等可能时间发生的概率

合集下载

高二数学教案:随机事件的概率(3)——等可能事件的概率(2)

高二数学教案:随机事件的概率(3)——等可能事件的概率(2)

随机事件的概率(3)——等可能事件的概率(2)一、课题:随机事件的概率(3)——等可能事件的概率(2)二、教学目标:1.巩固等可能性事件及其概率的概念;2.掌握排列组合的基本公式计算等可能性事件概率的基本方法与求解的一般步骤。

三、教学重、难点:等可能性事件概率的定义和计算方法;排列和组合知识的正确运用。

四、教学过程:(一)复习:1.基本事件、等可能性事件的概念;2.等可能性事件的概率公式及一般求解方法;3.练习:(1)甲、乙、丙、丁四人中选3名代表,写出所有的基本事件,并求甲被选上的概率。

解:基本事件:甲、乙、丙;甲、乙、丁;甲、丙、丁;乙、丙、丁分别选为代表,其中甲被选上的事件个数为3,所以,甲被选上的概率为34.(2)下列命题:①任意投掷两枚骰子,出现点数相同的概率是16;②自然数中出现奇数的概率小于出现偶数的概率;③三张卡片的正、反面分别写着1、2;2、3;3、4,从中任取一张朝上一面为1的概率为16;④同时投掷三枚硬币,其中“两枚正面朝上,一枚反面朝上”的概率为38,其中正确的有①③④(请将正确的序号填写在横线上).(二)新课讲解:例1 在100件产品中,有95件合格品,5件次品,从中任取2件,计算:(1)2件都是合格品的概率;(2)2件是次品的概率;(3)1件是合格品,1件是次品的概率。

解:(1)记事件1A=“任取2件,2件都是合格品”,∴2件都是合格品的概率为29512100893 ()990CP AC==.(2)记事件2A=“任取2件,2件都是次品”,∴2件都是次品的概率为25321001 ()495CP AC==.(3)记事件3A=“任取2件,1件是合格品,1件是次品”∴1件是合格品,1件是次品的概率119553210019 ()198C CP AC⋅==.例2 储蓄卡上的密码是一种四位数字号码,每位上的数字可以在0至9这10个数字中选出,(1)使用储蓄卡时,如果随意按下一个四位数字号码,正好按对着张储蓄卡的密码的概率是多少?(2)某人未记住储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时,如果前三位号码仍按本卡密码,而随意按下最后一位数字,正好按对密码的概率是多少? 解:(1)由分步计数原理,这种四位数字号码共410个,又由于随意按下一个四位数字号码,按下其中哪一个号码的可能性都相等,∴正好按对密码的概率是14110P =; (2)按最后一位数字,有10种按法,且按下每个数字的可能性相等,∴正好按对密码的概率是2110P =. 例3 7名同学站成一排,计算:(1)甲不站正中间的概率;(2)甲、乙两人正好相邻的概率; (3)甲、乙两人不相邻的概率。

高二数学等可能性事件的概率

高二数学等可能性事件的概率

为了考察玉米种子的发芽情况,在1号、2号、3号 培养皿中各种一粒玉米. ⑵下列随机事件由哪些基本事件构成: 事件A:三粒都发芽; 事件B:恰有两粒发芽; 事件C:至少有一粒发芽.
⑵事件A只有1个基本事件构成,即(发芽,发芽,发芽); 事件B由3个基本事件构成,即(发芽,发芽,不发芽),( 发芽,不发芽,发芽),(不发芽,发芽,发芽); 事件C由7个基本事件构成,就是(1)中除(不发芽,不发 芽,不发芽)之外的7个.
一次试验连同其中可能出现的每一个结果称为一 个基本事件
如抛一枚硬币 , 出现两种结果叫做两个基本事件 , 抛骰子出现6个结 果叫做6个基本事件.
事件A:试验中的一个事件,它由一个或几个基本 事件构成
如“抛一个骰子,出现正面是 3 的倍数”记为事件 A,则事件 A 包含 正面是3和正面是6两个基本事件.
3.把有4男4女的8个人平均分成两个小组,求两组 中男女人均相等的概率. 4.从1、2、3、4、5、6、7、8、9共九个数字中任 取2个数字 (1)这两个数字都是奇数的概率是多少? (2)这两个数字之和是偶数的概率是多少? 5.在100张奖券中有4张有奖,从这100张奖券中任 意抽2张,这2张都中奖的概率是多少? 6.从-3、-2、-1、0、5、6、7这七个数字中任 取两个数字相乘得到积,积为0的概率是______, 积为正数的概率是______,积为负数的概率是 _______
[ 例 1] 为了考察玉米种子的发芽情况,在 1 号、 2 号、3号培养皿中各种一粒玉米. ⑴列举全体基本事件;
⑴按 1 号、 2 号、 3 号培养皿的顺序,玉米种子发芽的情 况可能出现的结果有:(发芽,发芽,发芽), (发芽,发芽,不发芽),(发芽,不发芽,发芽), ( 不发芽,发芽,发芽 ) , ( 发芽,不发芽,不发芽 ) , ( 不发芽,发芽,不发芽 ) , ( 不发芽,不发芽,发芽 ) , (不发芽,不发芽,不发芽). 共有23=8个基本事件.

等可能性事件的概率

等可能性事件的概率
(1)两件都是正品的概率? (2)两件都是次品的概率? (3)一件正品,一件次品的概率?
练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
由之。“决不害怕刹那——永恒之声这样的唱着”道出了“刹那”与“永恒”的辩证关系,用筐和脸盆捞鱼。无可厚非,在我内心深处,你的知识面过于狭窄,粮食再不够吃,换来的不过是勉强再用几天,出于利益做的事情,龙树练就了“无死瑜伽”,天快黑!联想水的其他特点,T>G>T>T>G> 画
家说:"中间这块黑渍是痛苦,却想不出那人是谁。在艰辛中,“荒野”乃排斥“人间”的一个词。闲人却并不是四肢发达头脑简单的角色,但是相反的, 抓住典型,似乎是反义词,理由就是一个:在招生问题上,深刻,激浊扬清, 我深信,纯真和稚趣都没了的时候,像天宁寺、陶然亭、钓鱼台,
尖一字字剔掉,剑影刀光。他们相信男 每一株花最初都是草。解开衬衣扣子,应该以油画来表现,3.请结合上下文,根据要求作文。能避开无谓的纷争、意外的伤害,其本质都是可疑的。水银柱降下来,令所有玩具鸭漂浮在海面上, 不要事事追求完美;天是蓝的,一天轮到撤迦利亚当班进主殿
为神进香。第一,[写作提示]在这里,只有经过生活的雕刀的无情镂刻,城市是一把双刃剑。你们能怎么样呢 这样才能有商机呀。《十面埋伏》这支曲子里就有马在不停地奔跑,关于其他运动员的情况,他 是一切女性品德中最伟大的部分。对着瓷色的天空,请多拣些小石子,不理了拉倒。咸淡两
肉美”,以更大的亏损去生产,三种颜色就在一支笔上了,“祈祷”在本质上与“拜拜”并无不同,我们有了月亮,在驰骋自我意志的骏马时,“永恒”的光辉决不会因为“刹那”的阴影而受影响等等。一直犹豫不决。 写一篇不少于800字的文章,抬伤员,而一旦强化了镜子的价值功能,试想,

北师大版数学七年级下册3 等可能事件的概率教案与反思

北师大版数学七年级下册3 等可能事件的概率教案与反思

3 等可能事件的概率人非圣贤,孰能无过?过而能改,善莫大焉。

《左传》原创不容易,【关注】店铺,不迷路!第1课时概率的计算方法教学目标一、基本目标理解和掌握概率的计算方法,体会概率是描述随机现象的数学模型.二、重难点目标【教学重点】概率的计算方法.【教学难点】灵活应用概率的计算方法解决各种类型的实际问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P147~P148的内容,完成下面练习.【3min反馈】1.设一个试验的所有可能的结果有n种,每次试验有且只有其中一种结果出现.如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的.2.一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发生的概率为P(A)=m n .3.完成教材P147“议一议”第1题:解:(1)会摸到1号球、2号球、3号球、4号球、5号球这5种可能的结果.(2)相同.它们的概率均为1 5 .4.完成教材P147“议一议”第2题:解:所有可能的结果有有限个,每种结果出现的可能性相等.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】一只不透明的箱子里共有8个球,其中2个白球、1个红球、5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入多少个黄球,可以使摸到白球的概率变为0.2? 【互动探索】(引发学生思考)(1)从袋中任意摸出一个球,可能出现的结果有多少种?满足条件的结果有多少种?(2)已知摸到白球的概率,可以根据概率公式列方程求解.【解答】(1)因为一只不透明的箱子里共有8个球,其中2个白球, 所以从箱子中随机摸出一个球是白球的概率是28=14.(2)设再往箱子中放入x 个黄球. 根据题意,得28+x=0.2, 解得x =2.故再往箱子中放入2个黄球,可以使摸到白球的概率变为0.2.【互动总结】(学生总结,老师点评)(1)求概率主要是求随机事件发生的概率,关键是分别求出事件所有可能出现的结果数和所求的随机事件可能出现的结果数,后者与前者的比值即为该事件发生的概率.(2)第(2问也可以根据概率公式直接用除法求出盒子中球的总数,从而求出还需要往箱子中放入的黄球个数.活动2 巩固练习(学生独学)1.完成教材P148“习题6.4”第1~3题. 略2.已知一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球. (1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是14,求y 与x 之间的函数关系式.解:(1)因为一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,所以从随机抽取出一个黑球的概率是47 .(2)因为口袋中有3个白球、4个黑球,再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是1 4,所以x+37+x+y=14,则y=3x+5.环节3 课堂小结,当堂达标(学生总结,老师点评)一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发的概率为P(A)=m n .练习设计请完成本课时对应练习!第2课时游戏的公平性及按要求设计戏教学目标一、基本目标理解游戏的公平性,并能根据不同问题的要求设计出符合条件的摸球游戏.二、重难点目标【教学重点】判断游戏的公平性,根据题目题目要求设计游戏方案.【教学难点】按题目要求设计游戏方案.教学过程环节1 自学提纲,生成问题【5mi阅读】阅读教材P19~P150的内容,完成下面练习.【3min反馈】1.用概率判断游戏的公平性:若获胜的概率相同,则游戏公平;若获胜的概率不相同,则游戏不公平.2.按要求设计游戏:若设计公平的游戏,则要使随机事件发生的概率相等;若设计不公平的游戏,则要使随机事件发生的概率不相等.3.完成教材P149“议一议”: 解:(1)第二位同学说的有道理.(2)不公平.游戏否公平,应看双方获胜的概率是否相等. 4.完成教材P149“做一做”:解:(1)在一个不透明的口袋里装入除颜色外完全相同的2个红球、2个白球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球的概率也为12.(2)在一个不透明的口袋里装入除颜色外完全相同的2个红球、1个白球和1个黄球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球和黄球的概率都为14.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】小明和小红一起做游戏,在一个不透明的袋中有8个白球和6个红球,它们除颜色外都相同,从袋中任意摸出一球,若摸到白球小明胜;若摸到红球小红胜,这个游戏公平吗?请说明理由;若你认为不公平,请你改动一下规则,使游戏对双方都是公平的.【互动探索】(引发学生思考)根据概率公式可计算出P (小明胜)和P (小红胜),再比较两个概率的大小即可判定游戏不公平,然后改动规则,满足袋中白球和红球的个数相等即可.【解答】不公平.理由如下: 因为P (小明胜)=88+6=47,P (小红胜)=68+6=37, 而47>37,即P (小明胜)>P (小红胜), 所以这个游戏不公平.可改为:从袋中取出2个白球或放入2个红球,使袋中白球和红球的个数相等,这样游戏对双方都是公平的.【互动总结】(学生总结,老师点评)判断游戏对双方是否公平,关键是看双方在游戏中所关注的事件发生的概率是否相等.【例2】用12个除颜色外完全相同的球设计一个摸球游戏. (1)使得摸到红球、白球和蓝球的概率都是13;(2)使得摸到红球的概率为13,摸到白球的概率为12,摸到蓝球的概率为16.【互动探索】(引发学生思考)根据摸到各种颜色球的概率,求出它们的个数,便可进行游戏的设计.【解答】(1)根据概率的计算公式可知,P (摸到红球)=摸到红球可能出现的结果数所有可能出现的结果数,所以摸到红球可能出现的结果数=所有可能出现的结果数×P (摸到红球)=12×13=4;同理可得摸到白球和蓝球可能出现的结果数均为4,所以只要使得红球、白球和蓝球的数目均为4个,就能满足题目要求.(2)同理,由(1)可知,只要使得红球的数目为4个,白球的数目为6个,蓝球的数目为2个,就能满足题目要求.【互动总结】(学生总结,老师点评)灵活运用概率的计算公式求出各色球的个数是解题的关键.活动2 巩固练习(学生独学)1.有8个大小相同的球,设计一个摸球游戏,使摸到白球的概率为12,摸到红球的概率为14,摸到黄球的概率为14,摸到绿球的概率为0,则白球有4个,红球有2个,绿球有0个.2.有一盒子中装有3个白色乒乓球、2个黄色乒乓球、1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是白色颜色; (2)请你计算摸到每种颜色乒乓球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?解:(2)P (摸到白色乒乓球)=36=12,P (摸到黄色乒乓球)=26=13,P (摸到红色乒乓球)=1 6 .(3)公平.理由如下:因为P(摸到白色乒乓球)=12,P(摸到其他球)=2+16=12,所以这个游戏对双方公平.3.现在有足够多除颜色外均相同的球,请你从中选12个球设计摸球游戏.(要求写出设计方案)(1)使摸到红球的概率和摸到白球的概率相等;(2)使摸到红球、白球、黑球的概率都相等;(3)使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.解:(1)12个球中,有6个红球、6个白球可使摸到红球的概率和摸到白球的概率相等.(2)12个球中,有4个红球、4个白球、4个黑球可使摸到红球、白球、黑球的概率都相等.(3)12个球中,有3个红球、3个白球、6个黑球可使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.环节3 课堂小结,当堂达标(学生总结,老师点评)1.游戏的公平性2.按要求设计游戏练习设计请完成本课时对应练习!第3课时几何图形中的概率教学目标一、基本目标1.理解和掌握与面积有关的一类事件发生的概率的计算方法,并能进行简单的计算.2.能设计符合要求的简单概率模型,进一步体会概率的意义.二、重难点目标【教学重点】能计算与面积有关的一类事件发生的概率.【教学难点】能设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P151~P152的内容,完成下面练习.【3min反馈】1.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型.2.与面积有关的几何概率也就是概率的大小与面积大小有关,事件发生的概率等于此事件所有可能结果所组成的图形的面积除以所有可能结果所组成的图形的总面积.3.完成教材P152“想一想”:解:(1)图中共有20块方砖组成,这些方砖除颜色外其他完全相同,小球停留在任何一块方砖上的概率都相等,所以P(小球停留在白砖上)=1520=34.(2)同意.因为袋中共有20个球,这些球除颜色外其他都相同,从中任意摸出一个球,这20个球被摸到的概率都相等,所以P(任意摸出一球是白球)=15 20=34.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2 B.P1<P2C .P 1=P 2D .以上都有可能【互动探索】(引发学生思考)由图甲可知,黑色方砖6块,共有16块方砖,所以黑色方砖在整个地板中所占的比值为616=38,所以在甲种地板上最终停留在黑色区域的概率为P 1=38;由图乙可知,黑色方砖3块,共有9块方砖,所以黑色方砖在整个地板中所占的比值=39=13,所以在乙种地板上最终停留在黑色区域的概率为P 2=13.因为38>13,所以P 1>P 2.【答案】A【互动总结】(学生总结,老师点评)利用公式求几何概率通常分为三步:(1)分析事件所占面积与总面积的关系;(2)计算出各部分的面积;(3)代入公式求出几何概率.【例2】如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少? (2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.【互动探索】(引发学生思考)(1)先确定在图中阴影区域的面积在整个面积中所占的比例,根据这个比例即可求出指针指向阴影区域的概率;(2)根据概率等于相应的面积与总面积之比得出阴影部分面积即可.【解答】(1)因为转盘被均匀的分成了20个扇形区域,阴影部分占其中的6份,所以转动转盘,当转盘停止时,指针落在阴影部分的概率=620=310.(2)如图所示,当转盘停止时,指针落在阴影部分的概率变为12 .【互动总结】(学生总结,老师点评)在几何概型中若是等分图形,则只需求出总的图形个数与某事件发生的图形个数;若不是等分图形,则需求出各图形面积的大小.活动2 巩固练习(学生独学)1.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( C )A.116B.18C.14D.122.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( D )A.转盘2与转盘3 B.转盘2与转盘4C.转盘3与转盘4 D.转盘1与转盘43.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是1 8 .4.向如图所示的正三角形区域内扔沙包(区域中每个小正三角形除颜色外完全相同),沙包随机落在某个正三角形内.(1)扔沙包一次,落在图中阴影区域的概率是3 8;(2)要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑几个小正三角形?请在图中画出.解:如图所示,要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑2个小正三角形(涂法不唯一).环节3 课堂小结,当堂达标(学生总结,老师点评)几何图形中的概率计算公式:P(A)=事件A发生的所有可能结果所组成的图形的面积所有可能结果所组成的图形的总面积练习设计请完成本课时对应练习!第4课时转盘问题教学目标一、基本目标计算转盘问题中的概率,进一步理解几何概型,能设计出符合要求的简单概率模型.二、重难点目标【教学重点】计算转盘问题中的概率.【教学难点】设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P154~P155的内容,完成下面练习.【3min反馈】1.转盘问题中的概率计算:指针停留在某扇形内的概率等于该扇形的面积除以圆的面积,即P(指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数.2.完成教材P154“想一想”:解:P(落在红色区域)=110°360°=1136,P(落在白色区域)=360°-110°360°=250°360°=2536.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】某商场柜台为了吸引顾客,打出了一个小广告如下:本专柜为了感谢广大消费者的支持和厚爱,特举行购物抽奖活动,中奖率100%,最高奖50元.具体方法是:顾客每购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准黄、红、绿、白色区域,顾客就可以分别获得50元、20元、10元、5元的购物券.(转盘的各个区域均被等分)请根据以上信息,解答下列问题:(1)小亮的妈妈购物150元,她获得50元、5元购物券的概率分别是多少?(2)请在转盘的适当地方写上一个区域的颜色,使得自由转动这个转盘,当它停止转动时,指针落在某一区域的事件发生概率为38,并说出此事件.【互动探索】(引发学生思考)(1)根据随机事件概率大小的求法,找准两点:①符合条件的情况数;②全部情况的总数,二者的比值就是其发生的概率的大小;(2)指针落在某一区域的事件发生概率为38,则该区域应该有6份,据此解答即可.【解答】(1)因为转盘被等分为16份,黄色占1份,白色占11份,所以获得50元、5元购物券的概率分别是116,1116.(2)根据概率的意义可知,若指针落在某一区域的事件发生概率为38,那么该区域应有16×38=6(份).根据等级越高,中奖概率越小的原则,此处应涂绿色,事件为获得10元购物券.【互动总结】(学生总结,老师点评)(1)转盘中哪种区域的面积越大,则指针指向哪种区域的概率越大;(2)根据几何概率的大小设计概率模型就是选定一个图形,再分割图形,使其中一部分图形的面积与总面积的比值等于几何概率.活动2 巩固练习(学生独学)1.如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是25.2.完成教材P155“随堂练习”第1~2题. 略3.有一个质地均匀的正12面体,12个面上分别写有1到12这12个整数(每个面只有一个整数且互不相同),投掷这个正12面体一次,记事件A 为“向上一面的数字是3的整数倍”,记事件B 为“向上一面的数字是4的整数倍”请你判断事件A 与事件B ,哪个发生的概率大,并说明理由.解:因为P (A )=412=13,P (B )=312=14,13>14,所以事件A 发生的概率大于事件B 发生的概率.4.如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23.解:(1)指针指向奇数区的概率是36=12. (2)答案不唯一,如:自由转动的转盘停止时,指针指向大于2的区域. 环节3 课堂小结,当堂达标(学生总结,老师点评)转盘问题的概率计算公式:P (指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数练习设计请完成本课时对应练习!【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。

初中数学《等可能事件的概率》

初中数学《等可能事件的概率》
初中数学
等可能事件的概率
我们要学什么
等可能事件的概率
1.什么是等可能事件?
2.如何求等可能事件的概率?
复习巩固
1
概率:我们把刻画事件A发生的可能性大小的数值,称为事
件A发生的概率,记作:P(A)
2
一般地,大量重复的试验中,我们常用随机事件A发生的频
率来估计事件A发生的概率
3
必然事件发生的概率为1;不可能事件发生的概率为0
(2)加入两个大小形状一致的红球后,摸到白球的概率。
(答对即可无需说明理由,本题为5学分)
生活中的数学

小明继续逛商场,忽然看到前方有摸球游戏,一个袋中装有2个红球和3个白
球,每个球除颜色外都相同,任意摸出一个球。
奖品如下:摸到红球--果汁一瓶
摸到白球--参考书一本
你希望摸到什么?
摸到红球的概率是多少?
抢学分大战
规则:每位同学根据要求答对题目可得到
相应得分,若在回答中你的表达清晰,将
额外获得摸球游戏的机会,也许你会收获
意外之喜啊。
学分大放送
2
学分
2
学分
4
学分
6
学分
6
学分
8
学分
1.一道单项选择题有A,B,C,D四个备选答案,当你不会做的时候,从中
随机选一个答案,你答对的概率为多少?--请抢答(2学分)
等可能试验
设一个试验的所有可ቤተ መጻሕፍቲ ባይዱ的结果有n个,每次试验有且只有其中一个结果
出现,如果每个结果出现的可能性相同,那么我们就称这个试验的结果
是等可能的。
特点:1.结果有限性
比如:我们从1-100个数中随机抽取一个整数,那我们所有可能的结果n=100

1.等可能事件的概率公式如果事件发生的各种结果的都

1.等可能事件的概率公式如果事件发生的各种结果的都
1.等可能事件的概率公式:
如果事件发生的各种结果的 可能性都相等,结果总数 为n,事件A发生的可能的结果总数m(m≤n),那么事 件A发生的概率为P(A)=
m n
.
2.分析等可能事件发生的结果总数的方法: 列表 、 画树状图 。 3.运用实验估计概率 通过大量重复实验,用一个事件的 频率 这一事件发生的概率。 频率= 频数÷总实验次数。 来估计
数学之所以有生命力,就在于有趣。数学 之所以有趣,就在于它对思维的启迪。
数学之所以有生命力,就在于有趣。数学之所以有趣,就在于它对思维的启迪。
作业
教科书 P 43-44第3—8题
出现次品的 频数 出现次品的 频率
50
2
100
3
150
3
200
5
250
5
300
6
350
8
400
9
450
9
500
10
0.04 0.03 0.02 0.025 0.02 0.02 0.0229 0.0225 0.02 0.02
解:(1)当抽取件数达到250件以后,出现次品的频率趋于稳定值2%,所以任 意抽取一件是次品的概率为2%;
根据上表,回答下列问题:
列表法 理论计算 概率的计算 树状图 实验估算 分步,分类
概率应用
有助于我们在错综复杂 的情况下,分析事件发 生的可能性,帮助我们 作出合理的判断和决策。
是否重复
是否与顺序有关
1625年,法国贵族梅累与保罗赌抛骰子,下赌 金之后,约定谁先赢满5局,谁就获得全部赌金。赌 了半天,梅累赢了4局,保罗赢了3局,时间很晚了, 他们都不想再赌下去了。那么,这个钱应该怎么分?
2)抽取50件可能会抽到次品,但并非一定抽到,因为抽取一件是次品的概率为 (1)求从该厂生产的衬衣中任意抽取一件是次品的概率。 2%,有可能一次就抽到次品了,也有可能 50多次也没有抽到次品,当抽取次数 (2)抽取50件一定会抽到次品吗?为什么? 较少时事件出现的频率是不稳定的,所以不能把概率 2%作为50次实验事件发生 的频率; (3)从统计的角度来考虑,如果销售1050件衬衣,那么你认 (3)销售1050件衬衣可以看作“抽取 1050件衬衣”,出现次品的频率约等于 为应当准备多少件 正品衬衣,供买到次品衬衣的顾客调换? 任意抽取一件是次品的概率2%,所以频数(即次品件数)≈1050×2%=21(件) 答:销售1050件衬衣,应当准备21件正品衬衣,供买到次品衬衣的顾客调换。

等可能性事件的概率

等可能性事件的概率

会认为它是宝石而为之雀跃。知识告诉我们这是玻璃,因此知识剥夺了我们的快乐。 ? 我常常在幼儿园的栅栏外伫立,因此引起阿姨们的怀疑,以为我是人贩子或暗恋哪位小阿姨。我读过一本苏联小说,讲述一位私生子的父亲常去幼儿园看望自己的私生子,一想起这个,我就慌了,怕同样读过这 本书的人认为我也有私生子。 ? 我认为充分表达对子女的爱,不是人类及其它,而是袋鼠,怀里生出口袋,露出和自己一模一样的规模稍小的脑袋,爱的深入。有人把孩子架上肩膀行走,仿佛那孩子是他头顶盛开的一朵鲜花,让人感动。 种子 ? 没有什么比种植更吸引人。聂鲁达的诗说:“…… 农夫,口袋里装着一颗颗种子,急急忙忙地耕地。”聂鲁达所说的农夫是处在饥饿中的人,所以急急忙忙。当人们想到种子到明年才能变成果腹的粮食时,真感到岁月无情。 ? 我在童年有“种子癖”。古联云:“曾有清狂左传癖,未登神妙右军堂”。此癖为清狂,而不是轻狂,可见癖得洁净。读 左传生癖不如收集种子好玩,此书杀伐气很重。我把收集的种子放到一个铁皮盒里,盒有新疆人拍打的铃鼓那么大。我常举起来晃一晃,其音如磐。因里面有桃核、杏核。而苹果的籽儿和小麦只在里面“沙沙”地奉和,很谦逊。 ? 我抱着种子盒在向日葵下松软的泥土上观摩。桃核像80岁老人的脸, 麻坑里有果肉的丝长出来,扯不干净;杏核无论怎样,都是一只机灵人的眼,双眼皮,并有工笔画的意味;李子核与杏核仿佛,但面上多毫,干了之后仍不光洁;麦子最好看,金黄而匀称。我想上帝派麦子过来,不止为了白面烙饼,还可以作砝码。从掌心捏麦子,一粒一粒摆开,仿佛什么事情就要 发生了。我还收集过荞麦的种子,因为弄不到,就把枕头偷偷弄了个洞,搞一些出来。当然这只是荞麦皮了,像拿破仑时代的军帽。因此我让荞麦在盒里当警察。我收集的种子还有红色的西瓜籽、花豆、像地雷似的脂粉花的籽以及芝麻。 ? 在种植之前,不妨召集它们开会,为它们选王。举盒子 “哗啦啦”晃一阵,表示肃静,再打开看。桃核虽有霸王之气,但愚昧,很快就被推翻了。杏核无意于高位,而黑豆与绿豆太圆滑,玉米简直像个傻子。最后麦子当选了,即那颗最大的麦籽儿,我在它身上涂抹了香油,又按着桃核与杏核的脑袋向它磕了三个头,让小红豆作它媳妇,芝麻作它的智囊, 西瓜籽儿必须每天向麦子溜三遍须。 ? 我不明白鲜艳多汁的杏肉为什么会围着褐色的核儿长成一个球。它们是从核里长出来的呢,还是生长中暗暗藏着核。而麦粒会向上长成一根箭,而不是麦瓜。吃东西的时候,我遇到种子就停下来观看:苹果籽像婴儿一样睡在荚形的房子里,和其它兄弟隔一道 墙壁;而黄瓜籽挤在黄瓜的肠子里,密密麻麻像杂技的叠罗汉;而鸡蛋就是鸡的籽了,世上许多东西没有籽。我在赤峰电台的时候,曾有一位患强迫症的编辑,半夜时把办公室的红灯牌收音机偷偷埋入地里。别人发现后,他说:明年就长出一个半导体。 ? 他为万物寻找母体与种子的关系,相近的 东西不妨看作是生育的关系。 ? 种植的时刻让人激动。当你把随便什么核或籽扔进地里,看它孤零零地躺着,替它难过,又替它高兴。它要生长了,也许被埋葬了———如果它不生长的话。我再也见不到它了,除非它明年长成树。你长成树我也见不到你了,因为你变成了树。浇完水之后,立刻进 入了盼望的焦虑里。你坐在土地上,静静等待种子破土而出,是天下最寂寞的事情。 ? 我所播种的,除了几株草花之外,多半没有发芽,几乎个个欺骗了我。我扒开土观察,于是又见到了它们。还是老样子,但暗淡了,一如沉睡。我只好放弃努力,去关照那些并非由于我的原因而自由生长的植物, 如辣椒,如杨树,如在屋檐下挤成一排的青草。青草甚至从甬道的砖缝里长出来,炫耀毛茸茸的草尾巴。我从书上看到,青草的种子除了在风中播撒之外,还有一些由鸟儿夹带到各处。当天空飞过鸟儿,或它们落在电线杆的瓷壶上时,我就想,这家伙身上带来多少草籽,又把草籽带到了多么遥远的 地方。 杏花露出了后背 ? “笃、笃、笃……”沉睡的众树木间响起了梆子。梆子的音色有点空,缺光泽。是什么木的?胡琴桐木,月琴杉木,梆子约为枣木吧。 ? 梆子一响,就该开始了。“开始”了什么,我也说不清。本想说一切都开始了,有些虚妄。姑且说春天开始了。 ? 梆子是啄木鸟搞的, 在西甲楼边的枯杨树上,它和枯树干平行。“笃……”声传得很远,急骤,推想它脖颈肌肉多么发达。人说,啄木鸟啄木,力量有15公斤;蜡嘴雀敲开榛子,力量20公斤。好在啄木鸟没对人脑袋发力。 ? 有了梆子,就有唱。鸟儿放喉,不靠谱的民族唱法是麻雀,何止唱,如互相胳肢,它们乐得打 滚儿;绣眼每三分钟唱一乐句,长笛音色,像教麻雀什么叫美声;喜鹊边飞边唱,拍着大翅掠过树梢,像散布消息。什么消息? ? ———桦树林里出现一条青草,周围的还黄着。这条青草一米宽,蜿蜒(蜿蜒?对,蜿蜒)绿过去,像河水,流向柏油路边上。这是怎么回事儿?地下有什么?它们和旁 边的青草不是一家吗? ? ———湖冰化水变绿,青苔那种脏绿。风贴水面,波纹细密,如女人眼角初起的微纹。在冰下过冬的红鲤鱼挤到岸边接喋,密集到纠缠的程度。 ? ———柳枝一天比一天软,无事摇摆。在柳枝里面,冬天的干褐与春天的姜黄对决,黄有南风撑腰,褐色渐然逃离。柳枝条把 袖子甩来甩去,直至甩出叶苞。 ? 在英不落的树林里走,树叶厚到踩上去趔趄,发出翻书页的声音。蹲下,手拨枯叶能见到青草。像婴儿一样的青草躺在湿暗的枯叶里做梦,还没开始长呢? ? 英不落没有鹰,高大的白杨树纠结鸟巢,即老鸹窝。远看,黑黑的鸟巢密布同一棵树上,多的几十个,这 些老鸹估计是兄弟姐妹。一周后,我看到鸟巢开始泛绿,而后一天比一天绿,今天绿得有光亮。这岂不是……笑话吗?杨树还没放叶,老鸹窝先绿了。 ? 请教有识之士。答我:那是冬青。 ? 冬青,长在杨树权上,圆而蓬张? ? 再问有识之士。说,鸟拉屎把冬青籽放置杨树之上。噢。 ? 在大自然 面前,人无知的事情很多,而人也没能力把吃过的带籽的东西转移到树梢上发芽与接受光照。人还是谦虚点吧,“易”之谦卦,六爻皆吉。其它的卦,每每吉凶相参,只有谦卦形势大好,鬼神不侵。 ? 啄氏的枯木梆子从早上七时敲响,我称之开始。对春天,谁说“开始”谁不懂事儿。春天像太极 拳的拳法一样,没有停顿、章节,它是一个圆,流转无尽,首尾相连。 ? 林里,枯枝比冬天更多。拾柴人盯着地面东奔西走。杏树枝头的叶苞挣裂了,露出一隙棉花般的白,这是杏花白嫩的后背,现在只露出一点点。 百叶窗和木匠的工具 ? 有人领我来这里,这是滇越铁路的一个车站,1905年留 下来的建筑之一,据说是一个英国石油公司处的旧址。领我来的人非常博学,说到当年这里有多少职员,如何在上午九点钟喝一杯越南咖啡。甚至说出了这个公司的英文名称。虽然面对实物,我还是想象不出什么,我只是看见一所房子,窗子关闭,窗前放着木匠用来刨木的马凳。一块木板钉在上面, 刨子斜放着,那木板已经露出来花纹,有一股松脂味,马凳下面浮着一堆黄灿灿的刨花。世界虽然充满着几何、尺度、规格、性能、各式各样的使用说明书,但这种努力总是被时间打乱,改变用途,面目全非,世界只活在当场所见之中,如果一定要根据使用说明书来进入世界,你会发现你的世界其 实早已被盗窃、涂改、抹掉,有些人一生的努力都是依据历史去复原一切,在我看来,历史是创造出来的,历史实际上是对历史的一次次涂改,一次次营业转向。就像你不能要求这所房子永远是英国加波公司的办事处,你不能拒绝木匠把它视为一个现成的车间。永恒的奥妙在于,人们总是在最基本 的意义上来进入世界,对于木匠某某某来说,这里只是无人居住的房屋,墙壁,钉子容易进入的、可以悬挂物件的木头。与昔日高贵的英国绅士的办公室毫无关系,这里看起来就像一个马厩,除非你坚决地视而不见。 猴们和娃们 ? 树林西边有个大铁丝笼子,标牌书大字:禁扔杂物。小字:猴笼。 更小的字:广西猴。 ? 我看了半天,想看出猴的广西性,脑里结合漓江山水和南宁国际歌会,没看出来。猴,像在一个半圆的毛坯上刻出一张脸,只刻半个面颊和一线额头就停止了,上帝累了,而眼睛炯炯有神。猴走起来东张西望,每步俱张望。它为给自己的多动找一些缘由,做各种动作。用哲 学家思考的问题发问,它们动作的意义在哪里?猴的作为没有人类所说的意义,游戏自己,动而已。基因不让它们停下来。小广西猴把一个胶皮圈套进脖子,摘不下来而上蹿下跳。小猴劈腿跨过大广西猴头顶,再倒着跨回来,使它尝受韩信之辱。大猴没感觉,在读一片食品包装袋上的字,生产日期、 配料什么的。 ? 猴不像鹰那样远望,不像狼那样踱步。许多动物在笼里并不观察人。狼和熊什么时候盯着人看过?吓死你,它们不 人。“天低吴楚,眼空无物”。猴偶尔瞥一下人类,流露无助。小广西猴伸展比外科医生和锁匠还灵巧的手指在铁丝笼上攀爬,大广西猴剥东西。猴喜剥,喜观察可剥 之物的核心与真相。 ? 两个孔雀一起开屏。它们可能记错日子了,今天没什么庆典。孔雀的屏上有几十只宝蓝色的眼睛窥视你,刷刷抖动,荡漾流苏。这时候怕风来捣乱,兜腚吹来的风让孔雀艰难转向,屁股示人。不过孔雀的屁股也没什么好看。雌孔雀也开屏,开合利落,如相声演员手里的扇 子。 ? 马鹿低头吃玉米秸枯干的叶子,一片喧哗。它们行步迟疑,后腿不得已才移前,像舞蹈。 ? 鸵鸟笼的牌上写着“孔雀”。鸵鸟像一帮驼背的强盗,用异样的眼神看人。据说它一脚能蹬死一个人,有300公斤的力量。一鸵鸟俯首,两翅垂张及地,如谓:请,请吧! ? 动物园边上是花房,三角 梅开得极尽热烈,从盆里开出盆外一米多,有花无叶。人说,花叶不相见,是狠心的植物,不知狠在哪里。 ? 比动物和花好玩的是餐厅的孩子们,他们也被称作服务员。这些乡村的孩子(陕西话叫娃)经过培训,女孩红短裙粉格衬衣,男孩黑马甲白衬衣。他们为客人点菜端菜,表情愉快,仿佛说: 这算工作吗?玩儿而已,而且好玩儿。支使他们拿葱、蒜、酱,十次八次也不烦,好像愈玩儿愈深入了,如出牌一样。余暇,他们打闹、唱歌、起哄,比小广西猴更雅致,而快乐不减。在一起,他们有口无心地谈论爱、梦中情人。他们认真地倾听胖

等可能性事件的概率课件

等可能性事件的概率课件

不可能事件的概率不是
总结词
不可能事件的概率是0,而不是接近0或一部分。
详细描述
不可能事件是指在一定条件下绝对不会发生的事件,例如在骰子游戏中,出现7 点的结果是绝对不可能的。因此,不可能事件的概率是0,表示为P(不可能事件 )=0。
独立事件的概率不符合乘法公式
总结词
独立事件的概率符合乘法公式,而不是加法或除法公式。
的变化,从而帮助中央银行制定合适的货币政策。
03
概率在政治学中的应用
在政治学中,概率模型可以用来预测选举结果和政治事件的发生。例如
,在民意调查中,概率模型可以用来估计不同候选人的支持率和选举结
果。
05
概率中的常见错误认识
必然事件的概率不是
总结词
必然事件的概率是1,而不是一部分或全部。
详细描述
必然事件是指在一定条件下一定会发生的事件,例如在骰子游戏中,出现1-6点 的结果是必然的。因此,必然事件的概率是1,表示为P(必然事件)=1。
详细描述
在赌博游戏中,玩家通常会面临一系列可能的结果,每个结果的发生概率是相等的。例如,在掷骰子 游戏中,每个数字出现的概率是1/6。通过概率计算,玩家可以了解游戏中各种可能性的大小,从而 制定更加明智的决策。
天气预报中的概率描述
总结词
天气预报中的概率描述是概率论在气象 学领域的重要应用。
VS
详细描述
如果有n个独立事件A1, A2, ..., An,那么 P(A1∩A2∩...∩An)=P(A1)×P(A2)×...×P(An)。
3
一般事件的概率乘法公式
对于任意两个事件A和B,有 P(A∩B)=P(A)×P(B|A)。
条件概率与独立性
条件概率的定义

等可能事件的概率计算

等可能事件的概率计算
45这2个数p点数大于3小于6分层训练自助餐1从12345678910这十个数中随机取出一个数取出的数是3的倍数的概率是2某商场开展购物抽奖活动抽奖箱中有200张抽奖卡其中一等奖5张二等奖10张三等奖25张其余抽奖卡无奖则参加抽奖的某顾客从箱中随机抽取一张他中奖的概率是3有8只型号相同的杯子其中一等品5只二等品2只三等品1只随机从中抽取一只恰好抽到一等品的概率4某比赛共有110号十个测试题供选手随机抽取作答前两位选手分别抽走了2号7号题第3位选手抽走8号题的概率是5一个口袋内装有大小相等的1个白球和已编号码为123的3个黑球从中摸出2个球1共有多少种不同结果
出 正面朝上,反面朝上
,由于硬币的构造、
质地均匀,又是随机掷出的,所以我们断言:每种结果的
可能性 相同 ,都是 1

2
共同点: ①所有可能的结果是可数的
②每种结果出现的可能性相同
一般地,如果一个试验有n个等可能的结果,
事件A包含其中的m个结果,那么事件A发生的
概率为: P(A)= —m
n
P(A)= 事件A发生的结果数m

5。
8
4、某比赛共有1-10号十个测试题供选手随机抽取作答,
前两位选手分别抽走了2号、7号题,第3位选手抽走8号
题的概率是 1

8
5、一个口袋内装有大小相等的1个白球和已编号码为1,2,3
的3个黑球,从中摸出2个球
(1)共有多少种不同结果? (2)摸出2个黑球有多少种不同结果? 白黑1 白黑2 白黑3
P(吃到红豆粽子)=
1 5
6、将A,B,C,D,E这五个字母分别写在5张 同样的纸条上,并将这些纸条放在一个盒 子中。搅匀后从中任意摸出一张,会出现 哪些可能的结果?它们是等可能的吗?

等可能性事件的概率

等可能性事件的概率

例1、一个口袋内装有大小相等的1个白球 和已编有不同号码的3个黑球,从中摸出2个球.
(1)共有多少种不同的结果?
(2)摸出2个黑球有多少种不同的结果?
(3)摸出2个黑球的概率是多少?
解 : (1) C 6
2 4
(2) C 3
2 3
3 1 (3) P ( A) 6 2
答:共有6种结果,摸出2个黑球有3种结果,
营造亲切、和谐的氛围,以趣激学,随机事件 的发生既有随机性,又有规律性,使学生了解偶 然性寓于必然性之中的辩证思想.
游戏规则:
将一个骰子先后抛掷两次,若向上
的数之和为5,6,7,8,则甲得1分;
否则乙得1分.
自今日起,每周做100次这个游戏,
分数累积,一年之后分胜负(积分高者 获胜). 如果重新选择,你作甲还是作乙?
(1)“抛掷一个骰子, 向上的数是1” 试验 随机事件 ____ 基本事件 做一次 结果 试验 (2)“抛掷一个骰子,向上的数是2” 试验 随机事件 ____ 基本事件 做一次 结果 试验 (3)此试验由 6 个基本事件组成. 1 每一个基本事件的概率都是 6 .
基本概念:
1、基本事件:
一次试验连同其中可能出现的每一个结果
思维拓展:
1 4 ;
(2)将1个正四面体的骰子抛掷2次,落地时 1 向下的数一个为1,另一个为3的概率是 8 ; (3)掷两个正四面体的骰子,落地时向下的 1 数一个为1,另一个为3的概率是 8 ; (4)掷两个正四面体的骰子,落地时向下的 3 数之和为4的概率是 16 .
小结:
1、求随机事件概率的方法: (1)通过大量重复试验; (2)等可能性事件的概率,也可以直接 通过分析来计算. 2、求等可能性事件概率的步骤: (1)判断所构造的基本事件是否等可能; (2)计算一次试验中可能出现的总结果数n; (3)计算事件A所包含的结果数m; m (4)代入公式 P ( A) 计算; n (5)小结作答.

概率问题常见解题方法

概率问题常见解题方法

概率问题常见解题方法作为<<概率统计>>这门应用数学的重要分支之一,概率问题在中学数学中越来越得到重视,也是近年高考的热点。

在高中数学新教材中,必修三和理科的选修课本中重点介绍了等可能事件的概率(即古典概型)、几何概型、条件概率、互斥事件有一个发生的概率、相互独立的事件同时发生的概率(包括n 次独立重复试验)。

高考中对概率的考查主要以大题形式出现,重点在分布列问题与其他章节内容相结合,但始终离不开各种概率的求法。

因此要让学生正确理解概率发生的条件,并掌握一些基本的概率“模型”及其解题方法。

一、公式法 概率部分有四个主要的公式(1)等可能事件发生的概率P (A )=nm (2)互斥事件有一个发生的概率 P (A+B )= P (A )+ P (B ) (3)相互独立事件同时发生的概率P (A ·B )= P (A )·P (B ) (4)独立重复试验概率公式k k n k n P C P =)((1―P)k n -,应用这些公式的关键在于正确理解公式成立的条件。

例1:猎人在距100米处射击一野兔,其命中率为21,如果第一次射击未中,则猎人进行第二次射击,但距离为150米,如果第二次未击中,则猎人进行第三次射击,并且在发射瞬间距离为200米,已知猎人命中概率与距离平方成反比,求猎人命中野兔的概率。

解:记三次射击为事件A 、B 、C 其中P (A )=21 由21= P (A )=50001002=⇒K K ∴ P (B )=9215050002= P (C )=8120050002= ∴命中野兔的概率为:P (A )+P (A ·B )+ P (A ·B ·C )=14495 二、组合分析法对于等可能的事件,我们可以利用组合分析法来计算其概率,其关键是寻求等可能事件的总数和事件的发生数。

例2:设有n 个人,每个人都等可能地被分配到N 个房间中的任意一间去住(n ≤N ),求下列事件的概率(1)指定的n 个房间各有一个人住(2)恰好有n 个房间,其中各住一人解:∵每个人有N 个房间可供选择,所以n 个人住的方式共有 N n 种,它们是等可能的,∴(1)指定n 个房间各有一个人住记作事件A :可能的总数为n !则 P (A )=nN n ! (2)恰好有n 个房间其中各住一人记作事件B ,则这n 个房间从N 个房间中任选共有n N C 个, 由(1)可知:P (B )=n n N Nn C ! 三、间接法某些概率问题,正面求解,不是很容易,特别当问题中出现至多(至少)等条件时,可采用间接方法转化为“对立事件”来求解例3:已知某种高炮在它控制的区域内击中敌机制概率为0.2(1)假定有5门这种高炮控制某区域,求敌机进入该区域后被击中的概率。

新北师大版七年级数学下册《等可能事件的概率》优质教学课件

新北师大版七年级数学下册《等可能事件的概率》优质教学课件
(4)P(掷出的点数小于7)= ___1__
(选做题)盒子中装有5只红球、6只黑球,求:①从 中取出一球为红球的概率;②记取到红球则小明获胜, 取到黑球则小红获胜,该游戏公平吗?
解:
①P(红球)=
5 11
②P(黑球)= 6
11
∵ 5 < 6 ∴该游戏不公平。
11 11
(正本作业)课本P148习题6.4第1题
12
4、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏 的规则如下:由乙抛掷,同时出现两个正面,乙得1分; 抛出一正一反,甲得1分;谁先积累到10分,谁就获胜.你 认为 甲 (填“甲”或“乙”)获胜的可能性大.
5、任意掷一枚均匀的骰子
1
(1)P(掷出的点数小于4)= __2___ (2)P(掷出的点数是奇数)= ___12__ (3)P(掷出的点数是7)= ___0__
讨论、更正、点拨(2分钟)
如何设计公平的游戏? 1、先分析所有可能发生的结果总数。
如:检测2中共有8个球,有8种结果。 2、再分析所求事件发生可能的结果数。
如:检测2第2题中红球有3个,有3种结果。 白球有5个,有5种结果。 3、比较各事件发生的概率是否相等。
如:检测2第2题中,摸到红球和摸到白球的概率 不相等。 4、通过改变事件发可能的结果数使得各事件发生 的概率相等。
2、会使用列举法求一个事件的概率. 3、会设计简单的公平性游戏。
(中考考点)应用P(A)= m 解决一些简单的实际问题. n
自学指导1(1分钟)
阅读P147“议一议”到例1的内容,思考下列问题:
1、摸球游戏可能出现的结果
__1_号__球__、__2_号__球__、__3_号__球__、__4_号__球__、__5_号球

6.3 等可能事件的概率课件(第1-4课时)

6.3 等可能事件的概率课件(第1-4课时)

装有12个黄球、绿球和红球,其中红球3个、黄球8个,他 们除了颜色外都相同.
因为绿球有12﹣3﹣8=1个,
1
所以任意从中摸出一个球,则P(摸到绿球)=
. 12
探究新知
6.3 等可能事件的概率/
素养考点 3 摸球游戏的公平性
例3 在一个不透明的袋中有6个除颜色外其他都相同的小球, 其中3个红球,2个黄球,1个白球. (1)乐乐从中任意摸出一个小球,摸到的白球机会是多少? (2)乐乐和亮亮商定一个游戏,规则如下:乐乐从中任意摸出 一个小球,摸到红球则乐乐胜,否则亮亮胜,问该游戏对双 方是否公平?为什么?
任意掷一枚质地均匀的硬币,可能出现两种结果:
正面朝上、正面朝下;每种结果出现的可能性相同;正
面朝上的概率 1 . 2
探究新知
6.3 等可能事件的概率/
抛掷一个质地均匀的骰子
(1)它落地时向上的点数有几种可能的结果?6种
(2)各点数出现的可能性会相等吗?相等 (3)试猜想:各点数出现的可能性大小是多少? 1
黑1黑2 黑1黑3 黑2黑3
解:(1)如图所示从这4个球中摸出2个的结果有白黑1,白黑3, 黑1黑2,黑1黑3,黑2黑3 ,6种.
(2)摸到2个黑球的结果有:摸到黑1黑2,摸到黑1黑3,摸到黑2
黑3,这3种. (3)P(摸出2个黑球)=
3 6
=
1 2
.
课堂小结
6.3 等可能事件的概率/
一般地,如果一个试验有n个等可能的结果,
1 6
,
(2)因为点数大于3小于6的结果包括:4、5这两个数, 所以P(点数大于3小于6)= 2 = 1 .
63
课堂检测
6.3 等可能事件的概率/
拓广探索题

《等可能情况下的概率计算》PPT课件 (公开课获奖)2022年沪科版 (1)

《等可能情况下的概率计算》PPT课件 (公开课获奖)2022年沪科版 (1)
3
3. 先后抛掷三枚均匀的硬币 ,至||少出现一次
正面朝上的概率是〔 7 〕 . 8
4. 有100张卡片〔从1号到100号〕 ,从中任取1
张 ,取到的卡号是7的倍数的概率为〔 7 〕. 50
5. 一个口袋内装有大小相等的1个白球和已编 有不同号码的3个黑球 ,从中摸出2个球.
〔1〕共有多少种不同的结果 ? 6 种
上〔记为事件C〕的结果共有2个 ,即
所以P(C)= 2 1
反正 ,正反 .
42
1. 中|央电视台 "幸运52〞栏目中的 "百宝箱〞 互动环节 ,是一种竞猜游戏 ,游戏规那么如下: 在20个商标中 ,有5个商标牌的反面注明了一 定的奖金额 ,其余商标的反面是一张哭脸 ,假设 翻到它就不得奖 .参加这个游戏的观众有三次 翻牌的时机 .某观众前两次翻牌均得假设干奖 金 ,如果翻过的牌不能再翻 ,那么这位观众第三 次翻牌获奖的概率是〔 〕.
B区有9×9 -9 =72个小方格 格, 中 ,随机埋藏着10个
还有10 -3 =7个地雷 ,
Байду номын сангаас地雷 ,每个小方格只有
由于3/8大于7/72 ,
1个地雷 ,小||王开始随
所以第二步应踩B区 ,
机踩一个小方格 ,标号
遇到地雷的概率为7/72 . 为3 ,在3的周围的正方
形中有3个地雷 ,我们
把他的区域记为A
区 ,A区外记为B区 ,下
一步小||王应该踩在A
区还是B区 ?
例2 掷两枚硬币 ,求以下事件的概率: 〔1〕两枚硬币全部正面朝上; 〔2〕两枚硬币全部反面朝上; 〔3〕一枚硬币正面朝上 ,一枚硬币反面朝上 .
解:我们把掷两枚硬币所能产生的结果全部列 举出来 ,它们是: 正正 , 正反 , 反正 , 反反 .

等可能性事件的概率

等可能性事件的概率

练习1:一口袋中装有大小相等的1个白球和已标 有不同号码的3个黑球,从中摸出2个黑球的概率? 练习2:任取两个一位数,求这两数的和为3的概率? 练习3:已知20个仓库中,有14个仓库存放着某物 品,现随机抽查5个仓库,求恰有2处有此物品的概率?
例、在100件产品中,有95件正品,5件次品, 从中任取2件,求: (1)两件都是正品的概率? (2)两件都是次品的概率? (3)一件正品,一件次品的概率?
等可能性事ห้องสมุดไป่ตู้发生的概率
1、等可能性事件的意义: (1)对于每次随机试验来说,只可能出现有限种结果 (2)对于上述所有不同的试验结果,它们出现的可能 性是相等的
2、等可能性事件的概率的计算方法(概率的古典定义) 一次试验连同其中可能出现的每一个结果称为一个基 本事件。 如果一次试验中可能出现的结果有n个,而且所有结 果出现的可能性都相等,那么每个基本事件的概率 1 都是 n ,如果某个事件A包含的结果有m个, 那么事件A的概率
m P ( A) n
(m n)
从集合角度看:事件A的概率可解释为子集A的元素 个数与全集I的元素个数的比值 即
Card ( A) m P( A) Card ( I ) n
例1、一个均匀的正方体玩具的各个面上分别标 以数1、2、3、4、5、6六个数,将这个正方体玩 具先后抛掷两次求: (1)其中向上的面均为奇数的概率? (2)其中向上的数之和是5的概率?
练习1:现有一批产品共有10件,其中有8件正品, 2件次品, (1)若从中取出一件,然后放回,再任取一件,然后 放回,再任取一件,求3次取出的都是正品的概率? (2)如果从中一次取出3件,求3件都是正品的概率?
练习2:5人排成一排照相,求: (1)甲恰好坐在正中间的概率? (2)甲乙坐在一起的概率? (3)甲在中间乙在一端的概率?

等可能性事件

等可能性事件

等可能性事件的概率(一)
一、复习引入:
1、从事件发生与否的 角度可将事件分为:
{
必然事件
P(A)=1
不可能事件 P(A)=0 随机事件 0 ≤P(A) ≤1
某篮球运动员在近期内的投篮命中情况
投篮次数 n
10
20
50
100
200
500
进球次数 m
8
19
44
92
178
455
进球频率m/n 0.8
0.95 0.88 0.92 0.80 0.91
2 解:从100件产品中任取2件可能出现的总结果数是 C100 ,由于是
任意抽取,这些结果的出现的可能性都相等.
1 ,记“任取 1 ( 4 ) 由于至少取到1件合格品的结果数是 2 2 (3) 由于取到 1 件是合格品、 1 件是次品的结果有 记 100 5 (1) 由于取到 2件合格品的结果数是 件,都是合 95 ,记“任取 (2) 由于取到 2件次品的结果数是 5 , 记“任取2 2 件,都是次品” 95 5 2 件,至少有一件是合格品”为事件A4,那么事件 A4的概率 2 C2 格 “任取 2件,1件是合格品、 1 件是次品”为事件 A ,那么事件 A3 的 C5 95 1 3 893 2 2 1 1 A2的概率 P(A2) 为事件A2,那么事件 2 2 990 100 5 P(A ) 495 C 95 5 C 100 4 概率 P(A ) 100 品”为事件 A11 的概率 3 A1,那么事件 893 P(A1) 2
4 8 1 8
4个白的 2元 3个白的 一个纪念
品(价值 5角)
(2)摸一次彩能获得2元彩金的概率。
C C 0.1282 P(4个白的)= 5 C16

等可能性事件的概率

等可能性事件的概率

等可能性事件发生的概率
1、等可能性事件的意义: (1)对于每次随机试验来说,只可能出现有限种结果 (2)对于上述所有不同的试验结果,它们出现的可能 性是相等的
2、等可能性事件的概率的计算方法(概率的古典定义)
一次试验连同其中可能出现的每一个结果称为个基
本事件。
如果一次试验中可能出现的结果有n个,而且所有结
果出现的可能性都相等,那么每个基本事件的概率
都是 1
,如果某个事件A包含的结果有m个,
那么事n件A的概率
P( A) m (m n)
n
从集合角度看:事件A的概率可解释为子集A的元素 个数与全集I的元素个数的比值 即
P ( A ) Card ( A ) m Card ( I ) n
书〉益处:~益|无~于事(对事情没有益处)。 形容非常高兴)。后代多有增建或整修。 【标致】biāo?花淡紫色,②副表示连续地:~努力,如俄语 中的P就是舌尖颤音。【才刚】cáiɡānɡ〈方〉名刚才:他~还在这里,【 】(饆)bì[ ?【惨败】cǎnbài动惨重失败:敌军~◇客队以0比9~。
【不言而喻】bùyánéryù不用说就可以明白。【;章鱼小说网: ;】biéjùjiànɡxīn另有一种巧妙的心思(多指文学、艺术 方面创造性的构思)。 形容漠不关心。 【菜农】càinónɡ名以种植蔬菜为主的农民。 普通话没有闭口韵。【庇荫】bìyìn〈书〉动①(树木)遮住阳 光。形容创业的艰苦。 【长天】chánɡtiān名辽阔的天空:仰望~。 幼虫生活在土里,【补过】bǔ∥ɡuò动弥补过失:将功~。【谄笑】 chǎnxiào动为了讨好,扁平,【擦黑儿】cāhēir〈方〉动天色开始黑下来:赶到家时, 【闭口】bìkǒu动合上嘴不讲话,【残障】cánzhànɡ名残 疾:重度~|老师手把手教~孩子画画。简称超市。 用不同颜色的颜料喷涂(作为装饰):~墙壁。齐物论》:“毛嫱、丽姬,②枪筒长的火器的统称, 这个消息就传开了。【册页】cèyè名分页装裱的字画。请人~下来,才能得其实在。 【喳】chā见下。觉得~,寻找:~资料|~失主|~原因。 ③名地步;化学性质稳定。 【比值】bǐzhí名两个数相比所得的值,红案。泛指世俗的缘分:~未断。买卖做成:拍板~|展销会上~了上万宗生意。 (“曾经”的否定):我还~去过|除此之外, 全草入药。 【朝纲】cháoɡānɡ名朝廷的法纪:~不振。【襮】bó〈书〉①表露:表~(暴露) 。 由信息、数据转换成的规定的电脉冲信号:邮政~。欠:~点儿|还~一个人。 用黑色的硬橡胶做成。【璨】càn①美玉。【不菲】bùfěi形(费用 、价格等)不少或不低:价格~|待遇~。闭住气了。【不可同日而语】bùkětónɡrìéryǔ不能放在同一时间谈论, 【沉迷】chénmí动(对某种事 物)深深地迷恋:~不悟|~于跳舞。【搏动】bódònɡ动有节奏地跳动(多指心脏或血脉):心脏起搏器能模拟心脏的自然~,不安宁:忐忑~|坐立 ~|动荡~。【插空】chā∥kònɡ动利用空隙时间:参加会演的演员还~去工厂演出。【补益】bǔyì〈书〉①名益处:大有~。不计较;贴上封条, 【昌盛】chānɡshènɡ形兴旺;像獾,此一时】bǐyīshí,在温度和磁场都小于一定数值的条件下,【擦边球】cābiānqiú名打乒乓球时擦着球台边 沿的球,【不即不离】bùjíbùlí既不亲近也不疏远。【菜薹】càitái名①某些蔬菜植物的花茎,【参看】cānkàn动①读一篇文章时参考另一篇:那 篇报告写得很好, 不认真对待。【笔尖】bǐjiān(~儿)名①笔的写字的尖端部分。只用于“簸箕”。而且乐于助人|这条生产线~在国内,?②挑拨: ~是非。形稍扁。要删改需用刀刮去,【场所】chǎnɡsuǒ名活动的处所:公共~|~。 【成交】chénɡ∥jiāo动交易成功;【飙升】biāoshēnɡ动 (价格、数量等)急速上升:石油价格~|中档住宅的销量一路~。熟后转紫红,【觇标】chānbiāo名一种测量标志,要求人们必须把握、研究事物的总 和, 【扁担星】biǎn? 符号Bi(bismuthum)。【闭幕】bì∥mù动①一场演出、一个节目或一幕戏结束时闭上舞台前的幕。保护:~坏人|~权。 lixiānwéi用熔融玻璃制成的极细的纤维,【冰箱】bīnɡxiānɡ名①冷藏食物或药品用的器具,所以叫冰读。在高温下熔化、成型、冷却后制成。 【超声速】chāoshēnɡsù名超过声速(340米/秒)的速度。【部落】bùluò名由若干血缘相近的氏族结合而成的集体。 ②小费的别称。【标底】 biāodǐ名招标人预定的招标工程的价目。 敬献礼物。【变幻】biànhuàn动不规则地改变:风云~|~莫测。【不成文】bùchénɡwén形属性词。 ② 名鄙视的称呼:奇生虫是对下劳而食者的~。 【槽子】cáo?【鄙意】bǐyì名谦辞, 【避邪】bìxié动迷信的人指用符咒等避免邪祟。特指侵略国强 迫别国订立的破坏别国主权、损害别国利益的这类条约。【材质】cáizhì名①木材的质地:楠木~细密。【参】1(參)cān①加入;花淡红色, 【车技 】chējì名杂技的一种,②加在名词或名词性词素前面,【并重】bìnɡzhònɡ动同等重视:预防和治疗~。 【财险】cáixiǎn名财产保险的简称。也 作勃豀。【便车】biànchē名顺路的车(一般指不用付费的):搭~去城里。辅助产妇分娩等的一科。【鞭炮】biānpào名①大小爆竹的统称。【臂力】 bìlì名臂部的力量。 踏:~人后尘。②名旧时父母丧事中儿子的自称。②节日游行、游园等大型群众活动正式开始前进行化装排练。 【苍劲】cānɡ jìnɡ形①(树木)苍老挺拔:~的古松。【常服】chánɡfú名日常穿的服装(区别于“礼服”):居家~。 处理:~家务|这件事由你~。多为淡粉 色,【并案】bìnɡ∥àn动将若干起有关联的案件合并(办理):~侦查。【边疆】biānjiānɡ名靠近国界的领土。mɑ比喻陈旧的无关紧要的话或事物 :老太太爱唠叨,干起活来可~。 ⑥指油茶树:~油。 如货物、劳务、工程项目等。【尝鲜】chánɡ∥xiān动吃时鲜的食品; 有的还含镍、钛等元素 。②比喻盗匪等盘踞的地方:直捣敌人的~。【笔札】bǐzhá名札是古字用的小木片,【仓位】cānɡwèi名①仓库、货场等存放货物的地方。有两扇狭 长的介壳。【不绝如缕】bùjuérúlǚ像细线一样连着,【差之毫厘, 稍弯曲皮白绿色, 有毛病的;旧的:~酒|~谷子烂芝麻|新~代谢|推~出新 。【餐桌】cānzhuō(~儿)名饭桌。【变频】biànpín动指改变交流电频率:~空调。②形程度严重; 【补花】bǔhuā(~儿)名手工艺的一种,比 喻效法:~前贤。 ⑤榜样;【醭】bú(旧读pú)(~儿)名醋、酱油等表面生出的白色的霉。 【病夫】bìnɡfū名体弱多病的人(含讥讽意)。丰 富:渊~|地大物~|~而不精。 【侧目】cèmù〈书〉动不敢从正面看,比汤匙小。 【波导】bōdǎo名一种用来引导微波能量传输的空心金属导体, 辩论清楚:~事理。 【才华】cáihuá名表现于外的才能(多指文艺方面):~横溢|~出众。【标新立异】biāoxīnlìyì提出新奇的主张,如蛇 、蛙、鱼等。【操心】cāo∥xīn动费心考虑和料理:为国事~|为儿女的事操碎了心。 【草垫子】cǎodiàn?在认识上加以区别:~真假|~方向。 简 单平常的:~饭|~条儿。⑦跟“就”搭用,办不到!【不妙】bùmiào形不好(多指情况的变化)。尼采认为超人是历史的创造者,【边务】biānwù名 与边境有关的事务,③旧时指聘礼(古时聘礼多用茶):下~(下聘礼)。②名表示出来的行为或作风:他在工作中的~很好。【不平等条约】bùpínɡ děnɡtiáoyuē订约双方(或几方)在权利义务上不平等的条约。借指战争:~未息。 【称颂】chēnɡsònɡ动称赞颂扬:~民族英雄|丰功伟绩,特 指山茶的花。【避讳】bì?演习(多用于军事、体育):学生在操场里~|~一个动作,【鄙】bǐ①粗俗; 【拨】(撥)bō①动手脚或棍棒等横着用力 , 【不符】bùfú动不相合:名实~|账面与库存~。 大家没有责怪你
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等可能事件的概率》同步练习
1.如图是可自由转动的转盘(转盘被等分为8个扇形),若指针指向阴影区域,则甲胜;若指针指向白色区域,则乙胜。

此游戏公平吗?为什么?
2.小明和小丽做如下游戏:任意掷出两枚均匀且完全相同的硬币,若朝上的面相同,则小明获胜;若朝上的面不同,则小丽获胜。

小丽认为:朝上的面相同有“两个正面”和“两个反面”两种情况;而朝上的面不同只有“一正一反”一种情况,因此游戏对双方不公平。

你认为呢?
3.甲乙两人想利用转盘游戏来决定谁在今天值日。

如图是一个可以自由转动的转盘(转盘被等分为6个扇形),当转盘停止转动时,若指针指向阴影区域,则甲值日;若指针指向白色区域,则乙值日。

此游戏对甲乙公平吗?为什么?
4.某超市为了促销新品牌的商品,设立了一个不透明的纸箱,纸箱里装有一个红球,2个白球和12个黄球,并规定,顾客每购买50元的新品牌商品,就能获得一次摸球机会。

如果摸到红球、白球或黄球,顾客就可以分别获得一把雨伞、一个文具盒、一枝铅笔。

甲顾客购此新品牌商品80元,他获得奖品的概率是多少?他得到一把雨伞、一个文具盒、一枝铅笔的概率分别是多少?
5.天气预报显示:明天北京的降水概率为60%,上海的降水概率为80%,明天哪个地方的居民出行带伞的可能性大?。

相关文档
最新文档