2021-2022年高二下学期3月月考数学(理)试题 含答案
2021-2022学年四川省内江市资中县球溪高级中学高二下学期3月月考数学(理)试题(解析版)
2021-2022学年内江市球溪高级中学高二下学期3月月考数学(理)试题一、单选题1.下列语句是命题的是( )①三角形的内角和等于180︒;②23>;③2x >;④这座山真险啊! A .①② B .①③ C .②③ D .③④【答案】A【分析】能够判断真假的陈述语句是命题,据此判断即可.【详解】①三角形的内角和等于180︒是命题;②23>是命题;③2x >不能判断真假,故不是命题;④这座山真险啊!不是陈述句,因此不是命题. 故选:A.2.过椭圆225x + 29y =1左焦点F 1引直线l 交椭圆于A 、B 两点,F 2是椭圆的右焦点,则△ABF 2的周长是( ) A .20 B .18 C .10 D .16【答案】A【分析】根据椭圆的定义求得正确选项. 【详解】依题意5a =,根据椭圆的定义可知,三角形2ABF 的周长为420a =. 故选:A3.下列有关命题的说法错误的是( )A .()2lg(23)f x x x =-++的增区间为(1,1)-B .“1x =”是“2x -4x +3=0”的充分不必要条件C .若集合{}2440A x kx x =++=中只有两个子集,则1k =D .对于命题p :.存在0x R ∈,使得20010x x ++<,则⌝p :任意x ∈R ,均有210x x ++≥【答案】C【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断. 【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2x -4x +3=0成立,故充分,当2x -4x +3=0成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题p :.存在0x R ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即⌝p 任意x ∈R ,均有210x x ++≥,故正确; 故选:C4.已知命题:p 垂直于同一平面的两直线平行;命题:q 平行于同一平面的两直线平行.则下列命题中正确的是( ) A .()()p q ⌝∧⌝ B .p q ∧ C .()p q ⌝∨ D .p q ∨【答案】D【分析】判断命题p 、q 的真假,利用复合命题的真假可得出合适的选项. 【详解】垂直于同一平面的两直线平行,命题p 为真命题, 平行于同一平面的两直线平行、相交或异面,命题q 为假命题, 所以,()()p q ⌝∧⌝、p q ∧、()p q ⌝∨均为假命题,p q ∨为真命题. 故选:D.5.已知椭圆C :2212516x y +=的左、右焦点为1F ,2F ,上顶点为P ,则( )A .12PF F △为锐角三角形B .12PF F △为钝角三角形C .12PF F △为直角三角形D .P ,1F ,2F 三点构不成三角形【答案】A【分析】根据题意求得1212,,PF PF F F ,要判断12PF F △的形状,只需要看12F PF ∠是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆C :2212516x y +=,得22225,16,9a b c ===,则()()()123,0,3,0,0,4F F P -, 则12125,6PF PF F F ===, 所以1221PF F PF F ∠=∠且为锐角,因为2221212252536140PF PF F F +-=+-=>, 所以12F PF ∠为锐角, 所以12PF F △为锐角三角形. 故选:A.6.已知椭圆2222135x y m n+=和双曲线2222123x y m n -=有公共的焦点,那么双曲线的渐近线方程为 A .15x y = B .15y = C .3x y = D .3y x = 【答案】D【详解】试题分析:∵椭圆和双曲线有公共焦点,∴22223m 5n 2m 3n -=+,整理得22m 8n =,∴双曲线的渐近线方程为y=223n 3132m 28x x ±=±⨯=,故选D .【解析】本题主要考查双曲线、椭圆的标准方程及几何性质.点评:基础题,先根据椭圆方程和双曲线方程分别表示出c ,令二者相等即可求得m 和n 的关系,进而利用双曲线的方程求得双曲线的渐近线方程.7.双曲线221916x y -=的左、右焦点分别为F 1,F 2,点P 在双曲线上,下列结论不正确的是( )A .该双曲线的离心率为53B .该双曲线的渐近线方程为43y x =±C .点P 到两渐近线的距离的乘积为14425D .若PF 1⊥PF 2,则△PF 1F 2的面积为32 【答案】D【分析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a =3,b =4,c =5,22169169144x y -=⨯=, 故离心率e 53=,故A 正确;由双曲线的性质可知,双曲线线221916x y -=的渐近线方程为y =±43x ,故B 正确;设P (x ,y ),则P 到两渐近线的距离之积为22169434316914455252525x y x y x y --+⨯⋅===,故C 正确;若PF 1⊥PF 2,则△PF 1F 2是直角三角形,由勾股定理得2221212||||100PF PF F F +==,由双曲线的定义可得|PF 1|﹣|PF 2|=2a =6(不妨取P 在第一象限),∴2221212()||PF PF PF PF -=+-2|PF 1|⋅|PF 2|=100﹣2|PF 1|⋅|PF 2|,解得|PF 1|⋅|PF 2|=32,可得12121162PF F S PF PF =⨯⨯=,故D 错误. 故选:D8.已知m 是2与8的等比中项,则圆锥曲线221yx m-=的离心率等于( )A 5B 2C 53D 35【答案】C【分析】由等比中项定义求得m ,根据m 的取值确定曲线是椭圆还是双曲线,然后计算离心率.【详解】由已知228m =⨯,4m =±,当4m =-时,方程为2214y x +=,曲线为椭圆, 224,1a b ==,413c -3e =当4m =时,方程为2214y x -=,曲线为双曲线,221,4a b ==,415c =+=为5e = 故选:C .9.已知O 为坐标原点,设F 1,F 2分别是双曲线x 2-y 2=1的左、右焦点,P 为双曲线左支上任意一点,过点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH |=( ) A .1 B .2 C .4 D .12【答案】A【分析】利用几何关系结合双曲线定义,以及中位线性质可得. 【详解】如图所示,延长F 1H 交PF 2于点Q ,由PH 为∠F 1PF 2的平分线及PH ⊥F 1Q ,易知1PHF PHQ ∽,所以|PF 1|=|PQ |.根据双曲线的定义,得|PF 2|-|PF 1|=2,即|PF 2|-|PQ |=2, 从而|QF 2|=2.在△F 1QF 2中,易知OH 为中位线,则|OH |=1. 故选:A.10.已知函数()f x 和()g x 的定义域均为[],a b ,记()f x 的最大值为1M ,()g x 的最大值为2M ,则使得“12M M >”成立的充要条件为( ) A .[]1,x a b ∀∈,[]2,x a b ∀∈,()()12f x g x > B .[]1,x a b ∀∈,[]2,x a b ∃∈,()()12f x g x > C .[]1,x a b ∃∈,[]2,x a b ∀∈,()()12f x g x > D .[],x a b ∀∈,()()f x g x > 【答案】C【分析】先解读选项ABC ,D 选项是12M M >成立的充分不必要条件,再判断得解. 【详解】解:A 选项表述的是()f x 的最小值大于()g x 的最大值; B 选项表述的是()f x 的最小值大于()g x 的最小值;C 选项表述的是()f x 的最大值大于()g x 的最大值成立的充要条件;D 选项是12M M >成立的充分不必要条件. 故选:C11.已知椭圆C :()222210x y a b a b +=>>的短轴长为2,上顶点为A ,左顶点为B ,1F ,2F 分别是C 的左、右焦点,且1F AB 23-P 为C 上的任意一点,则1211PF PF +的取值范围为( )A .[]1,2B .2,3⎡⎣C .2,4⎡⎤⎣⎦D .[]1,4【答案】D【分析】由已知和面积得到2a =,3c 1211PF PF +进行化简,配方求最值. 【详解】由已知的22b =,故1b =.∵1F AB 23-∴()1232a c b --=,∴23a c -=又∵222()()1a c a c a c b -=-+==, ∴2a =,3c =∴()2212121111||112444PF PF a PF PF PF PF PF PF PF PF ++===--+, 又12323PF ≤,∴2211114(2)44PF PF PF ≤-+=--+≤, ∴121114PF PF ≤+≤.∴1211PF PF +的取值范围为[]1,4. 故选:D.【点睛】本题主要考查椭圆的定义、椭圆的几何性质,以及配方求最值的问题. 12.已知O 为坐标原点,A ,B 分别是双曲线22:1169x y C -=的左、右顶点,M 是双曲线C 上不同于A ,B 的动点,直线AM ,BM 分别与y 轴交于点P ,Q ,则OP OQ ⋅=( ) A .16 B .9 C .4D .3【答案】B【分析】设动点0(M x ,0)y ,由双曲线方程可得A ,B 的坐标,求出AM ,BM 所在直线方程,可得P 与Q 的坐标,求得202016·16y OP OQ x =-,再由动点M 在双曲线22:1169x y C -=上,得2200169(16)y x =-,则||||OP OQ ⋅的值可求. 【详解】解:设动点0(M x ,0)y ,由双曲线方程22:1169x y C -=得(4,0)A -,(4,0)B , 则004AM y k x =+,004BM y k x =-,所以直线AM 的方程为00(4)4y y x x =++,直线BM 的方程为00(4)4y y x x =--, 由此得004(0,)4y P x +,004(0,)4y Q x --, 所以200020004416··()4416y y y OP OQ x x x =-=+--. 因为动点M 在双曲线22:1169x y C -=上,所以22001169x y -=,所以2200169(16)y x =-,则22002200169(16)·91616y x OP OQ x x -===--. 故选:B. 二、填空题13.命题“9的平方根是3”是________命题(选填“真”或“假”). 【答案】假【分析】根据9的平方根是3±判断即可.【详解】解:因为9的平方根是3±,所以命题“9的平方根是3”是假命题. 故答案为:假14.经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 . 【答案】22188y x -=【详解】设双曲线的方程为:22x y λ-=,将(1,3)A -代入可得,8λ=-,所以等轴双曲线的方程为:22188y x -=.15.若斜率为k 的直线l 与椭圆22:132x y C +=交于A ,B 两点,且AB 的中点坐标为11,23⎛⎫⎪⎝⎭,则k =___________. 【答案】-1【分析】根据给定条件设出点A ,B 的坐标,再借助“点差法”即可计算得解. 【详解】依题意,线段AB 的中点11,23⎛⎫⎪⎝⎭在椭圆C 内,设()11,A x y ,()22,B x y ,由22112222132132x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得:()()()()12121212032x x x x y y y y -+-++=, 而121221,3x x y y +=+=,于是得1212033x x y y --+=,即12121y y k x x -==--, 所以k =1-. 故答案为:1-16.城市的许多街道是相互垂直或平行的,因此,乘坐出租车往往不能沿直线到达目的地,只能按直角拐弯的方式行走.在平面直角坐标系中,定义()1212,d P Q x x y y =-+-为两点()11,P x y 、()22,Q x y 之间的“出租车距离”.给出下列四个结论:①若点()0,0O ,点()1,2A ,则(),3d O A =;②到点()0,0O 的“出租车距离”不超过1的点的集合所构成的平面图形面积是π;③若点()1,2A ,点B 是圆221x y +=上的动点,则(),d A B 的最大值是32+.其中,所有正确结论的序号是______. 【答案】①③【分析】理解“出租车距离”的定义,根据定义写出有关代数式即可求解. 【详解】对于①,根据定义(),10203d O A =-+-= 故正确; 对于②,根据定义,设目的地为(),A x y , 则(),001d O A x y x y =-+-=+≤…① ,当A 点在第一象限时,①式即为1x y +≤ ,第二象限时为1x y -+≤ , 以此类推得如下图形(阴影部分):其面积为:12222⨯⨯= ,故错误;对于③,设(),B x y ,(),11d A B x y =-+- ,∵B 在圆221x y += 上,∴1,1x y ≤≤ ,(),123d A B x y x y =-+-=-- ,()3,y x d A B =-+- ,为在区域为221x y +=,目标函数为(),3d A B x y =--求最大值的 线性规划问题,, 如下图:显然当直线()3,y x d A B =-+-为圆221x y +=在第三象限的切线时,(),d A B 最大, 为32,故正确; 故答案为:①③. 三、解答题17.(1)求焦点在x 轴上,长轴长为6,焦距为4的椭圆标准方程; (2)求离心率2e =()5,3M -的双曲线标准方程. 【答案】(1)22195x y +=;(2)2211616x y -= 【分析】(1)根据题意直接得出,a c 后求解 (2)待定系数法设双曲线方程,列方程组求解【详解】(1)由题意得3,2a c ==,故2945b =-=,椭圆标准方程为22195x y +=(2)①若双曲线焦点在x 轴上,设其方程为22221x y a b-=,由题意2c a =而222c a b =+故a b =,由222591a b a b⎧-=⎪⎨⎪=⎩解得2216a b ==,故双曲线标准方程为2211616x y -= ②若双曲线焦点在y 轴上,设其方程为22221y xa b-=,同理a b =,此时将()5,3M -代入后方程无解综上,双曲线标准方程为2211616x y -= 18.已知命题p :函数()3log f x x a =-在区间1,99⎛⎫⎪⎝⎭上没有零点;命题q :[]00,2x ∃∈,使得30035x x a -+-<0成立.(1)若p 和q 均为真命题,求实数a 的取值范围;(2)若p 和q 其中有一个是真命题,另外一个是假命题,求实数a 的取值范围. 【答案】(1)()3,+∞;(2)(][],22,3-∞-⋃.【分析】先求出当命题p 为真时,解得2a ≤-或2a ≥;再求出当命题q 为真,解得3a >.(1)先判断命题p ,q 均为真命题,再求出实数a 的取值范围为(3,)+∞;(2)先判断p ,q 一真一假,最后实数a 的取值范围为(,2][2,3]a ∈-∞-. 【详解】(1)函数()f x =3log x a -在区间1,99⎛⎫ ⎪⎝⎭上单调递增,p 为真命题∴()f x =3log x a -在区间1,99⎛⎫⎪⎝⎭上没有零点∴311log 2099f a a ⎛⎫=-=--≥ ⎪⎝⎭或者()39log 920f a a =-=-≤得2a ≤-或2a ≥令()335(02)f x x x a x =-+-≤≤∴()f x '=233x -当()f x '>0时,得12x ≤≤,当()f x '<0时,得0≤x <1∴()f x 最小值为()13f a =- q 为真∴a >3(1)p ,q 均为真命题∴a 的取值范围是()3,+∞ (2)p ,q 一真一假若p 真,q 假,则223a a a ≤-≥⎧⎨≤⎩或,解得a 的范围是(][],22,3-∞-⋃;若p 假,q 真,则223a a -⎧⎨⎩<<>,解得无解; ∴a 的取值范围是(][],22,3-∞-⋃.19.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,一条渐近线方程为20x y -=(1)求双曲线C 的标准方程; (2)已知倾斜角为34π的直线l 与双曲线C 交于,A B 两点,且线段AB 的中点的纵坐标为4,求直线l 的方程.【答案】(1)2214y x -=(2)3y x =-+【分析】(1)由实轴长得到a ,由渐近线斜率得到ba,即可得到方程;(2)由倾斜角得到直线斜率,设直线方程,联立双曲线方程,消去x ,利用韦达定理即可表示线段AB 的中点的纵坐标,解出参数即可.【详解】(1)由题,22a =,由20x y -=得,222by x b a=∴=∴=,,,所以双曲线C 的标准方程为:2214y x -=(2)直线斜率3tan 14k π==-,设直线为y x m =-+,联立得2214y x my x =-+⎧⎪⎨-=⎪⎩得2238440y my m -+-=,设,A B 两点坐标分别为()11x y ,、()22x y ,,线段AB 的中点的纵坐标为4,则1282483my y +==⨯=,3m ∴=∴,直线方程为3y x =-+.20.已知5:21p x ≥+,22:20q x mx m --≤,其中0m >. (1)若p 是q 的充分条件,求实数m 的取值范围;(2)是否存在m ,使得p ⌝是q 的必要条件?若存在,求出m 的值;若不存在,请说明理由.【答案】(1)m 1≥(2)不存在,理由见解析【分析】(1)解不等式,由充分条件的定义得出实数m 的取值范围;(2)由p ⌝是q 的必要条件得出不等关系,结合0m >作出判断.【详解】(1)由521x ≥+得2301x x -≤+,故有3:12p x -<≤. 由2220x mx m --≤得()()20x m x m -+≤,即:2q m x m -≤≤.若p 是q 的充分条件,则p q ⇒成立,即1322m m -≤-⎧⎪⎨≥⎪⎩得m 1≥. (2)因为3:12p x -<≤,所以:1p x ⌝≤-或32x >. 若p ⌝是q 的必要条件,则q p ⇒⌝成立,则21m ≤-或32m ->, 显然这两个不等式均与0m >矛盾,故不存在满足条件的m .21.已知椭圆()2222:10x y C a b a b +=>>的焦距为226. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于不同的两点A ,B ,求AB 的最大值.【答案】(1)2213x y +=; 6.【分析】(1)由题设可得222c =6c a 结合椭圆参数关系求2b ,即可得椭圆C 的方程;(2)设直线l 为y x m =+,联立抛物线整理成一元二次方程的形式,由0∆>求m 的范围,再应用韦达定理及弦长公式求AB 关于m 的表达式,根据二次函数性质求最值即可.【详解】(1)由题设,222c =6c a 2c =3a =2221b a c =-=,所以椭圆C 的方程为22:13x C y +=. (2)设直线l 为y x m =+,联立椭圆C 并整理得:2246330x mx m ++-=,所以2223616(33)48120m m m ∆=-⨯-=->,可得22m -<<,且32A B m x x +=-,23(1)4A B m x x -=, 所以22229|23(1)64|(11)4A B m m x x m AB k ---=-=+⋅(2,2)m ∈-, 故当0m =时,max 6AB =22.已知双曲线C :()222210,0x y a b a b-=>>的渐近线方程为3y x =±,过双曲线C 的右焦点()2,0F 的直线1l 与双曲线C 分别交于左、右两支上的A 、B 两点.(1)求双曲线C 的方程;(2)过原点O 作直线2l ,使得21//l l ,且与双曲线C 分别交于左、右两支上的点M 、N .是否存在定值λ,使得MN MN AB λ⋅=?若存在,请求出λ的值;若不存在,请说明理由.【答案】(1)2213y x -= (2)存在,2λ=【分析】(1)由题意得到3b a =2c =,结合222c a b =+,求得,a b 的值,即可求得双曲线的方程;(2)由MN 与AB 同向,所以2MNAB λ=,设直线1:2l x ty =+,联立方程组,结合韦达定理求得121222129,3131t y y y y t t -+==--,利用弦长公式求得()226131t AB t +=-,根据21//l l ,设2:l x ty =,联立方程组求得()22212131t MN t +=-,进而求得λ的值,得出结论.【详解】(1)解:因为双曲线C :()222210,0x y a b a b-=>>的渐近线方程为3y x =, 所以3b a=3b a =. 又因为右焦点F 的坐标为()2,0,所以2c =,又由222244c a b a =+==,解得1a =,所以3b =所以双曲线C 的方程为2213y x -=. (2)解:存在定值2λ=,使得MN MN AB λ⋅=.因为MN 与AB 同向,所以2MNAB λ=,由题意,可设直线1:2l x ty =+,联立方程组22213x ty y x =+⎧⎪⎨-=⎪⎩,整理得()22311290t y ty -++=, 设()11,A x y ,()22,B x y ,可得121222129,3131t y y y y t t -+==--, 由直线1l 分别交双曲线C 的左、右两支于A 、B 两点,可得()()()222212310Δ12363136100t t t t x x ⎧-≠⎪⎪=--=+>⎨⎪<⎪⎩,即()()()221223103422031t t ty ty t ⎧-≠⎪⎨-+++=<⎪-⎩,可得2310t ->, 所以2121AB t y =+-()22121214t y y y y =++-()2222226112361313131t t t t t t +-⎛⎫+- ⎪---⎝⎭由21//l l ,可设2:l x ty =, 由2233x ty x y =⎧⎨-=⎩,整理得()22313t y -=. 设00(,)M x y ,则()00,N x y --,所以202331y t =-, 则()()()()222222000212111431t MN t y t y t +=+--=+⋅=-,所以22MNAB λ==,故存在定值2λ=,使得MN MN AB λ⋅=.。
2021-2022学年河南省郑州市第四高级中学高二下学期第三次月考(期末模拟)理科数学试题 解析版
郑州四中2021-2022学年下期高二年级期末模拟考试理科数学命题人 审题人一、单选题(共60分)1.已知复数i z =,则复数1iz-的模是( )A.2 D.32.已知函数()f x 满足()()()221202x f x f e f x x -=-+',则()f x 的单调递减区间为( ) A.(),0∞- B.()1,∞+ C.(),1∞- D.()0,∞+3.已知随机变量ξ的分布列如下表,()D ξ表示ξ的方差,则()32D ξ+=( )A.2 B.2 C.2 D.1324.5位大学生在若假期间主动参加,,A B C 三个社区的志愿者服务,且每个社区至少有1人参加,则不同的安排方法共有( )A.30种B.90种C.120种D.150种5.已知实数,x y 满足2x y +=,则下列结论的证明更适合用反证法的是( ) A.证明1xy ≤ B.证明,x y 中至少有一个不大于1 C.证明222x y +≥ D.证明,x y 可能都是奇数6.某制衣品牌为使成衣尺寸更精准,选择了10名志愿者,对其身高(单位:cm )和臂展(单位:cm )进行了测量,这10名志愿者身高和臂展的折线图如图所示.已知这10名志愿者身高的平均值为176cm ,根据这10名志愿者的数据求得臂展u 关于身高v 的线性回归方程为ˆˆ1.234uv =-,则下列结论不正确的是( )A.这10名志愿者身高的极差小于臂展的极差B.这10名志愿者的身高和臂展呈正相关关系C.这10名志愿者臂展的平均值为176.2cmD.根据回归方程可估计身高为160cm 的人的臂展为158cm 7.下列有关线性回归分析的六个命题:①在回归直线方程20.5ˆyx =-中,当解释变量x 增加1个单位时,预报变量ˆy 平均减少0.5个单位 ①回归直线就是散点图中经过样本数据点最多的那条直线 ①当相关性系数0r >时,两个变量正相关①如果两个变量的相关性越强,则相关性系数r 就越接近于1①残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高 ①甲、乙两个模型的相关指数2R 分别约为0.88和0.80,则模型乙的拟合效果更好 其中真命题的个数为( ) A.1个 B.2个 C.3个 D.4个8.已知曲线2ln 3y x x x =-的一条切线在y 轴上的截距为2,则这条切线的方程为( ) A.420x y --= B.520x y --= C.420x y +-= D.520x y +-=9.柯西分布(Cauchydistribution )是一个数学期望不存在的连续型概率分布.记随机变量X 服从柯西分布为()0,X C x γ~,其中当01,0x γ==时的特例称为标准柯西分布,其概率密度函数为()()211f x x π=+.已知()(211,0,,(1312X C P X P X ~≤=<≤=,则()1P X ≤-=( )A.16B.23C.14D.1210.已知实数12em dx x =-⎰,则521m x x ⎛⎫-- ⎪⎝⎭的展开式中含21x 的项的系数为( ) A.130 B.110 C.110- D.130-11.在一个正三角形的三边上,分别取一个距顶点最近的十等分点,连接形成的三角形也为正三角形(如图1所示,图中共有2个正三角形),然后在较小的正三角形中,以同样的方式形成一个更小的正三角形,如此重复多次,可得到如图2所示的优美图形(图中共有11个正三角形),这个过程称之为迭代,如果在边长为27的正三角形三边上,分别取一个三等分点,连接成一个较小的正三角形,然后选代得到如图3所示的图形(图中共有7个正三角形),则图3中最小的正三角形面积为( )12.已知0,0a b >>,且1(1)(3)b a a b ++=+,则( ) A.1a b >+ B.1a b <+ C.1a b <- D.1a b >-二、填空题(共20分)13.类比推理在数学发现中有重要的作用,开普勒说过:我珍视类比胜过任何别的东西,它是我最可信赖的老师,它能揭示自然界的秘密.运用类比推理,人们可以从已经掌握的事物特征,推测被研究的事物特征.比如:根据圆的简单几何性质,运用类比推理,可以得到椭圆的简单几何性质等.已知圆222:C x y r +=有性质:过圆C 上一点()00,M x y 的圆的切线方程是200x x y y r +=.类比上述结论,过椭圆22:1124x y E +=的点()3,1P -的切线方程为__________.14.现用5种颜色,给图中的5个区域涂色,要求相邻的区域不能涂同一种颜色,则不同的涂色方法共有种__________.15.已知函数()32ln 1,042,0x x f x xx x x +⎧>⎪=⎨⎪--<⎩,若方程()f x ax =有四个不等的实数根,则实数a 的取值范围是__________.16.某武装部在预备役民兵的集训中,开设了移动射击科目,移动射击科目规则如下:每人每次移动射击训练只有3发子弹,每次连续向快速移动的目标射击,每射击一次消耗一发子弹,若目标被击中,则停止射击,若目标未被击中,则继续射击,3发子弹都没打中,移动目标消失.通过统计分析该武装部的预备役民兵李好以往的训练成绩发现,李好第一枪命中目标的概率为0.8,若第一枪没有命中,第二枪命中目标的概率为0.4,若第二枪也没有命中,第三枪命中目标的概率为0.2.则目标被击中的条件下,李好第二枪命中目标的概率是__________.三、解答题(共70分)17.已知122i,34i z a z =+=-(其中i 为虚数单位)(1)若12z z 为纯虚数,求实数a 的值;(2)若2023122iz z -<+(其中2z 是复数2z 的共轭复数),求实数a 的取值范围.18.给出下列条件:①若展开式前三项的二项式系数的和等于16;①若展开式中倒数第三项与倒数第二项的系数比为4:1.从中任选一个,补充在下面问题中,并加以解答(注:若选择多个条件,按第一个解答计分)已知()*nx n N ⎛∈ ⎝⎭,__________. (1)求展开式中二项式系数最大的项; (2)求展开式中所有的有理项.19.已知函数()()24ln 1,f x ax x a =-+为常数.(1)若()f x 在1x =处有极值,求a 的值并判断1x =是极大值点还是极小值点; (2)若()f x 在[]2,3上是增函数,求实数a 的取值范围. 20.已知数列{}n a 的前n 项和112n n na S a =+-,且0,n a n N +>∈. (1)求123,,a a a ;(2)猜想{}n a 的通项公式,并用数学归纳法证明.21.随着原材料供应价格的上涨,某型防护口罩售价逐月上升.1至5月,其售价(元/只)如下表所示:(1)请根据参考公式和数据计算相关系数(精确到0.01)说明该组数据中y 与x 之间的关系可用线性回归模型进行拟合,并求y 关于x 的线性回归方程ˆˆˆybx a =+; (2)某人计划在六月购进一批防护口罩,经咨询届时将有两种促销方案:方案一:线下促销优惠.采用到店手工“摸球促销”的方式.其规则为:袋子里有颜色为红、黄、蓝的三个完全相同的小球,有放回的摸三次.若三次摸的是相同颜色的享受七折优惠,三次摸的仅有两次相同颜色的享受八折优惠,其余的均九折优惠.方案二:线上促销优惠.与店铺网页上的机器人进行“石头、剪刀、布”视频比赛.客户和机器人每次同时、随机、独立地选择“石头、剪刀、布”中的一种进行比对,约定:石头胜剪刀,剪刀胜布,布胜石头.手势相同视为平局,不分胜负.客户和机器人需比赛三次,若客户连胜三次则享受七折优惠,三次都不胜享受九折优惠,其余八折优惠.请用(1)中方程对六月售价进行预估,用X 表示据预估数据促销后的售价,求两种方案下X 的分布列和数学期望,并根据计算结果进行判断,选择哪种方案更实惠.参考公式:()()()()nnii ii xx y y xx y y r ----==∑∑,ˆˆˆybx a =+,其中()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-. 6.5≈, 2.08y =,()()516.4i i i x x y y =--=∑,()5214.208i i y y =-=∑.22.已知函数()cos f x x x =⋅.(1)当()0,x π∈时,求证:()sin f x x <; (2)求证:当0,2x π⎛⎫∈ ⎪⎝⎭时,方程()210f x -=有且仅有2个实数根. 参考答案:1.B 【解析】先求出z ,进而根据复数的除法运算法则进行化简,最后求出模即可. 【详解】由题可得i z =,则)()i 1i 1i 2z+=-,所以1i z ==-故选:B. 2.A 【解析】 【分析】对()f x 求导得到关于()2f '、()0f 的方程求出它们的值,代入原解析式,根据0f x 求单调减区间.【详解】由题设()()()22e 0x f x f f x -''=-+,则()()()2202f f f ''=-+,可得()02f =,而()()2022e f f -'==,则()2e 22f '=,所以()212e 22xf x x x =-+,即()2e 2x f x x '=-+,则()00f '=且fx 递增,当0x <时0f x,即()f x 递减,故()f x 递减区间为(-∞,0).故选:A 3.C 【解析】 【分析】根据分布列的性质求出a ,根据公式求出()D ξ,再根据方差的性质可求出结果. 【详解】根据分布列的性质得11214a a +-+=,得14a =,所以111()2101424E ξ=⨯+⨯+⨯=,所以222111()(21)(11)(01)424D ξ=-⨯+-⨯+-⨯12=,所以9(32)9()2D D ξξ+==. 故选:C 4.D 【解析】 【分析】每个社区至少有1人参加,所以这5位大学生共分为三组,共有1,2,2和1,1,3两种情况,分别求每种情况的安排方法可得答案.因为每个社区至少有1人参加,所以这5位大学生共分为三组,共有1,2,2和1,1,3两种情况.若是1,2,2,则共有1223542322C C C A 90A ⨯=(种); 若是1,1,3,则共有1133543322C C C A 60A ⨯=(种), 所以共有6090150+=(种)不同的方法. 故选:D. 5.B 【解析】 【分析】根据反证法的特点:假设结论的对立面,最终导出矛盾,从而肯定结论成立,观察四个选项可作出判断. 【详解】实数,x y 满足2x y +=,观察四个选项,更适合用反证法的是B , 原因是:假设1x >且1y >,则2x y +>,与已知矛盾,故原结论成立, 其它选项均不适合. 故选:B 6.C 【解析】 【分析】利用平均值、极差、线性回归方程的特征进行逐项判断. 【详解】 解:对于选项A :因为这10名志愿者臂展的最大值大于身高的最大值,而臂展的最小值小于身高的最小值,所以这10名志愿者身高的极差小于臂展的极差,故A 正确.对于选项B :因为1.20>,所以这10名志愿者的身高和臂展呈正相关关系,故B 正确. 对于选项C :因为这10名志愿者身高的平均值为176cm ,所以这10名志愿者臂展的平均值为1.217634177.2cm ⨯-=,故C 错误.对于选项D :若一个人的身高为160cm ,则由回归方程ˆˆ1.234uv =-,可得这个人的臂展的估计值为158cm ,故D 正确. 故选:C 7.B 【解析】 【分析】对于①,根据回归直线方程的特点即可判断;对于①,根据回归直线的几何意义即可判断;对于①,根据相关指数大于0,可得两变量正相关即可可判断;对于①,根据相关系数r 与变量的相关性的关系即可可判断;对于①,根据残差图的特点即可判断;对于①,根据模型的2R 与效果的关系即可判断. 【详解】对于①,根据回归系数的含义,可得回归直线方程ˆ20.5y x =-中,当解释变量x 增加1个单位时,预报变量ˆy平均减少0.5个单位,故①正确; 对于①,回归直线就是散点图中经过样本数据点最多的那条直线,不正确.回归直线也可能不过任何一个点;故①不正确;对于①,当相关性系数0r >时,两个变量正相关,故①正确;对于①,如果两个变量的相关性越强,则相关性系数r 的绝对值就越接近于1;故①不正确; 对于①,残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越低,故①不正确; 对于①,甲、乙两个模型的2R 分别约为0.88和0.80则模型甲的拟合效果更好,故①不正确, 则正确的个数为2. 故选:B. 8.D 【解析】 【分析】设出切点坐标()20000,ln 3x x x x -,根据导数的几何意义写出切线方程,将点()0,2代入求出0x 的值,进而得切线方程. 【详解】函数2ln 3y x x x =-的定义域为()0,∞+,设切点坐标为()20000,ln 3x x x x -,因为ln 61y x x '=-+,则切线斜率为00ln 61x x -+,所以切线方程为()()2000000ln 3ln 61y x x x x x x x -+=-+-,将点()0,2代入切线方程并整理得200320x x --=,解得01x =,或023x =-(舍去),所以这条切线的方程为()351y x +=--,即520x y +-=. 故选:D. 9.C 【解析】 【分析】根据柯西分布的对称性进行求解即可. 【详解】 因为21()()π(1)f x f x x -==+,所以该函数是偶函数,图象关于纵轴对称,由P (|X |=23,可得1(03P X <<=,因为P (1X <≤=112,所以111(01)3124P X <<=-=,因此1(10)4P X -<<=,所以111(1)244P X ≤-=-=, 故选:C 10.C 【解析】 【分析】由微积分基本定理求解m ,将5221x x ⎛⎫+- ⎪⎝⎭看作5个因式22(1)x x +-相乘,要得到21x ,分析每个因式所取项的情况. 【详解】1ee122ln |2(ln e ln1)2m dx x x=-=-=--=-⎰, 则5221x x ⎛⎫+- ⎪⎝⎭表示5个因式22(1)x x +-相乘,所以其展开式中含21x 的项为1个因式中取22x ,4个因式取1-,或者2个因式中取x ,2个因式取22x ,1个因式取1-所得到的项, 则5221x x ⎛⎫+- ⎪⎝⎭的展开式中含21x 的项的系数为()()412225532C 12C C 1110-+-=-. 故选:C. 11.C 【解析】 【分析】先用余弦定理得到边长之间的关系,进而可求出最小正三角形的边长,然后利用面积公式即得. 【详解】设最大正三角形的边长为1a ,则127a =,其内部迭代出的正三角形的边长分别为237,,,a a a ⋅⋅⋅,由余弦定理得2222111112222cos 333333a a a a a a π⎛⎫⎛⎫=+-⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 同理得22226237,,33a a a a =⋅⋅⋅=,①62271113a a ⎛⎫== ⎪⎝⎭,①最小的正三角形的面积77711sin 1232S a a π=⨯⨯⨯=⨯=.故选:C. 12.B 【解析】 【分析】根据题意,两边取对数整理得()()()ln 1ln 3ln 211a b b a b b +++=>++,进而构造函数()()()ln 10x f x x x+=>,利用单调性来比较自变量a 与1b +的大小. 【详解】 解:因为()()113b aa b ++=+,0a >,0b >,所以()()()ln 1ln 3ln 211a b b a b b +++=>++. 设()()()ln 10x f x x x +=>,则()()2ln 11xx x f x x -++'=.设()()()ln 101x g x x x x =-+>+,则()()()22110111x g x x x x -'=-=<+++, 所以()g x 在()0,∞+上单调递减.当0x →时,()0g x →, 所以()0g x <,即()0f x '<,故()f x 在()0,∞+上单调递减. 因为()()1f a f b >+,所以1a b <+. 故选:B. 13.40x y --= 【解析】 【分析】通过类比可得类似结论:过椭圆2222:1x y E a b+=上一点00(,)P x y 的椭圆的切线方程为00221x x y y a b +=,然后可得.【详解】通过类比可得类似结论:过椭圆2222:1x y E a b+=上一点00(,)P x y 的椭圆的切线方程为00221x x y y a b +=.所以,,过椭圆22:1124x y E +=上的点()3,1P -的切线方程为31124x y -+=,即40x y --=. 将4y x =-代入221124x y+=得:2690x x -+=,解得3x = 所以直线40x y --=和椭圆22:1124x y E +=有唯一交点()3,1P -,即直线与椭圆相切. 故答案为:40x y --= 14.420按照A B C D E →→→→的顺序进行涂色, 其中B 与D 的颜色可以相同也可以不相同,所以不同的涂色方法共有()5431322607420⨯⨯⨯⨯+⨯=⨯=种.故答案为:42015.()0,1【解析】【分析】将原问题转化为函数()g x 的图象与直线y a =有4个交点,分0x >和0x <两类情况讨论,利用导数判断函数()g x 的单调性求得最值,由此作出函数()y g x =的图象,利用数形结合即可求出实数a 的取值范围.【详解】方程()f x ax =有四个不等的实数根,等价于()222ln 1,024,0x x x y g x x x x +⎧>⎪⎪==⎨⎪--<⎪⎩的图象与直线y a =有4个交点.当0x >时,()22ln 1x g x x+=,则()34ln x g x x -'=,令()0g x '<,可得1x >,则函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故函数()g x 在()0,∞+上的最大值为()11g =.当0x <时,()224g x x x =--,则()()3222122x g x x x x +'=+=,令()0g x '<,可得1x <-,则函数()g x 在(),1-∞-上单调递减,在()1,0-上单调递增,故函数()g x 在(),0∞-上的最小值为()11g -=-.作出函数()g x 的图象,如图所示,要使函数()g x 图象与直线y a =有4个交点,则01a <<,故实数a 的取值范围是()0,1.故答案为:()0,1. 16.10113【解析】【分析】根据全概率公式结合条件概率公式计算即可【详解】记事件A :“李好第一枪击中目标”,事件B :“李好第二枪击中目标”,事件C :“李好第三枪击中目标”,事件D :“目标被击中”,则()()()()()P D P A B C P A P B P C =++=++0.80.20.40.20.60.20.904=+⨯+⨯⨯=,()0.20.40.08P B =⨯=,()()()()()0.08100.904113P BD P B P B D P D P D ====. 故答案为:1011317.(1)83a =(2)24a <<【解析】【分析】(1)根据题意123846i 2525z a a z -+=+,再根据纯虚数性质求解;(2)根据题意得122i z z -<-,即.(1) 由12i z a =+,234z i =-,得()()122i 34i 2i3846i 34i 252525a z a a a z +++-+===+-, 因为12z z 为纯虚数,所以38025a -=,且46025a +≠,所以83a =(2)()()()122i 34i 32i z z a a -=+-+=--, 因为2023122i z z -<+,所以122i z z -<-<即()2345a -+<,解得24a <<.18.(1)4352T x =和74254T x =(2)51T x =,4352T x =,35516T x =【解析】【分析】(1)无论选①还是选①,根据题设条件可求5n =,从而可求二项式系数最大的项.(2)利用二项展开式的通项公式可求展开式中所有的有理项.(1)二项展开式的通项公式为:211C C,0,1,2,,2rr r r r n n n r r n T x x r n --+⎛⎫=== ⎪⎝⎭⎝⎭.若选①,则由题得012C C C 16n n n ++=,①()11162n n n -++=,即2300n n +-=,解得5n =或6n =-(舍去),①5n =.若选①,则由题得()221111C 22141C 22n n n n n n nn n n----⎛⎫- ⎪⎝⎭==-=⎛⎫ ⎪⎝⎭,①5n =,展开式共有6项,其中二项式系数最大的项为22443515C 22T x x ⎛⎫== ⎪⎝⎭,,7732345215C 24T x x ⎛⎫== ⎪⎝⎭.(2)由(1)可得二项展开式的通项公式为:5521551C C ,0,1,2,,52r r r r r r r T x x r --+⎛⎫=== ⎪⎝⎭⎝⎭. 当52r Z -∈即0,2,4r =时得展开式中的有理项, 所以展开式中所有的有理项为:51T x =,5423522215C 22T x x -⎛⎫= ⎪⎝⎭=,5342545415C 216T x x -⎛⎫= ⎪=⎝⎭. 19.(1)1a =,极小值点(2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)先求定义域,再求导,根据极值点列出方程,求出1a =,从而求出单调区间,判断出1x =是()f x 的极小值点;(2)问题转化为2max2a x x ⎛⎫≥ ⎪+⎝⎭,求出2211,63x x ⎡⎤∈⎢⎥+⎣⎦,从而求出实数a 的取值范围. (1)①()f x 定义域为(1,)-+∞,()421f x ax x'=-+; 若()f x 在1x =处有极值,则()1220f a '=-=,①1a =,此时()()24ln 1f x x x =-+,()()()2214 211x x f x x x x+-'=-=++. ①1x >-,①20x +>,10x +>,当11x -<<时,()0f x '<,()f x 为减函数.当1x >时,()0f x '>,()f x 为增函数.①1x =是()f x 的极小值点.(2)由条件知()0f x '≥在[]2,3x ∈上恒成立,即4201ax x -≥+, ①22a x x ≥+在[]2,3x ∈上恒成立,只需2max2a x x ⎛⎫≥ ⎪+⎝⎭, ①2211[6,12]24x x x ⎛⎫+=+-∈ ⎪⎝⎭,①2211,63x x ⎡⎤∈⎢⎥+⎣⎦,即13a ≥,即a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.20.(1)11a,2a3a (2)n a .【解析】【分析】(1)赋值法进行求解;(2)猜想n a(1)令1n =得:111112a a a =+-,因为0n a >,n ∈+N ,解得:11a ,令2n =得:2122112a a a a +=+-,即2221112a a a +=+-解得:2a ,令3n =得:31233112a a a a a ++=+-,3331112a a a =+-,解得:3a(2)猜想{}n a的通项公式为n a当1n =时,11a ,成立,假设n k =时,k a =则12315321211k k S a a a k k =+++=-+-++--=则当1n k =+时,111112k k k a S a +++=+-,即111112k k k k a S a a ++++=+-1111112k k k a a a++++=+-,解得:1k a +综上:n a n *∈N 都成立.21.(1)相关系数0.98;ˆ0.640.16yx =+ (2)6月预计售价为4元/只;方案一分布列见解析;期望为14645;方案二分布列见解析;期望为446135;应选择方案一【解析】【分析】(1)依据题中所给数据,计算出x y 、的值,带入参考公式计算即可. (2)根据(1)中线性回归方程,求得X 可取的值,依次计算概率,列出分布列,求解数学期望,利用数学期望比较两种方案.(1)相关系数()()56.40.986.5i ix x y y r --==≈≈∑, 由于0.98接近1,说明y 与x 之间有较强的线性相关关系.()()()51521 6.4ˆ0.6410i ii i i x x y y b x x ==--===-∑∑,ˆ 2.08 1.920.16a =-=, 所以ˆ0.640.16yx =+. (2)由(1)可知,ˆ0.640.16yx =+,当6x =时,ˆ4y =,即6月预计售价为4元/只. X 可取的值为2.8,3.2,3.6.若选优惠方案一,1331( 2.8)39C P X ===; 1111321332( 3.2)33C C C C P X ===; 3332( 3.6)A P X ===; 此时122438146() 2.8 3.2 3.693913545E X =⨯+⨯+⨯==. 若选优惠方案二,客户每次和机器人比赛时,胜出的概率为132133C =,则不胜的概率为23.33311( 2.8)327P X C ⎛⎫=== ⎪⎝⎭;211221331212242( 3.2)3333993P X C C ⎛⎫⎛⎫⎛⎫⎛⎫==+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 30328( 3.6)327P X C ⎛⎫=== ⎪⎝⎭;此时128446() 2.8 3.2 3.627327135E X =⨯+⨯+⨯=.438446135135<,说明为使花费的期望值最小,应选择方案一.22.【解析】(1)令()()sin cos sin g x f x x x x x =-=⋅-,()g x 的定义域为(0)π,,()cos sin cos sin g x x x x x x x =--=-⋅'⋅, 当0()x π∈,时,()0g x '<恒成立,①()g x 在(0)π,上单调递减, ①当0()x π∈,时,()(0)0g x g <=恒成立,故当0()x π∈,时,()sin f x x <;(2)设()2()12cos 1h x f x x x =-=⋅-,()h x 的定义域为(0)2π,,()2(cos sin )h x x x x =-⋅',设()cos sin x x x x ω=-⋅,()x ω的定义域为(0)2π,,()2sin cos x x x x ω=--⋅',当(0)2x π∈,时,()0x ω'<恒成立,①()x ω在(0)2π,上单调递减,又(0)10ω=>,()022ππω=-<,①存在唯一的0(0)2x π∈,使据0()0x ω=,当00x x <<时()0x ω>,则()2()0h x x ω'=>,①()h x 在0(0)x ,上单调递增, 当02x x π<<时()0x ω<,则()2()0h x x ω'=<,①()h x 在0()2x π,上单调递减,①()h x 在0x x =处取得极大值也是最大值,又(0)10h =-<,()104h π>,()102h π=-<,①()h x 在(0)4π,与()42ππ,上各有一个零点,即当(0)2x π∈,时,方程2()10f x -=有且仅有2个实数根.。
【ks5u发布】河北省唐山一中2020-2021学年高二下学期第三次月考理科数学试题Word版含答案
唐山一中2022-2021学年度其次学期高二班级第一次月考数学试卷(理科) 命题人:李鹏涛 审核人:乔家焕试卷Ⅰ(共60分)一、选择题(本题共12个小题,每题只有一个正确答案,每题5分,共60分。
请把答案涂在答题卡上)1.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +2、用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是 ( ) A .假设三内角都不大于60° B .假设三内角都大于60°C .假设三内角至多有一个大于60°D .假设三内角至多有两个大于60°3.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC ,则点O 是ΔABC ( )A.内心B.外心C.重心D.垂心4. 设函数()f x ,()g x 在[,]a b 上均可导,且'()'()f x g x <,则当a x b <<时,有 ( )A. ()()f x g x >B. ()()f x g x <C. ()()()()f x g a g x f a +<+D. ()()()()f x g b g x f b +<+5.函数1,(10)()cos ,(0)2x x f x x x π+-≤<⎧⎪=⎨≤≤⎪⎩的图象与x 轴所围成的封闭图形的面积为 ( ) A.32 B. 1 C. 2 D.126. 6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为 ( )A .144B .120C .72D .24 7.在同一坐标系中,方程)0(0122222>>=+=+b a by ax b y a x 与的曲线大致是 ( )8、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是 ( )A. ①和②B.②和③C.③和④D.①和④9.已知0||2||≠=b a ,且关于x 的函数x b a x a x x f ⋅++=23||2131)(在R 上有极值,则a 与b 的夹角范围为 ( )A .)6,0[πB .],6(ππC .],3(ππD .2[,]33ππ10.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( )A .163B .83C .316D .3811.函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设).3(),21(),0(f c f b f a ===则 ( )A .c b a <<B .b a c <<C .a b c <<D .a c b <<12.已知椭圆1532222=+n y m x 和双曲线1322222=-ny m x 有公共的焦点,那么双曲线的渐近线方程是 ( )A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±= 试卷Ⅱ(共计90分)二、填空题(本题共4个小题,每题5分,共计20分,请将答案写在答题纸上)13.36的全部正约数之和可按如下方法得到:由于2236=23⨯,所以36的全部正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的全部正约数之和为_______________14.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,假如分给同一人的2张参观券连号,那么不同的分法种数是_________.15. 1121lim (1)n n n n nn →∞-++++写成定积分是_________.16.如图是y =f (x )的导函数的图象,现有以下四种说法:(1)f (x )在(-3,1)上是增函数;(2)x =-1是f (x )的微小值点;(3)f (x )在(2,4)上是减函数,在(-1,2)上是增函数; (4)x =2是f (x )的微小值点; 以上正确的序号为________.三、解答题(本题共6小题,其中17题10分,其余各题12分,共计70分。
2023-2024学年重庆市高二下学期3月月考数学质量检测试题(含答案)
2023-2024学年重庆市高二下册3月月考数学质量检测试题一、单选题1.已知集合(){}{}21,60A x y ln x B x x x ==+=--≤,则A B = ()A .(]2,3-B .(]1,3-C .(]3,2-D .()1,3-【正确答案】B【分析】首先求出集合A 、B ,再利用集合的交运算即可求解.【详解】(){}{}{}1101A x y ln x x x x x ==+=+>=>-,{}()(){}{}26032023B x x x x x x x x =--≤=-+≤=-≤≤,所以A B ⋂{}(]131,3x x =-<≤=-,故选:B2.为对某组数据进行分析,建立了四种不同的模型进行拟合,现用回归分析原理,计算出四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,则拟合效果最好的回归模型对应的相关指数R 2的值是()A .0.97B .0.86C .0.65D .0.55【正确答案】A【分析】在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,即可求解.【详解】由题意,四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,根据在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,可得拟合效果最好的回归模型对应的相关指数R 2的值是0.97.故选:A .本题考查了用相关指数拟合模型效果的应用问题,其中解答中熟记回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好是解答的关键,属于基础题.3.已知26=22464+--,53=25434+--,71=27414+--,102=210424-+---,依照以上各式的规律,得到一般性的等式为()A .8=24(8)4n n n n -+---B .1(1)5=2(1)4(1)4n n n n +++++-+-C .4=24(1)4n n n n ++-+-D .15=2(1)4(5)4n n n n ++++-+-【正确答案】A【分析】由已知结合归纳推理即可求解【详解】解:从各个等式可以看出,等式右端均为2,左端为两个分式的和,且两个式子的分子之和恒等于8,分母则为相应分子减去4,设其中一个分子为n ,另一个分子必为8-n ,故8=24(8)4n n n n -+---满足;故选:A4.已知命题p :220x x +->,命题q :()(){|lg 23}x f x x =-,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B分别化简命题p 和命题q ,利用必要不充分条件的定义进行判断即可.【详解】命题p :220x x +->等价于1x >或<2x -;命题q :()(){}3{|lg 23}|230|2x f x x x x x x ⎧⎫=-=->=>⎨⎬⎩⎭则p 是q 的必要不充分条件故选:B5.函数22o )l g (1f x x x =-+的零点所在区间是()A .1184⎛⎫⎪⎝⎭,B .1142⎛⎫ ⎪⎝⎭,C .112⎛⎫⎪⎝⎭D .()12,【正确答案】C【分析】利用零点存在性定理即可求解.【详解】2111151log 08484f ⎛⎫=-+=-< ⎪⎝⎭211151log 04242f ⎛⎫=-+=-< ⎪⎝⎭21111log 1022f ⎛⎫=-+=-< ⎪⎝⎭()12110f =-=>()1102f f ⎛⎫⋅< ⎪⎝⎭,221log ()f x x x ∴=-+的零点所在区间是112⎛⎫ ⎪⎝⎭,故选:C6.某产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表,由此得到y 与x 的线性回归方程为6y x a =+$$,由此可得:当广告支出5万元时,随机误差的效应(残差)为x24568y3040605070A .-10B .0C .10D .20【正确答案】C【分析】由已知求得,x y 的值,得到ˆa,求得线性回归方程,令5x =求得y 的值,由此可求解结论.【详解】由题意,根据表格中的数据,可得2456830406050705,5055x y ++++++++====,所以ˆ6506520ay x =-⨯=-⨯=,所以ˆ620y x =+,取5x =,得ˆ652050y=⨯+=,所以随机误差的效应(残差)为605010-=,故选C.本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题.7.设曲线f (x )=ax 2在点(2,4a )处的切线与直线4x -y +4=0垂直,则a =()A .2B .-116C .12D .-1【正确答案】B【分析】由已知结合导数的几何意义即可求解.【详解】f (x )=ax 2,则()2f x ax'=因为在点(2,4a )处的切线与直线4x -y +4=0垂直,所以()1244f a =-'=所以116a =-故选:B8.函数3222xxx y -=+在[]6,6-的图像大致为A .B .C .D .【正确答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x xx x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.9.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.10.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【正确答案】D【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.11.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是()A .(,-∞B .(C .(,-∞D .(0,【正确答案】A先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120xg x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数;1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,()f x 为增函数;()f x 的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A.利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立;(2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.12.若正实数a ,b 满足22ln ln 222+≥+-b a b a ,则()A .124+=+a bB .122-=-a b C .2a b >D .240b a -<【正确答案】B【分析】利用基本不等式可得)222212b a +-≥(当且仅当222b a =时取等号),利用熟知的结论1ln x x -≥(当且仅当1x =时取等号)进行放缩可得到2222ln ln 2b a a b +-≥+,结合已知条件,得到22ln ln 222b a b a +=+-,考虑到各不等式取等号的条件,解得,a b 的值,然后逐一检验即可做出正确判断.【详解】先证明熟知的结论:1ln x x -≥恒成立,且当且仅当1x =时取等号.设()1ln f x x x =--,则()11f x x'=-,在(0,1)上,()0f x '<,()f x 单调递减;在(1,+∞)上,()0f x '>,()f x 单调递增.故()()11100min f x f ==--=,∴()1ln f x x x =-≥恒成立,且当且仅当1x =时取等号.由)22222212lnln ln 2b a a b +-≥=≥+,由已知22ln ln 222b a b a +≤+-,∴22ln ln 222b a b a +=+-,且2221b a ⎧=⎪=,解得12a b ⎧=⎪⎨⎪=⎩,经检验只有B 正确,故选:B.本题关键点在于利用基本不等式和熟知的结论1ln x x -≥恒成立,且当且仅当1x =时取等号进行研究,得到2222ln ln 2b a a b +-≥+,结合已知得到等式,一定要注意基本不等式和1ln x x -≥取等号的条件,才能列出方程组求得,a b 的值.二、填空题13.函数()f x =__________.【正确答案】(0,1)(1,]e ⋃【分析】利用对数、分式、根式的性质列不等式,求x 的范围,即得定义域.【详解】由函数解析式,知:01ln 0220x x x ⎧>⎪-≥⎨⎪-≠⎩,解得0x e <≤且1x ≠.故答案为.(0,1)(1,]e ⋃14.i 是复数单位,若()1243i z i +=+,z 的虚部为__________.【正确答案】1【分析】由复数除法求得z 后可得z ,从而得其虚部.【详解】由已知243(43)(12)4836212(12)(12)5i i i i i i z i i i i ++--+-====-++-,2z i =+,虚部为1.故1.15.已知函数()f x 定义域为R ,满足 ()(2)f x f x =-,且对任意121x x ≤<,均有()()12120x x f x f x ->-,则不等式(21)(3)0f x f x ---≥解集为______.【正确答案】4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭【分析】先求出函数()f x 关于直线1x =对称,函数()f x 在[)1,+∞上单调递增.在(],1-∞上单调递减,再解不等式|211||31|x x --≥--即得解.【详解】因为函数()f x 满足()(2)f x f x =-,所以函数()f x 关于直线1x =对称,因为对任意121x x ≤<,均有()()12120x x f x f x ->-成立,所以函数()f x 在[)1,+∞上单调递增.由对称性可知()f x 在(],1-∞上单调递减.因为()()2130f x f x ---≥,即()()213f x f x -≥-,所以|211||31|x x --≥--,即|22||2|x x -≥-,解得0x ≤或43x ≥.故4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭方法点睛:对于函数问题的求解,通常要先研究函数的奇偶性、对称性、周期性和单调性等,再利用这些性质求解函数的问题.16.已知函数()()()202ln f x a x x x a =+>-有两个极值点1x 、()212x x x <,则()()12f x f x +的取值范围为_________.【正确答案】(),16ln 224-∞-【分析】确定函数()y f x =的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求()()12f x f x +的取值范围.【详解】函数()()22ln f x a x x x =-+的定义域为()0,∞+,()21222212x ax a f x a x x x -+⎛⎫'=-+= ⎪⎝⎭,依题意,方程22220x ax a -+=有两个不等的正根1x 、2x (其中12x x <),则241604a a a ∆=->⇒>,由韦达定理得120x x a +=>,120x x a =>,所以()()()()()22121212122ln 2f x f x a x x x x a x x +=++-+()()()2222121212122ln 222ln 222ln 2a x x x x x x a x x a a a a a a a a a ⎡⎤=++--+=+--=--⎣⎦,令()()22ln 24h a a a a a a =-->,则()2ln 2h a a a '=-,()()2122a h a a a-''=-=,当4a >时,()0h a ''<,则函数()y h a '=在()4,+∞上单调递减,则()()44ln 280h a h '<=-<,所以,函数()y h a =在()4,+∞上单调递减,所以,()()416ln 224h a h <=-.因此,()()12f x f x +的取值范围是(),16ln 224-∞-.故答案为.(),16ln 224-∞-本题考查了函数极值点问题,考查了函数的单调性、最值,将()()12f x f x +的取值范围转化为以a 为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.三、解答题17.已知命题:,p x R ∀∈240++≤mx x m .(1)若p 为真命题,求实数m 的取值范围;(2)命题[]:2,8q x ∃∈,使得2log 1m x ≥,当p q ⌝∧⌝为假命题且q ⌝为真命题时,求实数m 的取值范围.【正确答案】(1)14m ≤-;(2)14m ≤-.(1)由题得0m <且21160∆=-≤m ,解不等式即得m 的取值范围;(2)先转化为[]2,8x ∃∈,21log m x ≥,再求21log x的最小值得m 的范围,因为p q ⌝∧⌝为假命题且q ⌝为真命题,所以p 真q 假,从而得到关于m 的不等式组,解不等式组即得解.【详解】(1)∵2,40x R mx x m ∀∈++≤,0m ∴<且21160∆=-≤m ,解得14m ≤-p ∴为真命题时,14m ≤-.(2)[2,8]∃∈x ,21log m x ≥,又[2,8]x ∈时,211[,1]log 3x ∈,13m ∴≥∵p q ⌝∧⌝为假命题且q ⌝为真命题∴当p真q假,有1413mm⎧≤-⎪⎪⎨⎪<⎪⎩解得14m≤-【点晴】方法点晴:复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.18.2020年12月29日至30日,全国扶贫开发工作会议在北京召开,会议指出经过各方面的共同努力,中国现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,贫困村全部退出,脱贫攻坚目标任务如期全面完成.2021年是“十四五”规划开局之年,是巩固拓展脱贫攻坚成果、实现同乡村振兴有效衔接的起步之年.要按照中共中央国务院新决策新部署,把巩固拓展脱贫攻坚成果摆在头等重要位置来抓,推动脱贫攻坚政策举措和工作体系逐步向乡村振兴平稳过渡,用乡村振兴巩固拓展脱贫攻坚成果,坚决守住脱贫攻坚胜利果实,确保不出现规模性返贫,确保实现同乡村振兴有效衔接,确保乡村振兴有序推进.北方某刚脱贫的贫困地区积极响应,根据本地区土地贫瘠,沙地较多的特点,准备大面积种植一种叫做欧李的奇特的沙漠果树,进行了广泛的宣传.经过一段时间的宣传以后,为了解本地区广大农民对引进这种沙漠水果的理解程度、种植态度及思想观念的转变情况,某机构进行了调查研究,该机构随机在该地区相关人群中抽取了600人做调查,其中45岁及以下的350人中有200人认为这种水果适合本地区,赞成种植,45岁以上的人中赞成种植的占2 5.(1)完成如下的2×2列联表,并回答能否有99.5%的把握认为“赞成种植与年龄有关”?赞成种植不赞成种植合计45岁及以下45岁以上合计(2)为了解45岁以上的人的想法态度,需要在已抽取45岁以上的人中按种植态度(是否赞成种植)采用分层抽样的方法选取5位45岁以上的人做调查,再从选取的5人中随机抽取2人做深度调查,求2人中恰有1人“不赞成种植”的概率.附表:()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.072 2.706 3.841 5.0246.6357.87910.828参考公式为:()()()()()22n ad bc K a b c d a c b d -=++++【正确答案】(1)填表见解析;有99.5%的把握认为“是否赞成种植与年龄有关”;(2)35.【分析】(1)根据题中数据,直接完善列联表,再由公式计算2K ,结合临界值表,即可得出结论;(2)先由题中条件,确定被抽取的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ;用列举法写出总的基本事件,以及满足“恰有1人不赞成种植”的基本事件,基本事件的个数比即为所求概率.【详解】(1)由题意可得2×2列联表:赞成种植不赞成种植合计45岁及以下20015035045岁以上100150250合计30030060022600(200150150100)300300350250K ⨯⨯-⨯=⨯⨯⨯12017.1437.8797=≈>经查表,得()27.8790.005P K >≈,所以有99.5%的把握认为“是否赞成种植与年龄有关”.(2)在45岁以上的人中,赞成种植和不赞成种植的人数比为2:3,所以被抽取到的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ,从被选取到的5人中再从中抽取2人,共有如下抽取方法:(,)a b ,(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,(,)C D ,(,)C E ,(,)D E ,共有10种不同的结果,两人中恰好有1人为“不赞成种植的”包含了(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,共有6种结果.所以所求概率63105P ==.方法点睛:求古典概型的概率的常用方法:(1)古典概型所包含的基本事件个数较少时,可用列举法列举出总的基本事件个数,以及满足条件的基本事件个数,基本事件个数比即为所求概率;(2)古典概型所包含的基本事件个数较多时,可根据排列组合数的计算,求出总的基本事件个数,以及满足条件的基本事件个数,进而求出所求概率.19.已知三次函数32()41f x x ax x =+++(a 为常数).(1)当1a =时,求函数()f x 在2x =处的切线方程;(2)若a<0,讨论函数()f x 在()0,x ∈+∞的单调性.【正确答案】(1)20190x y --=;(2)答案见解析.【分析】(1)对函数求导,由导数的几何意义可得直线的斜率,再由直线的点斜式方程即可得解;(2)对函数求导,结合二次函数的性质,按照0a -≤<、a <-()0f x '>、()0f x '<的解集即可得解.【详解】(1)当1a =时,函数32()41f x x x x =+++,2()324f x x x '=++Q ,(2)20f '∴=即切线的斜率20k =,(2)21f =Q ,∴切线方程为2120(2)y x -=-即20190x y --=;(2)导函数2()324f x x ax '=++的对称轴为03a x =->,①当24480a ∆=-≤即0a -≤<时,()0f x '≥,()f x 在(0,)+∞上单调递增;②当24480a ∆=->即a <-(0)40f '=>,令2()3240f x x ax '=++=,则13a x -=,23a x -=,因为120x x <<,所以当0x <<或x >时,()0f x '>;x <<时,()0f x '<;所以()f x在0,3a ⎛⎫- ⎪ ⎪⎝⎭,,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增;()f x 在33a a a a ⎛---+ ⎪ ⎪⎝⎭上单调递减.本题考查了导数几何意义的应用及利用导数研究函数的单调性,考查了运算求解能力与逻辑推理能力,属于中档题.20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩;(2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【详解】(1)依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.(2)由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()()920092009000W x x x =-++≤-+=,当且仅当10000x x =,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.21.已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【正确答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e x f x x x =+-,()e 21x f x x ='+-,由于()''e 20x f x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)[方法一]【最优解】:分离参数由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----,记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-,令()()21e 102x h x x x x =---≥,则()e 1x h x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102x x x ---恒成立,故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减;因此,()()2max 7e 24g x g -⎡⎤==⎣⎦,综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭.[方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x x f x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e 74244e -+++⇔xx x x ,令()223e 7424()(0)e -+++=≥x x x x h x x ,则()()222313e 2e 92()e -+--=='x x x x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=x x x x ()2(2)2e 9e ⎡⎤--+-⎣⎦x x x x ,所以当29e 0,2⎡⎤-∈⎢⎣⎦x 时,()0,()h x h x <'单调递减;当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增;当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e 1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2x g x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--()()()2112342e 212e 22x x x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x x g x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21x g x x x -=+≤+恒成立,所以12a ≥时,满足题意.综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【正确答案】(1)2cos ([0,])4πρθθ=∈,32sin ([])44ππρθθ=∈,32cos ([,])4πρθθπ=-∈,(2))6π,)3π,2)3π,5)6π.【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围.(2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3πθ=或23πθ=,此时P 的极坐标为3π或2)3π解方程32cos [,])4πθθπ-=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π.此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.设函数()|21||4|f x x x =+--.(1)求不等式()2f x >的解集;(2)求函数()f x 的最小值.【正确答案】(1){7x x ∈<-R 或53x ⎫>⎬⎭;(2)92-.【分析】(1)将绝对值函数化为分段函数,用不同的区间对应的解析式大于2,分别解出不等式求其并集即可.(2)由分段函数求其值域即可得到最小值.【详解】1521()33425(4)x x f x x x x x ⎧⎛⎫--<- ⎪⎪⎝⎭⎪⎪⎛⎫=--≤≤⎨ ⎪⎝⎭⎪⎪+>⎪⎩⑴①由5212x x -->⎧⎪⎨<-⎪⎩解得7<-x ;②332142x x ->⎧⎪⎨-≤≤⎪⎩解得543x <≤;③524x x +>⎧⎨>⎩解得>4x ;综上可知不等式的解集为{|7x x ∈<-R 或53x ⎫>⎬⎭.⑵由(1)知,当12x <-时,()195522f x x =-->-=-;当142x -≤≤时,()33f x x =-,()992f x -≤≤;当>4x 时,()59f x x =+>;综上x ∈R 时,()92f x ≥-,所以min 9()2f x =-故函数()f x 的最小值为92-.。
江苏省镇江市六校联考2023-2024学年高二下学期3月月考试题 数学含答案
高二下学期数学3月月考试卷(答案在最后)考试时间:120分钟试卷总分150分一、单项选择题(本大题共8小题,每小题5分,共计40分).1.有5名学生报名参加3项体育比赛,每人限报一项,则不同的报名方法的种数为()A .60B .125C .243D .1202.下列求导运算正确的()A .211()1x x x'+=+B .21(log )ln 2x x '=C .(cos 2)sin 2x x =-'D .(ln )ln 1x x x '=-3.某高中学校学生人数和近视情况分别如图①和图②所示.为了解该学校学生近视形成原因,在近视的学生中按年级用分层抽样的方法抽取部分学生进行问卷调查,已知抽取到的高中一年级的学生36人,则抽取到的高三学生数为()A .32B .45C .64D .904.若二项式(12)n x +的展开式中所有项的系数和为243,则展开式中2x 项的系数为()A .40B .60C .80D .1605.用0,1,2,3,4,5这六个数字组成没有重复数字的三位数,其中偶数共有()A .40个B .42个C .48个D .52个6.已知函数()f x 的定义域为R ,且()21f =,对任意x ∈R ,()()0f x xf x '+<,则不等式()()112x f x ++>的解集是()A .(),1∞-B .(),2∞-C .()1,+∞D .()2,∞+7.(x 2-x +1)5的展开式中x 3的系数为()A .-20B .-24C .-30D .208.设函数21()4ln 2f x x x a x =-+,若函数()y f x =存在两个极值点12,x x ,且不等式1212()()f x f x x x t +≥++恒成立,则t 的取值范围为()A .(]1-∞-,B .(]168ln 2-∞--,C .2e 4e 2⎛⎤-∞- ⎥⎝⎦,D .(]13-∞-,二、多项选择题(本大题共3小题,每小题6分,共18分.漏选得部分分,错选不得分).9.随机抽取6位影迷对电影《长津湖》的评分,得到一组样本数据如下:929395959798,,,,,,则下列关于该样本的说法中正确的有()A .均值为95B .极差为6C .方差为26D .第80百分位数为9710.在以下结论中正确的是().A .433101011C C C +=B .024*******10101010102C C C C C C +++++=C .1091-不能被100整除D .已知9(23)x -=290129(1)(1)(1)a a x a x a x +-+-++- ,则91238931a a a a a -+-++-=-+ 11.下列说法正确的是()A .从含有2件次品和98件正品的100件产品中任取2件,则至少取到1件次品的取法有11299C C ⋅种B .甲乙等6名同学和1名老师站成一排照相,则老师必须站在最中间且甲乙必须站在一起的站法有192种C .将10个“三好生”名额分给4个班级,每班至少1个名额,共有84种分法D .将5个不同的小球放入3个不同的盒子中,每个盒子至少放1个,共有150种放法三.填空题(本大题共3小题,每小题5分,共15分).12.25()()x x y xy ++的展开式中x 3y 3的系数为.13.将,,,,a b c d e 5名实习教师全部分配到某校高二年级的甲、乙、丙3个班级实习,要求每个班至少一名,最多两名,其中a 不去甲班,则不同的分配方案有种(用数字作答).14.若曲线()ex xf x =有三条过点()0,a 的切线,则实数a 的取值范围为.四.解答题(本大题共5小题,共计77分.解答时应写出文字说明,证明过程或演算步骤).15.(13分)已知函数()()212ln R 2f x x ax x a =--∈.(1)当1a =时,求函数()f x 的单调区间和极值;(2)若函数()f x 在区间[)1,+∞上单调递增,求实数a 的取值范围.16.(15分)3名女生和5名男生排成一排.(最终答案化为数字!)(1)如果女生全排在一起,有多少种不同排法?(2)如果女生都不相邻,有多少种排法?(3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不相邻),有多少种排法?(5)其中甲不站左端,乙不站右端,有多少种排法?17.(15分)已知*Nn∈,二项式n .(1)若该二项展开式的第4项与第8项的二项式系数相等,求展开式中2x的系数;(2)若展开式的前三项的系数成等差数列,求展开式中系数最大的项.18.(17分)已知:()201221nn n x a a x a x a x -=+++⋅⋅⋅+(*n ∈N ,n 为常数).(1)求|0|+|1|+|2|+...+||;(2)我们知道二项式(1)n x +的展开式0122(1)n n nn n n n x C C x C x C x +=+++⋅⋅⋅+.若该等式两边对x 求导得:o1+p K1=1232123n n n n n n C C x C x nC x -++⋅⋅⋅+,令x=1,可得1+22+33⋅⋅⋅+B =12n n -⋅.利用此方法解答以下问题:①求12312+3...n a a a na +++;②求2222123123...n a a a n a ++++.19.(17分)已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.高二下学期数学3月月考试卷考试时间:120分钟试卷总分150分一、单项选择题(本大题共8小题,每小题5分,共计40分).20.有5名学生报名参加3项体育比赛,每人限报一项,则不同的报名方法的种数为()A .60B .125C .243D .120【答案】C【分析】根据分步乘法计数原理求得正确答案.【详解】每名学生都有3种选择方法,所以不同的报名方法的种数为53243=.故选:C21.下列求导运算正确的()A .211()1x x x'+=+B .21(log )ln 2x x '=C .(cos 2)sin 2x x =-'D .(ln )ln 1x x x '=-22.某高中学校学生人数和近视情况分别如图①和图②所示.为了解该学校学生近视形成原因,在近视的学生中按年级用分层抽样的方法抽取部分学生进行问卷调查,已知抽取到的高中一年级的学生36人,则抽取到的高三学生数为()A .32B .45C .64D .90【答案】D【分析】根据近视率求出三个年级的近视的人数,结合抽样比例可得答案.【详解】近视的学生中,高一、高二、高三学生数分别为180人,320人,450人,由于抽取到的高一学生36人,则抽取到的近视学生中高三人数为90人.故选:D.23.若二项式(12)n x +的展开式中所有项的系数和为243,则展开式中2x 项的系数为()A .40B .60C .80D .160【答案】A 【分析】根据题意,令1x =可得n ,再由二项式展开式的通项,即可得到结果.【详解】令1x =,可得3243n =,则5n =,所以5(12)x +的展开式的通项为15C 2r r rr T x +=⋅⋅,令2r =,可得222235C 240T x x =⋅=.所以展开式中2x 项的系数为40.故选:A24.用0,1,2,3,4,5这六个数字组成没有重复数字的三位数,其中偶数共有()A .40个B .42个C .48个D .52个【答案】D【分析】分最后一位分别为0,2,4三种情况求解即可.【详解】当最后一位是0时,共有25A 20=种情况;当最后一位是2时,共有144116C C =种情况;当最后一位4时,共有144116C C =种情况,所以共有20161652++=个.故选:D25.已知函数()f x 的定义域为R ,且()21f =,对任意x ∈R ,()()0f x xf x '+<,则不等式()()112x f x ++>的解集是()A .(),1∞-B .(),2∞-C .()1,+∞D .()2,∞+【答案】A【分析】构造函数()()g x xf x =,利用导数法结合条件,得到()g x 在R 上单调递减,利用单调性可得答案.【详解】设()()g x xf x =,则()()()0g x f x xf x =+'<'所以()g x 在R 上单调递减,又()()2222g f ==由()()112x f x ++>,即()()12g x g +>,所以12x +<所以1x <故选:A 26.(x 2-x +1)5的展开式中x 3的系数为()A .-20B .-24C .-30D .20【答案】C【分析】先将(x 2-x +1)5转化为[1+(x 2-x )]5,则展开式的通项公式Tr +1=5rC (x 2-x )r ,r =0,1,2,3,4,5,再求得(x 2-x )r 展开式的通项公式得到5rkrC C (-1)k ·x 2r -k ,r =0,1,2,3,4,5,k =0,1,…,r ,然后令2r -k =3求解.【详解】.[1+(x 2-x )]5展开式的第r +1项Tr +1=5rC (x 2-x )r ,r =0,1,2,3,4,5,Tr +1展开式的第k +1项为5rkr C C ·(x 2)r -k (-x )k =5rkrC C (-1)k ·x 2r -k ,r =0,1,2,3,4,5,k =0,1,…,r ,当2r -k =3,即2{1r k ==或3{3r k ==时是含x 3的项,所以含x 3项的系数为2152C C (-1)+3353C C (-1)3=-20-10=-30.故选:C27.设函数21()4ln 2f x x x a x =-+,若函数()y f x =存在两个极值点12,x x ,且不等式1212()()f x f x x x t +≥++恒成立,则t 的取值范围为()A .(]1-∞-,B .(]168ln 2-∞--,C .2e 4e 2⎛⎤-∞- ⎥⎝⎦,D .(]13-∞-,二、多项选择题(本大题共3小题,每小题6分,共18分.漏选得部分分,错选不得分).28.随机抽取6位影迷对电影《长津湖》的评分,得到一组样本数据如下:929395959798,,,,,,则下列关于该样本的说法中正确的有()A .均值为95B .极差为6C .方差为26D .第80百分位数为9729.在以下结论中正确的是().A .433101011C C C +=B .024*******10101010102C C C C C C +++++=C .1091-不能被100整除D .已知9(23)x -=290129(1)(1)(1)a a x a x a x +-+-++- ,则91238931a a a a a -+-++-=-+30.下列说法正确的是()A .从含有2件次品和98件正品的100件产品中任取2件,则至少取到1件次品的取法有11299C C ⋅种B .甲乙等6名同学和1名老师站成一排照相,则老师必须站在最中间且甲乙必须站在一起的站法有192种C .将10个“三好生”名额分给4个班级,每班至少1个名额,共有84种分法D .将5个不同的小球放入3个不同的盒子中,每个盒子至少放1个,共有150种放法【答案】BCD三.填空题(本大题共3小题,每小题5分,共15分).32.将,,,,a b c d e 5名实习教师分配到某校高二年级的甲、乙、丙3个班级实习,要求每个班至少一名,最多两名,其中a 不去甲班,则不同的分配方案有种(用数字作答)【详解】根据题意,去甲班实习的教师可以是1人或2人.有1人去甲班时,因为a 不去甲班,可从另外4人中选1人去甲班,有14C 种选法,再选2人去乙班,有24C 种选法,剩下2人去丙班,有22C 种方法,这是分3步完成的,故有122442C C C 46124=⨯⨯=种方案;有2人去甲班时,因为a 不去甲班,可从另外4人中选2人去甲班,有24C 种选法,再剩余3人分配到2个班的分法有2232C A 种方法,所以这类办法有222432C C A 63236=⨯⨯=种.故不同的分配方案有:243660+=.33.若曲线()ex x f x =有三条过点()0,a 的切线,则实数a 的取值范围为由图可知,当240e a <<时,函数y 即过点(0,)a 的切线有3条.所以实数四.解答题(本大题共5小题,共计77分.解答时应写出文字说明,证明过程或演算步骤).34.(13分)已知函数()()212ln R 2f x x ax x a =--∈.(1)当1a =时,求函数()f x 的单调区间和极值;(2)若函数()f x 在区间[)1,+∞上单调递增,求实数a 的取值范围.35.(15分)3名女生和5名男生排成一排.(最终答案化为数字!)(1)如果女生全排在一起,有多少种不同排法?(2)如果女生都不相邻,有多少种排法?(3)如果女生不站两端,有多少种排法?(4)其中甲必须排在乙前面(可不相邻),有多少种排法?(5)其中甲不站左端,乙不站右端,有多少种排法?36.(15分)已知*Nn∈,二项式n .(1)若该二项展开式的第4项与第8项的二项式系数相等,求展开式中2x的系数;(2)若展开式的前三项的系数成等差数列,求展开式中系数最大的项.37.(17分)已知:()201221n n n x a a x a x a x -=+++⋅⋅⋅+(*n ∈N ,n 为常数).(1)求|0|+|1|+|2|+...+||;(2)我们知道二项式(1)n x +的展开式0122(1)n n n n n n n x C C x C x C x +=+++⋅⋅⋅+.若该等式两边对x 求导得:o1+p K1=1232123n n n n n n C C x C x nC x -++⋅⋅⋅+,令x=1,可得1+22+33⋅⋅⋅+B =12n n -⋅.利用此方法解答以下问题:①求12312+3...n a a a na +++;②求2222123123...n a a a n a ++++.38.(17分)已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.。
2021-2022学年江苏省无锡市太湖高级中学高二年级下册学期3月月考数学试题【含答案】
2021-2022学年江苏省无锡市太湖高二下学期3月月考数学试题一、单选题1.函数的导数是( )()cos 2f x x =A .B .C .D .2cos 2x 2cos 2x-2sin 2x2sin 2x-D【分析】根据复合函数求导法则即可求解.【详解】令,则.2u x =cos y u =(cos )()(sin )sin .x u x y y u u x u x '''=⋅=⋅=-=-''2222故选:D2.函数f (x )=ex -ex ,x ∈的单调递增区间是( )R A .(0,+∞)B .(-∞,0)C .(-∞,1)D .(1,+∞)D【分析】求得,令,即可求得单调增区间.()f x '()0f x '>【详解】由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故的单调增区间为.()f x ()1,+∞故选:D.本题考查利用导数研究函数的单调区间,属简单题.3.2021年重庆市实行“”新高考模式,学生选科时语文、数学、英语三科必选,312++物理、历史两科中选择1科,政治、地理、化学、生物四科中选择2科,则学生不同的选科方案共有( )A .8种B .12种C .15种D .20种B【分析】先求得物理、历史两科中选择1科的选法,再求得政治、地理、化学、生物四科中选择2科的选法,根据乘法计数原理,即可求得答案.【详解】解:由题意得:物理、历史两科中选择1科,有种选法,122C =政治、地理、化学、生物四科中选择2科,有种选法,246C =所以学生不同的选科方案共有种.2612⨯=故选:B4.已知函数f (x )可导,且满足,则函数y =f (x )在x =3处的导0(3)l (m2i 3)x f f x x ∆→-+∆=∆数为( )A .-1B .-2C .1D .2B【分析】根据导数的定义即可得到答案.【详解】由题意,,所以()()()()()3333limlim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆.()32f '=-故选:B.5.已知函数的图象在处的切线与函数的图象相切,则实数()2f x x =1x =()e xg x a ==a A BCD.B【分析】先求函数的图象在处的切线,再根据该切线也是函数()2f x x =1x =图象的切线,设出切点即可求解.()e xg x a =【详解】由,得,则,()2f x x =()2f x x'=()12f '=又,所以函数的图象在处的切线为,即.(1)1f =()2f x x =1x =12(1)y x -=-21y x =-设与函数的图象相切于点,21y x =-()e x g x a =00(,)x y 由,可得e ()x g x a '=0000e ()2,e ()21,x x g x a g x x a⎧==⎪⎪⎨⎪==-⎩'⎪解得32031,e 22x a ==故选B.本题考查导数的几何意义与函数图象的切线问题.已知切点时,可以直接利用导数求解;切点未知时,一般设出切点,再利用导数和切点同时在切线和函数图象上列方程(组)求解.6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A .60种B .120种C .240种D .480种C【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,25C 看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方254!240C ⨯=案,故选:C.本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.7.设直线与函数的图像分别交于点,则当达到最x t =2(),()ln f x x g x x ==,M N MN 小时的值为tA .1B .CD 12D【详解】由题,不妨令,则,令2ln MN x x=-(0)x >2()ln h x x x =-1'()2h x x x =-解得时,,当时,,所'()0h x =x x ∈'()0h x <)x ∈+∞'()0h x >以当时,达到最小.即.x =MN t =8.已知函数的定义域为,若在上为增函数,则()f x ()0+∞,()*()k f x y k x =∈N ()0+∞,称为“阶比增函数”.若函数为“阶比增函数",则实数的()f x k 2()ln f x m x x x =+-1m 取值范围是( )A .B .C .D .1,4⎛⎤-∞- ⎥⎝⎦1,4⎛⎫-∞- ⎪⎝⎭1,4⎡⎫-+∞⎪⎢⎣⎭1,4⎛⎫-+∞ ⎪⎝⎭A【分析】由题知在上为增函数,故令()ln f x mx x x x =+-()0+∞,,进而在上恒成立,()ln ,0mg x x x x x =+->()2221'10m x x m g x x x x --=-+-=≥()0+∞,即在上恒成立,再求函数最值即可.2m x x ≤-()0+∞,()2,0y x x x =-∈+∞,【详解】解:因为函数为“阶比增函数”,2()ln f x m x x x =+-1所以函数在上为增函数,()ln f x mx x x x =+-()0+∞,所以令,()ln ,0mg x x x x x =+->故在上恒成立,()2221'10m x x mg x x x x --=-+-=≥()0+∞,所以在上恒成立,2m x x ≤-()0+∞,由于,()22111,0244y x x x x ⎛⎫=-=--≥-∈+∞ ⎪⎝⎭,所以.()2min14m x x ≤-=-故实数的取值范围是m 1,4⎛⎤-∞-⎥⎝⎦故选:A 二、多选题9.函数的导函数的图象如图所示,以下命题正确的是( )()y f x =()y f x '=A .函数在处取得最小值B .是函数的极值点()y f x =4x =-0x =()y f x =C .在区间上单调递增D .在处切线的斜率大于零()y f x =(4,1)-()y f x =1x =ACD【分析】根据导函数图象可判定导函数的符号,从而确定函数的单调性,得到极值点,以及根据导数的几何意义可知在某点处的导数即为在该点处的切线斜率.【详解】根据导函数图象可知当时,,在时,(,4)x ∈-∞-()0f x '<(4,)x ∈-+∞,()0f x '≥函数在上单调递减,在上单调递增,且故C 正确;∴()y f x =(,4)-∞-(4,)-+∞易知函数在处取得最小值,故正确;()y f x =4x =-A 在上单调递增,故不是函数的极值点,故B 不正确; (4,)-+∞0x =()y f x =函数在处的导数大于0,切线的斜率大于零,故D 正确.()y f x =1x =∴故选:ACD .10.函数的一个零点在区间内,则实数a 的可能取值是( )2()2x f x ax =--(1,2)A .0B .1C .2D .3BC【分析】根据初等函数的单调性判断函数的单调性,根据零点存在定()22x f x a x =--理可得,从而可得结果.()()120f f <【详解】因为函数在定义域上单调递增,22x y y x ==-、{}0x x ≠所以函数在上单调递增,()22x f x a x =--{}0x x ≠由函数的一个零点在区间内,()22x f x a x =--()1,2得,()()()()12(22)(41)30f f a a a a ⨯=----=-⨯-<解得,0<<3a 故选:BC11.用0、1、2、3、4这五个数字组成无重复数字的自然数,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301、423等都是“凹数”,则下列结论中正确的是( )A .组成的三位数的个数为60B .在组成的三位数中,偶数的个数为30C .在组成的三位数中,“凹数”的个数为20D .在组成的三位数中,“凹数”的个数为24BC【分析】对于A ,因为百位数上的数字不能为零,然后利用分步乘法原理即可判断;对于B ,将所以三位数的偶数分为两类,①个位数为,②个位数为或,然后根024据分步乘法原理及分类加法原理即可判断;对于C 、D ,将这些“凹数”分为三类,①十位为,②十位为,③十位为,然后根012据分步乘法原理及分类加法原理即可得判断.【详解】对于A ,因为百位数上的数字不能为零,所以组成的三位数的个数为,故A 不正确;124444348A A =⨯⨯=对于B ,将所以三位数的偶数分为两类,①个位数为,则有种,0244312A =⨯=②个位数为或,则有种,24A A A =⨯⨯=11123323318所以在组成的三位数中,偶数的个数为,故B 正确;121830+=对于C 、D ,将这些“凹数”分为三类,①十位为,则有种,0244312A =⨯=②十位为,则有种,123326A =⨯=③十位为,则有种,222212A =⨯=所以在组成的三位数中,“凹数”的个数为, 故C 正确,D 不正确.126220++=故选:BC.12.已知函数有两个互异的极值点,下列32()(0)f x ax bx cx d a =+++≠()1212,x x x x <说话正确的是( )A .230b ac ->B .有三个零点的充要条件是12()()0f x f x <C .时,在区间上单调递减0a >()f x 12(,)x x D .时,为极大值,为极小值0a <1()f x 2()f x ABC求导,根据有两个互异的极值点逐项验证.2()32f x ax bx c '=++()f x ()1212,x x x x <【详解】因为函数,32()(0)f x ax bx cx d a =+++≠所以,2()32f x ax bx c '=++因为有两个互异的极值点,()f x ()1212,x x x x <所以,故A 正确;()()22212430b ac b ac ∆=-=->所以若有三个零点则,故B 正确;()f x 12()()0f x f x <当时,开口向上,则时,,所以区0a >2()32f x ax bx c '=++12(,)x x x ∈()0f x '<()f x 间上单调递减,故C 正确;12(,)x x 当时,当或时,,当时,,所以为极0a <1x x <2x x >()0f x '<12x x x <<()0f x '>1()f x小值,为极大值,故D 错误;2()f x 故选:ABC本题主要考查导数与函数的极值,导数与函数的零点,还考查了运算求解的能力,属于中档题.三、填空题13.已知,则________.34m m C C =21889m m m C C C --++=120【分析】根据已知条件及组合数公式求得,再利用组合数的性质m 递推关系及组合数公式即可求解11m m m n n nC C C -+=+【详解】由,得,解得.34mmC C=!!!()!!()!m m m m =--33447m =所以.562188988997677910120m m m C C C C C C C C C --++=++==+=故答案为.12014.若函数的极值点为,则__________.()e xf x x =0x x =()0f x =1e -1e--【分析】根据求导公式和运算法则可得,结合极值点的定义求出()e e x xf x x ='+,进而求出即可.01x =-(1)f -【详解】由题意得,,所以,()e x f x x =()e e x x f x x ='+因为是函数的极值点,0x x =()f x 所以,即,0000()e e 0x x f x x '=+=00e (1)0x x +=解得,易得-1是极小值点,所以.01x =-01()(1)e f x f =-=-故答案为.1e-15.电影院一排10个位置,甲、乙、丙三人去看电影,要求他们坐在同一排,且每人左右两边都有空位的坐法种数为____________.120【分析】根据题意,先排好7个空座位,由于空座位是相同的,形成6个空位是符合条件的,再将甲、乙、丙3人安排到这6个空位上即可.【详解】解:10个座位中,除了甲、乙、丙3人的座位,还有7个座位,形成6个空位,所以只需将甲、乙、丙3人安排到这6个空位上即可,故有(种).36654120A =´´=所以每人左右两边都有空位的坐法种数为.120故120四、双空题16.己知函数,若,且,则实数k 的取值范231,1()1,1x x f x x x +≤⎧=⎨->⎩n m >()()f n f m k ==围为_______,设,则t 的取值范围为______________.t n m =- 04k <≤171,12⎤⎥⎦【分析】画出函数图象,由图象得出k 的取值范围,用表示出,结合二次函数的n m 性质求得的取值范围.t n m =-【详解】画出图象如下图所示,()fx 当时,,令,解得1x =(1)3114f =⨯+=()2140x x -=>x =因为,()()f n f m k ==由图象可知,;04k <≤由得,,且()(),n m f n f m >=2311m n+=-223n m -=1n <所以,(222121333n t n m n n n n -=-=-=-++<≤结合二次函数的性质可知,当时,取得最大值为131223n =-=⎛⎫⨯- ⎪⎝⎭t,当取得最小值为.2133217322312⎛⎫-⨯++= ⎪⎝⎭n =t212133-⨯+=所以的取值范围是.t 171,12⎤-⎥⎦故;.04k <≤171,12⎤⎥⎦五、解答题17.已知函数.2ln y x x =(1)求这个函数的图象在处的切线方程;1x =(2)若过点的直线l 与这个函数图象相切,求l 的方程.(0,0)(1);1y x =-(2).1e y x=-【分析】(1)令,根据导数的几何意义求出,结合和直线的点斜()y f x =(1)f '(1)0f =式方程即可求出切线方程;(2)设切点为,根据导数的几何意义和两点坐标求直线斜率公式分别求出切2000(,ln )x x x 线的斜率,列出方程,解方程可得,进而求出斜率,利用直线的点斜式方程即10e -=x 可得出结果.【详解】(1)令,则,()y f x =2()ln f x x x =函数的定义域为,,()f x (0,)+∞()2ln f x x x x '=+所以,又,(1)2ln111f '=+=(1)0f =所以函数在处的切线方程为;1x =1y x =-(2)设切点为,2000(,ln )x x x 由(1)知,,0000()2ln f x x x x '=+又直线l 的斜率为,200000ln ln l x x k x x x ==有,解得,0002ln x x x +00ln x x =10e -=x 所以,100ln e l k x x -==-所以直线l 的方程为.1e y x=-18.(1)若,求正整数;33210n n A A =n (2)已知,求.56711710n n nC C C -=8n C (1)8(2)28【分析】(1)利用排列数公式可得,即求;()()()()221221012n n n n n n --=--(2)利用组合数公式可得,即求.223420n n -+=【详解】(1)由得,33210n n A A =,又,()()()()221221012n n n n n n --=--*3,N n n ≥∈∴,即,()()22152n n -=-8n =∴正整数为8.n (2)由得,56711710n n nC C C -=,()()()!5!!6!7!7!5!6!107!n n n n n n --⨯--=⨯∴即,()()6761660n n n ----=223420n n -+=解得或,又,2n =21n =05n ≤≤∴,2n =∴.88228n C C ==19.新冠疫情爆发后,某企业利用部分人工转产口罩.每生产万件(每件5个口罩),x 需投入固定成本5万元,流动成本万元,当月产量小于7万件时,()C x (万元);当月产量不小于7万件时,(万元).口()2123C x x x=+()36ln 17e C x x x x =++-罩销售价为6元/件,且生产的口罩能全部售出.(1)写出月利润(万元)关于月产量(万件)的函数解析式;(注:月利润月销售()p x x =收入固定成本流动成本)--(2)当月产量约为多少万件时,生产的口罩所获月利润最大?最大月利润是多少?(1);(2)当月产量约为万件时,所获月利润最大,()23145,07312ln ,7x x x p x e x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩3e 最大利润为8万元.(1)根据月利润等于销售额减去投入总成本减去固定成本,分时和两种07x <<7x ≥情况,得到关于的分段函数关系式;()p x x (2)当时,根据二次函数求最大值的方法求的最大值,当时,根07x <<()p x 7x ≥据函数的单调性求最大值,最后比较取最大的即可.【详解】(1)口罩销售价为6元/件,则万件口罩销售收入为万元.x 6x 依题意得,当时,,07x <<()22116254533p x x x x x x =---=-+-当时,,7x ≥()33661712l ln 5n x e e p x x x x x x ⎛⎫=-++--=--⎪⎝⎭∴,()23145,07312ln ,7x x x p x e x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,07x <<()()21673p x x =--+∴当时,的最大值为(万元),6x =()p x ()67p =当时,,∴,7x ≥()3ln 12x e p x x =--()33221e e xp x x x x -'=-+=∴当时,单调递增,当,单调递减,37x e ≤<()p x 3x e ≥()p x ∴当时,取最大值(万元),3x e =()p x ()3312ln 18p e e=--=∵,∴当时,取得最大值8万元,87>3x e =()p x 当月产量约为万件时,所获月利润最大,最大利润为8万元.3e 本题主要考查了根据实际问题选择合适的函数类型的能力,以及利用函数的单调性求最值的能力,属于中档题.20.设函数.()()1ln 0f x ax x a x=+>(1)当时,求的极值;1a =()f x(2)如果≥在上恒成立,求实数的取值范围.()f x ax ()0,∞+a (1)有极小值,没有极大值;(2).()11f =20,e ⎛⎤ ⎥⎝⎦【详解】试题分析:(1)当时,求导令导函数等于零,列表,通过表格找到函数1a =极值即可;(2)求恒成立问题一般要分离参数,构造函数求其最小值,只需最小值大于零即可求出取值范围.a 试题解析:(1)由已知,当时,,∴,1a =()1ln f x x x x =+()21ln 1f x x x +-'=()312f x x x +'=>'∴在上单调递增,且,()f x '()0,+∞()10f '=,随变化如下表:()f x '()f x x x()0,11()1,+∞()f x '-+()f x ↘极小值↗∴有极小值,没有极大值. ()f x ()11f =(2)(方法一)由题可得恒成立,()211ln a x x -≤当时,上式恒成立;x e ≥当时,,又,故0x e <<()211ln a x x ≤-0a >()211ln x x a≥-令,则, 令,()()21ln h x x x =-()()12ln h x x x =-'()0h x '=x =∴当 时, ,0x <<()0h x '>x e <<()0h x '<∴,()(max 12eh x he ==-=∴,解得:,∴的取值范围是. 12ea ≥20a e <≤a 20,e ⎛⎤ ⎥⎝⎦(方法二)由题可得, 设,则,()()1ln ,0g x ax x ax x x =+->()21ln g x a x x ='-∵,∴在上单调递增,,,0a >()g x '()0,+∞()110g '=-<12110a ag e e ⎛⎫=-> ⎪'⎝⎭∴使得,则, 101,a x e ⎛⎫∃∈ ⎪⎝⎭()00g x '=2001ln a x x =由知,且时, ,时, ,0a >01x >00x x <<()0g x '<0x x >()0g x '>∴,∴,∴∴,()()00min 002ln 10ln x g x g x x x -==≥01ln 2x ≥0x ≥2a e ≤∴的取值范围是.a 20,e ⎛⎤ ⎥⎝⎦(方法三)由题可得恒成立,()21ln 0f x a ax a xx -=+-≥令,则, ()21ln h x a x a x =+-()h x'=∴时, ,0x<<()0h x '<x >,∴,()0h x '>()min 20h x a a ==≥∴,解得:,∴的取值范围是. 2ln 1a ≥2a e ≤a 20,e ⎛⎤ ⎥⎝⎦21.如图,从左到右共有5个空格.(1)向5个空格中放入0,1,2,3,4这5个数,一共可组成多少个不同的5位奇数;(2)用红,黄,蓝三种颜色给5个空格上色,要求相邻空格不同色,问一共有多少种涂色方案;(3)向这5个空格中放入7个不同的小球,要求每个空格都有球,则有多少种不同的方法?(1)36个;(2)48种;(3)16800种.【分析】(1)先排个位,再排首位,最后排其他位置,并用分步计数原理求解即可;(2)按要求分析每个格子的颜色数量,顺序填涂,用分步计数原理求解即可;(3)由题意可先分成5堆,在把分好的5堆排到5个位置即可求解【详解】(1)个位有放法,首位有放法,其余三位任意放,12C 13C 共有个五位奇数.11323336C C A =(2)第⼀个格⼦有3种涂色方案,剩下每个格⼦均有2种涂色方案,共有种涂色方案.43248⨯=(3)7个不同的球可分为1,1,1,1,3这样的5堆,有种分发,37C 在5个位置全排列有种方法;35754200C A =7个不同的球可分为1,1,1,2,2这样的5堆,有种分发,227522C C A 在5个位置全排列有种方法;2257552212600C C A A =所以共有种方法.42001260016800+=22.已知函数.323()22f x x ax b=-+(1)讨论的单调性;()f x (2)是否存在,使得在区间的最小值为且最大值为?若存在,求出,a b ()f x [0,1]1-1a ,b 的所有值;若不存在,说明理由.(1)当时,)在上单调递增,在上单调递减;0a >()f x (),0,,2a ⎛⎫-∞+∞⎪⎝⎭0,2a ⎛⎫ ⎪⎝⎭当时,在单调递增.0a =()f x (),-∞+∞当时,)在上单调递增,在上单调递减.0a <()f x (),,0,2a ⎛⎫-∞+∞ ⎪⎝⎭,02a ⎛⎫ ⎪⎝⎭(2)或0,1a b ==-8,13a b ==【分析】(1)由,得出,求出的两根,比较根的大小并分类讨论,()f x ()'f x ()0f x '=进而求出函数的单调性;()f x (2)利用(1)中的单调区间讨论在上的最值,最终确定参数的值.()f x ()f x []0,1,a b 【详解】(1)由,得.323()22f x x ax b =-+()2()6332f x x ax x x a '=-=-令,即,解得或.()0f x '=()320x x a -=0x =2a x =若,则当时,;0a >(),0,2a x ⎛⎫∈-∞+∞ ⎪⎝⎭ ()0f x '>当时,.0,2a x ⎛⎫∈ ⎪⎝⎭()0f x '<所以)在上单调递增,在上单调递减.()f x (),0,,2a ⎛⎫-∞+∞⎪⎝⎭0,2a ⎛⎫ ⎪⎝⎭若,则在上恒成立,0a =2()60f x x '=≥R 所以在单调递增.()f x (),-∞+∞若,则当时,;0a <(),0,2a x ⎛⎫∈-∞+∞ ⎪⎝⎭ ()0f x '>当时,.,02a x ⎛⎫∈ ⎪⎝⎭()0f x '<所以)在上单调递增,在上单调递减.()f x (),,0,2a ⎛⎫-∞+∞ ⎪⎝⎭,02a ⎛⎫ ⎪⎝⎭(2)满足题设条件的存在.,a b 当时,由(1)知,在单调递增,0a ≤()f x []0,1所以在区间的最小值为,最大值为.()f x []0,1()0f b =()3122f a b =-+此时满足题设条件当且仅当,,即.,a b 1b =-3212a b -+=0,1a b ==-当即时,由(1)知,在单调递减,12a≥2a ≥()f x []0,1所以在区间的最大值为,最小值为.()f x []0,1()0f b =()3122f a b =-+此时满足题设条件当且仅当,,即.,a b 3212a b -+=-1b =8,13a b ==(ii)当即时,由(1)知,012a<<02a <<)在上单调递减,在上单调递增.()f x 0,2a ⎡⎫⎪⎢⎣⎭,12a ⎛⎤ ⎥⎝⎦当时,取得极小值即为的最小值,2ax =()f x ()f x 3233()222228a a a a f a b b ⎛⎫⎛⎫=⨯-⨯⨯+=-+ ⎪ ⎪⎝⎭⎝⎭的最大值为或.()f x ()0f b =()3122f a b =-+若,,则矛盾.318a b -+=-1b =a =02a <<若,则或,与矛盾318a b -+=-3212a b -+=a =a =-0a =02a <<综上,当或时,在区间的最小值为且最大值为.0,1a b ==-8,13a b ==()f x [0,1]1-1。
湖北省天门市2023-2024学年高二下学期3月月考数学试题含答案
湖北省天门2023-2024学年度高二下学期三月月考数学试题(答案在最后)考试内容:选修一第一章——选修三第六章6.1考试时间:2024年3月31日出题人:审题人:一、单选题(共40分)1.某圆锥的侧面积为16π,其侧面展开图为一个半圆,则该圆锥的底面半径长为()A.2B.4C. D.【答案】C 【解析】【分析】设圆锥的母线长为l ,底面半径为r ,由题意得到2ππr l =求解.【详解】设圆锥的母线长为l ,底面半径为r ,即侧面展开图的半径为l ,侧面展开图的弧长为πl .又圆锥的底面周长为2πr ,所以2ππr l =,即圆锥的母线长2l r =.所以圆锥的侧面积为2π2π16πrl r ==,解得r =故选:C.2.若直线1l :2(1)40x m y +++=与直线2l :320mx y +-=平行,则m 的值为()A.2B.3- C.2或3- D.2-或3-【答案】C 【解析】【分析】依题意可得23(1)0m m ⨯-+=,求出m 的值,再检验即可.【详解】直线1l :2(1)40x m y +++=与直线2l :320mx y +-=平行,则23(1)0m m ⨯-+=,解得3m =-或2m =,当3m =-时,此时直线1l :2240x y -+=与直线2l :3320x y -+-=平行,当2m =时,此时直线1l :2340x y ++=与直线2l :2320x y +-=平行,故3m =-或 2.m =故选:C3.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a ++⋅⋅⋅+=()A.12B.10C.5D.32log 5【答案】B 【解析】【分析】利用等比数列的性质,结合对数的运算法则即可得解.【详解】因为{}n a 是各项均为正数的等比数列,564718a a a a +=,所以564756218a a a a a a +==,即569a a =,则11029569a a a a a a ==== 记3132310log log log S a a a =++⋅⋅⋅+,则3103931log log log S a a a =+⋅+⋅⋅+,两式相加得()()()3110329310132log log log 10log 920S a a a a a a =++⋅⋅⋅+=⨯=,所以10S =,即3132310log log log 10a a a ++⋅⋅⋅+=.故选:B.4.已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为()A.()2,3 B.()3,4 C.(),3-∞ D.()3,+∞【答案】A 【解析】【分析】根据对数真数大于零可构造不等式组求得函数定义域;利用导数可求得函数单调递增区间.【详解】由2040x x ->⎧⎨->⎩得:24x <<,即()f x 的定义域为()2,4;()()()()23112424x f x x x x x -'=-=---- ,∴当()2,3x ∈时,()0f x ¢>;当()3,4x ∈时,()0f x '<;()f x \的单调递增区间为()2,3.故选:A .5.已知函数()2xf x =,则函数()f x 的图象在点()()0,0f 处的切线方程为()A.10x y --=B.10x y -+=C.ln 210x y ⋅--=D.ln 210x y ⋅-+=【答案】D【分析】求出函数()f x 的导数,再利用导数的几何意义求出切线方程.【详解】函数()2xf x =,求导得()2ln 2x fx '=,则(0)ln 2f '=,而(0)1f =,所以所求切线方程为1ln 2(0)y x -=⋅-,即ln 210x y ⋅-+=.故选:D6.在平面直角坐标系xOy 中,点()()1,0,2,3A B -,向量OC mOA nOB =+,且40m n --=.若P 为椭圆2217y x +=上一点,则PC 的最小值为()A.B.C.D.【答案】A 【解析】【分析】根据给定条件,求出点C 的轨迹,再借助三角代换及点到直线距离公式求出最小值.【详解】设点(,)C x y ,由()()1,0,2,3A B -及OC mOA nOB =+,得(,)(2,3)x y m n n =-+,即23x m ny n=-+⎧⎨=⎩,而40m n --=,消去,m n 得:3120x y -+=,设椭圆2217y x +=上的点(cos ),R P θθθ∈,则点P 到直线3120x y -+=的距离d =,其中锐角ϕ由tanϕ=确定,当sin()1θϕ+=时,min d =PC d ≥ ,所以PC 的故选:A【点睛】思路点睛:求出椭圆上的点与其相离的直线上点的距离最小值,可转化为求椭圆上的点到直线距离有最小值解决.7.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为()A.120B.324C.720D.1280【分析】利用分步乘法计数原理计算即可.【详解】第一天可以排5个人中的任意一个,有5种排法;第二天可以排另外4个人中任意一个,有4种排法;第三天同上,有4种排法;第四天同上,有4种排法;第五天同上,有4种排法.根据分步乘法计数原理得所有的排法总数为544441280⨯⨯⨯⨯=.故选:D .8.函数32()(1)f x x a x x b =+--+为R 上的奇函数,过点1,12P ⎛⎫- ⎪⎝⎭作曲线()y f x =的切线,可作切线条数为()A.1B.2C.3D.不确定【答案】A 【解析】【分析】根据奇函数确定3()f x x x =-,求导得到导函数,设出切点,根据切线方程公式计算01x =-,计算切线得到答案.【详解】()3232()(1)(1)f x x a x x b f x x a x x b -=-+-+=-=--++--,故1a =,0b =,3()f x x x =-,2()31x f x '=-,设切点为()00,Mxy ,则2000012()311y f x x x '-=+=-,且30000()f x x x y -==,整理得到()()20001410x x x +-+=,解得01x =-,(1)2f '-=,故切线方程为22y x =+,故选:A二、多选题(共18分)9.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有()A.0d < B.70a > C.{}n S 中5S 最大D.49a a <【分析】利用等差数列性质结合给定条件可得60a >,670a a +<,再逐项分析判断作答.【详解】由()111116111102a a S a +==>,得60a >,又()()112126712602a a S a a +==+<,得,670a a +<,所以60a >,70a <,数列{}n a 是递减数列,其前6项为正,从第7项起均为负数,等差数列{}n a ,公差0d <,A 选项正确;70a <,B 选项错误;前6项和最大,C 选项错误;由40a >,90a <,有4949670a a a a a a -=+=+<,则49a a <,D 选项正确.故选:AD.10.已知函数()()322R x x a a f x x =-++∈的图像为曲线C ,下列说法正确的有()A.R a ∀∈,()f x 都有两个极值点B.R a ∀∈,()f x 都有零点C.R a ∀∈,曲线C 都有对称中心D.R a ∃∈,使得曲线C 有对称轴【答案】ABC 【解析】【分析】根据函数极值的定义、零点的定义,结合函数的对称性的性质逐一判断即可.【详解】A :()()()()3222341311x x x a f x x x x x f x '=-++⇒=-+=--,当1x >时,()()0,f x f x '>单调递增,当113x <<时,()()0,f x f x '<单调递减,当13x <时,()()0,f x f x '>单调递增,因此13x =是函数的极大值点,1x =是函数的极小值点,因此本选项正确;B :当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞,而函数()f x 是连续不断的曲线,所以一定存在0R x ∈,使得()0f x =,因此本选项正确;C :假设曲线C 的对称中心为(),b c ,则有()()()()()()32322222,f b x f b x c b x b x b x a b x b x b x a c ++-=⇒+-+++++---+-+=化简,得()232322b x c a b b b -=---+,因为x ∈R ,所以有322320320227b b c a b b b c a ⎧=⎪-=⎧⎪⇒⎨⎨---+=⎩⎪-=⎪⎩,因此给定a 一个实数,一定存在唯一的一个实数c 与之对应,因此假设成立,所以本选项说法正确;D :由上可知当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞,所以该函数不可能是关于直线对称,因此本选项说法不正确,故选:ABC11.已知正方体1111ABCD A B C D -的棱长为1,下列四个结论中正确的是()A.直线1B C 与直线1AD 所成的角为90B.直线1B C 与平面1ACD 所成角的余弦值为33C.1B D ⊥平面1ACD D.点1B 到平面1ACD 的距离为32【答案】ABC 【解析】【分析】如图建立空间直角坐标系,求出1B C 和1AD uuu r的坐标,由110AD B C ⋅= 可判断A ;证明10AC B D ⋅= ,110AD B D ⋅=,再由线面垂直的判定定理可判断C ;计算11cos ,B D B C 的值可得线面角的正弦值,再求出夹角的余弦值可判断B ;利用向量求出点A 到平面11D B C 的距离可判断D.【详解】如图以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,()0,1,0C ,()10,0,1D ,()11,1,1B ,对于A :()11,0,1B C =-- ,()11,0,1AD =-,因为()()()111100110B C AD ⋅=-⨯-+⨯+-⨯= ,所以11AD B C ⊥ ,即11B C AD ⊥,直线1B C 与直线1AD 所成的角为90 ,故选项A 正确;对于C :因为()1,1,0AC =- ,()11,0,1AD =- ,()11,1,1B D =---,所以11100AC B D ⋅=-+= ,111010AD B D ⋅=+-= ,所以1AC B D ⊥ ,11AD B D ⊥uuur uuu r ,因为1AC AD A =I ,1,AC AD ⊂平面A 1,所以1B D ⊥平面1ACD ,故选项C 正确;对于B :由选项C 知:1B D ⊥平面1ACD ,所以平面1ACD 的一个法向量()11,1,1B D =---,因为()11,0,1B C =-- ,所以111111cos ,B D B C B D B C B D B C⋅=== 即直线1B C 与平面1ACD 所成,所以直线1B C 与平面1ACD33=,故选项B 正确;对于D :因为()11,0,1B C =-- ,平面1ACD 的一个法向量()11,1,1B D =---,所以点1B 到平面1ACD的距离为1113B D B C d B D⋅=== ,故选项D 不正确.故选:ABC.三、填空题(共15分)12.若抛物线22y px =-过点()1,2-,则该抛物线的焦点为________.【答案】()1,0-【解析】【分析】根据题意,代入求得2p =,结合抛物线的几何性质,即可求解.【详解】解:将()1,2-代入抛物线方程22y px =-,可得2p =,即24y x =-,所以抛物线24y x =-的焦点为()1,0-.故答案为:()1,0-.13.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则实数λ的值是_____.【答案】-2【解析】【分析】由已知推得1q ≠,继而结合等比数列的前n 项和的特点及已知即可求解.【详解】等比数列{}n a 中,由122n n S λ+=+可得122n n S λ=+,则11122a S λ==+,若公比1q =,则2211224,02S a λλλ=+==+∴=,则13323S a =≠,故1q ≠,则等比数列的前n 项和()1111111n nn a q a S qa q a a--=⋅--=-,(1q ≠),故令112λ=-,即2λ=-,故答案为:2-14.若e e e e ()cos 22x x x xf x x x ---+=+,则不等式(sin )(cos )0f x f x +>的解集是________.【答案】π3π|2π2π,44x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z 【解析】【分析】根据奇偶性的定义和导数分析可知()f x 在[]1,1-内单调递增,且为奇函数,进而可得sin cos x x >-,利用辅助角公式结合正弦函数运算求解.【详解】取()f x 的定义域为[]1,1-,关于原点对称,且()()()e e e e e e e e ()cos cos sin 2222x x x x x x x xf x x x x x f x -----+-+-=-+-=--=-,所以()f x 为定义在[]1,1-上的奇函数,因为()e e e e e e e e ()cos sin sin cos e e cos 2222x x x x x x x xx x f x x x x x x ------+-+'=-++=+,若[]1,1x ∈-,则e 0,e cos 00,x x x ->>>,可得()()e e cos 0x xf x x -'=+>,可知()f x 在[]1,1-内单调递增,对于不等式(sin )(cos )0f x f x +>,则(sin )(cos )(cos )f x f x f x >-=-,且[][]sin 1,1,cos 1,1x x ∈--∈-,可得sin cos x x >-,整理得πsin cos 04x x x ⎛⎫+=+> ⎪⎝⎭,令π2π2ππ,4k x k k <+<+∈Z ,解得π3π2π2π,44k x k k -<<+∈Z ,所以不等式(sin )(cos )0f x f x +>的解集是π3π|2π2π,44x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z .故答案为:π3π|2π2π,44x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z .四、解答题(共77分)15.已知函数()ln 1f x x ax =++.(1)当1a =-时,求()f x 的最大值.(2)讨论函数()f x 的单调性.【答案】(1)0(2)答案见解析【解析】【分析】(1)利用导数求解函数最值即可.(2)含参讨论函数单调性即可.【小问1详解】当1a =-时,()ln 1f x x x =-+,由0x >,所以()111x f x x x-=-=',当01x <<时,()0f x '>,所以函数()f x 在()0,1上单调递增;当1x >时,()0f x '<,所以函数()f x 在()1,∞+上单调递减;故()()max 1ln1110f x f ==-+=;【小问2详解】定义域为(0,)+∞,()1f x a x'=+,当0a ≥时,()10f x a x+'=>,()f x 在(0,)+∞上递增;当a<0时,令()10f x a x +'=>,解得10,x a ⎛⎫∈- ⎪⎝⎭,令()10f x a x +'=<,解得1,x a ∞⎛⎫∈-+ ⎪⎝⎭.于是()f x 在10,a ⎛⎫-⎪⎝⎭上单调递增;在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.16.如图,在底面为菱形的直四棱柱1111ABCD A B C D -中,12π,23BAD AA AB ∠===,,,E F G 分别是111,,BB CC DD 的中点.(1)求证:1A E GC ∥;(2)求平面1A EF 与平面ABCD 所成夹角的大小.【答案】(1)证明见解析(2)π6【解析】【分析】(1)建立空间直角坐标系,利用向量的坐标运算即可求解,(2)根据法向量的夹角即可求解.【小问1详解】取BC 中点H ,连接AH因为底面ABCD 为菱形,2π3BAD ∠=,所以AH AD ⊥以A 为原点,1,,AH AD AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()()()10,0,2,3,1,1,0,2,1A E G -,()()3,1,0,3,1,1C F ))13,1,1,3,1,1A E GC =--=-- 1A E GC∴ ∥1A E GC∴∥【小问2详解】设平面1A EF 的法向量为(),,n x y z =又()0,2,0EF = 所以100n A E n EF ⎧⋅=⎪⎨⋅=⎪⎩ 即3020y z y --==⎪⎩取1x =,则0,3y z ==(3n = ()10,0,2AA = 为平面ABCD 的法向量,设平面1A EF 与平面ABCD 的夹角为θ,则11233cos 222AA n AA nθ⋅===⨯ π6θ∴=∴平面1A EF 与平面ABCD 的夹角为π617.已知数列{}n a 的前n 项和n S 满足()1122n n S n +=-+.(1)求{}n a 的通项公式;(2)求数列12·1n n a n ++⎧⎫⎨⎬+⎩⎭的前n 项和n T .【答案】(1)2nn a n =⨯(2)()2124n n T n +=+⨯-【解析】【分析】(1)由已知结合数列的和与项的递推关系即可求解;(2)先求数列121n n a n ++⎧⎫⎨⎬+⎩⎭的通项公式,然后利用错位相减求和即可求解.【小问1详解】当1n =时,112a S ==,当2n ≥时,由()1122n n S n +=-+,得()1222n n S n -=-+,则()()1112222n n n n n n a S S n n n +-=-=---=⨯,因为11212a ==⨯,所以2n n a n =⨯;【小问2详解】由(1)可知,()112·221n n n a n n +++=+⨯+,则()234132425222n n T n +=⨯+⨯+⨯+⋯++⨯,则()3452232425222n n T n +=⨯+⨯+⨯+⋯++⨯,则()234123222222n n n T n ++-=⨯+++⋯+-+⨯()()12812122212n n n -+-=+-+⨯-()22122822n n n ++=+--+⨯()2412n n +=-+⨯,所以()2124n n T n +=+⨯-.18.在平面直角坐标系xOy 中,已知椭圆2222:1x y C a b +=(0a b >>过点(2,1)P,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A 、B 两点,求PAB 的面积的最大值.【答案】(1)22182x y +=(2)2【解析】【分析】(1)利用222c e a =,可得22234a b a -=,再将点P 坐标代入方程,解方程组求得,a b 从而可得椭圆的方程;(2)设直线l 的方程为1,2y x m =+,代入椭圆方程中整理得222240x mx m ++-=,借助根的判别式可得||2m <,结合根与系数的关系可得AB ==直线的距离公式可求出点P 到直线的距离d ,再利用三角形面积公式1||2PAB S d AB =⋅ 和基本不等式进行求解,即可解决问题.【小问1详解】因为22222234c a b e a a -===,所以224a b =,①因为椭圆C 过点(2,1)P ,所以22411a b +=,②由①②解得228,2a b ==,所以椭圆的方程为22182x y +=.【小问2详解】设直线l 的方程为()()11221,,,,2y x m A x y B x y =+,联立2212182y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得222240x mx m ++-=,所以212122,24x x m x x m +=-=-,又直线l 与椭圆相交,所以2248160m m =-+> ,解得||2m <,则AB ==P 到直线l的距离d ==,所以221142222PAB m m S d AB +-=⋅==≤= ,当且仅当22m =,即m =时,PAB 的面积取得最大值为2.19.已知函数()2e e x x f x a x =-+,其中0a >.(1)当1a =时,求函数()f x 在0x =处的切线方程;(2)讨论函数()f x 的极值点的个数;(3)若对任意的0a >,关于x 的方程()f x m =仅有一个实数根,求实数m 的取值范围.【答案】(1)20x y -=(2)见解析(3)3ln 2,2⎡⎫-++∞⎪⎢⎣⎭【解析】【分析】(1)求导得斜率,再利用点斜式求直线方程;(2)求导,讨论判别式与0的关系得单调性即可求解极值点个数;(3)构造新函数()2ee x x g x a x m =-+-,判单调性,得到()()120,ln 2,ln 2,x x ∞∈∈+,结合()10g x <或()20g x >即可求解.【小问1详解】当1a =时,()()22e e ,2e e 1x x x x f x x f x '=-+=-+,()02f '=,()00f =,所以函数()f x 在0x =处的切线方程为()020y x -=-,即20x y -=.【小问2详解】()22e e 1x x f x a '=-+,令()0,e x f x t ='=,得2210at t -+=,则18a ∆=-.当18a ≥时,0∆≤,此时()0f x '≥,故函数()f x 在(),∞∞-+上单调递增,没有极值点;当108a <<时,0∆>,令()0f x '=,则1e 4x a =,则1211ln ln 44x x a a-+==,则当()1,x x ∞∈-时,()0f x '>,当()12,x x x ∈时,()0f x '<,当()2,x x ∞∈+时,()0f x '>,则()f x 在()()12,,,x x ∞∞-+单调递增,在()12,x x 单调递减,此时函数()f x 有两个极值点.综上所述,当18a ≥时,函数()f x 没有极值点;当108a <<时,函数()f x 有两个极值点.【小问3详解】依题意,2e e x x a x m -+=,记()2e e x x g x a x m =-+-,()()g x f x '='.(i )由(2)知当18a ≥时,()0g x '≥,则函数()g x 在(),∞∞-+上单调递增;可知当x →-∞时,()g x ∞→-,当x →+∞时,()g x ∞→+,故当18a ≥时,函数()g x 恰有一个零点,方程()f x m =仅有一个实数根,此时R m ∈.(ii )当108a <<时,()g x 在()1,x ∞-上单调递增,在()12,x x 上单调递减,在()2,x ∞+单调递增,()()112222122e e 12e e 10x x x x g x a g x a ''=-+==-+=,则121222e 1e 12e 2ex x x x a --==,所以()()1112111e 1ee 22x x x g x g x a x m x m ==-+-=-+--极大值,()()2222222e 1e e 22x x x g x g x a x m x m ==-+-=-+--极小值,因为当(),x g x ∞∞→-→-,当(),x g x ∞∞→+→+,故只需()10g x <或()20g x >,令()e 122x h x x =-+-,则()e 12xh x '=-+,故当(),ln 2x ∞∈-时,()0h x '>,当()ln 2,x ∞∈+时,()0h x '<,则()h x 在(),ln 2∞-单调递增,在()ln 2,∞+单调递减;又121ln ln ln4x x a -===又108a <<,故()0,1,则()()120,ln 2,ln 2,x x ∞∈∈+,所以()()12331,ln 2,,ln 222h x h x ∞⎛⎫⎛⎫∈--+∈--+ ⎪ ⎪⎝⎭⎝⎭,故3ln 22m ≥-+.综上所述,实数m 的取值范围为3ln 2,2∞⎡⎫-++⎪⎢⎣⎭.【点睛】关键点点睛:本题考查函数极值点及零点个数问题,解决问题关键是利用第二问单调性解决第三问零点问题,并利用构造函数法求函数值域。
2022-2023学年四川省泸县高二年级下册学期3月月考数学(理)试题【含答案】
2022-2023学年四川省泸县高二下学期3月月考数学(理)试题一、单选题1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为( )A .①抽签法,②分层随机抽样B .①随机数法,②分层随机抽样C .①随机数法,②抽签法D .①抽签法,②随机数法【答案】A【分析】根据抽签法以及分层抽样的使用条件,可得答案.【详解】对于①,由于抽取的总体个数与样本个数都不大,则应用抽签法;对于②,抽取的总体个数较多,且总体有明确的分层,抽取的样本个数较大,则采用分层随机抽样.故选:A.2.若,则( )()3ln f x x x=+0(12)(1)limx f x f x ∆→+∆-=∆A .1B .2C .4D .8【答案】D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.()14f '=【详解】由题意,所以,21()3f x x x '=+(1)134f '=+=所以.()00(12)(1)(12)(1)lim 2lim 2182x x f x f f x f f x x ∆→∆→+∆-+∆-'===∆∆故选:D.3.甲,乙两人在5天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则下列结论正确的是( )A .在这5天中,甲,乙两人加工零件数的极差相同B .在这5天中,甲,乙两人加工零件数的中位数相同C .在这5天中,甲日均加工零件数大于乙日均加工零件数D .在这5天中,甲加工零件数的方差小于乙加工零件数的方差【答案】C【分析】由茎叶图的数据,分别计算甲、乙加工零角个数的极差,中位数,平均数,方差,进而得解.【详解】甲在5天中每天加工零件的个数为:18,19,23,27,28;乙在5天中每天加工零件的个数为:17,19,21,23,25对于A ,甲加工零件数的极差为,乙加工零件数的极差为,故A 错误;281810-=25178-=对于B ,甲加工零件数的中位数为,乙加工零件数的中位数为,故B 错误;2321对于C ,甲加工零件数的平均数为,乙加工零件数的平均数为1819232728235++++=,故C 正确;1719212325215++++=对于D ,甲加工零件数的方差为,乙加工零件数的方差为222225404516.45++++=,故D 错误;222224202485++++=故选:C4.若函数的图象在处的切线与直线垂直,则的值为2()ln f x x x =+()(),a f a 2650x y +-=a ( )A .1B .2或C .2D .1或1412【答案】D【分析】由两线垂直可知处切线的斜率为3,利用导数的几何意义有,即可求()(),a f a ()3f a '=的值.a 【详解】由题意知:直线的斜率为,则在处切线的斜率为3,2650x y +-=13-()(),a f a 又∵,即,1()2f x x x '=+()123f a a a '=+=∴或,1a=12故选:D .5.函数的图象大致为( )sin x x x xy e e --=+A .B .C .D .【答案】B【分析】判断函数的奇偶性,再判断函数值的正负,从而排除错误选项,得正确选项.【详解】因为()sin x xx xy f x e e --==+所以()()sin sin x x x xx x x xf x e e e e ------+-==++得,()()f x f x =--所以为奇函数,sin x x x xy e e --=+排除C ;在,设,,单调递增,因此,[0,)+∞()sin g x x x =-()1cos 0g x x ='-≥()g x ()(0)0g x g ≥=故在上恒成立,sin 0x x x xy e e --=≥+[0,)+∞排除A 、D ,故选:B.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6.正方形的边长为2,以为起点作射线交边于点,则的概率是( )ABCD A BC E BEAB .C .D.23131【答案】B【解析】求出以为起点作射线交边于点时所有射线形成的角的大小,再考虑对A BC E BE <应的射线所形成的角的大小,从而可求概率.【详解】如图,在边上取一点,使得,则.BC M BM =6BAM π∠=以为起点作射线交边于点时所有射线形成的角为,A BC E 4CAB π∠=以为起点作射线交边于点且时所有的射线形成的角为,A BC EBE <BAM ∠故时对应的概率为.BE <2634ππ=故选:B.7.已知为实数,则“”是“方程表示的曲线为椭圆”的a 1a >22113x y a +=-A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】取曲线不是椭圆,充分性不成立;反之成立.4a =【详解】当时,取 曲线是圆而不是椭圆,故充分性不成立;1a >4a =22133x y +=当方程表示的曲线为椭圆时,成立,所以“”是“方程表示的曲线22113x y a +=-1a >1a >22113x y a +=-为椭圆”的必要不充分条件.故选:B【点睛】方法点晴:曲线表示椭圆的充要条件是:,且.221x y m n +=0m >0n >m n ≠8.某市2016年至2020年新能源汽车年销量y (单位:百台)与年份代号x 的数据如下表,若根据表中的数据用最小二乘法求得y 关于x 的回归直线方程为,则表中的值为( )ˆ 6.59yx =+m 年份20162017201820192020年份代号x 01234年销量y1015m 3035A .22B .20C .30D .32.5【答案】B【分析】先求出、,再利用回归直线过进行求解.x y (,)x y 【详解】由题意,得,0123425x ++++==,101530359055m m y +++++==因为y 关于x 的回归直线方程为,ˆ 6.59yx =+所以,解得.90=6.52+95m +⨯20m =故选:B.9.圆关于直线对称,则的最小值是( )224610x y x y ++-+=()800,0ax by a b -+=>>32a b +A .B .C .D 3154【答案】B【分析】根据圆的标准方程得出圆的圆心,由圆的对称性可得直线过圆心,得到关于、的关系a b 式,运用基本不等式可求得的最小值.32a b +【详解】圆的标准方程为,圆心坐标为,224610x y x y ++-+=()()222312x y ++-=()2,3-而直线经过圆心,所以,得,()800,0ax by a b -+=>>2380a b --+=238a b +=因为,,0a >0b >()3213219431231238828b a a b a b a b a b ⎛⎫⎛⎫+=⨯+⨯+=⨯++≥+⨯= ⎪ ⎪⎝⎭⎝⎭当且仅当时,等号成立,23a b =因此,的最小值为.32a b +3故选:B.【点睛】本题考查圆的对称性,基本不等式的应用,关键在于巧妙地运用“”,构造基本不等式,1属于中档题.10.正方体,棱长为2,M 是CD 的中点,则三棱锥的体积为( )1111ABCD A B C D -11B AMD -A B .2C .D .4【答案】B【分析】取中点,连接,通过计算证明平面,再根据求解1AD 1,MN B N MN ⊥11AB D 1111B AD M M AB D V V --=即可.【详解】解:如图所示:取中点,连接,1AD 1,MN B N由题意可得,1111AB AD B D ===1MA MD ===13MB ==所以,,11B N AD ⊥1MN AD ⊥所以可得MN ==1B N =所以,222119MN B N MB +==所以,,1MN B N ⊥又因为,11B N AD N ⋂=所以,平面,MN ⊥11AB D所以=.1111B AD MM AB D V V --=111112332AB D S MN =⨯⨯= 故选:B.11.已知圆,过直线上一点向圆作切线,切点为,则()221:443C x y ⎛⎫-+-= ⎪⎝⎭:430l x y -=P C Q 的面积最小值为( )PCQ △A .3BC .D【答案】B【分析】结合图形,利用勾股定理可知取得最小值时也最小,从而求得CPPQmin PQ =而可得的面积最小值.PCQ △【详解】由圆,得圆心,半径,()221:443C x y ⎛⎫-+-= ⎪⎝⎭14,3C ⎛⎫⎪⎝⎭2r =所以圆心到直线的距离为,14,3C ⎛⎫ ⎪⎝⎭:430l x y -=3d因为PQ =所以当直线与垂直时,取得最小值,此时也最小,lCP CPdPQ故min PQ ==所以11222CPQ S PQ CQ PQ PQ =⨯⨯=⨯⨯=≥即PCQ △故选:B.12.若实数,满足,则( )x y 24ln 2ln 44x y x y +≥+-A .B .C .D.xy=x y +=1x y +=31x y =【分析】对不等式变形得到,换元后得到,2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭()ln 1ln 10a a b b -++-+≥构造,求导研究其单调性,极值最值情况,得到,从而只有()ln 1g x x x =-+()()max 10g x g ==时,即时,满足要求,从而解出,依次判断四个选项.1a b ==()()0g a g b ==12x y ==【详解】因为,24ln 2ln 44x y x y +≥+-所以,即,212ln ln 222x y x y +≥+-()221ln 222x y x y ≥+-所以,2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭令,21,22x a y b ==则,即,()ln 2ab a b ≥+-ln ln 2a b a b +≥+-所以,()ln 1ln 10a ab b -++-+≥令,则,()ln 1g x x x =-+()111xg x x x -'=-=当时,,单调递增,()0,1x ∈()0g x '>()g x 当时,,单调递减,()1,x ∈+∞()0g x '<()g x 所以在处取得极大值,也是最大值,()ln 1g x x x =-+1x =,()()max 1ln1110g x g ==-+=要想使得成立,只有时,即时,满足要求,()()0g a g b +=1a b ==()()0g a g b ==所以,211,212x y ==由定义域可知:,0,0x y >>解得:,12x y ==A 选项正确;xy =,BC 错误.12x y +=D 错误;312x y ==【点睛】对不等式或方程变形后,利用同构来构造函数解决问题,常见的同构型:(1);()()e ln ln e ln x x f x x f x x x x=⇒==+(2);()()ln ln e e e ln ln ln x x x xx f x f x x x x -==⇒==(3);()()ln ln e e e x x xf x x x x f x =+=⇒=+(4),()()e ln ln e e xx x f x x x f xx =-=⇒=-本题难点在于变形为,换元后得到24ln 2ln 44x y x y +≥+-2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭,从而构造解决问题.()ln 1ln 10a ab b -++-+≥()ln 1g x x x =-+二、填空题13.某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有户.14028080500++=利用分层抽样的方法, 中等收入家庭应选户28010056500⨯=故答案为:56【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.14.已知实数满足,则的最大值为___________.,x y 10301x y x y x --≤⎧⎪+-≤⎨⎪≥⎩2z y x =-【答案】0【分析】作出不等式组表示的平面区域,再利用目标函数的几何意义计算作答.【详解】作出不等式组表示的平面区域,如图中阴影(含边界),其中10301x y x y x --≤⎧⎪+-≤⎨⎪≥⎩ABC ,(1,2),(1,0),(2,1)A B C目标函数,即表示斜率为2,纵截距为z 的平行直线系,2z y x =-2y x z =+画出直线,显然直线经过点A ,其纵截距是经过阴影且斜率为2,纵截距为z 的平0:2l y x =0lABC 行直线系中最大的,所以的最大值为0.2z y x =-故答案为:015.若对任意的,均有成立,则称函数为和在上的[,]x a b ∈()()()≤≤g x h x f x ()h x ()g x ()f x [,]a b “中间函数”.已知函数,且是和在区间()(1)1,()3,()(1)ln =--=-=+h x m x g x f x x x ()h x ()g x ()f x 上的“中间函数”,则实数m 的取值范围是__________.[1,2]【答案】[]0,2【分析】根据“中间函数”的定义列出不等式,将问题转化成不等式恒成立问题,利用参变分离以及构造函数的方法来解决函数最值,从而求出的取值范围.m 【详解】依题意得:已知条件等价为:在区间上恒成立3(1)1(1)ln m x x x -≤--≤+[1,2]对于在区间上恒成立,变形为:3(1)1m x -≤--[1,2]21m x ≥-+令,易知单调递增, ()21F x x =-+()F x ()()max 20F x F ∴==()max 0m F x ∴≥=对于在区间上恒成立,变形为:(1)1(1)ln m x x x --≤+[1,2]()1ln 11x x m x++≤+令()()1ln 1ln 11ln 1x x x G x x x x x ++=+=+++则()2ln x xG x x -'=[1,2]x ∈ ()1ln 10x x x '∴-=-≥为增函数,ln x x ∴-ln 1ln10x x ∴-≥->在单调递增,()G x ∴[1,2]x ∈()()min 12G x G ∴==()min 2m G x ∴≤=综上所述: 即02m ≤≤[]0,2m ∈故答案为:.[]0,2【点睛】本题考查了用参变分离的方法解决恒成立的问题,考查了用导数求函数单调性、极值、最值以及恒成立的等价形式,对学生分析问题和解决问题的能力有一定的要求,属于难题.16.已知椭圆的左,右焦点分别为,,过作垂直轴的直线交椭圆2222:1(0)x y E a b a b +=>>1F 2F 1F x 于两点,点在轴上方.若,的内切圆的面积为,则直线的方程是E ,A B A x ||3AB =2ABF △916π2AF _____________________ .【答案】3430x y +-=【分析】利用,的内切圆的面积为求出a 、b 、c ,得到的坐标,即可求出||3AB =2ABF △916π2,A F 直线的方程.2AF 【详解】椭圆中,令,得,2222:1x y E a b +=x c =2422221c b y b a a ⎛⎫=-= ⎪⎝⎭所以.2223b AB y a ===又△ABF 2的内切圆面积为,即所以内切圆半径.916π2916r ππ=34r =由椭圆的定义可得△ABF 2的周长为4a ,而△ABF 2的面积为,即.113234224S c a=⋅⋅=⋅⋅2a c =又,解得:222223,b a b c a ==+2224,3,1a b c ===则,所以直线AF 2的方程是,即为3x +4y -3=0.()231,1,02A F ⎛⎫- ⎪⎝⎭()3014y x -=--故答案为:3x +4y -3=0三、解答题17.已知的极坐标方程为,以极点O 为坐标原点,极轴为x 轴正半轴,建立平面直C 4cos ρθ=角坐标系,(1)求的直角坐标方程,C (2)过作直线l 交圆于P ,Q 两点,且,求直线l 的斜率.()1,1M C 2PM QM=【答案】(1)()2224x y -+=【分析】(1)利用极坐标与直角坐标互化公式即可求解;(2)设直线的倾斜角为,则直线的参数方程为(t 为参数),代入圆方程中化α()()1cos :1sin x tl y t αα⎧=+⎪⎨=+⎪⎩简,利用根与系数的关系,结合已知和参数的几何意义即可求解.【详解】(1)解:因为的极坐标方程为:,且,C 4cos ρθ=cos ,sin x y ρθρθ==所以,,24cos ρρθ=224x y x +=故的直角坐标方程为.C ()2224x y -+=(2)解:设直线的倾斜角为,α则直线的参数方程为(t 为参数),()()1cos :1sin x t l y t αα⎧=+⎪⎨=+⎪⎩与联立,得.()2224x y -+=()22sin cos 20t t αα+--=点P 对应的参数为,点Q 对应的参数为,1t 2t 则,()12122sin cos 2t t t t αα⎧+=--⎨⋅=-⎩因为,所以,122t t =122t t =-联立可得,解得:23sin 8sin cos 3cos 0αααα-+=tan α=18.已知是函数的极值点,则:1x =()()()3221133x a x f a x a x =++-+-(1)求实数的值.a (2)求函数在区间上的最值.()f x []0,3【答案】(1);3a =(2)在上的最小值为,最大值为.()f x []0,3143-18【分析】(1)由求得的值;()10f '=a (2)结合函数的单调性来求得函数在区间上的最值.()f x ()f x []0,3【详解】(1),()()()22213f x x a x a a '=++-+-由题意知,()()()2112130f a a a '=++-+-=或,3a =2a =-时,,3a =()()()28991f x x x x x '=+-=+-当时,,函数在上单调递增,9x <-()0f x ¢>()f x (),9-∞-当时,,函数在上单调递减,91x -<<()0f x '<()f x ()9,1-当时,,函数在上单调递增,1x >()0f x ¢>()f x ()1,+∞所以为函数的极值点,满足要求;1x =时,,2a =-()()22211f x x x x '=-+=-因为,当且仅当时,,()0f x '≥1x =()0f x '=所以函数在上单调递增,()f x (),-∞+∞不是函数的极值点,不符合题意.1x =()f x 则.3a =(2)由(1)知,且在单调递减,在单调递增,()321493x f x x x =+-()f x []0,1[]1,3又,,,()00f =()1413f =-()318f =则,.()min 143f x =-()max 18f x =19.如图,已知多面体ABCDEF 中,平面ABCD ,平面ABCD ,且B ,D ,E ,F 四点共ED ⊥//EF 面,ABCD 是边长为2的菱形,,.60BAD ∠=︒1DE EF ==(1)求证:平面ACF ;EF ⊥(2)求平面AEF 与平面BCF 所成锐二面角的余弦值.【答案】(1)证明见解析;.【分析】(1)连BD 交AC 于点O ,连接OF ,证明四边形EFOD 为矩形,再利用线面垂直的判定推理作答.(2)以O 为原点,建立空间直角坐标系,利用空间向量求解二面角作答.【详解】(1)如图,连接BD 交AC 于点O ,连接OF ,因B ,D ,E ,F 四点共面,平面ABCD ,平面平面,则,//EF BDEF ⋂ABCD BD =//EF BD 而底面ABCD 是边长为2的菱形,,则,因此四边形EFOD 为平行四边形,60BAD ∠=︒1OD EF ==又平面ABCD ,且平面ABCD ,即,则为矩形,即,ED ⊥OD ⊂ED OD ⊥EFOD EF OF ⊥又,,则,而,平面ACF ,//EF BD AC BD ⊥EF AC ⊥OF AC O ⋂=,OF AC ⊂所以平面ACF .EF ⊥(2)由(1)知,,而平面ABCD ,则平面ABCD ,即有OA ,OB ,OF 两两//FO ED ED ⊥FO ⊥垂直,以O 为原点,以向量,,的方向分别为x ,y ,z 轴正方向建立空间直角坐标系,OA OB OFO xyz -如图,则,((0,1,0),(0,1,1),0),(0,0,),1A C F B E -,((0,1,0),(0,1,1),AF EF BF CB ===-=设为平面AEF 的法向量,则,令,得,111(,,)n x y z =11100n AF z n EF y ⎧⋅=+=⎪⎨⋅==⎪⎩11x=n = 设为平面BCF 的法向量,则,令,得,222(,,)m x y z =222200m BF y z m CB y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ 21x =-(m =- 于是得,cos ,||n m n m n m ⋅〈〉===∣所以平面AEF 与平面BCF20.某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.(1)若该蛋糕店一天生产30个这种面包,求当天的利润y (单位:元)关于当天需求量n (单位:个,)的函数解析式;n N ∈(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得表:日需求量n 282930313233频数346674假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差;(3)蛋糕店规定:若连续10天的日需求量都不超过10个,则立即停止这种面包的生产,现给出连续10天日需求量的统计数据为“平均数为6,方差为2”,试根据该统计数据决策是否一定要停止这种面包的生产?并给出理由.【答案】(1),;(2)平均数为(元),方差为;(3)一定要停止,330,306,30n n y n -<⎧=⎨-≥⎩n N ∈59 3.8理由见解析【分析】(1)当天需求量时,当天的利润,当天需求量时,当天的利润30n <330y n =-30n ≥,由此能求出当天的利润y 关于当天需求量n 的函数解析式.60y =(2)由题意,利用平均数和方差的公式,即可求出这30天的日利润的平均数和方差.(3)根据该统计数据,一定要停止这种面包的生产.推导出连续10天的日需求量都不超过10个,由此说明一定要停止这种面包的生产.【详解】(1)由题意可知,当天需求量时,当天的利润,30n <()853*******y n n n =+--⨯=-当天需求量时,当天的利润.30n ≥83063060y =⨯-⨯=故当天的利润y 关于当天需求量n 的函数解析式为:,.330,3060,30n n y n -<⎧=⎨≥⎩n ∈N (2)由题意可得:日需求量n 282930313233日利润545760606060频数346674所以这30天的日利润的平均数为(元),54357460235930⨯+⨯+⨯=方差为.()()()22254593575946059233.830-⨯+-⨯+-⨯=(3)根据该统计数据,一定要停止这种面包的生产.理由如下:由,()()()()()()22222212101210266621010x x xx x x x xx s -+-++--+-++-=== 可得,()()()222121066620x x x -+-++-= 所以(,,),所以,()2620kx -≤110k ≤≤N k ∈k x N ∈10k x ≤由此可以说明连续10天的日需求量都不超过10个,即说明一定要停止这种面包的生产.【点睛】本题主要考查了函数解析式、平均数、方差的求法,考查函数性质、平均数、方差公式等基础知识综合应用,考查运算求解能力.21.已知,分别是双曲线C :(,)的左、右焦点,,P 是C 上1F 2F 22221x y a b -=0a >0b >126F F =一点,,且112PF F F ⊥12PF PF +=(1)求双曲线C 的标准方程;(2)经过点的直线l 与双曲线C 交于A ,B 两点,过点A 作直线的垂线,垂足为D ,过点O2F 2x =作(O 为坐标原点),垂足为M .则在x 轴上是否存在定点N ,使得为定值?若存在,OM BD ⊥MN求出点N 的坐标;若不存在,请说明理由.【答案】(1)22163x y -=(2)存在,.5,04N ⎛⎫ ⎪⎝⎭【分析】(1)根据双曲线的定义取出a 、b 、c 即可;(2)设BD 交x 轴于E 点,∵OM ⊥BD ,∴若在x 轴上存在定点N ,使得为定值,则E 为定点,NMN为OE 中点,,即直线BD 过x 轴上的定点E .12MN OE =【详解】(1)由题意得,212PF PF a-=∵,,112PF F F ⊥1226F F c ==∴,222136PF PF -=又,∴,解得,12PF PF +=236a ⋅=a =∴,,26a =2293b a =-=∴双曲线C 的标准方程为.22163x y -=(2)由(1)得,设,,则,()23,0F ()11,A x y ()22,B x y ()12,D y易知直线l 的斜率不为0,设直线l 的方程为,3x ty =+t ≠联立直线l 与双曲线C 的方程,消去x 得,()222630ty ty -++=∵,∴,.()22410t∆=+>12262ty y t +=--12232y y t =-∵直线BD 的斜率,21212221y y y y k x ty --==-+∴直线BD 的方程为,()211221y y y y x ty --=-+设BD 交x 轴于E 点,如图,∵OM ⊥BD ,∴若在x 轴上存在定点N ,使得为定值,则E 为定点,MNN 为OE 中点,,即直线BD 过x 轴上的定点E .12MN OE =在直线BD 的方程中,令,得()211221y y y y x ty --=-+0y =()12112121121222ty y y ty y y x y y y y y ++=-=--+-,1122121233152222263222222t ty y t t t t y y t t ++--=-=-=+=⎛⎫---+ ⎪--⎝⎭∴直线BD 过定点.5,02E ⎛⎫⎪⎝⎭∴,则.5,04N ⎛⎫ ⎪⎝⎭1524MN OE ==综上,在x 轴上存在定点,使得为定值.5,04N ⎛⎫ ⎪⎝⎭MN5422.已知函数,,其中.()11ln f x a x x x ⎛⎫=--⎪⎝⎭()()12e 1x g x x -=--a R ∈(1)当时,判断的单调性;10a -<<()f x (2)当时,是否存在,,且,使得?证明你的结论.18a <<1x 2x 12x x ≠()()()1,2i i f x g x i ==【答案】(1)在单调递增,在单调递减()f x 10,a a +⎛⎫- ⎪⎝⎭1,a a +⎛⎫-+∞ ⎪⎝⎭(2)不存在,证明见解析【分析】(1)由,求导得到,再根据()()11ln R f x a x a x x ⎛⎫=--∈ ⎪⎝⎭()2211a a ax a f x x x x +++'=+=,由,求解;10a -<<()0f x ¢>()0f x '<(2)设,求导,分,()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-''=+-=+3x ≥,判断函数的单调性求解.03x <<【详解】(1)解:依题意,的定义域为,()f x ()0,∞+由,得,()()11ln R f x a x a x x ⎛⎫=--∈ ⎪⎝⎭()2211a a ax a f x x x x +++'=+=当时,令,得,10a -<<()0f x '=1a x a +=-当时,,所以在单调递增;10,a x a +⎛⎫∈- ⎪⎝⎭()0f x ¢>()f x 10,a a +⎛⎫- ⎪⎝⎭当时,,所以在单调递减;1,a x a +⎛⎫∈-+∞ ⎪⎝⎭()0f x '<()f x 1,a a +⎛⎫-+∞⎪⎝⎭综上,当时,在单调递增,在单调递减.10a -<<()f x 10,a a +⎛⎫- ⎪⎝⎭1,a a +⎛⎫-+∞ ⎪⎝⎭(2)法一:设,则,()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-''=+-=+①当时,恒成立,所以在单调递增,3x ≥()0h x '>()h x [)3,+∞又因为,所以,18a <<()221111113ln 31ln 31033e 33e h a ⎛⎫=---+>-+--> ⎪⎝⎭所以,在不存在零点;()0h x >()h x [)3,+∞②当时,设,则,03x <<()1ex x xϕ-=-()1e 1x x ϕ-'=-当时,,所以在单调递减;01x <<()0x ϕ'<()x ϕ()0,1当时,,所以在单调递增;13x <<()0x ϕ'>()x ϕ()1,3所以,即,因为,所以,()()10x ϕϕ≥=1e x x -≥0x >111e x x -≤又因为且,所以,18a <<03x <<133ex x x x ---≥所以,()()2223113x a x a ax a x h x x x x +-++++-'≥+=当时,函数18a <<()()231x x a x a δ=+-++,()()223411050a a a a ∆=--+=-+<所以,所以,所以在单调递增;()0x δ>()0h x '>()h x ()0,3综上可知,当时,均有在单调递增,18a <<()h x ()0,+∞因此不存在,,且,使得.1x 2x 12x x ≠()()()1,2i i f x g x i ==法二:设,则.()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-=+'-=+'则,又,()21221131113e e x x ax a x x h x a x x x x --++--⎛⎫'=+=+++ ⎪⎝⎭18a <<所以,()221211113123e e x x x x h x a x x x x x ----⎛⎫'=+++>++ ⎪⎝⎭当时,恒成立,所以在单调递增,3x ≥()0h x '>()h x [)3,+∞当时,设,则,03x <<()1ex x xϕ-'=-()1e 1x x ϕ-'=-当时,,所以在单调递减;01x <<()0x ϕ'<()x ϕ()0,1当时,,所以在单调递增;13x <<()0x ϕ'>()x ϕ()1,3所以,即,因为,所以.()()10x ϕϕ≥=1e x x -≥0x >111ex x -≤所以()222121221113123123220e e x x x x x x x h x a x x x x x x x x x ------+⎛⎫=+++>++≥++=> ⎪⎝⎭'所以,所以在单调递增;()0h x '>()h x ()0,3综上可知,当时,均有在单调递增,18a <<()h x ()0,+∞因此不存在,,且,使得.1x 2x 12x x ≠()()()1,2i i f x g x i ==。
2023-2024学年山西省晋中市平遥县高二下册3月月考数学试题(含解析)
2023-2024学年山西省晋中市平遥县高二下册3月月考数学试题一、单选题1.为响应国家“节约粮食”的号召,某同学决定在某食堂提供的2种主食、3种素菜、2种大荤、4种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有()A .48种B .36种C .24种D .12种【正确答案】B利用分步计数原理,分3步即可求出【详解】解:由题意可知,分三步完成:第一步,从2种主食中任选一种有2种选法;第二步,从3种素菜中任选一种有3种选法;第三步,从6种荤菜中任选一种有6种选法,根据分步计数原理,共有23636⨯⨯=不同的选取方法,故选:B2.设等差数列{}n a 的前n 项和为n S ,若532a a =,则95S S =()A .910B .1518C .95D .185【正确答案】D【分析】根据等差数列的前n 项和21(21)n n S n a -=-,将95S S 转化为5a 和3a 的算式即可得到所求.【详解】解:依题意,数列{}n a 为等差数列,所以19951553992552a a S a a a S a +⨯⨯==+⨯⨯,又因为532a a =,所以955399182555S a S a ⨯===⨯,故选D.等差数列的性质,等差数列的前n 项和,考查分析解决问题的能力和运算能力,属于基础题.3.北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断,这是一次中国文化与奥林匹克精神的完美结合,是一次现代设计理念的传承与突破.为了宣传2022年北京冬奥会和冬残奥会,某学校决定派小明和小李等5名志愿者将两个吉祥物安装在学校的体育广场,若小明和小李必须安装同一个吉祥物,且每个吉祥物都至少由两名志愿者安装,则不同的安装方案种数为()A .8B .10C .12D .14【正确答案】A【分析】分为三人组中包含小明和小李和不包含小明和小李两类,分别计算方案种数即可得结果.【详解】由题意可知应将志愿者分为三人组和两人组,当三人组中包含小明和小李时,安装方案有12326C A =种;当三人组中不包含小明和小李时,安装方案有222A =种,共计有628+=种,故选:A.4.设F 为抛物线C :24y x =的焦点,点M 在C 上,点N 在准线l 上且MN 平行于x 轴,若NF MN =,则MF =()A .3B .1C .3D .4【正确答案】D【分析】由抛物线方程可知焦点坐标及准线方程,设准线l 与x 轴交点为E ,画出图象,由抛物线定义及NF MN =可知MNF 是正三角形,结合平行关系可判断60EFN ∠=︒,利用直角三角形性质即可求解.【详解】由题可知,2p =,抛物线焦点F 为()1,0,准线l 为=1x -,设准线l 与x 轴的交点为E ,如图所示,由题知MN l ⊥,由抛物线的定义可知MN MF =,因为NF MN =,所以MNF 是正三角形,则在Rt NEF 中,因为MN EF ∥,所以60EFN MNF ∠=∠=︒,所以224MF NF EF p ====.故选:D5.三棱锥A BCD -中,AC ⊥平面BCD ,BD CD ⊥.若3AB =,1BD =,则该三棱锥体积的最大值为()A .2B .43C .1D .23【正确答案】D【分析】先利用线面垂直的判定定理与性质定理依次证得BD ⊥平面ACD 、BD AD ⊥与AC CD ⊥,从而利用基本不等式求得2ACDS≤,进而得到23A BCDB ACD V V --=≤,由此得解.【详解】因为AC ⊥平面BCD ,BD ⊂平面BCD ,所以AC BD ⊥,又BD CD ⊥,AC CD C = ,,AC CD ⊂平面ACD ,所以BD ⊥平面ACD ,因为AD ⊂平面ACD ,所以BD AD ⊥,在Rt △ABD 中,3AB =,1BD =,则AD ==,因为AC ⊥平面BCD ,CD ⊂平面BCD ,所以AC CD ⊥,在Rt ACD △中,不妨设(),0,0AC a CD b a b ==>>,则由222AC CD AD +=得228a b +=,所以()221111222244ACDSAC CD ab ab a b =⋅==⨯≤+=,当且仅当a b =且228a b +=,即2a b ==时,等号成立,所以11221333A BCDB ACD ACDV V SBD --==⋅≤⨯⨯=,所以该三棱锥体积的最大值为23.故选:D..6.()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -项的系数为160,则=a ()A .2B .4C .2-D .-【正确答案】C先求得()61ay +展开式中3y 的系数,可得()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数,从而得答案.【详解】二项式()61ay +展开式的通项为()6166C 1C rr rr r r r T ay a y -+=⨯=,令3r =可得二项式()61ay +展开式中3y 的系数为336C a ,∴()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数为()3361C 160a -=,可得38a =-,解得2a =-,故选:C .7.甲、乙、丙、丁、戊5名党员参加“党史知识竞赛”,决出第一名到第五名的名次(无并列名次),已知甲排第三,乙不是第一,丙不是第五.据此推测5人的名次排列情况共有()种A .5B .8C .14D .21【正确答案】C【分析】按乙排第五和不是第五分类讨论.【详解】乙排在第五的情况有:33A ,乙不在第五的方法有112222C C A ,共有3112322214A C C A +=,故选:C .关键点点睛:本题考查排列组合的综合应用,解题关键是确定完成事件的方法:是先分类还是先分步:分类后每一类再分步.然后结合计数原理求解.8.设函数()f x ,()g x 在R 上的导函数存在,且()()f x g x ''<,则当(),x a b ∈时()A .()()f x g x <B .()()f xg x >C .()()()()f x g a g x f a +<+D .()()()()f xg b g x f b +<+【正确答案】C【分析】对于AB ,利用特殊函数法,举反例即可排除;对于CD ,构造函数()()()h x f x g x =-,利用导数与函数单调性的关系证得()h x 在R 上单调递减,从而得以判断.【详解】对于AB ,不妨设()2f x x =-,()1g x =,则()2f x '=-,()0g x '=,满足题意,若()1,x a b =-∈,则()()21f x g x =>=,故A 错误,若()0,x a b =∈,则()()01f x g x =<=,故B 错误;对于CD ,因为()f x ,()g x 在R 上的导函数存在,且()()f x g x ''<,令()()()h x f x g x =-,则()()()0h x f x g x ''-'=<,所以()h x 在R 上单调递减,因为(),x a b ∈,即a x b <<,所以()()()h b h x h a <<,由()()h x h a <得()()()()f x g x f a g a -<-,则()()()()f x g a g x f a +<+,故C 正确;由()()h b h x <得()()()()f b g b f x g x -<-,则()()()()f x g b g x f b +>+,故D 错误.故选:C.二、多选题9.有3位男生和3位女生,要在某风景点前站成一排照合影,则下列说法正确的是()A .共有66A 种不同的排法B .男生不在两端共有2424A A 种排法C .男生甲、乙相邻共有2525A A 种排法D .三位女生不相邻共有3333A A 种排法【正确答案】AC【分析】根据给定条件,利用无限制条件的排列判断A ;利用有位置条件的排列判断B ;利用相邻、不相邻问题的排列判断C ,D 作答.【详解】有3位男生和3位女生,要在某风景点前站成一排照合影,共有66A 种不同的排法,A 正确;男生不在两端,从3位女生中取2人站两端,再排余下4人,共有2434A A 种排法,B 不正确;男生甲、乙相邻,视甲乙为1人与其余4人全排列,再排甲乙,共有2525A A 种排法,C 正确;三位女生不相邻,先排3位男生,再在2个间隙及两端4个位置中插入3位女生,共有3334A A种排法,D 不正确.故选:AC 10.()20232202301220231ax a a x a x a x +=++++ ,若16069a =-,则下列结论正确的有()A .3a =B .202301220232a a a a ++++=- C .202312220231333a a a +++=- D .()20231ax +的展开式中第1012项的系数最大【正确答案】BC【分析】利用二项式展开式的通项公式求解含x 项的系数,从而求解a ,即可判断选项A ,赋值法即可求解系数和问题,从而判断选项B 、C ,利用展开式系数符合规律判断选项D 【详解】对于A ,112023C 20236069a a a =⋅==-,可得3a =-,故A 错误;对于B ,因为()2023201213x a a x a x -=++20232023a x ++ ,令1x =,则()202320230122023132a a a a ++++=-=- ,故B 正确;对于C ,令0x =,则01a =,令13x =,则2023202312002202311313333a a a a a ⎛⎫+++=-⨯-=-=- ⎪⎝⎭ ,故C 正确;对于D ,由展开式知,20n a >,210n a -<,故第1012项的系数10110a <,不会是展开式中系数最大的项,故D 错误.故选:BC11.对于三次函数()()320ax bx d a f x cx =+++≠,给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若函数()()3211R 32f x x x x b b =-++∈,则()A .()f x 一定有两个极值点B .函数()y f x =在R 上单调递增C .过点()0,b 可以作曲线()y f x =的2条切线D .当712b =时,123202220222023202320232023f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【正确答案】BCD【分析】对()f x 求导,得出()0f x ¢>,没有极值点,可判断A ,B ;由导数的几何意义求过点()0,b 的切线方程条数可判断C ;求出三次函数()f x 的对称中心,由于函数的对称中心为1,12⎛⎫⎪⎝⎭,可得()()12f x f x +-=,由倒序相加法求出所给的式子的值,可判断D.【详解】由题意知()21f x x x '=-+,1430∆=-=-<,()0f x ¢>恒成立,所以()f x 在R 上单调递增,没有极值点,A 错误,B 正确;设切点为3211,32m m m m b ⎛⎫-++ ⎪⎝⎭,则()21k f m m m '==-+,切线方程为()()32211132y m m m b m m x m ⎛⎫--++=-+- ⎪⎝⎭,代入点()0,b 得32321132m m m m m m -+-=-+-,即322132m m =,解得0m =或34m =,所以切线方程为y x b =+或1316y x b =+,C 正确;易知()21f x x ''=-,令()0f x ''=,则12x =.当712b =时,102f ⎛⎫= ⎪⎝⎭'',112f ⎛⎫= ⎪⎝⎭,所以点1,12⎛⎫⎪⎝⎭是()f x 的对称中心,所以有11222f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,即()()12f x f x +-=.令123202320232023S f f f f ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20222023⎛⎫ ⎪⎝⎭,又20222021202012023202320232023S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以12022220232023S f f ⎡⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22021202212022240442023202320232023f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++=⨯= ⎪ ⎪⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ,所以2022S =,D 正确.故选:BCD.12.已知椭圆C :22143x y +=的左、右焦点分别为1F ,2F ,上顶点为B ,直线l :()0y kx k =≠与椭圆C 交于M ,N 两点,12F MF ∠的角平分线与x 轴相交于点E ,与y 轴相交于点()0,G m ,则()A .四边形12MF NF 的周长为8B .1114MF NF +的最小值为9C .直线BM ,BN 的斜率之积为34-D .当12m =-时,12:2:1F E F E =【正确答案】AC【分析】对A 选项,由椭圆的定义知,四边形12MF NF 的周长为4a 即可求解;对B 选项,由直线()0y kx k =≠与椭圆相交的对称性知:12NF MF =,11121414MF NF MF MF ∴+=+,借助基本不等式可得1114MF NF +的最小值;对C 选项,设()11,M x y ,则()11,N x y --,由点()11,M x y 在椭圆上,即可化得BM BN k k ⋅的值;对D 选项,设出()()11,0t E t -<<,由条件推出()121MF t =+,()221MF t =-,又在椭圆C 中,由其第二定义1MF e =得()1112212MF x t =+=+,从而得到M ,E ,G 三点坐标,再根据其三点共线,化简求解即可.【详解】对A 选项,由椭圆的定义知,四边形12MF NF 的周长为2248a a a +==,A 正确;对B 选项,1112141414MF NF MF MF +=+=()21121212414191444MF MF MF MF MF MF MF MF ⎛⎫⎛⎫++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,当且仅当1248,33MF MF ==时等号成立,故B 错误;对C 选项,设()11,M x y ,则()11,N x y --,又(B,所以211121113BM BNy y y k k x x x --⋅=⋅=-.因为点()11,M x y 在椭圆上,所以2211143x y +=,即()222111441333y x y ⎛⎫=-=- ⎪⎝⎭,所以2121334BM BNy k k x -⋅==-,C 正确;对D 选项,设()()11,0t E t -<<,则12F E F E 1211MF t t MF +==-,124MF MF +=所以()121MF t =+,()221MF t =-,在椭圆C :22143x y +=中,由其第二定义1MF e d =(d 指的是椭圆上的点到相应的准线的距离)得221111()()22M a a MF de x e x e x c c ==+⋅=+⋅=+,12MF ∴=+()11212x t =+,所以14x t =,故()14,M t y ,(),0E t ,10,2⎛⎫- ⎪⎝⎭G ,因为三点共线,所以1123y t t =,解得132y =,则29164143t +=,解得14t =±,当14t =时,1211541314F E F E +==-,当14t =-时,1211341514F E F E -==+,故D 错误.故选:AC方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习加以强化.三、填空题....道上有编号1,2,.3,....10的十盏路灯,为节省用电又能看清路面,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,满足条件的关灯方法有__________种.【正确答案】20【分析】采用插空法即可求解.【详解】10只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之间的6个空挡中放入3只熄灭的灯,有36C 20=种方法,故答案为.2014.我国古代《九章算术》将底面为矩形的棱台称为刍童.若一刍童为正棱台,其上、下底1,则该刍童的外接球的表面积为______.【正确答案】20π【分析】根据题意,作出图形,设该刍童外接球的球心为O ,半径为R ,分两种情况讨论,分别根据条件列出方程组,即可求出外接球半径,代入球的表面积公式计算即可求解.【详解】设该刍童外接球的球心为O ,半径为R ,上底面中心为1O ,下底面中心为2O ,则由题意,121O O =,22AO =,111A O =,1R OA OA ==.如图,当O 在12O O 的延长线上时,设2OO h =,则在2AOO 中,22R 4h =+①,在11A OO 中,()22R 11h =++②,联立①②得1h =,2R 5=,所以刍童外接球的表面积为20π,同理,当O 在线段12O O 上时,设1OO h =,则有22R 1h =+,()22R 14h =-+,解得2h =,不满足题意,舍去.综上所述,该刍童外接球的表面积为20π.故20π.15.两名学生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是170.”若每个参加面试的人被招聘的可能性相同,则根据这位负责人的话,可以推断出参加面试的人数为______.【正确答案】21【分析】利用古典概型的概率公式求解.【详解】设参加面试的人数为n ,依题意有()()()()2122362C C 61C 12170n nn n n n n n --===---,即()()242020210n n n n --=+-=,解得21n =或20n -(舍去).16.南宋数学家杨辉善于把已知形状、大小的几何图形的求面积、体积的连续量问题转化为求离散量的垛积问题,在他的专著《详解九章算法·商功》中给出了著名的三角垛公式()()()()()1112123123126n n n n ++++++⋅⋅⋅++++⋅⋅⋅+=++,则数列{}22n n +的前n 项和为____________.【正确答案】()()1121226n n n n ++++-【分析】由三角垛公式可知数列()12n n +⎧⎫⎨⎬⎩⎭的前n 项和为()()1126n n n ++,根据()212222n n n n n n ++=⨯-+,采用分组求和法,结合等差、等比求和公式可求得结果.【详解】()11232n n n ++++⋅⋅⋅+=,∴数列()12n n +⎧⎫⎨⎩⎭的前n 项和为()()1126n n n ++,()212222n n n n n n ++=⨯-+ ,∴数列{}22n n +的前n 项和()()()1211223212222222n n n n S n +⎛⎫⨯⨯=⨯++⋅⋅⋅+-++⋅⋅⋅++++⋅⋅⋅+ ⎪⎝⎭()()()()()()121211211122232126n n n n n n n n n n +-+++=++-+=+--.故答案为.()()1121226n n n n ++++-关键点点睛:本题考查数列中的分组求和法的应用,解题关键是能够将所求数列的通项进行变型,从而与已知的三角垛公式联系起来,利用所给的三角垛公式来进行求和.四、解答题17.现有一些小球和盒子,完成下面的问题.(1)4个不同的小球放入编号为1,2,3,4的4个盒子中(允许有空盒子),一共有多少种不同的放法?(2)4个不同的小球放入编号为1,2,3,4的4个盒子中,恰有1个空盒的放法共有多少种?【正确答案】(1)256;【分析】(1)根据题意分析将4个不同的小球放入编号为1,2,3,4的4个盒子中,每个小球有4种放法,由分步计数原理计算即可得出答案;(2)根据题意,分两步进行,①将4个小球分为3组,②在4个盒子中任选3个,放入三组小球,根据分步计数原理计算即可得出答案;【详解】(1)4个不同的小球放入编号为1,2,3,4的4个盒子中,每个小球有4种放法,则4个小球有4444256⨯⨯⨯=种不同的放法;(2)①将4个小球分为3组,有24C 6=种分组方法,②在4个盒子中任选3个,放入三组小球,有3343C A 24=种情况,则624144⨯=种不同的放法.18.如图,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,AB AD =,60BAD ∠=︒.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V ;(2)设点F 在线段AP 上,4,4PA PF PC CE ==,求二面角F CD P --的余弦值.【正确答案】【分析】(1)利用平面几何的知识推得AC BD ⊥,进而得到BD =与4AC EC =,从而利用柱体与锥体的体积公式求得12,V V 关于,EC PC 的表达式,由此得解;(2)根据题意建立空间直角坐标系,设1CE = ,结合(1)中结论与(2)中所给条件得到所需向量的坐标表示,从而求得平面FCD 与平面PCD 的法向量n 与m ,由此利用空间向量夹角余弦的坐标表示即可得解.【详解】(1)因为ABD ∠与ACD ∠是底面圆弧AD 所对的圆周角,所以ABD ACD ∠=∠,因为AB AD =,所以在等腰ABD △中,ABD ADE ∠=∠,所以ADE ACD ∠=∠,因为AC 是圆柱的底面直径,所以90ADC ∠=︒,则90CAD ACD ∠+∠=︒,所以90CAD ADE ∠+∠=︒,则90AED ∠=︒,即AC BD ⊥,所以在等腰ABD △,BE DE =,AC 平分BAD ∠,则1302CAD BAD ∠=∠=︒,所以60ADE ∠=︒,则30∠=︒CDE ,故在Rt CED 中,2CD EC =,DE ,则2BD DE ==,在Rt ACD △中,24AC CD EC ==,因为PC 是圆柱的母线,所以PC ⊥面ABCD ,所以()22211ππ24π2V AC CP EC PC EC PC ⎛⎫=⋅⋅=⋅⋅=⋅⋅ ⎪⎝⎭,2211143263V AC BD PC EC PC EC PC =⨯⋅⋅=⨯⨯⋅=⋅,所以12V V =.(2)以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C xyz -,不妨设1CE = ,则44AC EC ==,DE =44PC CE ==,则()()()()0,0,0,4,0,0,1,,0,0,4C A D P ,所以()CD = ,()0,0,4CP = ,()4,0,4PA =- ,因为4PA PF =,所以()11,0,14PF PA ==- ,则()()01,0,1(1,0,3,0,4)CF CP PF ==+=-+ ,设平面FCD 的法向量(,,)n x y z = ,则00n CF n CD ⎧⋅=⎪⎨⋅=⎪⎩,即300x z x +=⎧⎪⎨=⎪⎩,令3x =-,则1y z ==,故(n =- ,设平面PCD 的法向量(,,)m p q r = ,则00m CP m CD ⎧⋅=⎪⎨⋅=⎪⎩,即400r p =⎧⎪⎨=⎪⎩,令3p =-,则0q r ==,故(m =- ,设二面角F CD P --的平面角为θ,易知π02θ<<,所以cos cos ,13||||n m n m n m θ⋅====⋅ ,因此二面角F CD P --19.记数列{}n a 的前n 项和为n T ,且111,(2)n n a a T n -==≥.(1)求数列{}n a 的通项公式;(2)设m 为整数,且对任意*n ∈N ,1212nn m a a a ≥+++ ,求m 的最小值.【正确答案】(1)21,1,2, 2.n n n a n -=⎧=⎨≥⎩(2)7【分析】(1)由数列n a 与n T 的关系可得()122n n a a n +=≥,再结合等比数列的通项可得解;(2)利用错位相减法求出1212nn a a a +++ ,结合范围即可得解.【详解】(1)因为111,(2)n n a a T n -==≥,所以211a a ==,当2n ≥时,112n n n n n a T T a a +-+===,故()222222n n n a a n --==⋅≥,且11a =不满足上式,故数列{}n a 的通项公式为21,1,2, 2.n n n a n -=⎧=⎨≥⎩(2)设1212n nn S a a a =+++ ,则11S =,当2n ≥时,102122322n n S n --=+⋅++⋅+⋅ ,故112112232222n n S n ---=+⋅+⋅+⋅+ ,于是()122115222222n n n S n ----=++++-⋅ ()121121252212n n n -----=+-⋅-.整理可得27(2)2n n S n -=-+,所以7n S <,又54968S =>,所以符合题设条件的m 的最小值为7.20.已知双曲线2222:1(0,0)x y C a b a b-=>>过点A ,且焦距为10.(1)求C 的方程;(2)已知点3),B D -,E 为线段AB 上一点,且直线DE 交C 于G ,H 两点.证明:||||||||GD HD GE HE =.【正确答案】(1)221169x y -=(2)证明见解析【分析】(1)根据题意列方程组求出,a b ,即可得出C 的方程;(2)根据,,,D E H G 四点共线,要证||||||||GD HD GE HE =即证HE GE G H D D ⋅=⋅,设出直线:DE y x =-,()()1122,,,G x y H x y,)E t ,联立直线方程与椭圆方程得出1212,x x x x +,将其代入G G HE E DH D ⋅-⋅ ,计算结果为零,即证出.【详解】(1)由题意可得2232910a b-==,故4,3a b ==,所以C 的方程为221169x y -=.(2)设)E t ,()()1122,,,G x y H x y ,当x =2321169y -=,解得3=±y ,则||3t <, 双曲线的渐近线方程为34y x =±,故当直线DE 与渐近线平行时,此时和双曲线仅有一个交点,此时直线DE方程为(34y x =±-,令x =y =||t ≠则直线:DE y x =-.由221169y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩得()222292161440t x x t -+--=,所以212229x x t +=-,21221614429t x x t +=-.()()()()11221122,,,G HE GE DH x y x t x D y t y x y ⋅-⋅=--⋅----⋅-)()121212122232x x y y x x t y y =+-+-++()2221212243244t x x t x x t ⎛⎛⎫=+-++++ ⎪⎝⎭⎝()()()222222248943244322929t t t t t t t +++=-++--0=.所以HE GE G H D D ⋅=⋅ ,所以cos0cos0HE G G E D DH = 即||||||||GD HD GE HE =.关键点睛:本题第二问不能直接计算长度,否则计算量过大,而是转化为证明向量数量积之间的关系,采取设)E t ,从而得到直线DE 方程,再使用经典的联立法,得到韦达定理式,然后证明0HE GE G D D H ⋅-⋅= 即可.21.设()()21031x Q x x ax b -=-++,其中()Q x 是关于x 的多项式,a ,b ∈R .(1)求a ,b 的值;(2)若28ax b +=,求103x -除以81的余数.【正确答案】(1)10a =,12b =-;(2)28.【分析】(1)利用二项式定理及已知即求;(2)由题可知x 的值,然后利用二项式定理可求.【详解】(1)由已知等式,得()()()1021131x Q x x ax b -+-=-++⎡⎤⎣⎦,∴()()()()10920189101010101010C 1C 1C 1C 1C 3x x x x -+-+⋅⋅⋅+-+-+-()()21Q x x ax b =-++,∴()()()()()8722018101010C 1C 1C 110121x x x x Q x x ax b ⎡⎤-+-+⋅⋅⋅+-+-=-++⎣⎦,∴1012x ax b -=+,∴10a =,12b =-.(2)∵28ax b +=,即101228x -=,∴4x =,∴103x -1043=-()10313=+-0101991010101010C 3C 3C 3C 3=⨯+⨯+⋅⋅⋅+⨯+-()406156441010103C 3C 3C 4035328=⨯⨯+⨯+⋅⋅⋅++⨯+⨯+()0615610101081C 3C 3C 4528=⨯⨯+⨯+⋅⋅⋅+++,∴所求的余数为28.22.已知函数()()1e 6x f x k x ⎡⎤=--⎣⎦(其中e 为自然对数的底数).(1)若1k =,求函数()f x 的单调区间;(2)若12k ≤≤,求证:[]0,x k ∀∈,()2f x x <.【正确答案】(1)单调递增区间为[)0,∞+,单调递减区间为(),0∞-;(2)见解析.【分析】(1)求导,当()0f x '≥时,0x ≥,当()0f x '<时,0x <,即可解决;(2)由()211e 60x x x k ⎡⎤---<⎣⎦令新函数()21()1e 6x g x x x k=---,求导,由()()1e 6k g k k k =---,再令新函数()()()1e 6k h k g k k k ==---,证明()0h k <在12k ≤≤上恒成立,即可得证.【详解】(1)由题知()()1e 6x f x k x ⎡⎤=--⎣⎦,所以()()e 1e e x x x f x k x kx '⎡⎤=+-=⎣⎦,当1k =时,()e x f x x '=,当()0f x '≥时,0x ≥,当()0f x '<时,0x <,所以()f x 的单调递增区间为[)0,∞+,单调递减区间为(),0∞-,(2)由题知12k ≤≤,[]0,x k ∀∈,()2f x x <,所以()21e 60x k x x ⎡⎤---<⎣⎦,因为12k ≤≤,所以()211e 60x x x k ⎡⎤---<⎣⎦令()21()1e 6x g x x x k=---即证()21()1e 60x g x x x k =---<在[]0,x k ∈上恒成立,因为22()e (e )x x g x x x x k k'=-=-当()0g x '=时,2ln x k=,当()0g x '≥时,2lnx k ≥,即()g x 在2ln ,k k ⎡⎤⎢⎥⎣⎦上单调递增,当()0g x '≤时,2ln x k ≤,即()g x 在20,ln k ⎡⎤⎢⎥⎣⎦上单调递减,因为(0)70g =-<,()()1e 6k g k k k =---,令()()()1e 6k h k g k k k ==---,所以()e 1k h k k '=-,因为12k ≤≤,所以()e 10k h k k '=->,所以()h k 在[]1,2上单调递增,所以2max ()(2)e 80h k h ==-<,所以()0g k <恒成立,因为(0)0,()0g g k <<,所以()21()1e 60x g x x x k =---<在[]0,x k ∈上恒成立,即得证.。
高二数学3月月考试题_1 2
青山2021-2021学年高二数学3月月考试题一共150分,考试时间是是120分钟。
一、选择题(本大题一一共12小题,每一小题5分,一共60分)1ln )(2+=x x f ,那么)2(f '等于〔 〕A.54 B.52 C.51 D.53 2.[])cos(ln )sin(ln x x x y +=,那么y 等于( ) A.2cos(xln 1) B.)cos(ln 2x C. )sin(ln 2x D.)sin(ln x 23-+=x x y 的切线中,与直线14=-y x 平行的切线方程是( )A.04=-y xB.044=--y xC.022=--y xD.04=-y x 或者044=--y x2)1()(32+-=x x f 的极值点是( )A.1=xB.1-=xC. 1=x 或者1-或者0D.0=xx x y ln 82-=,那么此函数在区间(0,41)和(21,1)内分别( ) A.单调递增,单调递减 B.单调递增,单调递增 C.单调递减,单调递增 D.单调递减,单调递减 6.)5)(4)(3)(2)(1()(-----=x x x x x x x f ,那么)0(f '为( ) A.5- B.!5- C.0 D.1-0109623=-+-x x x 的实根个数是( )A.3B.2 Ca x x x f --=3)(3在区间[]3,0上的最大值、最小值分别为M 、N ,那么N M -的值是( )A.2B.4 C 9.)1(2)(2f x x x f '+=,那么)0(f '等于( )A.0B.4-C.2-x e x f x -=)(,那么( )e 21 e 21 C.有极小值0,极大值e21 )(x f '是函数)(x f 的导函数, )(x f y '=的图象如右图所示,那么)(x f y =的图象最有可能是( )班级 姓名 考号 分数 12.1)6()(23++++=x a ax x x f 有极大值和极小值,那么a 的取值范围为( )A.21<<-aB.63<<-aC.1-<a 或者2>aD.3-<a 或者6>a二、填空题(本大题一一共4小题,每一小题4分,一共16分))(x f 是可导函数,且1)(='a f ,那么ax →limax x a f a x f ----)2()2(等于__________.r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,那么梯形的面积最大时,其梯形的上底长为____________.)(x f 在点0=x 处可导,那么=')0(f _________________.223)(a bx ax x x f +++=在1=x 时有极值10,那么a 、b 的值是__________.三、解答题(本大题一一共6小题,一共74分)17.(本小题满分是12分)函数c bx ax x x f +++=23)(在2=x 处有极值,其图象在1=x处的切线平行于直线23--=x y ,试求函数的极大值与极小值之差.18.(本小题满分是12分) 利用导数证明当0>x 时,2)1ln(2x x x ->+19.(本小题满分是12分)用长为90 cm 、宽为48 cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图).问该容器的高为多少时,容器的容积最大?最大容积是多少?20.(本小题满分是12分)函数c bx x x x f ++-=2321)( (1)假设)(x f 的图象有与x 轴平行的切线,求b 的取值范围;(2)假设)(x f 在1=x 时获得极值,且[]2,1-∈x 时2)(c x f <恒成立,求c 的取值范围.21.(本小题满分是12分)设0≠t ,点)0,(t P 是函数ax x x f +=3)(与c bx x g +=2)(的图象的一个公一共点,两函数的图象在点P 处有一样的切线. (1)用t 表示a 、b 、c ;(2)假设函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围.22.(本小题满分是14分)设1x 、2x 是函数)0(23)(223>-+=a x a x b x a x f 的两个极值点,且221=+x x . (1)证明:10≤<a ;(2)证明:934≤b ; (3)假设函数)(2)()(1x x a x f x h --'=,证明:当21<<x x 且01<x 时,a x h 4)(≤.高二下学期第一次月考数学试题 答案1.解析:)1(ln )(2'+='x x f =12+x ·21·122+x x =12+x x . ∴52)2(='f 。
2021-2022学年广西玉林市第十一中学高二年级下册学期3月月考数学试题(理)【含答案】
2021-2022学年广西玉林市第十一中学高二下学期3月月考数学试题(理)一、单选题1.若复数()()31z i i =-+,则z =( )A .B .CD .20【答案】B【解析】化简得到()()3142z i i i =-+=+,再计算模长得到答案.【详解】()()3142z i i i =-+=+,故z =故选:B .【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力. 2.下列求导数运算正确的是( ) A .()cos sin x x '= B .()33ln 3xx '=C .()ln ln -1x x x '=D .sin cos 33x x '⎛⎫= ⎪⎝⎭【答案】B【分析】根据函数的求导公式和求导法则,以及复合函数的求导法则,逐项求导,即可得到本题答案.【详解】由于(cos )sin x x '=-,故选项A 不正确; 由于()3=3ln 3x x ',故选项B 正确; 由于(ln )ln 1x x x '=+,故选项C 不正确; 由于1sin cos 333x x ⎛⎫'= ⎪⎝⎭,故选项D 不正确.故选:B【点睛】本题主要考查求导公式和求导法则,属基础题.3.已知()()231f x x xf '=+,则()1f '=( )A .1B .2C .-1D .-2【答案】C【解析】按照求导法则对函数进行求导,令1x =代入导数式即可得解.【详解】函数()()231f x x xf '=+,则()()231f x x f ''=+,令1x =代入上式可得()()1231f f ''=+,解得()11f '=-. 故选:C【点睛】本题考查导数的运算法则,属于基础题.4.若f(x)=21ln(2)2x b x -++∞在(-1,+)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)【答案】C【详解】由题意可知()02bf x x x +'=-<+,在(1,)x ∈-+∞上恒成立,即(2)b x x <+在(1,)x ∈-+∞上恒成立,由于1x ≠-,所以1b ≤-,故C为正确答案.5.定义域为R 的可导函数()y f x =的导函数为()f x ',满足()()0f x f x '-<,且()01f =,则不等式()1xf x e<的解集为( ) A .()0,∞+ B .()2,∞+ C .(),0∞- D .(),2∞-【答案】A【分析】构造函数()()xf x h x e=,由题意得()0h x '<即函数()h x 在R 上单调递减,再根据题意得()01h =,即可得解.【详解】令()()xf x h x e =,则()()()()()2x x x xf x e f x e f x f x h x e e ''--'==, ()()0f x f x '-<,∴()0h x '<,∴函数()h x 在R 上单调递减,又 ()()0001f h e ==,()()1xf x h x e =<, ∴()0,x ∈+∞.故选:A.【点睛】本题考查了导数的应用,考查了根据题意构造新函数的能力,属于中档题.6.己知函数()y xf x '=的图象如图所示(其中()f x '是函数()f x 的导函数),则下面四个图象中,()y f x =的图象大致是( )A .B .C .D .【答案】C【分析】先利用函数()y xf x '=的图象求得函数()f x 的单调区间,进而得到正确选项. 【详解】由题给函数()y xf x '=的图象,可得当1x <-时,()0xf x '<,则()0f x '>,则()f x 单调递增; 当10x -<<时,()0xf x '>,则()0f x '<,则()f x 单调递减; 当01x <<时,()0xf x '<,则()0f x '<,则()f x 单调递减; 当1x >时,()0xf x '>,则()0f x '>,则()f x 单调递增; 则()f x 单调递增区间为(),1-∞-,()1,+∞;单调递减区间为()1,1- 故仅选项C 符合要求. 故选:C7.若0()2f x '=-,则0001()()2lim k f x k f x k→--等于 A .-2 B .-1 C .1 D .2【答案】C【分析】由题意结合导函数的定义求解()00012k f x k f x lim k→⎛⎫-- ⎪⎝⎭的值即可. 【详解】由导数的定义可知:()()()()00000100212'lim lim 12k f x k f x f x x f x f x x k ∆→-→⎛⎫-- ⎪+∆-⎝⎭==∆-, 则()00012k f x k f x lim k→⎛⎫-- ⎪⎝⎭()()0001021112lim '11222k f x k f x f x k -→⎛⎫-- ⎪⎝⎭=-⨯=-=-. 本题选择C 选项.【点睛】本题主要考查导数的定义及其应用等知识,属于基础题.8.已知复数1i z =-(i 是虚数单位),则24z z +=( )A .24i -B .2iC .24i +D .2【答案】D【分析】利用复数的加减乘除运算性质即可求得24z z+的值.【详解】1i z =-,则()()()()()22241i 441i (1i 2i)=21i 2i=21i 1i 1i z z ++=+-++-+-=--+ 故选:D9.点A 是曲线23ln 2y x x =-上任意一点,则点A 到直线21y x =-的最小距离为( ) ABCD【答案】A【分析】动点A 在曲线23ln 2y x x =-,则找出曲线上某点的斜率与直线21y x =-的斜率相等的点为距离最小的点,利用导数的几何意义即可 【详解】不妨设()23ln 2f x x x =-,定义域为:()0,∞+ 对()f x 求导可得:()13f x x x'=- 令()2f x '= 解得:1x =(其中13x 舍去) 当1x =时,32y =,则此时该点31,2⎛⎫⎪⎝⎭到直线21y x =-的距离为最小根据点到直线的距离公式可得:d =解得:d =故选:A10.若复数(2)z a ai =-+(a R ∈,i 为虚数单位)为纯虚数,则0)ax dx =⎰( ). A .22π+B .2π+C .42π+D .44π+ 【答案】B【解析】根据纯虚数的定义,结合定积分的几何意义、微积分基本定理进行求解即可.【详解】因为z 为纯虚数,所以有2020a a a -=⎧⇒=⎨≠⎩,原式2200)x dx xdx ==+⎰⎰⎰,因为0⎰的几何意义表示坐标原点为圆心,半径为2的14圆的面积,所以20124ππ=⋅⋅=⎰,而222221112020222xdx x ==⨯-⨯=⎰,所以原式22000)2x dx xdx π==+=+⎰⎰⎰, 故选:B11.已知2()f x x =,则过点P (-1,0)且与曲线()y f x =相切的直线方程为( ) A .0y =B .440x y ++=C .0y =或440x y ++=D .0y =或440x y -+=【答案】C【解析】设切点为()00,x y 则切线方程为()20002y x x x x -=-,将点()1,0P -代入解0x ,即可求切线方程.【详解】设切点为()00,x y ,则200y x =,切线斜率为()002k f x x '==所以切线方程为()20002y x x x x -=-,因为过点()1,0P - 则()200021x x x -=--解得00x =或02x =-,所以切线方程为0y =或440x y ++= 故选:C12.若不等式2xln x≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(-∞,0) B .(-∞,4] C .(0,+∞) D .[4,+∞)【答案】B【分析】分析:由已知条件推导出32ln ,0a x x x x ≤++>,令32ln ,0y x x x x=++>,利用导数形式求出1x =时,y 取得最小值4,由此能求出实数的取值范围. 【详解】详解:由题意22ln 3x x x ax ≥-+-对()0,x ∈+∞上恒成立, 所以32ln ,0a x x x x≤++>在()0,x ∈+∞上恒成立,设32ln ,0y x x x x =++>,则22223231x x y x x x +-=+-=,由0y '=,得123,1x x =-=,当()0,1∈x 时,0'<y ,当()1,∈+∞x 时,0'>y , 所以1x =时,min 1034y =++=,所以4a ≤, 即实数a 的取值范围是(],4-∞.点睛:利用导数研究不等式恒成立或解不等式问题,通常首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.二、填空题13.已知i 是虚数单位,则复数212(2)2ii i++-对应的点在第________象限. 【答案】二【分析】直接利用复数代数形式的乘除运算化简,得出复数所对应的点,即可判断点所在的象限.【详解】解:由题意得,已知复数212(2)2ii i++-, 则设()()()()2212212(2)44222i i iz i i i i i i +++=+=+=-+--+, 即:4z i =-+,则复数所对应的点为()4,1-,则在第二象限. 故答案为:二.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.14.计算31(2)x dx +⎰的值是________.【答案】8【分析】首先根据定积分公式求出被积函数的原函数,然后代入数值计算结果即可求出. 【详解】解:32311111(2)(2)|96128222x dx x x ⎛⎫⎛⎫+=+=⨯+-⨯+= ⎪ ⎪⎝⎭⎝⎭⎰.故答案为:8.【点睛】本题考查被积函数的原函数的求法,考查学生的计算能力和转换能力,属于基础题. 15.若直线2y kx =-与曲线13ln y x =+相切,则k =__________. 【答案】3【解析】设切点为00(,2)x kx -,利用导数的几何意义求出切线的斜率,再利用切点为切线与曲线的公共点列出等式,两式联立求解即可. 【详解】设切点为00(,2)x kx -,∵3y x '=,∴0003,213ln ,k x kx x ⎧=⎪⎨⎪-=+⎩①②由①得03kx =,代入②得013ln 1x +=,则01x =,3k =. 故答案为:3【点睛】本题考查已知曲线的切线求参数,导数的几何意义,属于基础题.16.函数2()ln(1)f x x a x =++有两个极值点12,x x ,且12x x <,则a 的取值范围是___________. 【答案】102a <<【分析】利用导数与函数极值点的关系可列出关于a 的不等式,解之即可求得a 的取值范围 【详解】由2()ln(1)(1)f x x a x x =++>-, 可得222()2(1)11a x x a f x x x x x++'=+=>-++ 则方程2220x x a ++=有两个大于1-的不同的根则二次函数222y x x a =++的图像与x 轴两个不同交点的横坐标均大于1- 又二次函数222y x x a =++的图像开口向上,对称轴12x =-则()()2Δ48021210a a =->⎧⎪⎨⨯-+⨯-+>⎪⎩,解之得102a <<故答案为:102a <<三、解答题17.已知复数2(4)(2),z a a i a R =-++∈. (1)若z 为实数,求实数a 的值; (2)若z 为纯虚数,求实数a 的值;(3)若z 在复平面上对应的点在直线210x y ++=上,求实数a 的值. 【答案】(1)2a =-(2)a =2(3)1a =-【解析】(1)z 为实数则虚部为0;(2)z 为纯虚数则实部为0且虚部不为0;(3)z 在复平面上对应的点()242a a -+,,满足直线的方程代入列出方程即可得解.【详解】(1)若z 为实数,则20a +=,2a =-;(2)若z 为纯虚数,则24020a a ⎧-=⎨+≠⎩,解得实数a 的值为2;(3)z 在复平面上对应的点()242a a -+,,在直线210x y ++=上,则()242210a a -+++=,即2210a a ++=解得1a =-.【点睛】本题考查复数的有关概念,复数的几何意义,属于基础题.18.已知函数32()(,)f x x ax bx a b R =++∈.若函数()f x 在1x =处有极值-4. (1)求()f x 的单调递减区间;(2)求函数()f x 在[1,2]-上的最大值和最小值. 【答案】(1)71.3⎛⎫- ⎪⎝⎭,;(2)()4()8min max f x f x =-=,. 【详解】试题分析:()1先求出导函数,根据导数的几何意义得到关于,a b 的方程组,求得,a b 后再根据导函数的符号求出单调递减区间.() 2由()1求出函数的单调区间,可以数判断函数()f x 在[]1,2-上的单调性,求出函数()f x 在[]1,2-上的极值和端点值,通过比较可得()f x 的最大值和最小值.试题解析:(1)∵()32f x x ax bx =++,∴()2'32f x x ax b =++,依题意有即()()'1320114f a b f a b ⎧=++=⎪⎨=++=-⎪⎩,解得2.7a b =⎧⎨=-⎩ ∴()()()2'347371f x x x x x =+-=+-,由()'0f x <,得713x -<<, ∴函数()f x 的单调递减区间7,1.3⎛⎫- ⎪⎝⎭()2由()1知()3227f x x x x ,=+- ∴()()()2'347371f x x x x x =++=+-,令()'0f x =,解得12713x x =-=,.当x 变化时,()()'f x f x ,的变化情况如下表:由上表知,函数()f x 在()1,1-上单调递减,在()1,2上单调递增. 故可得()()14min f x f ==-, 又(1)8,(2)2f f -==. ∴()()18.max f x f =-=综上可得函数()f x 在[]1,2-上的最大值和最小值分别为8和4-.19.已知函数()()330f x x ax b a =-+>的极大值为6,极小值为2.求:(1)实数a ,b 的值;(2)求()f x 在[]22-,上的单调区间. 【答案】(1)14a b =⎧⎨=⎩(2)()f x 的单调递增区间为[]2,1--和[]1,2;单调递减区间为[]1,1-【分析】(1)根据()f x 先求出()f x ',解不等式0f x与()0f x '<,利用导数与极值的关系,确定极值点,进而可求解;(2)由(1)可得:3()34f x x x =-+,从而得2()333(1)(1)f x x x x '=-=+-,进而可求解.【详解】解:(1)()()2330f x x a a '=->,由()0f x x '>⇒<x ∴()f x在(,-∞,)+∞上单调递增;由()0f x x '<⇒,∴()f x在(上单调递减,即x =()f x取到极大值;x =()f x 取到极小值.((636232f a b f b ⎧⎧=-+=⎪⎪⇒⎨⎨=⎪⎪=⎩⎩14a b =⎧⇒⎨=⎩. (2)()334f x x x =-+,则233fxx ;由()01f x x '>⇒<-或1x >,又[]2,2x ∈-,()f x 的单调递增区间为[]2,1--和[]1,2;单调递减区间为[]1,1-.【点睛】本题考查导数与函数的单调性、极值的应用及方程的解法,考查了理解辨析能力与运算求解能力,属于中档题. 20.已知函数()213ln 42g x x x x b =-++. (1)当54b =-时,求()g x 在(()1,1g )处的切线方程;(2)若函数()g x 在[1,4]上有两个不同的零点,求实数b 的取值范围. 【答案】(1)52y =-;(2)52ln 24b ≤<-.【分析】(1)根据()2135ln 424g x x x x =-+- ,求导()13122g x x x '=-+,再求得()1'g ,根据切点,写出切线的方程;(2)将函数()g x 在[1,4]上有两个不同的零点,转化为213ln 42b x x x -=-+在[1,4]内有两个实根,()213ln 42h x x x x =-+,利用导数法研究其单调性,画出图象求解. 【详解】(1)因为()2135ln 424g x x x x =-+- , 所以()13122g x x x'=-+,所以()1311022'=-+=g , 又因为切点为(1,52-), 所以切线的方程为52y =-; (2)若函数()g x 在[1,4]上有两个不同的零点,可得213ln 42b x x x -=-+在[1,4]内有两个实根, 设()213ln 42h x x x x =-+,()()()12131222x x h x x x x--'=-+=, 当()1,2x ∈时,()h x 递减,当()2,4x ∈时,()h x 递增,由()514h =-,()22ln 2h =-+,()4ln 42h =-, 画出()y h x =的图象,如图所示可得52ln 24b -+<-≤-, 解得52ln 24b ≤<-. 【点睛】本题主要考查导数的几何意义和导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.21.已知函数()f x 为一次函数,若函数()f x 的图象过点(0,2),且20()6f x dx =⎰. (1)求函数()f x 的表达式.(2)若函数2()g x x =,求函数()f x 与()g x 的图象围成图形的面积.【答案】(1)()2f x x =+;(2)92【分析】(1)假设出一次函数()()20f x kx k =+≠,根据积分构造出方程求得k ,进而得到结果; (2)联立两函数解析式可求得交点坐标,从而可知所求面积为()()21S f x g x dx -=-⎡⎤⎣⎦⎰,利用积分的运算法则求得结果.【详解】(1)()f x 为一次函数且过点()0,2 ∴可设()()20f x kx k =+≠ ()()2220022224602k f x dx kx dx x x k ⎛⎫∴=+=+=+= ⎪⎝⎭⎰⎰,解得:1k = ()2f x x ∴=+(2)由22y x y x ⎧=⎨=+⎩得:11x =-,22x =f x 与()g x 围成的图形面积()()21S f x g x dx -=-⎡⎤⎣⎦⎰ 即()222312118119222421233232S x x dx x x x -⎛⎫⎛⎫⎛⎫=+-=+-=+---+= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎰ 【点睛】本题考查利用积分求解函数解析式、利用积分求解两函数围成图形面积的问题,属于积分知识的基础应用问题.22.某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x 万件,需另投入流动成本()C x 万元,当年产量小于7万件时,()2123C x x x =+(万元);当年产量不小于7万件时,()36ln 17e C x x x x=++-(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.(1)写出年利润()P x (万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取320e =).【答案】(1)()23142,07315ln ,7x x x P x e x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩;(2)当年产量320x e ==万件时,年利润最大,最大年利润为11万元.【分析】(1)根据题中条件,分07x <<和7x ≥两种情况,分别求出对应的解析式,即可得出结果;(2)根据(1)中解析式,分别求出7x <和7x ≥两种情况下,()P x 的最大值,即可得出结果.【详解】(1)因为每件产品售价为6元,则x 万件商品销售收入为6x 万元,由题意可得,当07x <<时,()()2211626224233P x x C x x x x x x =--=---=-+-;当7x ≥时,()()336266ln 17215ln e e P x x C x x x x x x x ⎛⎫=--=-++--=-- ⎪⎝⎭; 所以()23142,07315ln ,7x x x P x e x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩; (2)由(1)可得,当07x <<,()()2211426101033P x x x x =-+-=--+≤, 当且仅当6x =时,等号成立;当7x ≥时,()315ln e P x x x =--,则()33221e e x P x x x x-'=-+=, 所以,当37x e ≤<时,()0P x '>,即函数()315ln e P x x x =--单调递增;当3x e >时, ()0P x '<,即函数()315ln e P x x x=--单调递减; 所以当3x e =时,()315ln e P x x x =--取得最大值()333315ln 11e P e e e =--=; 综上,当320x e ==时,()P x 取得最大值11万元;即当年产量为320x e ==时,该同学的这一产品所获年利润最大,最大年利润是11万元.【点睛】思路点睛:导数的方法求函数最值的一般步骤:(1)先对函数求导,根据导数的方法判定函数在给定区间的单调性;(2)根据函数单调性,即可求出函数的最值.。
高二数学3月月考试题 理 2
一中2021-2021-2学期高二年级3月考试试题制卷人:打自企; 成别使; 而都那。
审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。
数 学〔理〕说明:本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部.满分是150分,考试时间是是120分钟.答案写在答题卡上,交卷时只交答题卡.第一卷〔选择题〕一、选择题〔本大题一一共12 小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的,请将正确答案涂在答题卡上.............〕 1.假设0()2f x '=-,那么0001()()2lim k f x k f x k→--等于〔 〕A .-2B .-1C .1D .22.函数f (x )的导函数为f ′(x ),且满足f (x )=2 f ′(e )x +ln x 〔e 为自然对数的底数〕,那么f ′(e )=〔 〕A. 1eB .e C. -1e D .- e3.11||x dx -⎰等于〔 〕A .0B .1C .2D .124.函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为( ).A .-37B .-29C .-5D .-115.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,那么f 2021(x )=〔 〕A .sin xB .-sin xC .cos xD .-cos x6.内接于半径为R 的圆的矩形的周长的最大值为( ).A .22RB .2RC .42RD . 4R 7.方程x -ln x -2=0的根的个数为〔 〕A .0B .1C .2D .3 8.由曲线y =x 2与曲线y 2=x 所围成的平面图形的面积为( )A. 1B. 13C. 23D.439.设函数()219ln 2f x x x =-在区间[a -1,a +1]上单调递减,那么实数a 的取值范围是( ) A. [-∞,2) 10.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,那么此物体到达最高时的高度为〔 〕A.1603 mB.803 mC.403m D.203m11.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现理解到以下情况:〔1〕甲不是最高的;〔2〕最高的是没报铅球;〔3〕最矮的参加了跳远;〔4〕乙不是最矮的,也没参加跑步.可以判断丙参加的比赛工程是〔 〕A .跑步比赛B .跳远比赛C .铅球比赛D .不能断定12.如图,直线l 和圆C ,当l 从l 0开场在平面上绕点O 按逆时针方向匀速转到〔转到角不超过90°〕时,它扫过的圆内阴影局部的面积S 是时间是t 的函数,这个函数的图像大致是〔 〕第二卷〔非选择题〕二、选择题〔本大题一一共4小题,每一小题5分,一共20分,将答案写在答题卡上..........〕 13.曲线sin xy x=在点M(π,0)处的切线方程为________. 14.在用数学归纳法证明不等式1111(1,*)1222n n N n n n +++>>∈++的过程中,从n =k 到n =k +1时,左边需要增加的代数式是.________________. 15.假设函数f (x )=a3x 3+952a -x 2+4ax +c (a >0)在(-∞,+∞)内无极值点,那么a 的取值范围是______________.16.定义在R 上的可导函数y =f (x )的导函数为()f x ',满足()()f x f x '>,且()01f =,那么不等式()1xf x e<的解集为 . 三、解答题〔本大题一一共6 小题,一共70分〕 17. 〔10分〕求证: e x≥(1+x ) ≥ln(1+x ).18. 〔12分〕函数y =f (x )在区间[a ,b]上的图像是连续不连续的曲线,且f (x )在区间[a ,b]上单调,f (a )>0,f (b )<0.试用反证法证明:函数y =f (x )在区间[a ,b]上有且只有一个零点.19.〔12分〕如下图,在边长为60 cm 的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.〔12分〕设f (n )=1+12+13+…+1n,是否有关于自然数n 的函数g (n ),使等式f (1)+f (2)+…+f (n -1)=g (n )[f (n )-1]对n ≥2的一切自然数都成立?并证明你的结论.21.〔12分〕假设函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数的解析式.(2)假设方程f (x )=k 有3个不同的根,务实数k 的取值范围.22.〔12分〕设函数2()ln f x ax a x =--,其中x ∈R.(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使11()xf x e x->-在区间〔1,+∞〕内恒成立〔e =2.71828…是自然对数的底数〕.一中2021-2021-2学期高二年级3月考试数学〔理〕参考答案一、选择题〔本大题一一共12 小题,每一小题5分,一共60分〕二、选择题〔本大题一一共4小题,每一小题5分,一共20分〕 13.1()y x ππ=-- ; 14.112122k k -++; 15.[1,9]; 16.}{0x x > 三、解答题〔本大题一一共6 小题,一共70分〕 17. 〔10分〕求证: e x≥1+x >ln(1+x ).证明:根据题意,应有x >-1,设f (x )=e x-(1+x ),那么 f ′(x )=e x-1, 由f ′(x )=0,得 x =0.当-1< x < 0时,f ′(x )<0;当x > 0时,f ′(x )>0.∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增,f (x )min = f (0)=0. ∴ 当x >-1,f (x )≥f (0)=0, 即 e x≥1+x .设g (x )=1+x -ln(1+x ),那么g ′(x )=1-11+x =x1+x ,由g ′(x )=0,得 x =0.当-1< x < 0时,g ′(x )<0;当x > 0时,g ′(x )>0.∴g (x )在(-1,0)上单调递减,在(0,+∞)上单调递增,g (x )min =g (0)=1. ∴ 当x >-1,g (x )≥g (0)=1>0, 即1+x >ln(1+x ).18. 〔12分〕函数y =f (x )在区间[a ,b]是的图像连续不连续,且f (x )在区间[a ,b]上单调,f (a )>0,f (b )<0.试用反证法证明:函数y =f (x )在区间[a ,b]上有且只有一个零点.证明:因为函数y =f (x )在区间[a ,b]上的图像连续不连续,且f (a )>0,f (b )<0,即f (a )·f (b )<0.所以函数y =f (x )在区间[a ,b]上一定存在零点x 0,假设y =f (x )在区间[a ,b]上还存在一个零点x 1〔x 1≠x 0〕,即f (x 1)=0,由函数f (x )在区间[a ,b]上单调且f (a )>0,f (b )<0知f (x )在区间[a ,b]上单调递减; 假设x 1>x 0,那么f (x 1)< f (x 0),即0<0,矛盾, 假设x 1<x 0,那么f (x 1) > f (x 0),即0>0,矛盾,因此假设不成立,故y =f (x )在区间[a ,b]上有且只有一个零点.19.〔12分〕如下图,在边长为60 cm 的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?解:设箱子的底边长为x cm ,那么箱子高h =60-x 2cm.箱子容积V =V (x )=x 2h =60x 2-x32(0<x <60).求V (x )的导数,得V ′(x )=60x -32x 2=0,解得x 1=0(不合题意,舍去),x 2=40.当x 在(0,60)内变化时,导数V ′(x )的正负如下表:x (0,40) 40 (40,60) V ′(x )+-因此在x =40处,函数V (x )获得极大值,并且这个极大值就是函数V (x )的最大值. 将x =40代入V (x )得最大容积V =402×60-402=16 000(cm 3).所以箱子底边长取40 cm 时,容积最大,最大容积为16 000 cm 3.20.〔12分〕设f (n )=1+12+13+…+1n,是否有关于自然数n 的函数g (n ),使等式f (1)+f (2)+…+f (n -1)=g (n )[f (n )-1]对n ≥2的一切自然数都成立?并证明你的结论.解: 当n =2时,f (1)=g (2)[f (2)-1], 得(1)1(2)21(2)1(1)12f g f ===-+-.当n =3时,f (1)+f (2)=g (3)[f (3)-1],得(1)(2)(3)(3)1f f g f +=-=1+⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+12+13-1=3.猜测g (n )=n (n ≥2).下面用数学归纳法证明:当n ≥2时,等式f (1)+f (2)+…+f (n -1)=n [f (n -1)]恒成立. (1)当n =2时,由上面计算知,等式成立.(2)假设n =k 时等式成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1](k ≥2), 那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k )=(k +1)f (k )-k =(k +1) [ f (k +1)-1+1k ]-k =(k +1) [ f (k +1) -1], 故当n =k +1时等式也成立.由(1)(2)知,对一切n ≥2的自然数n ,等式都成立. 故存在函数g (n )=n 使等式成立.21.〔12分〕假设函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数的解析式.(2)假设方程f (x )=k 有3个不同的根,务实数k 的取值范围.解 f ′(x )=3ax 2-b .(1)由题意得(2)120,4(2)824.3f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩ 解得⎩⎪⎨⎪⎧a =13,b =4,故所求函数的解析式为f (x )=13x 3-4x +4.(2)由(1)可得f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =2或者x =-2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,-2) -2(-2,2) 2 (2,+∞)f ′(x)+0 -0 +f (x )283-43因此,当x =-2时,f (x )有极大值283,当x =2时,f (x )有极小值-43,所以函数f (x )=13x 3-4x +4的图象大致如下图.假设f (x )=k 有3个不同的根,那么直线y =k 与函数f (x ) 的图象有3个交点,所以-43<k <283.22.〔12分〕设函数2()ln f x ax a x =--,其中x ∈R.(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使11()xf x e x->-在区间〔1,+∞〕内恒成立〔e =2.71828…是自然对数的底数〕.制卷人:打自企;成别使;而都那。
广西南宁高新技术产业开发区桂鼎学校2021-2022学年高二下学期3月月考数学(理)试题
10.函数 f x x2 2x 4ln x 的单调递增区间为( )
A. 0,
B. 1,0 2,
C. (2, )
D. (1, 0)
x2, x 0,1,
e
11.设 f (x) {1 , x 1, e (其中
x
为自然对数的底数),则 f (x)dx 的值为
0
A. 4 3
B. 5 4
C.
6 5
f g
x x
,
因为
hx
f x g x
f x g x
h x ,故
h x 为奇函数.
又h' x
f xgx f xg' x
g2 x
.
故当 x 0 时, h' x 0 , h x 单调递增.
又 h3
f g
3 3
0
,所以 h x
在 , 0 上为增函数,且 h3
0,
当 x ,3 时, h x 0 ,此时 f(x)g(x)<0,
1 a 在验证 n 1 时,把当 n 1 代入,左端 =1 a a2 . 故选:C. 4.B 【详解】根据定积分的几何意义,
1
1
1
阴影部分的面积为 2x dx - 1dx 2x-1 dx .
0
0
0
故选 B. 5.A 【详解】试题分析:由 z 2 i 得 z 2 i ,所以 z z (2 i) (2 i) 5 ,故选 A. 考点:共轭复数;复数的运算.
1 a 算所得的式子是( )
A.1
B.1 a
4.图中阴影部分的面积用定积分表示为
C.1 a a2
D.1 a a2 a3
1
A. 2x dx
0
2021-2022学年河北省邢台市第二中学高二下学期第三次月考数学试题(解析版)
2021-2022学年河北省邢台市第二中学高二下学期第三次月考数学试题一、单选题1.小张去工作室需要通过三重门,他必须问管理员要到每重门的钥匙才能到达工作室.第一重门的钥匙有3把(每把颜色不同),第二重门的钥匙有4把(每把颜色不同),第三重门的钥匙有3把(每把颜色不同),管理员要求他从这10把钥匙中取3把,则他能到达工作室的不同的取法共有( ) A .10种 B .24种C .36种D .120种【答案】C【分析】根据给定条件,得用分步乘法计数原理列式计算作答.【详解】依题意,进入第一重门有3种取法,进入第二重门有4种取法,进入第三重门有3种取法,由分步乘法计数原理可知,不同的取法共有34336⨯⨯=种. 故选:C2.已知函数()f x 与()g x 的部分图像如图所示,则( )A .()()101g f ''-<<-B .()()11f g ''-<-C .()()101f g ''-<<-D .()()33f g ''>【答案】B【分析】利用导数的几何意义直接判断.【详解】由图可知,()f x 与()g x 在区间[]1,3-上单调递增,所以()10g '->,()10f '->.在区间[]1,3-上,()g x 的图像比()f x 的图像更陡峭,所以()()11f g ''-<-,()()33f g '<'.故选:B3.()52a a b -的展开式中33a b 的系数为( ) A .80B .80-C .40D .40-【答案】B【分析】先求得()52a b -的展开式中23a b 的系数,即可得到()52a a b -的展开式中33a b 的系数【详解】因为()52a b -的展开式的通项公式为()515C 2rr rr T a b -+=- 令3r =,则展开式中23a b 的系数为()335C 280-=-, 所以()52a a b -的展开式中33a b 的系数为80-. 故选:B4.用0,2,4,5,6,8组成无重复数字的四位数,则这样的四位数中偶数共有( ) A .120个 B .192个 C .252个 D .300个【答案】C【分析】根据个位数是否为零分类讨论即可.【详解】若这个偶数的个位数是0,则有3560A =个;若这个偶数的个位数不是0,则有112444192C C A =个.故满足条件的四位数中偶数的总个数为60192252+=; 故选:C.5.若函数()()4220f x x mx x x =-+>为增函数,则m 的取值范围是( ) A .[)0,∞+ B .[)4,-+∞C .[)6,-+∞D .[)8,-+∞【答案】D【分析】利用导函数去求m 的取值范围【详解】依题意可得,()33440f x x m x '=++≥,即3344m x x-+≤对()0,x ∈+∞恒成立.由0x >,得33448x x +=≥(当且仅当3344x x =,即1x =时,等号成立), 所以8m -≤,即8m ≥-. 故选:D6.将7名志愿者分配到4个社区做垃圾分类宣传,每个社区至少分配1名至多分配2名志愿者,则志愿者的分配方法种数为( ) A .2520 B .2640C .4200D .15120【答案】A【分析】先将7名志愿者分成4份,再全排列即可.【详解】依题意可得,4个社区志愿者分配的人数分别为1,2,2,2,故志愿者的分配方法种数为1222247644332520 C C C C A A =. 故选:A7.1224111x xx x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的展开式中常数项为( ) A .512CB .612CC .513CD .613C【答案】C【分析】先写出121x x ⎛⎫+ ⎪⎝⎭的通项为1r T +,可得12411r T x x +⎛⎫+ ⎪⎝⎭,即可求出常数项对应的r 值,即可求出常数项【详解】121x x ⎛⎫+ ⎪⎝⎭的通项为12122112121C C rr r r rr T x xx --+⎛⎫== ⎪⎝⎭,令1222r -=或1224r -=,则=5r 或4r =,故所求常数项为455121213C C C +=,故选:C8.定义在()0,8上的函数()f x 的导函数为fx ,且()()2xf x f x '<,112f ⎛⎫= ⎪⎝⎭,则不等式()24f x x <的解集为( )A .1,82⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .0,1D .10,2⎛⎫ ⎪⎝⎭【答案】A 【分析】构造()()2f xg x x =并利用导数研究在()0,8上的单调性,再将不等式化为()12g x g ⎛⎫< ⎪⎝⎭,结合单调性求解集.【详解】设()()2f xg x x =,08x <<,则()()()320xf x f x g x x '-'=<,则()g x 在()0,8上单调递减,由()24f x x <,得:()24f x x<,而21124212f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫ ⎪⎝⎭, 所以()12g x g ⎛⎫< ⎪⎝⎭,则182x <<.故不等式()24f x x <的解集为1,82⎛⎫ ⎪⎝⎭.故选:A9.关于()77x -的展开式,下列判断正确的是( ) A .展开式共有8项B .展开式的各二项式系数的和为128C .展开式的第7项的二项式系数为49D .展开式的各项系数的和为76【答案】ABD【分析】根据二项式定理的性质逐项判断即可. 【详解】展开式共有718+=项,故A 正确. 展开式的各二项式系数的和为72128=,故B 正确.展开式的第7项的二项式系数为6177C C 7==,故C 错误.展开式的各项系数的和为()77716-=,故D 正确. 故选:ABD .10.生命在于运动,小兰给自己制定了周一到周六的运动计划,这六天每天安排一项运动,其中有两天练习瑜伽,另外四天的运动项目互不相同,且运动项目为跑步、爬山、打羽毛球和跳绳.( )A .若瑜伽被安排在周一和周六,则共有48种不同的安排方法B .若周二和周五至少有一天安排练习瑜伽,则共有216种不同的安排方法C .若周一不练习瑜伽,周三爬山.则共有36种不同的安排方法D .若瑜伽不被安排在相邻的两天,则共有240种不同的安排方法 【答案】BCD【分析】对于A ,安排剩下的四种运动项目即可;对于B ,利用间接法可求解;对于C ,先排特殊的项目;对于D ,先排其他四项运动,再插空可求解.【详解】对于A ,若瑜伽被安排在同一和周六,则共有4424A =种不同的安排方法,故A 不正确;对于B ,若周二和周五至少有一天安排练习瑜伽,则由间接法可得,不同的安排方法种数为422644216A A A -=,故B 正确对于C ,若周一不练习瑜伽,周三爬山,则共有234136A C =种不同的安排方法,故C 正确;对于D ,若瑜伽不被安排在相邻的两天,则先排其他四项运动,共有44A 种不同的安排方法,再从5个空位里插入2个安排练习瑜伽,故共有4245240A C =种不同的安排方法,故选:BCD11.将12支完全相同的圆珠笔分给4位小朋友.( )A .若每位小朋友至少分得1支,则有411C 种分法 B .若每位小朋友至少分得1支,则有311C 种分法C .若每位小朋友至少分得2支,则有37C 种分法D .若每位小朋友至少分得2支,则有38C 种分法 【答案】BC【分析】利用隔板法求得每位小朋友至少分得1支的分法总数判断选项AB ;求得每位小朋友至少分得2支的分法总数判断选项CD.【详解】若每位小朋友至少分得1支,则由隔板法可得,不同的分法种数为311C . 则选项A 判断错误;选项B 判断正确;若每位小朋友至少分得2支,则每位小朋友可先各发1支,剩下8支,再由隔板法可得,不同的分法种数为37C .则选项C 判断正确;选项D 判断错误. 故选:BC 12.若()()00000,,limx f x x y x y f x ∆→+-∆∆存在,则称()()0000,,lim f x x y f x y x∆→∞+∆-∆为二元函数(),z f x y =在点()00,x y 处对x 的偏导数,记为()00,x f x y '.已知二元函数()()322,0,2f x y x x y y x y =-+>>-,()()434,40,2g x y x x y x y =-->>-,则( )A .()1,11x f '-=B .关于t 的函数()1,18x g '-=-C .(),3x f t '的最小值为3-D .关于t 的函数(),x g t t '有极小值【答案】BCD【分析】根据所给的定义分别得到()00,x f x y '、()00,x g x y '后就容易求解了.【详解】对于A 、C ,因为()322,f x y x x y y =-+,所以()()()00002000000,,,lim32x x f x x y f x y f x y x y x x∆→+∆-'==-∆,则()1,15x f '-=.因为()()22,336313x f t t t t '=-=--,所以当1t =时,(),3x f t '取得最小值,且最小值为3-. 故A 错误,C 正确..对于B 、D ,因为()434,4g x y x x y =--,所以()()()00003200000,,,lim412x x g x x y g x y g x y x x x∆→+∆-'==-∆,则()1,18x g '-=-. ()()32,4120x g t t t t t '=->,令()()324120g x x x x =->,()21224g x x x '=-.当02x <<时()0g x '<;当2x >时()0g x '>.所以()g x 在(0,2)上单调递减,在(2,)+∞上单调递增, 所以()g x 在2x =处取得极小值. 故B 、D 都正确. 故选:BCD 三、填空题13.若227C 9A n +=,则n =_________.【答案】6【分析】利用排列数公式和组合数公式去求n 的值 【详解】因为2776993C 02⨯+=+=,所以()130n n -=,解得6n =或5n =-(舍去) 故答案为:614.甲、乙、丙、丁、戊等8人排成一排拍照,要求甲、乙、丙、丁四人排在一起,且戊排在两端,则不同的排法共有_________种. 【答案】1152【分析】捆绑法进行求解,再考虑让戊排在这7人的两端,得到不同的排法有44442A A 种. 【详解】先不考虑戊,安排其他7人,甲、乙、丙、丁四人要在一起,由捆绑法可得不同的排法种数为4444A A ,再考虑戊,可以让戊排在这7人的两端,故所求不同的排法种数为44442A A 1152=.故答案为:115215.如图,某款酒杯容器部分的形状为圆锥,且该圆锥的轴截面为边长是6cm 的正三角形.若在该酒杯内放置一个圆柱形冰块,要求冰块高度不超过酒杯口高度,则酒杯可放置圆柱形冰块的最大体积为___________3cm .【答案】43π【分析】根据圆锥轴截面的形状以及长度,求得圆锥的底面半径、母线以及高,利用三角形相似,求得其内接圆柱体的高和半径的关系, 【详解】因为圆锥的轴截面是边长为6的等边三角形,故可得圆锥的底面半径13r =,母线长6PN =,则圆锥的高133h =,根据题意,设该圆锥内接圆柱的底面半径为,(03)r r <<,高为h , 则由△1~O PM OPN 可得11O M O P ON OP =,即33333r h-,则333h r =, 故该圆柱的体积()2233V r h r r ππ=⨯-,令()()23,(03)f r r r r =-<<,则'()f r ()32r r =-,则当()0,2r ∈时,'()f r 0>,()f r 单调递增;当()2,3x ∈时,'()f r 0<,()f r 单调递减,故()()max 24f r f ==,故圆柱体积的最大值为43π. 故答案为:43π. 四、双空题16.在等差数列{}n a 中,216a =,317a =,则n a =_________,数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为_________.【答案】 14n +14+n275【分析】根据等差数列定义即可求公差的,根据等差数列通项公式即可求n a ,根据11n n a a +⎧⎫⎨⎬⎩⎭通项公式的特征可采用裂项相消法求其前10项和. 【详解】设等差数列{}n a 公差为d ,则17161d =-=, ∴()2214n a a n d n =+-=+. ∵()()1111114151415n n a a n n n n +==-++++, ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为:111111112151616172425152575-+-++-=-=. 故答案为:n +14;275. 五、解答题 17.已知)66016xaa x a x=+++.(1)求0a ;(2)123628a a ++++;(3)求2a .【答案】(1)8 (2)8- (3)60【分析】(1)用赋值法,令0x =,即可求解; (2)用赋值法,令x (3)利用二项展开式的通项公式直接求解. 【详解】(1)令0x=,得608a==.(2)令x 02613280aa a ++++=,12360288a a a ++++=-=-.(3)因为()422222660a x C x x =-=,所以260a =.18.已知函数()32610f x x x =-+.(1)若曲线()y f x =切线的斜率为-9,求切点的坐标; (2)求()f x 在区间[]3,6-上的最大值与最小值. 【答案】(1)切点的坐标为()1,5或()3,17- (2)最大值为10,最小值为-71【分析】(1)利用曲线的几何意义求解即可;(2)对函数求导,解导数不等式得到函数单调性,由单调性即可得到最值.【详解】(1)()2312f x x x '=-,曲线()y f x =切线的斜率为-9,由()9f x '=-,得1x =或3x =.当1x =时,()15f =,当3x =时,()317f =-, 故切点的坐标为()1,5或()3,17-.(2)令()23120f x x x '=-=,得10x =,24x =令()0f x '<,得04x <<,函数单调递减, 令()0f x '>,得0x <或4x >,函数单调递增,所以()f x 在[)3,0-,(]46,上单调递增,在()0,4上单调递减. 因为()371f -=-,()()0610f f ==,()422f =-, 所以()f x 在区间[]3,6-上的最大值为10,最小值为-71.19.在四棱台1111ABCD A B C D -中,底面ABCD 是正方形,且侧棱1AA 垂直于底面ABCD ,11124AA AD A D ===,O ,E 分别是AC 与1DD 的中点.(1)证明:OE ∥平面11BD A .(2)求1CC 与平面11BD A 所成角的正弦值. 【答案】(1)证明见解析【分析】(1)连接BD ,得到O 为BD 的中点,证得1//OE BD ,结合线面平行的判定定理,即可证得//OE 平面11BD A ;(2)以A 为原点,以1,,AB AD AA 所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系,求得向量1(2,2,4)CC =--和平面11BD A 的法向量,结合向量的夹角公式,即可求解. 【详解】(1)证明:连接BD ,因为ABCD 为正方形,可得O 为BD 的中点,在1BDD 中,因为,O E 分别为1,BD DD 的中点,所以1//OE BD , 又因为OE ⊄平面11BD A ,且1BD ⊂平面11BD A , 所以//OE 平面11BD A .(2)解:因为1AA ⊥平面ABCD ,,AB AD ⊂平面ABCD ,所以11,AA AB AA AD ⊥⊥, 以A 为原点,以1,,AB AD AA 所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系, 如图所示,可得111(0,0,0),(4,0,0),(0,0,4),(0,2,4),(4,4,0),(2,2,4)A B A D C C , 则1111(0,2,0),(4,0,4),(2,2,4)A D A B CC ==-=--,设平面11BD A 的法向量(,,)n x y z =,则11120440n A D y n A B x z ⎧⋅==⎪⎨⋅=-=⎪⎩,取1z =,可得1,0x y ==,所以(1,0,1)n =, 设1CC 与平面11BD A 所成的角为θ,则111sin cos ,2n CC n CC n CC θ⋅====⋅, 即1CC 与平面11BD A20.①{}2nn a 为等差数列,且358a =;②21n a n ⎧⎫⎨⎬-⎩⎭为等比数列,且234a =.从①②两个条件中任选一个,补充在下面的问题中,并解答. 在数列{}n a 中,112a =,________. (1)求{}n a 的通项公式;(2)已知{}n a 的前n 项和为n S ,试问是否存在正整数p ,q ,r ,使得n n r S p qa +=-?若存在,求p ,q ,r 的值;若不存在,说明理由. 【答案】(1)212n nn a -=; (2)存在,3p =,4q =,2r =﹒【分析】(1)若选①,则可根据等差数列性质求出{}2nn a 的公差d ,根据等差数列通项公式可求2nn a ,从而求得n a ;若选②,则可证明等比数列概念求出21n a n ⎧⎫⎨⎬-⎩⎭的公比,根据等比数列通项公式可求21n an -,从而求得n a ;(2)根据n a 通项公式的特征,采用错位相减法即可求其前n 项和,将其化为n n r S p qa +=-形式即可得p 、q 、r 的值. 【详解】(1)若选①:设等差数列{}2nn a 的公差为d ,则33122512312a a d --===-,∴()1222121nn a a n n =+-=-,即212n nn a -=. 若选②:设等比数列21n a n ⎧⎫⎨⎬-⎩⎭的公比为q ,则2112212211a q a ⨯-==⨯-, ∴11112121122n nn a a n -⎛⎫⎛⎫=⨯= ⎪ ⎪-⨯-⎝⎭⎝⎭, 即212n n n a -=; (2)21321222n nn S -=+++, 231113212222n n n S +-=+++, 则两式相减得,23111111212222222n nn n S +-⎛⎫=+⨯+++- ⎪⎝⎭ 12n S =111121214212212n n n ++⎛⎫- ⎪-⎝⎭=+--12n S =132322n n ++=-, ∴2332n nn S +=-. ∵()22221233343422n n n n n n S a +++-+=-=-⨯=-, ∴存在正整数p ,q ,r ,使得n n r S p qa +=-,且3p =,4q =,2r =.21.已知函数()2ln f x x a x =-.(1)若()f x 在)+∞上有2个零点,求a 的取值范围; (2)证明:222ln e x x x x -->-. 【答案】(1)42e,ln 2⎛⎤ ⎥⎝⎦(2)证明见解析【分析】(1)先分离出a ,利用导数确定函数的单调性,再运用数形结合的思想可求解; (2)将222ln ex x x x -->-转化为证明222ln e x x x x -->-,再分别求最值可求证. 【详解】(1)当)x ∞∈+时,ln 0x >, 由()2ln 0f x x a x =-=,得2ln x a x=. 设函数()(2lnx g x x x=,则()()22ln 1'ln x x g x x-=. x ()'0g x <;当x >()'0g x >.所以()g x 在上单调递减,在)+∞上单调递增,所以()min 2e g x g ==.因为4ln 2g=,且()f x 在)+∞上有2个零点. 所以a 的取值范围为42e,ln 2⎛⎤ ⎥⎝⎦. (2)证明:要证222ln e x x x x -->-,只需证222ln e x x x x -->-. 当2a =时,()22ln f x x x =-,则()222'x f x x-=. 当01x <<时,()'0f x <;当1x >时,()'0f x >. 所以()f x 在(0,1)上单调递减,在(1,)+∞上单调递增, 所以()()11f x f ≥=,当且仅当1x =时,等号成立. 设函数()()2e0x h x x x -=->,则()2'1e x h x -=-.当02x <<时,()'0h x >;当2x >时,()'0h x <. 所以()h x 在(0,2)上单调递增,在(2,)+∞上单调递减, 所以()()21h x h =≤,当且仅当2x =时,等号成立.故()()f x g x ≥,因为12≠,所以等号取不到,所以()()f x g x >, 即222ln e x x x x -->-,所以222ln e x x x x -->-.22.已知椭圆T :()222210x y a b a b+=>>的左焦点为(),0F c -,上顶点为P .直线PF 与椭圆T 交于另一点Q ,且7PF FQ =,点12E ⎫⎪⎭在椭圆T 上.(1)求椭圆T 的方程;(2)过点()0,2M ,且斜率为k 的直线l 与椭圆T 相交于A ,B 两点,点A 关于y 轴的对称点为A ',作MN A B '⊥,垂足为N .是否存在定点R ,使得NR 为定值?若存在,请求出定点R 和NR ;若不存在,请说明理由. 【答案】(1)2214x y +=(2)存在,50,4R ⎛⎫⎪⎝⎭,34NR =【分析】(1)待定系数法去求椭圆T 的方程;(2)利用设而不求的方法求得'A B 恒过点10,2G ⎛⎫⎪⎝⎭,再利用直角三角形的性质找到定点R 并求得NR 的值.【详解】(1)由()0,P b ,(),0F c -,7PF FQ =,可得点Q 的坐标为8,77c b ⎛⎫-- ⎪⎝⎭,则2264114949c a +=,解之得c a =c =,12b a =又因为点12E ⎫⎪⎭在椭圆T 上,所以223114a b +=,则22311a a +=解之得2a =,则1b =,c =故椭圆T 的方程为2214x y +=.(2)由题可知直线l 的方程为2y kx =+,设点()11,A x y ,()22,B x y ,则()11',A x y -. 联立方程组22142x y y kx ⎧+=⎪⎨⎪=+⎩,整理得()224116120k x kx +++=.则()()22216484164480k k k ∆=-+=->,1221641k x x k +=-+,1221241x x k =+. 直线'A B 的方程为()211121y y y y x x x x --=++, 整理得()()12211221y y x x x y x y x y -++=+.()()()12211221121228222241kx y x y x kx x kx kx x x x k +=+++=++=-+. 令0x =,得12211212x y x y y x x +==+,所以'A B 恒过点10,2G ⎛⎫⎪⎝⎭. 在Rt △MGN 中,存在定点50,4R ⎛⎫⎪⎝⎭为斜边MG 的中点,使得1324NR MG ==,为定值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高二下学期3月月考数学(理)试题含答案
一、选择题:(每题5分,共60分,唯一正确答案。
)
1.下列说法不正确的是()
(A)不可能事件的概率是0,必然事件的概率是1
(B)某人射击10次,击中靶心8次,则他击中靶心的频率是0.8
(C)“直线y=k(x+1)过点(-1,0)”是必然事件
(D)先后抛掷两枚大小一样的硬币,两枚都出现反面的概率是
2.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的的概率是()
(A)、;(B)、;(C)、;(D)、
3.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射
手的命中率是(A)、;(B)、;(C)、;(D)、
4. 4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能
全排在一起,则不同的排法种数有()(A)2880 ;(B)3080 ;(C)3200 ;(D)3600
5.以正方体的顶点为顶点,能作出的三棱锥的个数是()
(B)(C)(D)
6.展开式中含的正整数次幂的项共有()
(A)4项(B)3项(C)2项(D)1项
7.在5付不同手套中任取4只,4只手套中至少有2只手套原来是同一付的可能
()(A) 190 (B) 140 (C)130 (D)30
8.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是()
(A) (B) (C)(D)以上都不对
9.的展开式中,的系数是()
(A) 60 (B) 180 (C)207 (D)265
10.某公园现有A、B、C三只小船,A可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须
由大人陪同方可乘船,他们分乘这些船只的方法有()
(A) 48 (B) 36 (C)30 (D)18
11.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率等于( )
A B C D
12.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是()A.B. C.D.
二、填空题:(每题5分,共20分)
13命题:①的观测值越大,“x与y有关系”不成立的可能性越大.②残差的方差越大,回归直线的拟合效果越好. ③越大,拟合程度就越好.则正确命题序号为__
14.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有 ____ 种。
15.在100件产品中有5件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是
16.已知某工厂生产的某种型号卡车轮胎的使用寿命(单位:)服从正态分布.一汽车公司一次从该厂买了500个轮胎,利用正态分布估计使用寿命在36203—2×4827~36203+2×4827范围内的轮胎个数是.
三、解答题:(共5道小题,满分60分。
)
17 某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
(Ⅰ)从3月1日至3月5日中任选2天,记发芽的种子数分别为,求事件“m ,n均不小于25”的概率.
(Ⅱ)若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)中所得的线性回归方程是否可靠?
(参考公式:回归直线的方程是,其中,,)
18.在海南省第二十四届科技创新大赛活动中,某同学为研究“网络游戏对当代青少年的影响”作了一次调查,共调查了50名同学,其中男生26人,有8人不喜欢玩电脑游戏,而调查的女生中有9人喜欢玩电脑游戏.
(1)根据以上数据建立一个2×2的列联表;
(2)根据以上数据,在犯错误的概率不超过0.025的前提下,能否认为“喜欢玩电脑游戏与性别有关系”?
19.经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.
(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.
20.某次象棋比赛的决赛在甲乙两名旗手之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分;比赛进行五局,积分有超过5分者比赛结束,否则继续进行,根据以往经验,每局甲赢的概率为,乙赢的概率为,且每局比赛输赢互不受影响.若甲第局赢、平、输的得分分别记为令(1)求的概率(2)求的概率。
21.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相
同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望.
(参考答案)
一、选择题:DABAD BCCCD AC
二、填空题:13.③14. 24;15.;16.477;
三、解答题:
17.(Ⅰ)的所有取值情况有:(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),即基本事件总数为10.
设“m ,n均不小于25”为事件A,则事件A包含的基本事件为(25,30),(25,26),(30,26).
所以,故事件A的概率为. (3)
(Ⅱ)由数据,求得,,.
3
1
112513********* i i
i
X Y
=
=⨯+⨯+⨯=
∑,,.
由公式,求得,.
所以y关于x的线性回归方程为. (8)
(Ⅲ)当x=10时,,|22-23|<2;
同样,当x=8时,,|17-16|<2.
所以,该研究所得到的线性回归方程是可靠的. (14)
18【解析】(1)2×2列联表
(2)
又P(K2≥0.025)=5.024<5.06,故在犯错误的概率不超过
0.025的前提下,可以认为“喜欢玩电脑游戏与性别有关系”.
19.解:(Ⅰ)记表示事件:“位顾客中至少位采用一次性付款”,则表示事件:“位顾客中无人采用一次性付款”.
,
.--------(6分)
(Ⅱ)记表示事件:“位顾客每人购买件该商品,商场获得利润不超过元”.
表示事件:“购买该商品的位顾客中无人采用分期付款”.
表示事件:“购买该商品的位顾客中恰有位采用分期付款”.
则.
,.
--------(14分)
20.解:(1)若则前三局二胜一平,--------(4分)
(2)若,5局中得7分,则2胜3平或3胜1平1负
①2胜3平,则前4局1胜3平,第5局胜
--------(7分)
②3胜1平1负,则前4局2胜1负1平,第5局胜
--------(11分)
--------(14分)
21.解:(Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且,.
故取出的4个球均为黑球的概率为.--------(4分)
(Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥,
且,.
故取出的4个球中恰有1个红球的概率为-----(8分)
(Ⅲ)解:可能的取值为.由(Ⅰ),(Ⅱ)得,,
.从而
3 (2)1(0)(1)(3)
10 P P P P
ξξξξ
==-=-=-==.
的分布列为
的数学期望.。