。

由第六讲中的定义3.2可知,函数ψ(x)=)(x rad x 是连续函数,那么由第十讲和由第十一讲中的证明可知,函数ψ(x)=)(x rad x 为x 属于闭区间[1+ε,+∞-ε]上的有界函数。

即存在恒定的正实数F (0<F <1),存在恒定的正实数G (1<G <+∞),使得x 属于闭区间[1+ε,+∞-ε]中的元素时,不等式F ≤ψ(x)≤G 恒成立。

因为函数ψ(x)的情形包含了m ÷rad(m )的情形,那么在m 属于闭区间[1+ε,+∞-ε]中的元素时,不等式F ≤m ÷rad(m )≤G 恒成立。

因为m=rad(m )·H,H∈N,那么F ≤H ≤G 恒成立。

又因为不等式1÷(1-E )≤111v g ·212v g ·313v g ·…·e ve g 1÷{[rad(m )]·H }≤1÷(1-L )恒成立。

相关文档
最新文档