中央空调冷源系统群控浅析
冷源群控系统控制原理
冷源群控系统控制原理嘿,前几天我去一个大商场玩,一进去就觉得特别凉快。
我就好奇呀,这商场里的冷气是怎么来的呢?后来我发现商场里有个控制室,里面有很多电脑和仪器,听工作人员说这是冷源群控系统。
这就让我想到了冷源群控系统控制原理。
咱就说说这冷源群控系统是咋控制的吧。
你想啊,这冷源群控系统就像一个聪明的大管家。
它能把商场里的冷气管理得井井有条。
冷源群控系统主要是通过监测和控制各种设备来实现冷气的供应。
那它是怎么做到的呢?这就好比一个乐队指挥。
冷源群控系统会监测商场里的温度、湿度等参数,就像乐队指挥听着各个乐器的声音。
如果温度太高了,它就会命令制冷设备加大功率,就像指挥让某个乐器声音更大一些。
如果温度太低了,它就会让制冷设备减小功率,或者关闭一些设备,就像指挥让某个乐器声音小一点或者停下来。
为啥要有冷源群控系统呢?这是有原因的。
首先啊,如果没有冷源群控系统,商场里的冷气可能会不均匀。
有的地方冷得要命,有的地方还很热。
有了冷源群控系统,就能保证商场里的温度都比较舒适。
其次呢,冷源群控系统可以节约能源。
它会根据实际需要来调整制冷设备的运行,不会浪费电。
最后啊,冷源群控系统还可以提高设备的可靠性。
它会监测设备的运行状态,如果有设备出故障了,它会及时发现并采取措施,不会影响商场的冷气供应。
比如说,我在商场里玩的时候,感觉温度一直都很舒服。
这就是冷源群控系统的功劳。
咱要是想了解更多关于冷源群控系统的知识,就得知道这些原理。
不能光看个热闹,要明白它是怎么工作的。
总之啊,冷源群控系统就像一个神奇的魔法,能让我们在商场里享受舒适的冷气。
嘿,现在想想,那个商场还真挺厉害呢。
空调主机和暖通系统群控(含冷机群控)的知识分享
一、冷机群控的逻辑
一、冷机加减载
一、冷机群控的逻辑
一、冷机加减载
程序执行
过渡季节
制冷季节
制冷季节
参数设定
冷冻水出水温度设定为8℃,1#、2#、3#、4#冷机 冷冻水出水温度设定为6℃,1#、2#、3#、4#冷机纳
纳入群控。
入群控。
闭店延时模式
开机
开机时间到,首先开启第一台大冷机;
开机时间到,首先开启第1~2台大冷机;
加载 减载
(1)第一台离心机组开启后50分钟后,冷冻水总 管供水温度大于8℃且第一名离心冷机负荷大于95%,(1)当冷冻水总管供水温度大于t℃且2台冷机离心 持续10分钟,开启第二名冷机;当冷冻水总管供水 冷机负荷均大于95%,持续10分钟,开启第三台冷机。 温度大于8℃且2台冷机离心冷机负荷均大于95%, 持续10分钟,开启第三台冷机。
若集分水器压差小于0.16 Mpa(可修改)或冷冻水供回水温差大于t℃,先减小压差旁通阀开度直
2
到0%时,再增大冷冻泵频率,直到50HZ满频。
若集分水器压差大于0.14Mpa并且冷冻水温差小于5℃(可修改),先减小冷冻泵频率,当冷冻泵频
3
率减小到35Hz(可修改),再增大压差旁通阀开度,直到100%。
一、冷机群控的逻辑
三、冷却塔风扇变频
一、冷机群控的逻辑
三、冷却塔风扇变频
拓展问题: 1、冷却塔出水极限温度取“室外湿球温度+3~5℃”, 其中夏季取小值,过渡季取大值,怎么理解?
CCN冷机群控系统功能介绍及操作说明
重庆地铁一号线冷机群控系统功能介绍及操作说明V 1.0开利空调冷冻销售(上海)有限公司2012年6月目录1.冷机群控系统的概念、主要特点和作用1.1.冷机群控系统的概念1.2.冷机群控系统主要特点和功能1.3.冷机群控系统主要作用2.Carrier CCN冷机群控系统的简要介绍3.重庆地铁一号线冷机群控系统的控制对象4.重庆地铁一号线冷机群控系统的组成5.重庆地铁一号线冷机群控系统设备清单及功能介绍6.重庆地铁一号线冷机群控系统各机电设备的控制原理6.1.冷水机组6.2.冷冻/冷却水泵6.3.冷却塔6.4.电动开关蝶阀、调节阀6.5.Carrier冷机内部参数的监测显示7.日常维护注意事项N控制箱7.2.受控的现场机电设备7.3.现场安装的传感器、仪表N监控电脑7.5.日常维护操作人员1.冷机群控系统的概念、主要特点和作用1.1.冷机群控系统的概念冷机群控系统通过对多台中央空调冷水机组和外围设备(包括冷冻水泵、冷却水泵和冷却塔等)的自动化控制使达到节能、精确控制和操作维护方便的功效。
系统采集和控制各类输入输出信号,实现多台冷水机组的远程管理控制,同时也把冷冻水泵、冷却水泵和冷却塔等联锁控制纳入管理。
冷机群控系统中的监控计算机监测和控制这些设备的各种重要参数,并作为管理者的操作界面。
在该界面上,可通过对设备的运行状态了解,设定或修改各类运行参数,如设定冷机运行时间表、修改冷机的出水温度控制值等等。
1.2.冷机群控系统主要特点和功能-根据时间表,自动投入或停止冷机群控的功能-在运行时间表时内,以合理的机组台套数匹配用户负荷,实现节能、高效运行-平衡各机组的运行时间,延长机组寿命-具有对指定的运行机组相应开关冷冻水泵、冷却水泵、冷却塔及相关电动蝶阀的功能-显示外围设备(冷冻水泵、冷却水泵、冷却塔及电动蝶阀等)和冷水机组的运行状态和主要参数-通过控制器对冷冻水泵、冷却水泵和冷却塔等实现联锁控制,并可根据突发事件自动启停备用设备1.3.冷机群控系统主要作用A.提高空调系统的运行效率✧能够保证用户在节能方面的利益,允许用户从使用的经济性和环境保护两个角度来管理冷机的能源消耗✧机组运行时间安排、负荷分段卸载等功能可以为用户提供最高效的能耗管理策略✧操作者可以在短时间内对系统故障报警作出反应,保持空调系统的舒适性和提高能源效率✧能够提供设备运行时间和能耗量等数据,为用户作能耗分析,为其决策提供有效的依据B.提高用户的居住空气舒适度✧通过对冷冻水水温、空气温度、相对湿度、室外空气通风量的精确控制来提升居住者的舒适度✧多重舒适区域控制功能为庞大的楼宇提供了单元式的相对独立的舒适控制C.降低劳动强度,提高工作效率✧集中监控大大减轻了人工手动操作的劳动强度,简化排除故障的过程,避免了由于人工手动操作疏忽而造成的设备损坏✧持续性的现场和远程监视系统,有利于延长冷水机组的寿命,降低设备的维护成本D.强化了的系统诊断能力✧网络为操作者提供了辨别设备非正常运行状态和由此对其他设备产生影响的功能✧所有的维护请求需要进行现场或远程操作的确认,不会自动清除E.系统的协同工作✧通过控制网络的数据互交换功能,使用专用通讯模块可以实现与其他楼宇控制系统的联网。
冷机群控节能分析
冷机群控节能分析
由于在控制系统中包含了经过优化的加卸载逻辑,使得整个系统在运行时能起到明显的节能效果。
以酒店系统为例,酒店系统采用了2台650RT离心机及2台250RT螺杆机,并配备了75KW,30KW水泵若干。
系统在没有采用群控系统的情况下,系统运行不能根据负荷的变化,自动启停冷水机组,机组一直处于运行状态。
冷源系统的整体运行状态大致如下:
在冷水机组运行时,相关的冷冻泵冷却泵以及冷却水塔均需处于运行状态,这些设备的运行无疑增加了系统能耗。
不同季度每日负荷变化参照下表所列参数:
夏季--冷源系统各部分能耗
假设夏季为90天,根据以上运行参数可得到夏季总耗电量为2942280KWH.
同样可算出冬季总耗电量为1061820KWH,春秋季总耗电量为2345760KWH,则年耗电量为6349860KWH。
系统在采用群控系统之后,群控系统能根据冷水主机的额定制冷量及系统负荷的变化,智能选择开启的机器台数,保证系统的高效运行。
此时冷源系统的整体运行状态大致如下:
在冷水机组运行时,相关的冷冻泵冷却泵以及冷却水塔均需处于运行状态,这些设备的运行无疑增加了系统能耗。
夏季--冷源系统各部分能耗
1.冷水主机-冷水主机输入功率根据不同负荷下效率曲线可得出
2.水泵组
3.冷却水塔
假设夏季为90天,根据以上运行参数可得到夏季总耗电量为2781945KWH.
同样可算出冬季总耗电量为812205KWH,春秋季总耗电量为1969110KWH,则年耗电量为556320KWH,初步估算年节省耗电量至少达到10%。
制冷机房群控系统方案
制冷机房群控系统方案一、制冷机房自控系统概述冷机自控系统通过对多台中央空调冷水机组和外围设备(包括冷冻水泵、冷却水泵和冷却塔等)的自动化控制使达到节能、精确控制和操作维护方便的功效。
系统采集和控制各类输入输出信号,实现多台冷水机组的远程管理控制,同时也把冷冻水泵、冷却水泵和冷却塔等联锁控制纳入管理。
冷机自控系统中的监控计算机监测和控制这些设备的各种重要参数,并作为管理者的操作界面。
在该界面上,可通过对设备的运行状态了解,设定或修改各类运行参数,如设定冷机运行时间表、修改冷机的出水温度控制值等。
1、冷机自控系统主要特点和功能:(1)根据时间表,自动投入或停止冷机自控的功能。
(2)在运行时间段内,以合理的机组台套数匹配用户负荷,实现节能、高效运行。
(3)平衡各机组的运行时间,延长机组寿命。
(4)具有对指定的运行机组相应开关冷冻水泵、冷却水泵、冷却塔及相关电动蝶阀的功能。
(5)显示外围设备(冷冻水泵、冷却水泵、冷却塔及电动蝶阀等)和冷水机组的运行状态和主要参数。
(6)通过控制器对冷冻水泵、冷却水泵和冷却塔等实现联锁控制,并可根据突发事件自动启停备用设备。
(7)自动记录与打印系统数据,方便不同级别操作人员管理。
2、冷机自控系统主要作用:(1)提高冷机系统的运行效率1)能够保证用户在节能方面的要求,允许用户从使用的经济性和环境保护两个角度来管理冷机的能源消耗。
2)机组运行时间安排、负荷分段卸载等功能可以为用户提供最高效的能耗管理策略。
3)操作者可以在短时间内对系统故障报警作出反应,保持空调系统的舒适性和提高能效率。
4)能够提供设备运行时间和能耗量等数据,为用户作能耗分析,为其决策提供有效的依据。
(2)提高用户的办公空气舒适度通过对冷冻水水温、空气温度、相对湿度、室外空气通风量的精确控制来提升数据机房工作效率(3)降低劳动强度,提高工作效率1)集中监控大大减轻了人工手动操作的劳动强度,简化排除故障的过程,避免了由于人工手动操作疏忽而造成的设备损坏2)持续性的远程监视,有利于延长冷水机组的寿命,降低设备的维护成本(4)强化了的系统诊断能力1)网络为操作者提供了辨别设备非正常运行状态和由此对其他设备产生影响的功能2)所有的维护请求需要进行现场或远程操作的确认,不会自动清除二、中央站动画界面描述冷源系统自控中央站为使显示界面中点的运行数据更清楚、更直观,使界面更形象生动,系统不仅可以以文本的方式显示,还可以提供一种以色彩变化或是动画的显示方式,如:设备的故障报警提示为闪耀的红色;冷却塔风机风扇的转动等,并保证其动作的真实性。
冷水机组的优化群控节能分析
冷水机组的优化群控节能分析摘要:随着人们节能意识的提高与深化,对于大型的建筑物中的中央空调系统的冷水机组的优化群控的关注度也进一步提高。
因为中央空调的能耗占据着50%的建筑物能耗,而冷水机组的能耗则占据了三分之二,因此对于冷水机组的优化群控的节能分析不仅可以大大降低冷水机组的能耗,也可以大大提高节能水平,进而促进整个空调系统的节能。
关键词:冷水机组;群控节能;优化措施在建筑中,冷源系统可以是冷水机组和热泵,冷源主要是建筑空调设备提供制冷能力;热泵功率低,所以个别泵机组作为冷热源系统的建设是罕见的。
如果将冷水机组作为系统的冷源,锅炉系统作为系统的热源,则存在设备的浪费和设备利用率不足的问题。
由于冷水机组在冬季几乎没有用,锅炉系统只需满足夏季生活热水的需求,冷水机组和锅炉机组的容量必须满足高峰负荷的要求。
因此,许多建筑以冷水机组和锅炉系统作为主要冷热源,其容量在大多数情况下都能满足负荷需求,而热泵机组的不足部分是由热泵机组承担的。
冷热源配置比较经济。
1中央空调系统的冷水机组1.1中央空调系统的结构分析中央空调主要是应用于大型建筑物中,在中央空调系统中主要的设备是空调的冷源、热源设备以及前端设备。
冷热源设备的监控过程复杂,也是节能技术的关键所在。
1.2将冷水机组与空调的前端设备配合运行将冷水机组与空调的前端设备配合运行可以取得较好的优化群控节能效果。
其中冷水机组的选取要根据大型建筑物的实际情况选用合适的冷水机组,在制冷过程中通过对冷冻水的供回水温度、压力、压差以及流量等的控制以及与冷水机组的台数、差压旁路的调节的控制不仅仅满足了空调的末端设备对冷源的需求量,也进一步实现了节能的目的。
1.3备用切换与均衡运行控制制冷站水系统中的若干设备采用互为备用方式运行,如果正在工作的设备出现故障,首先将故障设备切离,再将备用设备接入运行。
2冷水机组群控的策略制冷系统由多台冷水机组及辅助设备组成,在设计制冷系统时,一般按最大负荷情况设计冷水机组的总冷量和冷水机组台数,依据供回水的温差以及计算空调系统前端设备的总的实际冷负荷,再依据大型建筑物的实际的冷负荷来确定冷水机的启停的台数,进而实现冷水机组的群控节能的目的。
中央空调水系统群控逻辑控制说明
一.冷水系统描述:冷水机组:CH1-CH6(6台)冷冻泵:CHP1-CHP6a(7台)冷却泵:CWP1-CWP7(7台)冷却塔:8组(16台)在系统中冷水机组CH1至CH5与冷冻泵CHP1-CHP5、冷却泵CWP1-CWP6为串联,即其中任意一台冷机可对应冷冻泵CHP1-CHP5和冷却泵CWP1-CWP6其中的任意一台,任意一台冷机可对应冷却塔CT2-CT8号7组中任意的一组冷却塔,当某一套机组中的任意设备出现故障,则此套设备均停止运行,系统将自动启动另一套运行时间相对较少的无故障设备。
另外系统中在过渡季节时优先启动主机CH6,CH6单独对应冷冻泵CHP6与CHP6a(备用)和冷却泵CWP7以及CT1号组冷却塔。
1.系统停止:当系统启停被置为Inactive时,设备启动台数Number为0,系统处于停止状态。
2.启停状态:当系统启停被置为active,设备启动台数Number为1,启动冷冻站系统。
系统会优先启动一台最小时间运行的机组。
当把系统启停置为Inactive,停止冷冻站系统,所有设备停止运行。
冷冻站的启动顺序为:•打开冷冻(冷却)水隔离阀、打开最小时间运行且无故障的冷却塔蝶阀(其中如果开启的主机为CH6,则打开CT1的蝶阀)->状态返回后延时5秒,启动冷冻水泵->状态返回延时30秒,启动冷却水泵->状态返回后延时10分钟,启动冷水机组•冷冻站的停止顺序为:•停止冷水主机->延时60秒后停止冷却塔风扇,停止冷却水泵->延时30分钟后关闭冷冻水泵->延时32分钟后停止隔离阀3.计算设备可用的最大值:当设备发生故障时,该设备不可用。
设备的可用最大值要与设备可用的数量相等。
(1)运行加载UP:当下列条件同时发生时,Number上升标志UP被置为ON:•当主机平均电流百分比负载大于90%,并且主机加载温度设定值UP-TSP(9.0℃)低于冷冻水总出水温度(持续20分钟)•设备可启动台数Number小于设备可启动最大值当UP 被置为ON,在目前的Number基础上增加1台冷水机组,相应的水泵增加一台(根据现在实际情况调整)。
浅析BA系统中冷水机组群控策略
浅析BA系统中冷水机组群控策略目前随着中央空调系统的广泛应用,系统节能已经成为最终用户所关注的焦点。
对于空调系统中能耗最大的冷水机组系统,它的高效节能成为空调系统节能的关键问题。
实现冷水机组节能高效稳定运行的一个非常有效的技术手段就是采用冷水机组群控。
冷水机组群控是利用自动控制技术对制冷站内部的相关设备(冷水机组、水泵、冷却塔、阀门)进行自动化的监控,使制冷站内的设备达到最高效率的运行状态。
1、冷水机组群控的目的(1)节能:根据系统负荷的大小,准确控制制冷机组的运行数量和每台制冷机组的运行工况,从而达到节能并降低运行费用的目的。
(2)延长机组使用寿命:通过机组轮换、故障保护、负荷调节等控制程序,确保冷水机组的安全,延长机组的使用寿命,提高设备利用效率。
(3)设备保护:合理群控,使系统更舒适,避免过冷,更容易达到设计要求。
2、几种常见的群控模式分析第一种:每30分钟把计算出的实际冷负荷与当前运行机组的额定冷量比较,当实际冷负荷小于当前机组的额定总负荷一定量时,减少相应的机组运行;当实际负荷大于当前机组的额定总负荷一定量时,增加相应的机组运行。
这种控制策略的采用其结果是可悲的,因为空调冷负荷的实测量不可能大于目前正在运行的冷机所提供的冷量。
打个比方:有一台电扇(在常规的环境和标准的供电下,其出厂的标注是)最大转速25转/秒,但你说在同样的环境、条件下,通过某种“科学”手段实测出的转速是30转/秒,大于25转/秒。
这显然是不符的,有点本末倒置。
实际运行中发现,机组根本无法实现根据实际冷负荷调整冷水机组的台数控制。
例如,实际情况开启冷水机组的冷量负荷远不能满足空调末端需要,此时,冷冻水温由于制冷负荷的不足而水温升高,冷水机组出水温度超过设定值,冷水与盘管内空气的热交换效率不断下降,供回水温差减小,供水流量未发生变化,而计算出的冷负荷却减小。
这显然非真实所需的冷负荷。
实际运行中发现,分水器的水温达16℃,集水器的水温为16.3℃,而冷却量计算的负荷却很小,不需增加冷水机组的台数。
中央空调群控系统功能及运行介绍
中央空调群控系统可以通过现场控制器和上位机的通讯实现对空调机房设备及末端设备进行集中管理和监控,从科学的能源管理出发,降低中央空调的管理成本和运行能耗,实现机房的无人值守,确保中央空调的安全运行,最大限度的提同中央空调系统的运行效率。
并可以开放协议和BAS系统实现通讯。
下面是深圳邦德瑞厂家的小编带来的中央空调群控系统功能及运行介绍。
系统功能:SK中央空调群控系统可实现以下完整的空调设备监控功能:1.实现主机、循环水泵、冷却塔、阀门等设备的软联锁开关控制;2.实现通过SKB变频节能仪对冷冻(媒)水供回水温度、温差、压力的恒值控制,达到高效节能;3.实现通过SKB变频节能仪对冷却水回水温度、压力的恒值控制,达到高效节能;4.实现空调系统的冷(热)负荷自动实时跟踪,控制主机开机台数,优化设备组合,达到高效节能;5.实现主机、循环水泵、冷却塔、阀门等设备的故障报警监视;6.实现主机、循环水泵、冷却塔设备运行的实时显示和运行记录;7.实现主备设备之间的自动切换;8.实现累计设备运行时间,及时提醒用户进行设备维护。
系统特点:节能运行SK群控系统在满足空调系统的前提下,自动对整个空调系统冷(热)负荷进行计算,自动选择最合理的设备运行数量,同时通过SKB变频节能仪对中央空调循环水泵、风机进行变频控制,以能耗最低为控制目标,进行最优化的设备组合控制。
就整个中央空调系统能耗而言,选用SK中央空调群控系统以后,可节约能耗25%以上,大大的降低人力资源配备。
安全运行SK群控系统可实现空调机房的无人值守,提高运行效率,通过对空调设备运行状态的自动监控,实现空调设备的联锁启动、停机、顺序控制;实现恒定的供回水温度、压力,保证整个空调系统的效果。
优化组合运行SK群控系统通过对空调设备运行时间的累计比较,优化组合设备的运行,保证各设备运行时间一致,延长机房设备的使用寿命。
以上就是深圳邦德瑞的小编给大家介绍的简单介绍。
如果您想进一步了解相关事项,可以拨打我们的热线电话,或者点击我们的官网咨询我们,也可以在线实时咨询我们,或者关注我们的官方微信公众号,我们会有专业的工作人员为您解答。
中央空调冷热源群控系统PLC逻辑控制说明
一、冷机启停逻辑(DDC内控制程序)1、冷机启动→平台选择了冷机模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→冷机模式对应的1个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵,冷冻水泵频率>(设定启动频率-5)→开启冷机,系统运行状态返回(计时清零,正常启动完成,如果超过3分钟没有状态返回,启动故障处理程序)→冷机启动完成2、冷机关闭→平台选择了冷机模式,并且发送了关机命令(开始计时)→给冷机发送关机指令,冷机停机,冷机运行状态为OFF,开始计时→计时时间=300S(5分钟),关闭冷冻水循环泵→计时时间=360S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→冷机关闭完成3、板换启动→平台选择了板换模式,并且发送了启动命令(开始计时)→水泵、冷却塔、冷机没有故障,且没有切为本地,否则报故障,机组停机,切机→板换模式对应的4个阀门开到位,否则报故障,机组停机,切机→冷却塔进水阀开度>80%,否则报故障,切机→开启冷却水循环泵,冷却水循环泵频率>(设定启动频率-5)→开启冷却塔,冷却塔频率>25HZ→开启冷冻水泵→板换启动完成4、板换关闭→平台选择了板换模式,并且发送了关机命令(开始计时)→计时时间=30S(半分钟),关闭冷冻水循环泵→计时时间=60S(6分钟),冷冻水泵运行状态为OFF,关闭冷却水循环泵→冷冻水流量<20且冷却水流量<20,关闭冷却塔→板换关闭完成二、冷机故障切换逻辑1、故障条件➢大前提:制冷单元发送了开机命令或者在运行中➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)切换到本地模式➢设备(冷机、冷冻水泵、冷却水泵、冷却塔)故障➢冷机断电(延时10S(可设置)时间没有恢复)。
中央空调冷水机组群控系统策略探讨
中央空调制冷机房是能耗大户,制冷机房主要的能耗来自于制冷机组、冷冻水泵、冷却塔、冷却水泵,其中冷水机组占据了其中的50%到60%,冷水泵加上冷却水泵的配送约占25%到30%左右,合理的冷水机组群控策略对于中央空调冷冻机房系统的运行有着积极的意义。
下面是深圳邦德瑞厂家的小编带来的中央空调冷水机组群控系统策略探讨。
节能根据系统负荷的大小,优化控制相应的机组,从而节能,并节省运行费用,节能20-30%。
优化启停相应水泵,或调节水泵电机转速,从而达到节能的目的。
延长设备使用寿命通过合理的自动控制,优化设备,有助于延长机组寿命,提高设备利用效率。
设备保护合理的控制策略,实现设备故障自动切换,系统运行更稳定可靠。
冷水机组系统的设计和控制意义影响深远,我们从自控控制角度来探讨几种控制策略,理论结合实践,在项目实施过程中选择合适的控制策略,达到最优的控制效果。
一、回水温度控制策略回水温度控制逻辑:通过测量空调系统中冷冻水系统回水的温度,根据其值与设定值比较来判断增减冷冻机的启停,实现冷水机组台数控制。
回水温度控制优缺点:1.回水温度适应性较差,尤其温差小时,误差大,对节能不利。
2.可用于冷冻机的低温保护和报警。
3.回水温度控制系统简单,容易实施二、热量控制策略热量控制逻辑:通过测量冷冻水供回水温度和供(回)水流量获得温差和流量信号,依据热力学公式计算当前需冷量,与当前冷水机组的额定冷量做判断,根据当前需求来增减冷冻机的启停,实现冷水机组的台数控制。
有关热量控制控制优缺点:1. 较好的调节系统负荷,节能效果较好。
2. 无法保证机组最低流量,避免冷水机组蒸发器结冰。
三、流量/热量控制策略流量/热量控制策略:同时考虑流量与热量因素,综合判断机组的台数控制。
冷冻机加机判断:1、系统负荷需求超过当前机组额定冷量2、系统流量需求超过当前机组额定流量3、以上二条判据任意一条成立,既有效,为充分条件。
冷冻机减机判断:系统当前需求负荷可以由当前运行机组N-1台满足时,并且机组运行在高效区四.回水温度/供回水温差控制策略回水温度/供回水温差控制策略:测量空调系统中冷冻水系统回水的温度,冷冻水的供回水温差,调节水泵流量控制温差恒定,根据回水温度值与设定值比较来判断增减冷冻机的启停,实现冷水机组台数控制。
中央空调无线末端群控系统的节能分析
风机盘管中央空调系统在商用写字楼、酒店、政府机关、公寓住宅等楼宇建筑中得到了越来越广泛的应用。
空调系统的末端装置直接影响着对室内环境的控制效果,也直接反映了系统的冷热量。
下面是深圳邦德瑞厂家的小编带来的中央空调无线末端群控系统的节能分析一. 空调未端风机盘管的节能分析1. 风机盘管及控制原理风机盘管加新风系统是目前国内各类办公及宾馆建筑中使用最广的空调系统。
风机盘管的控制是为了调节盘管的供冷量。
从风机盘管的原理可知冷量调节可采用风量调节、水量调节和水温调节,其中水温调节属集中调节手段,主要根据负荷情况对整个系统进行调节;水量控制主要是温控电磁阀通断或开度控制;风量调节主要是手动三档风机调速或温控风机三级调速。
风机盘管的末端控制是通过与每个风机盘管对应设置的温控器来完成,自动化程度较高的主要有温控三级风机调速式和三级风机调速加电动水流调节阀控制温控器。
温控三级风机调速方式要通过设置在房间中的温度传感器测得房间的实时温度,根据设定的温度值,判断应采取的动作方式,温度过高相应的降低档位,温度过低则调高档位。
2. 当前系统存在的问题空调未端设备——风机盘管通常是采用室内温度控制器和电动阀进行就地控制,目的也是为了使室内温度恒定和节约能耗,但此种就地控制方式要求不尽人愿,原因就是就地控制的方式往往由于每个空调区域的使用人员对空调控制原理的不了解和节能意识淡薄使控制器达不到预期的节能目的。
目前多数民用建筑的中央空调系统在降低运行能耗、提高运行管理水平方面有明显的挖潜空间,集中在以下几个方面:1. 各个温控器之间没有通讯,各自独立工作,不成系统,无法统一分析、衡量各个末端的工作情况,因而冷源及输配系统无法根据末端的负荷状况进行精确的调节,一些较复杂的优化控制策略无法实施。
2. 各个温控器分散控制,无法进行集中的节能管理(包括室温管控),容易出现使用人员离开或空调主机关机而风机盘管末端仍开启运行的浪费能源的情况。
中央空调冷热源机房群控知识
中央空调冷热源机房群控知识简析冷热源群控系统0 引言空调系统冷热源的能耗在整个空调系统中占有相当大的比例.而冷源系统的能耗主要由冷水机组电耗及冷冻水泵、冷却水泵、冷却塔风机电耗构成,采取群控策略可以恰当地调节冷水机组运行状态.降低冷冻水泵、冷却水泵及冷却塔风机电耗.最大限度地实现空调冷热源系统的节能运行1 群控系统的优势民用建筑内中央空凋设备种类繁多.各设备运行是相互关联的。
群控系统按照T艺流程控制各设备的启停.如果局部设备发生故障.群控系统能及时进行逻辑判断并决定是否启用备用设备或全面停机。
所有的逻辑控制及设备关联控制的实现均由群控系统控制主机完成.能真正做到协涮统一而对于BA系统的DDC控制器来说.各控制器的功能独立完成.通过控制器间的指令传递来执行先后顺序.没有全面协调的“大脑”.很难实现逻辑性很强的设备关联控制因此.采用群控系统对冷热源设备运行进行优化控制.在提高空凋系统的运行效率方面具有很大的优势2 冷热源群控系统构成本文结合光启城项目对冷热源群控系统进行分析光启城项目总建筑面积约为163 868 mz,业态为裙房商业和塔楼办公相结合的综合体项目。
该项目冷热源设备如表1、表2所示。
---------------冷热源群控系统由冷热源监测系统、冷冻机房设备监控系统、直燃机房设备监控系统构成冷热源群控系统管理主机设于地下室冷冻机房值班室内.共设置监控管理主机两台(互为备用),对冷冻监控系统及锅炉监控系统中相关设备的运行状态等进行监测并通过TCP/IP 协议与本项目的BA系统通信.接受其对冷热水机组、板式换热器及配套设备的总体监测、控制和管理。
冷热源群控系统网络拓扑结构如图1所示。
冷冻机房设备监控系统用于集中监测、控制和管理冷源设备,由冷水机组群控系统、配套设备群控系统、冷却塔群控系统及冷冻水二次变频泵群控系统共同组成。
在冷水机组群控系统中.7台冷水机组通过各自的机组管理模块连接到网络控制器.实现与冷水机组工作站的通信。
浅析中央空调冷热源的群控
浅析中央空调冷热源的群控郑颖【摘要】主要论述了中央空调自动控制系统中的冷热源群控的意义和群控策略的种类以及具体的方法.【期刊名称】《甘肃科技》【年(卷),期】2010(026)019【总页数】2页(P82-83)【关键词】中央空调;冷热源;群控【作者】郑颖【作者单位】甘肃铁发置业房地产开发有限公司,甘肃,兰州,730000【正文语种】中文【中图分类】TU830中央空调系统是现代建筑的重要组成部分,是建筑智能化系统主要的管理内容之一。
有统计资料表明,空调系统的能耗已占到建筑总能耗的 40%左右,通过楼宇自动化系统实现空调系统的节能运行,对降低费用、提高效益是非常重要的。
1.1 群控意义现在的冷冻机通过自身控制器的容量调节,都可以在一定的制冷量范围内维持所要求的供水温度。
但产生不同的制冷量时,冷冻机的效率不同,一般说来冷冻机的cop(能效比)会因为制冷量的变化而不同。
某些部分负荷下的 cop几乎仅为最高cop的一半,而当制冷量太高时,cop也有所降低。
现在的中央空调系统一般配置不止一台冷冻机,并且大部分情况下空调系统都处于部分负荷状态,此时就存在优化冷机运行方案。
通过冷源群控我们在冷水机组的产冷量满足建筑物内的冷负荷需求的情况下,使整个空调系统的 cop始终处于较高的状态,从而使空调系统的能耗最少。
与此同时通过冷热源的群控不仅能合理的分配多台机组的使用时间、延长机组寿命、提高设备利用率,而且使系统更舒适,避免过冷或过热,更容易达到设计要求。
冷热源群控的主要内容就是通过控制系统根据室外温度、系统容量、建筑物特性和建筑物的初始温度来决定设备的启停时间,最大限度减少运行时间。
另外由于制冷剂的效率取决于机组负荷百分比和冷凝器与蒸发器的压力差,所以群控另个工作就是控制制冷剂压力。
在实践中,此压力差由冷凝器冷却水出口温度减去冷冻水供水温度来代替。
有关研究表明温度变化1℃,能节能 3%左右。
1.2 群控策略的种类1.2.1 回水温度控制法通过测量冷冻水回水温度,根据其值的大小控制冷水机组启动的台数。
冷热源群控系统
冷源控制系统(YC)采用目前比较科学的控制方案,通过采集运行机组的负荷及供水温度参数来选择机组的开启台数。
该控制方案为“模糊控制”模式,可以任意选取运行时间较短的机组运行,也可以根据发生的故障自动切换到另一制冷组运行,达到节能和自动控制的最优化。
案例分析原理图大 机组板换大机组板换大机组板换小机 组板换小机组板换冷却水冰水蓄冷罐一次泵一次泵一次泵一次泵一次泵五台二次泵供水总管源控冷热源系统智能控制原理说明: (一)YC监控系统定义和说明✧控制模式:该系统分为三种控制模式,分别是手动模式,单机模式(一键启停),群控模式(一键启停)。
(1)手动模式:根据控制要求,BA在控制界面做了控制模式的选择,可以选择群控模式或者单组模式,当在单组模式情况下,点击每一个制冷组切换到单组手动,就能分别对冷冻水蝶阀,冷却水蝶阀,旁通蝶阀,二次泵、冷却塔等进行单点启停控制。
(2) 单机模式:该控制按键分别在每个冷水机组里面可以进行选择模式,在单机模式情况下,您可以通过一键启停键为该机组一套的设备进行联动控制(对应该冷水机组的蝶阀,水泵,冷却塔等)(3) 群控模式:控制逻辑是利用每台机组的负荷和冷冻水供水温度来控制加减机的。
✧制冷组启动顺序:所有制冷组均以制冷模式启动运行,制冷组控制器将发送顺序启动命令,启动依次:开启冷却水电动阀、冷冻水电动阀——冷却塔——冷却水一次泵——冷冻水一次泵——开启冷水机组。
✧制冷组关机顺序:与启动顺序刚好相反。
✧一旦主管理器(冷冻站内设置)失效,操作员应能够通过就地安装在制冷组控制器上的H-A-O(手动-自动转换)开关操作。
(二)冷水机组控制要求:✧制冷组故障转换:制冷组中任何一个设备故障报警需要按序停止制冷组,然后启用备用制冷组启动加入系统制冷运行。
✧制冷组的加减载:1)加载条件:制冷组运行时,冷冻站管理器将监测冷冻机压缩机的运行效能,当运行效能达到加载条件,(如:额定容量的95%以上持续时间5分钟(时间可调),且冷冻水供水温度大于10℃时),冷冻站管理器将增加开启下一组制冷组。
中央空调群控解决方案
中央空调群控解决方案 当建筑行业遇上工业4.0时,他会有怎样的温度?那么,你需要问一下知冷知热的中央空调了。
中央空调群控解决方案似乎让楼宇系统具备感知人类温度的能力:它可以基于不同的温度、时间和需求来实现群控冷(热)水机组控制。
他究竟有多神奇?下面,我们就来揭开它神秘的面纱。
中央空调群控解决方案之三高:高效、高寿、高节能 中央空调机房节能群控系统隶属于楼宇自控系统,是专业的中央空调控制系统。
它采用先进的矢量控制理论、独特的双效节能法、将网络控制技术和变频控制技术相结合,暖通空调系统的最优化节能解决方案,从而实现用户实现节约能源、精细化管理、减少人力成本、节能舒适等目标。
它具有以下特点: 自动化控制 我国幅员辽阔,既有最北端的黑龙江,也有最南端的广东,是纬度、温差变化最大的国家。
天寒地冻、烈日炎炎,这让楼宇空调面临着非常严峻的考验。
针对中央空调设备实际运行特点而研发的计算机软件控制系统,依据空调末端运行负荷自动调整中央空调机房相关设备的启动、停止、联动、报警、复位和交替运行等,将潜在的危机扼杀在摇篮里。
高效节能 采用独特的矢量控制法与双效节能法为基础,采用VWV(变水量)和VAV(变风量)技术,使水泵和风机节电20%~45%,针对包括空气处理机组和辅机在内的整个系统的节能改造,能使中央空调空气处理系统节能达到25%~40%,空调主机系统节能15%~30%,整个系统总节能达到30%~40%,实现了开源节流的效果。
延长设备使用寿命 年折旧率=(l-预计净残值率)÷预计使用寿命(年)&TImes;l00% ,这还需要小编掉书袋吗?使用寿命作为分母,自然是数值越大折旧率越低啊!中央空调群控解决方案对设备采用轮流磨损控制法与矢量控制法,降低了设备使用率,与自行故障诊断程序相结合,有效延长设备使用寿命,从而缩小了固定资产年折旧率。
十大金刚完美把控温度 中央空调机房配备了十大金刚,在他们的协调配合下,把控温度分分钟不是事儿! 十大金刚如何通力合作? 中央空调末端风柜控制原理 控制要求 空调主机运行台数合理控制,通过变频技术使水流量达到最佳配置,水系统高效运行又可节能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中央空调冷源系统群控浅析
摘要中央空调系统在冷源系统的群控功能是智能化大厦的一项重要功能,实现冷源的群控功能对于降低建筑能耗有明显效果,以某酒店的冷源系统为例,探讨冷源系统实现群控的过程、步骤和方法。
在酒店采用群控实现对冷源系统的控制后节能效果明显,设备运行均衡,设备出现故障的现象也减少。
关键词群控;冷源;节能
中央空调系统由于其舒适性和美观,在现代建筑特别是大型建筑中应用很广,在建筑内机电设备的能源消耗占70%~90%;其中冷冻机组占30%,空调机组占15%。
因此对中央空调系统中的冷冻机组的能耗控制现代建筑物节能控制的重点。
中央空调系统传统的工作方式是人工根据水温判断启动冷水机组数量,再启动冷却泵、冷冻泵、冷却塔的数量。
由于人工判断存在误差及滞后性,冷冻泵经常由于流量不足而高负荷运转,这些都是极大的能源消耗。
在中央空调系统的节能控制中使用的方法在智能建筑的楼宇自控系统称为群控,楼宇自控系统常用DDC(直接数字控制器)或PLC(可编程控制器)实现群控的控制。
DDC或PLC能利用通信接口和冷水机组的控制器通信,通过DDC或PLC采集到冷水机组的内部数据,再传送到上一级监控系统,实现对冷水机组各个运行参数的实时监控。
本文以太原花园国际大酒店的冷冻站群控系统为例,分析群控系统的实现过程。
在本工程采用美国HONEYWELL XCL5010的CPU加LON扩展模块。
冷冻站设备中,包括冷水机组、冷冻泵、冷却泵、冷却塔、蝶阀等。
1设备控制
1.1开机顺序
开冷却阀—开冷却塔阀—开冷却泵—开冷却塔风机—开冷冻阀—开冷冻泵—开冷水机组。
当系统设置开机时间到且室外温度大于设定温度,首先启动一台冷水机组首台冷水机组运行开始根据监测的冷冻水回水温度和流量来计算冷负荷,并与设定值相比较以确定需要启动冷水机组的台数。
1)开机条件满足。
2)计算各组设备的累计运行时间,依次排列各组设备启动顺序。
冷水机组、冷却泵、冷冻泵和冷却塔风机。
当有一台同类设备启动后,不再执行本步骤。
3)当第一台冷水机组启动后开始根据监测的冷冻水回水温度和计算冷负荷,并与设定值相比较以确定需要启动的冷水机组。
4)检测准备启动的冷水机组符合自动且正常状态;如果检测到准备启动的冷水机组处于手动状态或者有故障报警,则撤销此设备的启动命令,同时自动检测排列当中的下一台冷水机组是否
符合自动且正常的条件。
5)检测冷却泵符合自动且正常状态;延时冷却泵开。
如果检测到准备启动的冷却泵处于手动状态或者有故障报警,则撤销此设备的启动命令,同时自动检测排列当中的下一台冷水机组是否符合自动且正常的条件;开冷却泵。
6)检测冷却水回水温度大于设定温度,检测冷却塔风机符合自动且正常状态;开冷却塔风机。
如果检测到准备启动的冷却塔风机处于手动状态或者有故障报警,则撤销此设备的启动命令,同时自动检测排列当中的下一台冷却塔风机是否符合自动且正常的条件;开冷却塔风机。
7)检测冷冻泵符合自动且正常状态;开冷冻泵。
如果检测到准备启动的冷冻泵处于手动状态或者有故障报警,则撤销此设备的启动命令,自动检测排列当中的下一台冷冻泵是否符合自动且正常的条件;开冷冻泵。
8)检测冷冻/却水流开关状态,开冷水机组。
控制流量图(如图1):
1.2关机顺序
关机条件满足:当关机时间到或室外温度小于设定温度,则满足冷水机组关机条件;关冷水机组—关冷冻泵—关冷冻阀—关冷却塔风机—关冷却泵—关冷却塔阀—关冷却阀。
冷水机组负荷设定值、四种设备开启或者关闭的间隔时间、温度设定值可以由用户根据实际情况再设定。
图1
2冷冻站系统群控说明
根据主设备参数,将上述设备分成如下几个控制搭配组:
1)冷水机组、冷冻泵、冷却泵、冷却塔各构成1个设备搭配控制组,在这一组中任何设备可以按照运行时间、故障切换、负荷决定台数控制等任意搭配。
2)冷却塔风机启停控制:根据冷却塔出水温度和冷水机组运行状态两个条件进行冷却塔风机启停控制。
启动冷却塔风机的前提条件是冷水机组在运行,且冷却水回水温度大于设定时,先启动一台冷却塔,当启动冷却塔后一段时间冷却水回水温度大于设定温度1,再启动累计时间最少的冷却塔风机;当增开一台冷水机组,冷却水回水温度大于设定温度,则增开排序中的下一台冷却塔风机,依次类推增开更多的冷却塔风机。
当卸载一台冷水机组或者冷却水回水温度小于认定温度2,则关闭相应的冷却塔风机。
操作人员通过操作界面可以对冷却水回水温度设定值进行修改。
3)计算冷负荷启停冷水机组:根据冷冻水总管回水温度T回、冷冻水出水总管出水温度T出及回水总管流量F计算建筑物实际负荷Q=K*(T回-T出)*F。
根据冷水机组参数、空调系统设计和室外温度与设定值比较,确定是否启动冷水机组。
4)冷源系统群控算法关键——搭配判断程序。
该系统共有4种类型主设备,冷水机组、冷却泵、冷冻泵、冷却塔,按其水系统结构,他们之间可任意搭配而非一一对应关系,如任何一台冷水机组可以和任何一台冷却泵、冷冻泵及冷却塔搭配。
搭配判断程序按照最小运行时间、故障判别原则和负荷计算完成主设备之间
的搭配。
3总结
调查资料表明,建筑物设有空调群控系统与不设群控系统的建筑相比可节约能源约25%,由于空调群控系统的显著节能效果,在国外也把空调控制系统称之为能源管理系统(EMS)。
太原花园国际大酒店由于前期没有监测未采用群控控制时冷冻站的能耗,所以在采用群控系统后没有实际的能耗数据对比。
但监测冷水机组的运行时间比未启用群控时约减少14%。
采用群控通过对冷源系统监测、控制、信息记录和集中科学管理,优化设备启停控制,将设备运行时间控制在最小限度,为酒店内提供良好的经营、工作环境同时降低能耗,在现在提倡节能减排前提下,采用冷源系统的群控控制,有更重要意义。