高二3月月考数学(文)试卷
广东省佛山市顺德区2022-2023学年重点中学高二(下)月考数学试卷(3月份)及参考答案
2022-2023学年广东省佛山市顺德区重点中学高二(下)月考数学试卷(3月份)及参考答案第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1.已知数列{}n a 中,452+-=n n a n ,则数列{}n a 的最小项是()A.第1项B.第3项、第4项C.第4项D.第2项、第3项2.在数列{}n a 中,4211+==+n n a a a ,,若2022=n a ,则=n ()A.508B.507C.506D.5053.等差数列{}n a 的前11项和4411=S ,则=++873a a a ()A.9B.10C.11D.124.在等比数列{}n a 中.已知487531=+=+a a a a ,,则=+++1513119a a a a ()A.11B.6C.3D.185.已知数列{}n a 是递增的等比数列,1+2+3=14,123=64,则公比=()A.12B.1C.2D.46.若数列{}n a 对任意正整数都有1+22+33+…+B =2−1,则22+55=()A.17B.18C.34D.847.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25B.24C.20D.198.已知等差数列{}n a 的前项和为,若7+8>0,7+9<0,则取最大值时的值为()A.8B.5C.6D.7二、多选题(本大题共4小题,共20.0分。
在每小题有多项符合题目要求)9.正项等比数列{}n a的前项和为,已知3=2+101,4=3.下列说法正确的是()A.1=9B.{}是递增数列C.{+118}为等比数列D.{log3}是等比数列10.记为公差不为0的等差数列{}n a的前项和,则()A.3,6−3,9−6成等差数列B.33,66,99成等差数列C.9=26−3D.9=3(6−3)11.已知数列{}n a中,1=2,+1+1=1,∈+,则()A.2022=1B.1+2+3+…+2002=1011C.123…2022==1011D.12+23+34+…+20222023=−101112.如图所示,图1是边长为1的正方形,以正方形的一边为斜边作等腰直角三角形,再以等腰直角三角形的两个直角边为边分别作正方形得到图2,重复以上作图,得到图3,…….记图1中正方形的个数为1,图2中正方形的个数为2,图3中正方形的个数为3,……,图中正方形的个数为,下列说法正确的有()A.5=63B.图5中最小正方形的边长为14C.1+2+3+……+10=2036D.若=255,则图中所有正方形的面积之和为8第II卷(非选择题)三、填空题(本大题共4小题,共24.0分)13.设数列{}n a满足1=2=2+2K1,则3=.14.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百錢.欲令高爵出少,以次漸多,問各幾何?“意思是:“有大夫、不更、簪裹、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,这5个人各出多少钱?“在这个问题中,若大夫出6钱,则上造出的钱数为.15.数列{}n a中,=−12+1−32(≥2,∈∗),且1=1,则数列的通项公式为=.16.已知数列{}n a满足1=1,且+1=++1,则=,数列{1}的前项和=.四、解答题(本大题共6小题,共70.0分。
南京市第二十九中学2022-2023学年高二下学期3月月考数学试题(解析版)
【解析】
【分析】对于选项 A:利用分步计数原理求解判断;对于选项 B:按 1,1,2 分组求解判断;
对于选项 C:根据每家企业至少分派 1 名医生,且医生甲必须到 A 企业,分 A 企业分 2 人和
1 人两类求解判断;对于选项 D:分 C 企业没有派医生去和派 1 名医生两类求解判断.
【详解】对于选项 A:所有不同分派方案共有 34 种,故错误;
【详解】2 至 8 这 7 个数中质数有 4 个,从 7 个数中取 2 个,共有 C72 21个结果,
取出
2
个数都为质数,有 C24
6
个结果,所以所求概率
P
6 21
2 7
.
故选:B
4. 已知 m 0 ,且152022 m 恰能被 14 整除,则 m 的取值可以是( )
A. 1
B. 12
C. 7
2023x1
C 1 1 2022 2023
2022x1
2022
2023x
2023
2022x
0
,
所以,1 x4 1 2x5 1 2023x 2022 1 2022x 2023 的展开式中含 x 的项为 6x,其系
数q 6.
依题意得 m n p C62 C36 C64 15 20 15 50 ,
3
2
2 3
6
2
2 3
3.
故选:C
2.
设
P(A|B)=P(B|A)=
1 2
,P(A)= 1 3
,则 P(B)等于(
)
A. 1
2
【答案】B 【解析】
1
B.
3
1
C.
4
1
D.
2023-2024学年重庆市高二下学期3月月考数学质量检测试题(含答案)
2023-2024学年重庆市高二下册3月月考数学质量检测试题一、单选题1.已知集合(){}{}21,60A x y ln x B x x x ==+=--≤,则A B = ()A .(]2,3-B .(]1,3-C .(]3,2-D .()1,3-【正确答案】B【分析】首先求出集合A 、B ,再利用集合的交运算即可求解.【详解】(){}{}{}1101A x y ln x x x x x ==+=+>=>-,{}()(){}{}26032023B x x x x x x x x =--≤=-+≤=-≤≤,所以A B ⋂{}(]131,3x x =-<≤=-,故选:B2.为对某组数据进行分析,建立了四种不同的模型进行拟合,现用回归分析原理,计算出四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,则拟合效果最好的回归模型对应的相关指数R 2的值是()A .0.97B .0.86C .0.65D .0.55【正确答案】A【分析】在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,即可求解.【详解】由题意,四种模型的相关指数R 2分别为0.97,0.86,0.65,0.55,根据在回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好,可得拟合效果最好的回归模型对应的相关指数R 2的值是0.97.故选:A .本题考查了用相关指数拟合模型效果的应用问题,其中解答中熟记回归分析中,模型的相关指数R 2越接近于1,其拟合效果就越好是解答的关键,属于基础题.3.已知26=22464+--,53=25434+--,71=27414+--,102=210424-+---,依照以上各式的规律,得到一般性的等式为()A .8=24(8)4n n n n -+---B .1(1)5=2(1)4(1)4n n n n +++++-+-C .4=24(1)4n n n n ++-+-D .15=2(1)4(5)4n n n n ++++-+-【正确答案】A【分析】由已知结合归纳推理即可求解【详解】解:从各个等式可以看出,等式右端均为2,左端为两个分式的和,且两个式子的分子之和恒等于8,分母则为相应分子减去4,设其中一个分子为n ,另一个分子必为8-n ,故8=24(8)4n n n n -+---满足;故选:A4.已知命题p :220x x +->,命题q :()(){|lg 23}x f x x =-,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B分别化简命题p 和命题q ,利用必要不充分条件的定义进行判断即可.【详解】命题p :220x x +->等价于1x >或<2x -;命题q :()(){}3{|lg 23}|230|2x f x x x x x x ⎧⎫=-=->=>⎨⎬⎩⎭则p 是q 的必要不充分条件故选:B5.函数22o )l g (1f x x x =-+的零点所在区间是()A .1184⎛⎫⎪⎝⎭,B .1142⎛⎫ ⎪⎝⎭,C .112⎛⎫⎪⎝⎭D .()12,【正确答案】C【分析】利用零点存在性定理即可求解.【详解】2111151log 08484f ⎛⎫=-+=-< ⎪⎝⎭211151log 04242f ⎛⎫=-+=-< ⎪⎝⎭21111log 1022f ⎛⎫=-+=-< ⎪⎝⎭()12110f =-=>()1102f f ⎛⎫⋅< ⎪⎝⎭,221log ()f x x x ∴=-+的零点所在区间是112⎛⎫ ⎪⎝⎭,故选:C6.某产品的广告费支出x 与销售额y (单位:万元)之间的关系如下表,由此得到y 与x 的线性回归方程为6y x a =+$$,由此可得:当广告支出5万元时,随机误差的效应(残差)为x24568y3040605070A .-10B .0C .10D .20【正确答案】C【分析】由已知求得,x y 的值,得到ˆa,求得线性回归方程,令5x =求得y 的值,由此可求解结论.【详解】由题意,根据表格中的数据,可得2456830406050705,5055x y ++++++++====,所以ˆ6506520ay x =-⨯=-⨯=,所以ˆ620y x =+,取5x =,得ˆ652050y=⨯+=,所以随机误差的效应(残差)为605010-=,故选C.本题主要考查了回归直线方程的求解,以及残差的求法,着重考查了推理与运算能力,属于基础题.7.设曲线f (x )=ax 2在点(2,4a )处的切线与直线4x -y +4=0垂直,则a =()A .2B .-116C .12D .-1【正确答案】B【分析】由已知结合导数的几何意义即可求解.【详解】f (x )=ax 2,则()2f x ax'=因为在点(2,4a )处的切线与直线4x -y +4=0垂直,所以()1244f a =-'=所以116a =-故选:B8.函数3222xxx y -=+在[]6,6-的图像大致为A .B .C .D .【正确答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x x y f x -==+,则332()2()()2222x xx x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ;36626(6)722f -⨯=≈+,排除选项A ,故选B .本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.9.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b a c<<C .b<c<aD .c<a<b【正确答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.10.若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【正确答案】D【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.11.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是()A .(,-∞B .(C .(,-∞D .(0,【正确答案】A先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可.【详解】()()212x g x x e ax '=+-,由题意可知()()2120xg x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数;1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>,()f x 为增函数;()f x 的最小值为12f ⎛⎫= ⎪⎝⎭a ≤故选:A.利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立;(2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.12.若正实数a ,b 满足22ln ln 222+≥+-b a b a ,则()A .124+=+a bB .122-=-a b C .2a b >D .240b a -<【正确答案】B【分析】利用基本不等式可得)222212b a +-≥(当且仅当222b a =时取等号),利用熟知的结论1ln x x -≥(当且仅当1x =时取等号)进行放缩可得到2222ln ln 2b a a b +-≥+,结合已知条件,得到22ln ln 222b a b a +=+-,考虑到各不等式取等号的条件,解得,a b 的值,然后逐一检验即可做出正确判断.【详解】先证明熟知的结论:1ln x x -≥恒成立,且当且仅当1x =时取等号.设()1ln f x x x =--,则()11f x x'=-,在(0,1)上,()0f x '<,()f x 单调递减;在(1,+∞)上,()0f x '>,()f x 单调递增.故()()11100min f x f ==--=,∴()1ln f x x x =-≥恒成立,且当且仅当1x =时取等号.由)22222212lnln ln 2b a a b +-≥=≥+,由已知22ln ln 222b a b a +≤+-,∴22ln ln 222b a b a +=+-,且2221b a ⎧=⎪=,解得12a b ⎧=⎪⎨⎪=⎩,经检验只有B 正确,故选:B.本题关键点在于利用基本不等式和熟知的结论1ln x x -≥恒成立,且当且仅当1x =时取等号进行研究,得到2222ln ln 2b a a b +-≥+,结合已知得到等式,一定要注意基本不等式和1ln x x -≥取等号的条件,才能列出方程组求得,a b 的值.二、填空题13.函数()f x =__________.【正确答案】(0,1)(1,]e ⋃【分析】利用对数、分式、根式的性质列不等式,求x 的范围,即得定义域.【详解】由函数解析式,知:01ln 0220x x x ⎧>⎪-≥⎨⎪-≠⎩,解得0x e <≤且1x ≠.故答案为.(0,1)(1,]e ⋃14.i 是复数单位,若()1243i z i +=+,z 的虚部为__________.【正确答案】1【分析】由复数除法求得z 后可得z ,从而得其虚部.【详解】由已知243(43)(12)4836212(12)(12)5i i i i i i z i i i i ++--+-====-++-,2z i =+,虚部为1.故1.15.已知函数()f x 定义域为R ,满足 ()(2)f x f x =-,且对任意121x x ≤<,均有()()12120x x f x f x ->-,则不等式(21)(3)0f x f x ---≥解集为______.【正确答案】4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭【分析】先求出函数()f x 关于直线1x =对称,函数()f x 在[)1,+∞上单调递增.在(],1-∞上单调递减,再解不等式|211||31|x x --≥--即得解.【详解】因为函数()f x 满足()(2)f x f x =-,所以函数()f x 关于直线1x =对称,因为对任意121x x ≤<,均有()()12120x x f x f x ->-成立,所以函数()f x 在[)1,+∞上单调递增.由对称性可知()f x 在(],1-∞上单调递减.因为()()2130f x f x ---≥,即()()213f x f x -≥-,所以|211||31|x x --≥--,即|22||2|x x -≥-,解得0x ≤或43x ≥.故4(,0],3⎡⎫-∞+∞⎪⎢⎣⎭方法点睛:对于函数问题的求解,通常要先研究函数的奇偶性、对称性、周期性和单调性等,再利用这些性质求解函数的问题.16.已知函数()()()202ln f x a x x x a =+>-有两个极值点1x 、()212x x x <,则()()12f x f x +的取值范围为_________.【正确答案】(),16ln 224-∞-【分析】确定函数()y f x =的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求()()12f x f x +的取值范围.【详解】函数()()22ln f x a x x x =-+的定义域为()0,∞+,()21222212x ax a f x a x x x -+⎛⎫'=-+= ⎪⎝⎭,依题意,方程22220x ax a -+=有两个不等的正根1x 、2x (其中12x x <),则241604a a a ∆=->⇒>,由韦达定理得120x x a +=>,120x x a =>,所以()()()()()22121212122ln 2f x f x a x x x x a x x +=++-+()()()2222121212122ln 222ln 222ln 2a x x x x x x a x x a a a a a a a a a ⎡⎤=++--+=+--=--⎣⎦,令()()22ln 24h a a a a a a =-->,则()2ln 2h a a a '=-,()()2122a h a a a-''=-=,当4a >时,()0h a ''<,则函数()y h a '=在()4,+∞上单调递减,则()()44ln 280h a h '<=-<,所以,函数()y h a =在()4,+∞上单调递减,所以,()()416ln 224h a h <=-.因此,()()12f x f x +的取值范围是(),16ln 224-∞-.故答案为.(),16ln 224-∞-本题考查了函数极值点问题,考查了函数的单调性、最值,将()()12f x f x +的取值范围转化为以a 为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.三、解答题17.已知命题:,p x R ∀∈240++≤mx x m .(1)若p 为真命题,求实数m 的取值范围;(2)命题[]:2,8q x ∃∈,使得2log 1m x ≥,当p q ⌝∧⌝为假命题且q ⌝为真命题时,求实数m 的取值范围.【正确答案】(1)14m ≤-;(2)14m ≤-.(1)由题得0m <且21160∆=-≤m ,解不等式即得m 的取值范围;(2)先转化为[]2,8x ∃∈,21log m x ≥,再求21log x的最小值得m 的范围,因为p q ⌝∧⌝为假命题且q ⌝为真命题,所以p 真q 假,从而得到关于m 的不等式组,解不等式组即得解.【详解】(1)∵2,40x R mx x m ∀∈++≤,0m ∴<且21160∆=-≤m ,解得14m ≤-p ∴为真命题时,14m ≤-.(2)[2,8]∃∈x ,21log m x ≥,又[2,8]x ∈时,211[,1]log 3x ∈,13m ∴≥∵p q ⌝∧⌝为假命题且q ⌝为真命题∴当p真q假,有1413mm⎧≤-⎪⎪⎨⎪<⎪⎩解得14m≤-【点晴】方法点晴:复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.18.2020年12月29日至30日,全国扶贫开发工作会议在北京召开,会议指出经过各方面的共同努力,中国现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,贫困村全部退出,脱贫攻坚目标任务如期全面完成.2021年是“十四五”规划开局之年,是巩固拓展脱贫攻坚成果、实现同乡村振兴有效衔接的起步之年.要按照中共中央国务院新决策新部署,把巩固拓展脱贫攻坚成果摆在头等重要位置来抓,推动脱贫攻坚政策举措和工作体系逐步向乡村振兴平稳过渡,用乡村振兴巩固拓展脱贫攻坚成果,坚决守住脱贫攻坚胜利果实,确保不出现规模性返贫,确保实现同乡村振兴有效衔接,确保乡村振兴有序推进.北方某刚脱贫的贫困地区积极响应,根据本地区土地贫瘠,沙地较多的特点,准备大面积种植一种叫做欧李的奇特的沙漠果树,进行了广泛的宣传.经过一段时间的宣传以后,为了解本地区广大农民对引进这种沙漠水果的理解程度、种植态度及思想观念的转变情况,某机构进行了调查研究,该机构随机在该地区相关人群中抽取了600人做调查,其中45岁及以下的350人中有200人认为这种水果适合本地区,赞成种植,45岁以上的人中赞成种植的占2 5.(1)完成如下的2×2列联表,并回答能否有99.5%的把握认为“赞成种植与年龄有关”?赞成种植不赞成种植合计45岁及以下45岁以上合计(2)为了解45岁以上的人的想法态度,需要在已抽取45岁以上的人中按种植态度(是否赞成种植)采用分层抽样的方法选取5位45岁以上的人做调查,再从选取的5人中随机抽取2人做深度调查,求2人中恰有1人“不赞成种植”的概率.附表:()20P K k ≥0.150.100.050.0250.0100.0050.0010k 2.072 2.706 3.841 5.0246.6357.87910.828参考公式为:()()()()()22n ad bc K a b c d a c b d -=++++【正确答案】(1)填表见解析;有99.5%的把握认为“是否赞成种植与年龄有关”;(2)35.【分析】(1)根据题中数据,直接完善列联表,再由公式计算2K ,结合临界值表,即可得出结论;(2)先由题中条件,确定被抽取的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ;用列举法写出总的基本事件,以及满足“恰有1人不赞成种植”的基本事件,基本事件的个数比即为所求概率.【详解】(1)由题意可得2×2列联表:赞成种植不赞成种植合计45岁及以下20015035045岁以上100150250合计30030060022600(200150150100)300300350250K ⨯⨯-⨯=⨯⨯⨯12017.1437.8797=≈>经查表,得()27.8790.005P K >≈,所以有99.5%的把握认为“是否赞成种植与年龄有关”.(2)在45岁以上的人中,赞成种植和不赞成种植的人数比为2:3,所以被抽取到的5人中,“赞成种植的”有2人,记为a ,b ,“不赞成种植的”有3人,记为C ,D ,E ,从被选取到的5人中再从中抽取2人,共有如下抽取方法:(,)a b ,(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,(,)C D ,(,)C E ,(,)D E ,共有10种不同的结果,两人中恰好有1人为“不赞成种植的”包含了(,)a C ,(,)a D ,(,)a E ,(,)b C ,(,)b D ,(,)b E ,共有6种结果.所以所求概率63105P ==.方法点睛:求古典概型的概率的常用方法:(1)古典概型所包含的基本事件个数较少时,可用列举法列举出总的基本事件个数,以及满足条件的基本事件个数,基本事件个数比即为所求概率;(2)古典概型所包含的基本事件个数较多时,可根据排列组合数的计算,求出总的基本事件个数,以及满足条件的基本事件个数,进而求出所求概率.19.已知三次函数32()41f x x ax x =+++(a 为常数).(1)当1a =时,求函数()f x 在2x =处的切线方程;(2)若a<0,讨论函数()f x 在()0,x ∈+∞的单调性.【正确答案】(1)20190x y --=;(2)答案见解析.【分析】(1)对函数求导,由导数的几何意义可得直线的斜率,再由直线的点斜式方程即可得解;(2)对函数求导,结合二次函数的性质,按照0a -≤<、a <-()0f x '>、()0f x '<的解集即可得解.【详解】(1)当1a =时,函数32()41f x x x x =+++,2()324f x x x '=++Q ,(2)20f '∴=即切线的斜率20k =,(2)21f =Q ,∴切线方程为2120(2)y x -=-即20190x y --=;(2)导函数2()324f x x ax '=++的对称轴为03a x =->,①当24480a ∆=-≤即0a -≤<时,()0f x '≥,()f x 在(0,)+∞上单调递增;②当24480a ∆=->即a <-(0)40f '=>,令2()3240f x x ax '=++=,则13a x -=,23a x -=,因为120x x <<,所以当0x <<或x >时,()0f x '>;x <<时,()0f x '<;所以()f x在0,3a ⎛⎫- ⎪ ⎪⎝⎭,,3a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增;()f x 在33a a a a ⎛---+ ⎪ ⎪⎝⎭上单调递减.本题考查了导数几何意义的应用及利用导数研究函数的单调性,考查了运算求解能力与逻辑推理能力,属于中档题.20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年生产的手机当年能全部销售完.(1)求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩;(2)2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.【分析】(1)根据给定的函数模型,直接计算作答.(2)利用(1)中函数,借助二次函数最值及均值不等式求出最大值,再比较大小作答.【详解】(1)依题意,销售收入700x 万元,固定成本250万元,另投入成本210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩万元,因此210600250,040()700()25010000()9200,40x x x W x x R x x x x ⎧-+-<<⎪=--=⎨-++≥⎪⎩,所以2020年的利润()W x (万元)关于年产量x (千部)的函数关系式是210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩.(2)由(1)知,当040x <<时,2()10(30)87508750W x x =--+≤,当且仅当30x =时取等号,当40x ≥时,10000()()920092009000W x x x =-++≤-+=,当且仅当10000x x =,即100x =时取等号,而87509000<,因此当100x =时,max ()9000W x =,所以2020年产量为100千部时,企业所获利润最大,最大利润是9000万元.21.已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【正确答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可.(2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e x f x x x =+-,()e 21x f x x ='+-,由于()''e 20x f x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减,当()0,x ∈+∞时,()()0,f x f x '>单调递增.(2)[方法一]【最优解】:分离参数由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥,①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----,记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-,令()()21e 102x h x x x x =---≥,则()e 1x h x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102x x x ---恒成立,故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减;因此,()()2max 7e 24g x g -⎡⎤==⎣⎦,综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭.[方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x x f x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e 74244e -+++⇔xx x x ,令()223e 7424()(0)e -+++=≥x x x x h x x ,则()()222313e 2e 92()e -+--=='x x x x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=x x x x ()2(2)2e 9e ⎡⎤--+-⎣⎦x x x x ,所以当29e 0,2⎡⎤-∈⎢⎣⎦x 时,()0,()h x h x <'单调递减;当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增;当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e 1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2x g x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--()()()2112342e 212e 22x x x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x x g x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21x g x x x -=+≤+恒成立,所以12a ≥时,满足题意.综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!22.如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【正确答案】(1)2cos ([0,])4πρθθ=∈,32sin ([])44ππρθθ=∈,32cos ([,])4πρθθπ=-∈,(2))6π,)3π,2)3π,5)6π.【分析】(1)将三个过原点的圆方程列出,注意题中要求的是弧,所以要注意的方程中θ的取值范围.(2)根据条件ρ=P 点的极坐标.【详解】(1)由题意得,这三个圆的直径都是2,并且都过原点.1:2cos ([0,4M πρθθ=∈,23:2cos()2sin ([,])244M πππρθθθ=-=∈,33:2cos()2cos ([,])4M πρθπθθπ=-=-∈.(2)解方程2cos [0,])4πθθ=∈得6πθ=,此时P 的极坐标为)6π解方程32sin [,])44ππθθ=∈得3πθ=或23πθ=,此时P 的极坐标为3π或2)3π解方程32cos [,])4πθθπ-=∈得56πθ=,此时P 的极坐标为5)6π故P 的极坐标为)6π,)3π,2)3π,5)6π.此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大,属于中档题.23.设函数()|21||4|f x x x =+--.(1)求不等式()2f x >的解集;(2)求函数()f x 的最小值.【正确答案】(1){7x x ∈<-R 或53x ⎫>⎬⎭;(2)92-.【分析】(1)将绝对值函数化为分段函数,用不同的区间对应的解析式大于2,分别解出不等式求其并集即可.(2)由分段函数求其值域即可得到最小值.【详解】1521()33425(4)x x f x x x x x ⎧⎛⎫--<- ⎪⎪⎝⎭⎪⎪⎛⎫=--≤≤⎨ ⎪⎝⎭⎪⎪+>⎪⎩⑴①由5212x x -->⎧⎪⎨<-⎪⎩解得7<-x ;②332142x x ->⎧⎪⎨-≤≤⎪⎩解得543x <≤;③524x x +>⎧⎨>⎩解得>4x ;综上可知不等式的解集为{|7x x ∈<-R 或53x ⎫>⎬⎭.⑵由(1)知,当12x <-时,()195522f x x =-->-=-;当142x -≤≤时,()33f x x =-,()992f x -≤≤;当>4x 时,()59f x x =+>;综上x ∈R 时,()92f x ≥-,所以min 9()2f x =-故函数()f x 的最小值为92-.。
重庆市第一中学校2022-2023学年高二下学期3月月考数学试题
12023年重庆一中高2024届高二下学期3月月考数学试题卷一、单选题:本题共8小题,每小题5分,共40分.1. 若255C C n =,则n =( )A. 2B. 2或3C. 3D. 42. 已知一组样本数据1x ,2x ,3x ,4x ,5x 的平均数x 为2,则51(2)ii x =−=∑( )A. 0B. 2C. 2.5D. 13. 若()()()()112110121121111R x a a x a x a x x −=+−+−++−∈,,则01211a a a a ++++=( )A. 1B. 1131−C. 113D. 1131+4. 某校为了了解同学们参加社会实践活动的意向,决定利用分层抽样的方法从高一、高二、高三学生中选取200人进行调查,已知该校高一年级学生有1300人,高二年级学生有1200人,高三年级学生有1500人,则抽取的学生中,高三年级有( ) A. 50人B. 60人C. 65人D. 75人5. 已知正项数列{}n a 中,22111,1n n a a a +=−=,则数列11nn a a +⎧⎫⎨⎬+⎩⎭的前120项和为( )A. 4950B. 10C. 9D.149506. 某班级周三上午共有5节课,只能安排语文、数学、英语、体育和物理.数学必须安排,且连续上两节,但不能同时安排在第二三节,除数学外其他学科最多只能安排一节,体育不能安排在第一节,则不同的排课方式共有( ) A. 48种B. 60种C. 72种D. 96种7. 将甲、乙、丙、丁4名志愿者随机派往①,②,③三个社区进行核酸信息采集,每个社区至少派1名志愿者,事件A =“志愿者甲派往①社区”; 事件B= “志愿者乙派往①社区”; 事件C= “志愿者乙派往②社区”,则( ) A. 事件A 、B 同时发生的概率为19 B. 事件A 发生的条件下B 发生的概率为16C. 事件A 与B 相互独立D. 事件A 与C 为互斥事件8. 已知O 为坐标原点,P 是椭圆()2222:10x y E a b a b+=>>上位于x 轴上方的点,F 为右焦点.延长PO 、PF 交椭圆E 于Q 、R 两点,QF FR ⊥,4QF FR =,则椭圆E 的离心率为( )A.33B.22 C.53D.104的2二、多选题:本题共4小题,每小题5分,共20分.9. 某科技学校组织全体学生参加了主题为“创意之匠心,技能动天下”的文创大赛,随机抽取了400名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组的取值区间均为左闭右开),画出频率分布直方图(如图),下列说法正确的是( )A. 图中x 的值为0.020B. 在被抽取的学生中,成绩在区间[)70,80内的学生有60人C. 估计全校学生成绩的中位数约为87.7D. 估计全校学生成绩的众数为95 10. 对于函数()22ln xf x x=,下列说法正确的有( ) A. ()f x 的单调递减区间为()1,+∞ B. ()f x 在e x =1eC. ()f x 只有一个零点D. ()3πf f>11. 已知编号为1,2,3的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个1号球,两个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则下列说法正确的是( ) A. 在第一次抽到2号球的条件下,第二次抽到1号球的概率为12 B. 第二次抽到3号球的概率为1148C. 如果第二次抽到的是3号球,则它来自1号盒子的概率最大D. 如果将5个不同的小球放入这三个盒子内,每个盒子至少放1个,则不同的放法有180种12. 冬春季节,人们容易感冒发热.若发生群体性发热,则会影响到人们的身体健康,干扰正常工作,有专业机构认为某地区在一段时间内没有发生大规模群体发热现象的标志为“连续10天,该地区每天新增疑似发热病例不超过7人”.下列连续10天疑似发热病例人数的统计特征数中,能判定该地没有发生群体性发热的为( ) A. 总体平均数为23 B. 总体平均数为4,总体方差为32C. 总体平均数为3,中位数为4D. 总体平均数为2,第65百分位数为5三、填空题:本题共4小题,每小题5分,共20分.13. 在nx x ⎛ ⎝的展开式中,第3项和第4项的二项式系数最大,则展开式中含2x 项的系数为_____.314. 透明袋子中装有黑球1个、白球3个,这些球除了颜色外无其他差别. 从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,求前后两次摸出的球都是白球的概率为___________. 15. 数论领域的四平方和定理最早由欧拉提出,后被拉格朗日等数学家证明.四平方和定理的内容是:任意正整数都可以表示为不超过四个自然数的平方和,例如正整数222222221231112220=+++=+++.设222236a b c d =+++,其中a b c d ,,,均为自然数,则满足条件的有序数组(),,,a b c d 的个数是___________.16. 已知数列{}n a 的前n 项和为n S ,满足3n n S k a =⋅−(k 是常数,1k >)10122a =,且23420222048a a a a ++++=,则23420221111a a a a ++++=___________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17. (本小题满分10分)在一个选拔项目中,每个选手都需要进行4轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第三轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率;18. (本小题满分12分)在数列{}n a 中,*1111,20,N 3n n n n a a a a a n ++=+−=∈. (1)求证:1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式; (2)满足不等式()*122311N 8k k a a a a a a k ++++<∈成立的k 的最大值.的419. (本小题满分12分)随机抽取100名男学生,测得他们的身高(单位:cm ),按照区间[)160165,,[)165170,,[)170175,,[)175,180,[]180,185分组,得到样本身高的频率分布直方图如图所示:(1)求身高在170cm 及以上的学生人数; (2)估计该校100名学生身高75%分位数.(3)据统计,身高在[)170175,,[)175,180,[]180,185时,体重超过70kg 的概率分别为16、13、12.现在从身高在[170,185]的学生中任选一个学生,估计其体重超过70kg 的概率.20. (本小题满分12分) 在二项式4)2n x x的展开式中,前三项的系数依次为M ,P ,N ,且满足2P M N =+.(1)若直线l :0ax by c的系数a ,b ,c (a b c >>)为展开式中所有无理项系数,求不同直线l 的条数;(2)求展开式中系数最大的项.21. (本小题满分12分) 已知C :22221x y a b+=7,离心率为12,过椭圆左焦点F 作不与x 轴重合的直线与椭圆C 相交于M 、N 两点,直线m 的方程为:2x a =−,过点M 作ME 垂直于直线m 交直线m 于点E .(1)求椭圆C 标准方程:(2)①若线段EN 必过定点P ,求定点P 的坐标; ②点O 为坐标原点,求OEN 面积的最大值.22. (本小题满分12分) 已知函数()xf x xe =(其中e 为自然对数的底数).(1)求函数()f x 的最小值;(2)求证:()1ln 2xf x e x >+−.的5。
湖北省天门市2023-2024学年高二下学期3月月考数学试题含答案
湖北省天门2023-2024学年度高二下学期三月月考数学试题(答案在最后)考试内容:选修一第一章——选修三第六章6.1考试时间:2024年3月31日出题人:审题人:一、单选题(共40分)1.某圆锥的侧面积为16π,其侧面展开图为一个半圆,则该圆锥的底面半径长为()A.2B.4C. D.【答案】C 【解析】【分析】设圆锥的母线长为l ,底面半径为r ,由题意得到2ππr l =求解.【详解】设圆锥的母线长为l ,底面半径为r ,即侧面展开图的半径为l ,侧面展开图的弧长为πl .又圆锥的底面周长为2πr ,所以2ππr l =,即圆锥的母线长2l r =.所以圆锥的侧面积为2π2π16πrl r ==,解得r =故选:C.2.若直线1l :2(1)40x m y +++=与直线2l :320mx y +-=平行,则m 的值为()A.2B.3- C.2或3- D.2-或3-【答案】C 【解析】【分析】依题意可得23(1)0m m ⨯-+=,求出m 的值,再检验即可.【详解】直线1l :2(1)40x m y +++=与直线2l :320mx y +-=平行,则23(1)0m m ⨯-+=,解得3m =-或2m =,当3m =-时,此时直线1l :2240x y -+=与直线2l :3320x y -+-=平行,当2m =时,此时直线1l :2340x y ++=与直线2l :2320x y +-=平行,故3m =-或 2.m =故选:C3.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a ++⋅⋅⋅+=()A.12B.10C.5D.32log 5【答案】B 【解析】【分析】利用等比数列的性质,结合对数的运算法则即可得解.【详解】因为{}n a 是各项均为正数的等比数列,564718a a a a +=,所以564756218a a a a a a +==,即569a a =,则11029569a a a a a a ==== 记3132310log log log S a a a =++⋅⋅⋅+,则3103931log log log S a a a =+⋅+⋅⋅+,两式相加得()()()3110329310132log log log 10log 920S a a a a a a =++⋅⋅⋅+=⨯=,所以10S =,即3132310log log log 10a a a ++⋅⋅⋅+=.故选:B.4.已知函数()()()ln 2ln 4f x x x =-+-,则()f x 的单调递增区间为()A.()2,3 B.()3,4 C.(),3-∞ D.()3,+∞【答案】A 【解析】【分析】根据对数真数大于零可构造不等式组求得函数定义域;利用导数可求得函数单调递增区间.【详解】由2040x x ->⎧⎨->⎩得:24x <<,即()f x 的定义域为()2,4;()()()()23112424x f x x x x x -'=-=---- ,∴当()2,3x ∈时,()0f x ¢>;当()3,4x ∈时,()0f x '<;()f x \的单调递增区间为()2,3.故选:A .5.已知函数()2xf x =,则函数()f x 的图象在点()()0,0f 处的切线方程为()A.10x y --=B.10x y -+=C.ln 210x y ⋅--=D.ln 210x y ⋅-+=【答案】D【分析】求出函数()f x 的导数,再利用导数的几何意义求出切线方程.【详解】函数()2xf x =,求导得()2ln 2x fx '=,则(0)ln 2f '=,而(0)1f =,所以所求切线方程为1ln 2(0)y x -=⋅-,即ln 210x y ⋅-+=.故选:D6.在平面直角坐标系xOy 中,点()()1,0,2,3A B -,向量OC mOA nOB =+,且40m n --=.若P 为椭圆2217y x +=上一点,则PC 的最小值为()A.B.C.D.【答案】A 【解析】【分析】根据给定条件,求出点C 的轨迹,再借助三角代换及点到直线距离公式求出最小值.【详解】设点(,)C x y ,由()()1,0,2,3A B -及OC mOA nOB =+,得(,)(2,3)x y m n n =-+,即23x m ny n=-+⎧⎨=⎩,而40m n --=,消去,m n 得:3120x y -+=,设椭圆2217y x +=上的点(cos ),R P θθθ∈,则点P 到直线3120x y -+=的距离d =,其中锐角ϕ由tanϕ=确定,当sin()1θϕ+=时,min d =PC d ≥ ,所以PC 的故选:A【点睛】思路点睛:求出椭圆上的点与其相离的直线上点的距离最小值,可转化为求椭圆上的点到直线距离有最小值解决.7.5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为()A.120B.324C.720D.1280【分析】利用分步乘法计数原理计算即可.【详解】第一天可以排5个人中的任意一个,有5种排法;第二天可以排另外4个人中任意一个,有4种排法;第三天同上,有4种排法;第四天同上,有4种排法;第五天同上,有4种排法.根据分步乘法计数原理得所有的排法总数为544441280⨯⨯⨯⨯=.故选:D .8.函数32()(1)f x x a x x b =+--+为R 上的奇函数,过点1,12P ⎛⎫- ⎪⎝⎭作曲线()y f x =的切线,可作切线条数为()A.1B.2C.3D.不确定【答案】A 【解析】【分析】根据奇函数确定3()f x x x =-,求导得到导函数,设出切点,根据切线方程公式计算01x =-,计算切线得到答案.【详解】()3232()(1)(1)f x x a x x b f x x a x x b -=-+-+=-=--++--,故1a =,0b =,3()f x x x =-,2()31x f x '=-,设切点为()00,Mxy ,则2000012()311y f x x x '-=+=-,且30000()f x x x y -==,整理得到()()20001410x x x +-+=,解得01x =-,(1)2f '-=,故切线方程为22y x =+,故选:A二、多选题(共18分)9.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有()A.0d < B.70a > C.{}n S 中5S 最大D.49a a <【分析】利用等差数列性质结合给定条件可得60a >,670a a +<,再逐项分析判断作答.【详解】由()111116111102a a S a +==>,得60a >,又()()112126712602a a S a a +==+<,得,670a a +<,所以60a >,70a <,数列{}n a 是递减数列,其前6项为正,从第7项起均为负数,等差数列{}n a ,公差0d <,A 选项正确;70a <,B 选项错误;前6项和最大,C 选项错误;由40a >,90a <,有4949670a a a a a a -=+=+<,则49a a <,D 选项正确.故选:AD.10.已知函数()()322R x x a a f x x =-++∈的图像为曲线C ,下列说法正确的有()A.R a ∀∈,()f x 都有两个极值点B.R a ∀∈,()f x 都有零点C.R a ∀∈,曲线C 都有对称中心D.R a ∃∈,使得曲线C 有对称轴【答案】ABC 【解析】【分析】根据函数极值的定义、零点的定义,结合函数的对称性的性质逐一判断即可.【详解】A :()()()()3222341311x x x a f x x x x x f x '=-++⇒=-+=--,当1x >时,()()0,f x f x '>单调递增,当113x <<时,()()0,f x f x '<单调递减,当13x <时,()()0,f x f x '>单调递增,因此13x =是函数的极大值点,1x =是函数的极小值点,因此本选项正确;B :当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞,而函数()f x 是连续不断的曲线,所以一定存在0R x ∈,使得()0f x =,因此本选项正确;C :假设曲线C 的对称中心为(),b c ,则有()()()()()()32322222,f b x f b x c b x b x b x a b x b x b x a c ++-=⇒+-+++++---+-+=化简,得()232322b x c a b b b -=---+,因为x ∈R ,所以有322320320227b b c a b b b c a ⎧=⎪-=⎧⎪⇒⎨⎨---+=⎩⎪-=⎪⎩,因此给定a 一个实数,一定存在唯一的一个实数c 与之对应,因此假设成立,所以本选项说法正确;D :由上可知当x →+∞时,()f x →+∞,当x →-∞时,()f x →-∞,所以该函数不可能是关于直线对称,因此本选项说法不正确,故选:ABC11.已知正方体1111ABCD A B C D -的棱长为1,下列四个结论中正确的是()A.直线1B C 与直线1AD 所成的角为90B.直线1B C 与平面1ACD 所成角的余弦值为33C.1B D ⊥平面1ACD D.点1B 到平面1ACD 的距离为32【答案】ABC 【解析】【分析】如图建立空间直角坐标系,求出1B C 和1AD uuu r的坐标,由110AD B C ⋅= 可判断A ;证明10AC B D ⋅= ,110AD B D ⋅=,再由线面垂直的判定定理可判断C ;计算11cos ,B D B C 的值可得线面角的正弦值,再求出夹角的余弦值可判断B ;利用向量求出点A 到平面11D B C 的距离可判断D.【详解】如图以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,()0,1,0C ,()10,0,1D ,()11,1,1B ,对于A :()11,0,1B C =-- ,()11,0,1AD =-,因为()()()111100110B C AD ⋅=-⨯-+⨯+-⨯= ,所以11AD B C ⊥ ,即11B C AD ⊥,直线1B C 与直线1AD 所成的角为90 ,故选项A 正确;对于C :因为()1,1,0AC =- ,()11,0,1AD =- ,()11,1,1B D =---,所以11100AC B D ⋅=-+= ,111010AD B D ⋅=+-= ,所以1AC B D ⊥ ,11AD B D ⊥uuur uuu r ,因为1AC AD A =I ,1,AC AD ⊂平面A 1,所以1B D ⊥平面1ACD ,故选项C 正确;对于B :由选项C 知:1B D ⊥平面1ACD ,所以平面1ACD 的一个法向量()11,1,1B D =---,因为()11,0,1B C =-- ,所以111111cos ,B D B C B D B C B D B C⋅=== 即直线1B C 与平面1ACD 所成,所以直线1B C 与平面1ACD33=,故选项B 正确;对于D :因为()11,0,1B C =-- ,平面1ACD 的一个法向量()11,1,1B D =---,所以点1B 到平面1ACD的距离为1113B D B C d B D⋅=== ,故选项D 不正确.故选:ABC.三、填空题(共15分)12.若抛物线22y px =-过点()1,2-,则该抛物线的焦点为________.【答案】()1,0-【解析】【分析】根据题意,代入求得2p =,结合抛物线的几何性质,即可求解.【详解】解:将()1,2-代入抛物线方程22y px =-,可得2p =,即24y x =-,所以抛物线24y x =-的焦点为()1,0-.故答案为:()1,0-.13.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则实数λ的值是_____.【答案】-2【解析】【分析】由已知推得1q ≠,继而结合等比数列的前n 项和的特点及已知即可求解.【详解】等比数列{}n a 中,由122n n S λ+=+可得122n n S λ=+,则11122a S λ==+,若公比1q =,则2211224,02S a λλλ=+==+∴=,则13323S a =≠,故1q ≠,则等比数列的前n 项和()1111111n nn a q a S qa q a a--=⋅--=-,(1q ≠),故令112λ=-,即2λ=-,故答案为:2-14.若e e e e ()cos 22x x x xf x x x ---+=+,则不等式(sin )(cos )0f x f x +>的解集是________.【答案】π3π|2π2π,44x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z 【解析】【分析】根据奇偶性的定义和导数分析可知()f x 在[]1,1-内单调递增,且为奇函数,进而可得sin cos x x >-,利用辅助角公式结合正弦函数运算求解.【详解】取()f x 的定义域为[]1,1-,关于原点对称,且()()()e e e e e e e e ()cos cos sin 2222x x x x x x x xf x x x x x f x -----+-+-=-+-=--=-,所以()f x 为定义在[]1,1-上的奇函数,因为()e e e e e e e e ()cos sin sin cos e e cos 2222x x x x x x x xx x f x x x x x x ------+-+'=-++=+,若[]1,1x ∈-,则e 0,e cos 00,x x x ->>>,可得()()e e cos 0x xf x x -'=+>,可知()f x 在[]1,1-内单调递增,对于不等式(sin )(cos )0f x f x +>,则(sin )(cos )(cos )f x f x f x >-=-,且[][]sin 1,1,cos 1,1x x ∈--∈-,可得sin cos x x >-,整理得πsin cos 04x x x ⎛⎫+=+> ⎪⎝⎭,令π2π2ππ,4k x k k <+<+∈Z ,解得π3π2π2π,44k x k k -<<+∈Z ,所以不等式(sin )(cos )0f x f x +>的解集是π3π|2π2π,44x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z .故答案为:π3π|2π2π,44x k x k k ⎧⎫-<<+∈⎨⎬⎩⎭Z .四、解答题(共77分)15.已知函数()ln 1f x x ax =++.(1)当1a =-时,求()f x 的最大值.(2)讨论函数()f x 的单调性.【答案】(1)0(2)答案见解析【解析】【分析】(1)利用导数求解函数最值即可.(2)含参讨论函数单调性即可.【小问1详解】当1a =-时,()ln 1f x x x =-+,由0x >,所以()111x f x x x-=-=',当01x <<时,()0f x '>,所以函数()f x 在()0,1上单调递增;当1x >时,()0f x '<,所以函数()f x 在()1,∞+上单调递减;故()()max 1ln1110f x f ==-+=;【小问2详解】定义域为(0,)+∞,()1f x a x'=+,当0a ≥时,()10f x a x+'=>,()f x 在(0,)+∞上递增;当a<0时,令()10f x a x +'=>,解得10,x a ⎛⎫∈- ⎪⎝⎭,令()10f x a x +'=<,解得1,x a ∞⎛⎫∈-+ ⎪⎝⎭.于是()f x 在10,a ⎛⎫-⎪⎝⎭上单调递增;在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减.16.如图,在底面为菱形的直四棱柱1111ABCD A B C D -中,12π,23BAD AA AB ∠===,,,E F G 分别是111,,BB CC DD 的中点.(1)求证:1A E GC ∥;(2)求平面1A EF 与平面ABCD 所成夹角的大小.【答案】(1)证明见解析(2)π6【解析】【分析】(1)建立空间直角坐标系,利用向量的坐标运算即可求解,(2)根据法向量的夹角即可求解.【小问1详解】取BC 中点H ,连接AH因为底面ABCD 为菱形,2π3BAD ∠=,所以AH AD ⊥以A 为原点,1,,AH AD AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()()()10,0,2,3,1,1,0,2,1A E G -,()()3,1,0,3,1,1C F ))13,1,1,3,1,1A E GC =--=-- 1A E GC∴ ∥1A E GC∴∥【小问2详解】设平面1A EF 的法向量为(),,n x y z =又()0,2,0EF = 所以100n A E n EF ⎧⋅=⎪⎨⋅=⎪⎩ 即3020y z y --==⎪⎩取1x =,则0,3y z ==(3n = ()10,0,2AA = 为平面ABCD 的法向量,设平面1A EF 与平面ABCD 的夹角为θ,则11233cos 222AA n AA nθ⋅===⨯ π6θ∴=∴平面1A EF 与平面ABCD 的夹角为π617.已知数列{}n a 的前n 项和n S 满足()1122n n S n +=-+.(1)求{}n a 的通项公式;(2)求数列12·1n n a n ++⎧⎫⎨⎬+⎩⎭的前n 项和n T .【答案】(1)2nn a n =⨯(2)()2124n n T n +=+⨯-【解析】【分析】(1)由已知结合数列的和与项的递推关系即可求解;(2)先求数列121n n a n ++⎧⎫⎨⎬+⎩⎭的通项公式,然后利用错位相减求和即可求解.【小问1详解】当1n =时,112a S ==,当2n ≥时,由()1122n n S n +=-+,得()1222n n S n -=-+,则()()1112222n n n n n n a S S n n n +-=-=---=⨯,因为11212a ==⨯,所以2n n a n =⨯;【小问2详解】由(1)可知,()112·221n n n a n n +++=+⨯+,则()234132425222n n T n +=⨯+⨯+⨯+⋯++⨯,则()3452232425222n n T n +=⨯+⨯+⨯+⋯++⨯,则()234123222222n n n T n ++-=⨯+++⋯+-+⨯()()12812122212n n n -+-=+-+⨯-()22122822n n n ++=+--+⨯()2412n n +=-+⨯,所以()2124n n T n +=+⨯-.18.在平面直角坐标系xOy 中,已知椭圆2222:1x y C a b +=(0a b >>过点(2,1)P,且离心率2e =.(1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A 、B 两点,求PAB 的面积的最大值.【答案】(1)22182x y +=(2)2【解析】【分析】(1)利用222c e a =,可得22234a b a -=,再将点P 坐标代入方程,解方程组求得,a b 从而可得椭圆的方程;(2)设直线l 的方程为1,2y x m =+,代入椭圆方程中整理得222240x mx m ++-=,借助根的判别式可得||2m <,结合根与系数的关系可得AB ==直线的距离公式可求出点P 到直线的距离d ,再利用三角形面积公式1||2PAB S d AB =⋅ 和基本不等式进行求解,即可解决问题.【小问1详解】因为22222234c a b e a a -===,所以224a b =,①因为椭圆C 过点(2,1)P ,所以22411a b +=,②由①②解得228,2a b ==,所以椭圆的方程为22182x y +=.【小问2详解】设直线l 的方程为()()11221,,,,2y x m A x y B x y =+,联立2212182y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得222240x mx m ++-=,所以212122,24x x m x x m +=-=-,又直线l 与椭圆相交,所以2248160m m =-+> ,解得||2m <,则AB ==P 到直线l的距离d ==,所以221142222PAB m m S d AB +-=⋅==≤= ,当且仅当22m =,即m =时,PAB 的面积取得最大值为2.19.已知函数()2e e x x f x a x =-+,其中0a >.(1)当1a =时,求函数()f x 在0x =处的切线方程;(2)讨论函数()f x 的极值点的个数;(3)若对任意的0a >,关于x 的方程()f x m =仅有一个实数根,求实数m 的取值范围.【答案】(1)20x y -=(2)见解析(3)3ln 2,2⎡⎫-++∞⎪⎢⎣⎭【解析】【分析】(1)求导得斜率,再利用点斜式求直线方程;(2)求导,讨论判别式与0的关系得单调性即可求解极值点个数;(3)构造新函数()2ee x x g x a x m =-+-,判单调性,得到()()120,ln 2,ln 2,x x ∞∈∈+,结合()10g x <或()20g x >即可求解.【小问1详解】当1a =时,()()22e e ,2e e 1x x x x f x x f x '=-+=-+,()02f '=,()00f =,所以函数()f x 在0x =处的切线方程为()020y x -=-,即20x y -=.【小问2详解】()22e e 1x x f x a '=-+,令()0,e x f x t ='=,得2210at t -+=,则18a ∆=-.当18a ≥时,0∆≤,此时()0f x '≥,故函数()f x 在(),∞∞-+上单调递增,没有极值点;当108a <<时,0∆>,令()0f x '=,则1e 4x a =,则1211ln ln 44x x a a-+==,则当()1,x x ∞∈-时,()0f x '>,当()12,x x x ∈时,()0f x '<,当()2,x x ∞∈+时,()0f x '>,则()f x 在()()12,,,x x ∞∞-+单调递增,在()12,x x 单调递减,此时函数()f x 有两个极值点.综上所述,当18a ≥时,函数()f x 没有极值点;当108a <<时,函数()f x 有两个极值点.【小问3详解】依题意,2e e x x a x m -+=,记()2e e x x g x a x m =-+-,()()g x f x '='.(i )由(2)知当18a ≥时,()0g x '≥,则函数()g x 在(),∞∞-+上单调递增;可知当x →-∞时,()g x ∞→-,当x →+∞时,()g x ∞→+,故当18a ≥时,函数()g x 恰有一个零点,方程()f x m =仅有一个实数根,此时R m ∈.(ii )当108a <<时,()g x 在()1,x ∞-上单调递增,在()12,x x 上单调递减,在()2,x ∞+单调递增,()()112222122e e 12e e 10x x x x g x a g x a ''=-+==-+=,则121222e 1e 12e 2ex x x x a --==,所以()()1112111e 1ee 22x x x g x g x a x m x m ==-+-=-+--极大值,()()2222222e 1e e 22x x x g x g x a x m x m ==-+-=-+--极小值,因为当(),x g x ∞∞→-→-,当(),x g x ∞∞→+→+,故只需()10g x <或()20g x >,令()e 122x h x x =-+-,则()e 12xh x '=-+,故当(),ln 2x ∞∈-时,()0h x '>,当()ln 2,x ∞∈+时,()0h x '<,则()h x 在(),ln 2∞-单调递增,在()ln 2,∞+单调递减;又121ln ln ln4x x a -===又108a <<,故()0,1,则()()120,ln 2,ln 2,x x ∞∈∈+,所以()()12331,ln 2,,ln 222h x h x ∞⎛⎫⎛⎫∈--+∈--+ ⎪ ⎪⎝⎭⎝⎭,故3ln 22m ≥-+.综上所述,实数m 的取值范围为3ln 2,2∞⎡⎫-++⎪⎢⎣⎭.【点睛】关键点点睛:本题考查函数极值点及零点个数问题,解决问题关键是利用第二问单调性解决第三问零点问题,并利用构造函数法求函数值域。
四川省成都市七中育才学校高二数学文月考试卷含解析
四川省成都市七中育才学校高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设全集,则右图中阴影部分表示的集合为 ( )A. B. C. D.参考答案:D2. 设数列,,,,…,则是这个数列的( )A.第6项B.第7项C.第8项D.第9项参考答案:B3. 函数y=lgx﹣的零点所在的大致区间是()A.(6,7)B.(7,8)C.(8,9)D.(9,10)参考答案:D【考点】函数零点的判定定理.【分析】由于函数y=f(x)=lgx﹣在(0,+∞)上是增函数,f(9)<0,f(10)>0,由此得出结论.【解答】解:由于函数y=f(x)=lgx﹣在(0,+∞)上是增函数,f(9)=lg9﹣1<0,f(10)=1﹣=>0,f(9)?f(10)<0,故函数y=lgx﹣的零点所在的大致区间是(9,10),故选D.4. 甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有()A.30种 B.12种 C. 6种 D.36种参考答案:A略5. 等差数列中,,,则此数列前项和等于()A. B. C. D.参考答案:B略6. 某公司从甲、乙、丙、丁四名员工中安排了一名员工出国研学.有人询问了四名员工,甲说:“好像是乙或丙去了.”乙说:“甲、丙都没去.”丙说:“是丁去了.”丁说:“丙说的不对.”若四名员工中只有一个人说的对,则出国研学的员工是()A. 甲B. 乙C. 丙D. 丁参考答案:A【分析】逐一假设成立,分析,可推出。
【详解】若乙去,则甲、乙、丁都说的对,不符合题意;若丙去,则甲、丁都说的对,不符合题意;若丁去,则乙、丙都说的对,不符合题意;若甲去,则甲、乙、丙都说的不对,丁说的对,符合题意.故选A.【点睛】本题考查合情推理,属于基础题。
7. 已知恒成立,则a的取值范围为()A.B.C.D.参考答案:A8. 下列命题中是真命题的是()A.若ac>bc,则a>bB.“当x=2时,x2﹣3x+2=0”的否命题C.“若b=3,则b2=9”的逆命题D.“相似三角形的对应角相等”的逆否命题参考答案:D【考点】四种命题.【分析】根据不等式的性质以及命题的关系分别对A、B、C、D各个选项进行判断即可.【解答】解:对于A:若c<0,ac>bc,则a<b,不成立,对于B:“当x=2时,x2﹣3x+2=0”的否命题是:“x2﹣3x+2=0时,x=1或x=2”,是假命题;对于C:“若b=3,则b2=9”的逆命题是:“若b2=9,则b=±3”,是假命题;对于D:“相似三角形的对应角相等”的逆否命题是:“对应角不相等的三角形不是相似三角形”,是真命题;故选:D.9. 已知在△ABC中,满足acos B=bcos A,判断△ABC的形状为( ).A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形参考答案:B略10. 若坐标原点到抛物线的准线的距离为2,则()A.8 B.±8 C. D.参考答案:D因,故由题设可得,所以,应选答案D。
广西壮族自治区梧州市苍梧中学2022-2023学年高二下学期3月月考数学试题(含答案解析)
广西壮族自治区梧州市苍梧中学2022-2023学年高二下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A..C..二、多选题A D平面BEC A.11//AB⊥平面BECB.1AA B B⊥平面BEC C.平面11DD与平面BEC D.直线111.已知数列{}n a的前n A.{}n a是递减数列C .110S >D .当n S 最小时,5n =12.已知函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()A .()f x 有三个零点B .b c=C .曲线()y f x =在点()()22f ,处的切线方程为340x y ++=D .函数()2y f x =-为奇函数三、填空题四、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2cos 2b C c a +=.(1)求角B 的大小;(2)若5a =,7b =,求c 的长.18.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项.(1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.19.如图,四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥底面ABCD ,且2,,PA AB M N ==分别,PC AB 为的中点.(1)证明:MN //平面PAD (2)求二面角M NB C --的余弦值20.已知函数()n e si xxf x =(1)求()f x 在点()()0,0f (2)求证:当[]0,πx ∈时,21.已知数列{}n a 的前n 项和为(1)求{}n a 的通项公式;(2)若()23n n n b n a =+,数列22.已知函数()12f x x =-(1)当1a =时,求曲线y =(2)求()f x 的单调区间;(3)若函数()f x 有两个极值点参考答案:11.BCD【分析】由数列前n 项和为【详解】210n S n n =-,当当2n ≥时,1n n n a S S -=-注意到1n =时也满足1a =则()220B ,,,()200A ,,,()020C ,,,()020AB = ,,,()220AC = -,,,1AD 设平面1D AC 的法向量()n x y z = ,,,则122020n AC x y n AD x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,取1x =,得∴点B 到平面1D AC 的距离:AB d n = 故答案为:63.16.21,e ⎡⎫+∞⎪⎢⎣⎭【分析】()0f x ≤恒成立即ln 1x a x -≥数求导求单调性及最大值即可.【详解】解:由题知()0f x ≤恒成立,即ln 10x ax --≤在()0,∞+上恒成立,即ln 1x a x -≥在()0,∞+上恒成立,即a 记()ln 1x g x x -=,所以()(21ln x g x x -'=当()20,e x ∈时,()0g x '>,()g x 单调递增当()2e ,x ∈+∞时,()0g x '<,()g x 单调递减所以()()22max 1e e g x g ==,因为,M E 分别是,PC PD 的中点,在PCD 中,//ME CD ,ME 因为底面ABCD 是正方形,所以//AN CD ,12AN CD =所以//ME AN 且ME AN =所以//MN EA ,又因为MN 所以MN //平面PAD .方法二:因为底面ABCD 是正方形,由条件可知()(1,1,1,1,0,0M N 平面PAD 的一个法向量是AB 0AB MN ⋅= ,所以AB MN ⊥ 因为MN ⊄平面PAD ,所以(2)因为底面ABCD 是正方形,所以,,AB AD AP 两两垂直,以,,AB AD AP 方向分别为,,x y z 轴建立空间直角坐标系,如图(设二面角M NB C --的平面角为由条件可知()(1,1,1,1,0,0M N 00MN m y z NB m x ⎧⋅=--=⎪⎨⋅==⎪⎩ ,取y =平面NBC 的一个法向量为AP 2cos ,22m AP m AP m AP ⋅-=== 因为θ为锐角,故2cos 2θ=所以二面角M NB C --的余弦值为20.(1)0x y -=(2)证明见解析【分析】(1)根据导数的几何意义直接求解即可;。
2023-2024学年山西省晋中市平遥县高二下册3月月考数学试题(含解析)
2023-2024学年山西省晋中市平遥县高二下册3月月考数学试题一、单选题1.为响应国家“节约粮食”的号召,某同学决定在某食堂提供的2种主食、3种素菜、2种大荤、4种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有()A .48种B .36种C .24种D .12种【正确答案】B利用分步计数原理,分3步即可求出【详解】解:由题意可知,分三步完成:第一步,从2种主食中任选一种有2种选法;第二步,从3种素菜中任选一种有3种选法;第三步,从6种荤菜中任选一种有6种选法,根据分步计数原理,共有23636⨯⨯=不同的选取方法,故选:B2.设等差数列{}n a 的前n 项和为n S ,若532a a =,则95S S =()A .910B .1518C .95D .185【正确答案】D【分析】根据等差数列的前n 项和21(21)n n S n a -=-,将95S S 转化为5a 和3a 的算式即可得到所求.【详解】解:依题意,数列{}n a 为等差数列,所以19951553992552a a S a a a S a +⨯⨯==+⨯⨯,又因为532a a =,所以955399182555S a S a ⨯===⨯,故选D.等差数列的性质,等差数列的前n 项和,考查分析解决问题的能力和运算能力,属于基础题.3.北京2022年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”一亮相,好评不断,这是一次中国文化与奥林匹克精神的完美结合,是一次现代设计理念的传承与突破.为了宣传2022年北京冬奥会和冬残奥会,某学校决定派小明和小李等5名志愿者将两个吉祥物安装在学校的体育广场,若小明和小李必须安装同一个吉祥物,且每个吉祥物都至少由两名志愿者安装,则不同的安装方案种数为()A .8B .10C .12D .14【正确答案】A【分析】分为三人组中包含小明和小李和不包含小明和小李两类,分别计算方案种数即可得结果.【详解】由题意可知应将志愿者分为三人组和两人组,当三人组中包含小明和小李时,安装方案有12326C A =种;当三人组中不包含小明和小李时,安装方案有222A =种,共计有628+=种,故选:A.4.设F 为抛物线C :24y x =的焦点,点M 在C 上,点N 在准线l 上且MN 平行于x 轴,若NF MN =,则MF =()A .3B .1C .3D .4【正确答案】D【分析】由抛物线方程可知焦点坐标及准线方程,设准线l 与x 轴交点为E ,画出图象,由抛物线定义及NF MN =可知MNF 是正三角形,结合平行关系可判断60EFN ∠=︒,利用直角三角形性质即可求解.【详解】由题可知,2p =,抛物线焦点F 为()1,0,准线l 为=1x -,设准线l 与x 轴的交点为E ,如图所示,由题知MN l ⊥,由抛物线的定义可知MN MF =,因为NF MN =,所以MNF 是正三角形,则在Rt NEF 中,因为MN EF ∥,所以60EFN MNF ∠=∠=︒,所以224MF NF EF p ====.故选:D5.三棱锥A BCD -中,AC ⊥平面BCD ,BD CD ⊥.若3AB =,1BD =,则该三棱锥体积的最大值为()A .2B .43C .1D .23【正确答案】D【分析】先利用线面垂直的判定定理与性质定理依次证得BD ⊥平面ACD 、BD AD ⊥与AC CD ⊥,从而利用基本不等式求得2ACDS≤,进而得到23A BCDB ACD V V --=≤,由此得解.【详解】因为AC ⊥平面BCD ,BD ⊂平面BCD ,所以AC BD ⊥,又BD CD ⊥,AC CD C = ,,AC CD ⊂平面ACD ,所以BD ⊥平面ACD ,因为AD ⊂平面ACD ,所以BD AD ⊥,在Rt △ABD 中,3AB =,1BD =,则AD ==,因为AC ⊥平面BCD ,CD ⊂平面BCD ,所以AC CD ⊥,在Rt ACD △中,不妨设(),0,0AC a CD b a b ==>>,则由222AC CD AD +=得228a b +=,所以()221111222244ACDSAC CD ab ab a b =⋅==⨯≤+=,当且仅当a b =且228a b +=,即2a b ==时,等号成立,所以11221333A BCDB ACD ACDV V SBD --==⋅≤⨯⨯=,所以该三棱锥体积的最大值为23.故选:D..6.()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -项的系数为160,则=a ()A .2B .4C .2-D .-【正确答案】C先求得()61ay +展开式中3y 的系数,可得()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数,从而得答案.【详解】二项式()61ay +展开式的通项为()6166C 1C rr rr r r r T ay a y -+=⨯=,令3r =可得二项式()61ay +展开式中3y 的系数为336C a ,∴()62121ay x ⎛⎫-+ ⎪⎝⎭展开式中23x y -的系数为()3361C 160a -=,可得38a =-,解得2a =-,故选:C .7.甲、乙、丙、丁、戊5名党员参加“党史知识竞赛”,决出第一名到第五名的名次(无并列名次),已知甲排第三,乙不是第一,丙不是第五.据此推测5人的名次排列情况共有()种A .5B .8C .14D .21【正确答案】C【分析】按乙排第五和不是第五分类讨论.【详解】乙排在第五的情况有:33A ,乙不在第五的方法有112222C C A ,共有3112322214A C C A +=,故选:C .关键点点睛:本题考查排列组合的综合应用,解题关键是确定完成事件的方法:是先分类还是先分步:分类后每一类再分步.然后结合计数原理求解.8.设函数()f x ,()g x 在R 上的导函数存在,且()()f x g x ''<,则当(),x a b ∈时()A .()()f x g x <B .()()f xg x >C .()()()()f x g a g x f a +<+D .()()()()f xg b g x f b +<+【正确答案】C【分析】对于AB ,利用特殊函数法,举反例即可排除;对于CD ,构造函数()()()h x f x g x =-,利用导数与函数单调性的关系证得()h x 在R 上单调递减,从而得以判断.【详解】对于AB ,不妨设()2f x x =-,()1g x =,则()2f x '=-,()0g x '=,满足题意,若()1,x a b =-∈,则()()21f x g x =>=,故A 错误,若()0,x a b =∈,则()()01f x g x =<=,故B 错误;对于CD ,因为()f x ,()g x 在R 上的导函数存在,且()()f x g x ''<,令()()()h x f x g x =-,则()()()0h x f x g x ''-'=<,所以()h x 在R 上单调递减,因为(),x a b ∈,即a x b <<,所以()()()h b h x h a <<,由()()h x h a <得()()()()f x g x f a g a -<-,则()()()()f x g a g x f a +<+,故C 正确;由()()h b h x <得()()()()f b g b f x g x -<-,则()()()()f x g b g x f b +>+,故D 错误.故选:C.二、多选题9.有3位男生和3位女生,要在某风景点前站成一排照合影,则下列说法正确的是()A .共有66A 种不同的排法B .男生不在两端共有2424A A 种排法C .男生甲、乙相邻共有2525A A 种排法D .三位女生不相邻共有3333A A 种排法【正确答案】AC【分析】根据给定条件,利用无限制条件的排列判断A ;利用有位置条件的排列判断B ;利用相邻、不相邻问题的排列判断C ,D 作答.【详解】有3位男生和3位女生,要在某风景点前站成一排照合影,共有66A 种不同的排法,A 正确;男生不在两端,从3位女生中取2人站两端,再排余下4人,共有2434A A 种排法,B 不正确;男生甲、乙相邻,视甲乙为1人与其余4人全排列,再排甲乙,共有2525A A 种排法,C 正确;三位女生不相邻,先排3位男生,再在2个间隙及两端4个位置中插入3位女生,共有3334A A种排法,D 不正确.故选:AC 10.()20232202301220231ax a a x a x a x +=++++ ,若16069a =-,则下列结论正确的有()A .3a =B .202301220232a a a a ++++=- C .202312220231333a a a +++=- D .()20231ax +的展开式中第1012项的系数最大【正确答案】BC【分析】利用二项式展开式的通项公式求解含x 项的系数,从而求解a ,即可判断选项A ,赋值法即可求解系数和问题,从而判断选项B 、C ,利用展开式系数符合规律判断选项D 【详解】对于A ,112023C 20236069a a a =⋅==-,可得3a =-,故A 错误;对于B ,因为()2023201213x a a x a x -=++20232023a x ++ ,令1x =,则()202320230122023132a a a a ++++=-=- ,故B 正确;对于C ,令0x =,则01a =,令13x =,则2023202312002202311313333a a a a a ⎛⎫+++=-⨯-=-=- ⎪⎝⎭ ,故C 正确;对于D ,由展开式知,20n a >,210n a -<,故第1012项的系数10110a <,不会是展开式中系数最大的项,故D 错误.故选:BC11.对于三次函数()()320ax bx d a f x cx =+++≠,给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若函数()()3211R 32f x x x x b b =-++∈,则()A .()f x 一定有两个极值点B .函数()y f x =在R 上单调递增C .过点()0,b 可以作曲线()y f x =的2条切线D .当712b =时,123202220222023202320232023f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【正确答案】BCD【分析】对()f x 求导,得出()0f x ¢>,没有极值点,可判断A ,B ;由导数的几何意义求过点()0,b 的切线方程条数可判断C ;求出三次函数()f x 的对称中心,由于函数的对称中心为1,12⎛⎫⎪⎝⎭,可得()()12f x f x +-=,由倒序相加法求出所给的式子的值,可判断D.【详解】由题意知()21f x x x '=-+,1430∆=-=-<,()0f x ¢>恒成立,所以()f x 在R 上单调递增,没有极值点,A 错误,B 正确;设切点为3211,32m m m m b ⎛⎫-++ ⎪⎝⎭,则()21k f m m m '==-+,切线方程为()()32211132y m m m b m m x m ⎛⎫--++=-+- ⎪⎝⎭,代入点()0,b 得32321132m m m m m m -+-=-+-,即322132m m =,解得0m =或34m =,所以切线方程为y x b =+或1316y x b =+,C 正确;易知()21f x x ''=-,令()0f x ''=,则12x =.当712b =时,102f ⎛⎫= ⎪⎝⎭'',112f ⎛⎫= ⎪⎝⎭,所以点1,12⎛⎫⎪⎝⎭是()f x 的对称中心,所以有11222f x f x ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,即()()12f x f x +-=.令123202320232023S f f f f ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20222023⎛⎫ ⎪⎝⎭,又20222021202012023202320232023S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以12022220232023S f f ⎡⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22021202212022240442023202320232023f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++++=⨯= ⎪ ⎪⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ ,所以2022S =,D 正确.故选:BCD.12.已知椭圆C :22143x y +=的左、右焦点分别为1F ,2F ,上顶点为B ,直线l :()0y kx k =≠与椭圆C 交于M ,N 两点,12F MF ∠的角平分线与x 轴相交于点E ,与y 轴相交于点()0,G m ,则()A .四边形12MF NF 的周长为8B .1114MF NF +的最小值为9C .直线BM ,BN 的斜率之积为34-D .当12m =-时,12:2:1F E F E =【正确答案】AC【分析】对A 选项,由椭圆的定义知,四边形12MF NF 的周长为4a 即可求解;对B 选项,由直线()0y kx k =≠与椭圆相交的对称性知:12NF MF =,11121414MF NF MF MF ∴+=+,借助基本不等式可得1114MF NF +的最小值;对C 选项,设()11,M x y ,则()11,N x y --,由点()11,M x y 在椭圆上,即可化得BM BN k k ⋅的值;对D 选项,设出()()11,0t E t -<<,由条件推出()121MF t =+,()221MF t =-,又在椭圆C 中,由其第二定义1MF e =得()1112212MF x t =+=+,从而得到M ,E ,G 三点坐标,再根据其三点共线,化简求解即可.【详解】对A 选项,由椭圆的定义知,四边形12MF NF 的周长为2248a a a +==,A 正确;对B 选项,1112141414MF NF MF MF +=+=()21121212414191444MF MF MF MF MF MF MF MF ⎛⎫⎛⎫++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,当且仅当1248,33MF MF ==时等号成立,故B 错误;对C 选项,设()11,M x y ,则()11,N x y --,又(B,所以211121113BM BNy y y k k x x x --⋅=⋅=-.因为点()11,M x y 在椭圆上,所以2211143x y +=,即()222111441333y x y ⎛⎫=-=- ⎪⎝⎭,所以2121334BM BNy k k x -⋅==-,C 正确;对D 选项,设()()11,0t E t -<<,则12F E F E 1211MF t t MF +==-,124MF MF +=所以()121MF t =+,()221MF t =-,在椭圆C :22143x y +=中,由其第二定义1MF e d =(d 指的是椭圆上的点到相应的准线的距离)得221111()()22M a a MF de x e x e x c c ==+⋅=+⋅=+,12MF ∴=+()11212x t =+,所以14x t =,故()14,M t y ,(),0E t ,10,2⎛⎫- ⎪⎝⎭G ,因为三点共线,所以1123y t t =,解得132y =,则29164143t +=,解得14t =±,当14t =时,1211541314F E F E +==-,当14t =-时,1211341514F E F E -==+,故D 错误.故选:AC方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习加以强化.三、填空题....道上有编号1,2,.3,....10的十盏路灯,为节省用电又能看清路面,可以把其中的三盏路灯关掉,但不能同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,满足条件的关灯方法有__________种.【正确答案】20【分析】采用插空法即可求解.【详解】10只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之间的6个空挡中放入3只熄灭的灯,有36C 20=种方法,故答案为.2014.我国古代《九章算术》将底面为矩形的棱台称为刍童.若一刍童为正棱台,其上、下底1,则该刍童的外接球的表面积为______.【正确答案】20π【分析】根据题意,作出图形,设该刍童外接球的球心为O ,半径为R ,分两种情况讨论,分别根据条件列出方程组,即可求出外接球半径,代入球的表面积公式计算即可求解.【详解】设该刍童外接球的球心为O ,半径为R ,上底面中心为1O ,下底面中心为2O ,则由题意,121O O =,22AO =,111A O =,1R OA OA ==.如图,当O 在12O O 的延长线上时,设2OO h =,则在2AOO 中,22R 4h =+①,在11A OO 中,()22R 11h =++②,联立①②得1h =,2R 5=,所以刍童外接球的表面积为20π,同理,当O 在线段12O O 上时,设1OO h =,则有22R 1h =+,()22R 14h =-+,解得2h =,不满足题意,舍去.综上所述,该刍童外接球的表面积为20π.故20π.15.两名学生一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是170.”若每个参加面试的人被招聘的可能性相同,则根据这位负责人的话,可以推断出参加面试的人数为______.【正确答案】21【分析】利用古典概型的概率公式求解.【详解】设参加面试的人数为n ,依题意有()()()()2122362C C 61C 12170n nn n n n n n --===---,即()()242020210n n n n --=+-=,解得21n =或20n -(舍去).16.南宋数学家杨辉善于把已知形状、大小的几何图形的求面积、体积的连续量问题转化为求离散量的垛积问题,在他的专著《详解九章算法·商功》中给出了著名的三角垛公式()()()()()1112123123126n n n n ++++++⋅⋅⋅++++⋅⋅⋅+=++,则数列{}22n n +的前n 项和为____________.【正确答案】()()1121226n n n n ++++-【分析】由三角垛公式可知数列()12n n +⎧⎫⎨⎬⎩⎭的前n 项和为()()1126n n n ++,根据()212222n n n n n n ++=⨯-+,采用分组求和法,结合等差、等比求和公式可求得结果.【详解】()11232n n n ++++⋅⋅⋅+=,∴数列()12n n +⎧⎫⎨⎩⎭的前n 项和为()()1126n n n ++,()212222n n n n n n ++=⨯-+ ,∴数列{}22n n +的前n 项和()()()1211223212222222n n n n S n +⎛⎫⨯⨯=⨯++⋅⋅⋅+-++⋅⋅⋅++++⋅⋅⋅+ ⎪⎝⎭()()()()()()121211211122232126n n n n n n n n n n +-+++=++-+=+--.故答案为.()()1121226n n n n ++++-关键点点睛:本题考查数列中的分组求和法的应用,解题关键是能够将所求数列的通项进行变型,从而与已知的三角垛公式联系起来,利用所给的三角垛公式来进行求和.四、解答题17.现有一些小球和盒子,完成下面的问题.(1)4个不同的小球放入编号为1,2,3,4的4个盒子中(允许有空盒子),一共有多少种不同的放法?(2)4个不同的小球放入编号为1,2,3,4的4个盒子中,恰有1个空盒的放法共有多少种?【正确答案】(1)256;【分析】(1)根据题意分析将4个不同的小球放入编号为1,2,3,4的4个盒子中,每个小球有4种放法,由分步计数原理计算即可得出答案;(2)根据题意,分两步进行,①将4个小球分为3组,②在4个盒子中任选3个,放入三组小球,根据分步计数原理计算即可得出答案;【详解】(1)4个不同的小球放入编号为1,2,3,4的4个盒子中,每个小球有4种放法,则4个小球有4444256⨯⨯⨯=种不同的放法;(2)①将4个小球分为3组,有24C 6=种分组方法,②在4个盒子中任选3个,放入三组小球,有3343C A 24=种情况,则624144⨯=种不同的放法.18.如图,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,AB AD =,60BAD ∠=︒.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V ;(2)设点F 在线段AP 上,4,4PA PF PC CE ==,求二面角F CD P --的余弦值.【正确答案】【分析】(1)利用平面几何的知识推得AC BD ⊥,进而得到BD =与4AC EC =,从而利用柱体与锥体的体积公式求得12,V V 关于,EC PC 的表达式,由此得解;(2)根据题意建立空间直角坐标系,设1CE = ,结合(1)中结论与(2)中所给条件得到所需向量的坐标表示,从而求得平面FCD 与平面PCD 的法向量n 与m ,由此利用空间向量夹角余弦的坐标表示即可得解.【详解】(1)因为ABD ∠与ACD ∠是底面圆弧AD 所对的圆周角,所以ABD ACD ∠=∠,因为AB AD =,所以在等腰ABD △中,ABD ADE ∠=∠,所以ADE ACD ∠=∠,因为AC 是圆柱的底面直径,所以90ADC ∠=︒,则90CAD ACD ∠+∠=︒,所以90CAD ADE ∠+∠=︒,则90AED ∠=︒,即AC BD ⊥,所以在等腰ABD △,BE DE =,AC 平分BAD ∠,则1302CAD BAD ∠=∠=︒,所以60ADE ∠=︒,则30∠=︒CDE ,故在Rt CED 中,2CD EC =,DE ,则2BD DE ==,在Rt ACD △中,24AC CD EC ==,因为PC 是圆柱的母线,所以PC ⊥面ABCD ,所以()22211ππ24π2V AC CP EC PC EC PC ⎛⎫=⋅⋅=⋅⋅=⋅⋅ ⎪⎝⎭,2211143263V AC BD PC EC PC EC PC =⨯⋅⋅=⨯⨯⋅=⋅,所以12V V =.(2)以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C xyz -,不妨设1CE = ,则44AC EC ==,DE =44PC CE ==,则()()()()0,0,0,4,0,0,1,,0,0,4C A D P ,所以()CD = ,()0,0,4CP = ,()4,0,4PA =- ,因为4PA PF =,所以()11,0,14PF PA ==- ,则()()01,0,1(1,0,3,0,4)CF CP PF ==+=-+ ,设平面FCD 的法向量(,,)n x y z = ,则00n CF n CD ⎧⋅=⎪⎨⋅=⎪⎩,即300x z x +=⎧⎪⎨=⎪⎩,令3x =-,则1y z ==,故(n =- ,设平面PCD 的法向量(,,)m p q r = ,则00m CP m CD ⎧⋅=⎪⎨⋅=⎪⎩,即400r p =⎧⎪⎨=⎪⎩,令3p =-,则0q r ==,故(m =- ,设二面角F CD P --的平面角为θ,易知π02θ<<,所以cos cos ,13||||n m n m n m θ⋅====⋅ ,因此二面角F CD P --19.记数列{}n a 的前n 项和为n T ,且111,(2)n n a a T n -==≥.(1)求数列{}n a 的通项公式;(2)设m 为整数,且对任意*n ∈N ,1212nn m a a a ≥+++ ,求m 的最小值.【正确答案】(1)21,1,2, 2.n n n a n -=⎧=⎨≥⎩(2)7【分析】(1)由数列n a 与n T 的关系可得()122n n a a n +=≥,再结合等比数列的通项可得解;(2)利用错位相减法求出1212nn a a a +++ ,结合范围即可得解.【详解】(1)因为111,(2)n n a a T n -==≥,所以211a a ==,当2n ≥时,112n n n n n a T T a a +-+===,故()222222n n n a a n --==⋅≥,且11a =不满足上式,故数列{}n a 的通项公式为21,1,2, 2.n n n a n -=⎧=⎨≥⎩(2)设1212n nn S a a a =+++ ,则11S =,当2n ≥时,102122322n n S n --=+⋅++⋅+⋅ ,故112112232222n n S n ---=+⋅+⋅+⋅+ ,于是()122115222222n n n S n ----=++++-⋅ ()121121252212n n n -----=+-⋅-.整理可得27(2)2n n S n -=-+,所以7n S <,又54968S =>,所以符合题设条件的m 的最小值为7.20.已知双曲线2222:1(0,0)x y C a b a b-=>>过点A ,且焦距为10.(1)求C 的方程;(2)已知点3),B D -,E 为线段AB 上一点,且直线DE 交C 于G ,H 两点.证明:||||||||GD HD GE HE =.【正确答案】(1)221169x y -=(2)证明见解析【分析】(1)根据题意列方程组求出,a b ,即可得出C 的方程;(2)根据,,,D E H G 四点共线,要证||||||||GD HD GE HE =即证HE GE G H D D ⋅=⋅,设出直线:DE y x =-,()()1122,,,G x y H x y,)E t ,联立直线方程与椭圆方程得出1212,x x x x +,将其代入G G HE E DH D ⋅-⋅ ,计算结果为零,即证出.【详解】(1)由题意可得2232910a b-==,故4,3a b ==,所以C 的方程为221169x y -=.(2)设)E t ,()()1122,,,G x y H x y ,当x =2321169y -=,解得3=±y ,则||3t <, 双曲线的渐近线方程为34y x =±,故当直线DE 与渐近线平行时,此时和双曲线仅有一个交点,此时直线DE方程为(34y x =±-,令x =y =||t ≠则直线:DE y x =-.由221169y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩得()222292161440t x x t -+--=,所以212229x x t +=-,21221614429t x x t +=-.()()()()11221122,,,G HE GE DH x y x t x D y t y x y ⋅-⋅=--⋅----⋅-)()121212122232x x y y x x t y y =+-+-++()2221212243244t x x t x x t ⎛⎛⎫=+-++++ ⎪⎝⎭⎝()()()222222248943244322929t t t t t t t +++=-++--0=.所以HE GE G H D D ⋅=⋅ ,所以cos0cos0HE G G E D DH = 即||||||||GD HD GE HE =.关键点睛:本题第二问不能直接计算长度,否则计算量过大,而是转化为证明向量数量积之间的关系,采取设)E t ,从而得到直线DE 方程,再使用经典的联立法,得到韦达定理式,然后证明0HE GE G D D H ⋅-⋅= 即可.21.设()()21031x Q x x ax b -=-++,其中()Q x 是关于x 的多项式,a ,b ∈R .(1)求a ,b 的值;(2)若28ax b +=,求103x -除以81的余数.【正确答案】(1)10a =,12b =-;(2)28.【分析】(1)利用二项式定理及已知即求;(2)由题可知x 的值,然后利用二项式定理可求.【详解】(1)由已知等式,得()()()1021131x Q x x ax b -+-=-++⎡⎤⎣⎦,∴()()()()10920189101010101010C 1C 1C 1C 1C 3x x x x -+-+⋅⋅⋅+-+-+-()()21Q x x ax b =-++,∴()()()()()8722018101010C 1C 1C 110121x x x x Q x x ax b ⎡⎤-+-+⋅⋅⋅+-+-=-++⎣⎦,∴1012x ax b -=+,∴10a =,12b =-.(2)∵28ax b +=,即101228x -=,∴4x =,∴103x -1043=-()10313=+-0101991010101010C 3C 3C 3C 3=⨯+⨯+⋅⋅⋅+⨯+-()406156441010103C 3C 3C 4035328=⨯⨯+⨯+⋅⋅⋅++⨯+⨯+()0615610101081C 3C 3C 4528=⨯⨯+⨯+⋅⋅⋅+++,∴所求的余数为28.22.已知函数()()1e 6x f x k x ⎡⎤=--⎣⎦(其中e 为自然对数的底数).(1)若1k =,求函数()f x 的单调区间;(2)若12k ≤≤,求证:[]0,x k ∀∈,()2f x x <.【正确答案】(1)单调递增区间为[)0,∞+,单调递减区间为(),0∞-;(2)见解析.【分析】(1)求导,当()0f x '≥时,0x ≥,当()0f x '<时,0x <,即可解决;(2)由()211e 60x x x k ⎡⎤---<⎣⎦令新函数()21()1e 6x g x x x k=---,求导,由()()1e 6k g k k k =---,再令新函数()()()1e 6k h k g k k k ==---,证明()0h k <在12k ≤≤上恒成立,即可得证.【详解】(1)由题知()()1e 6x f x k x ⎡⎤=--⎣⎦,所以()()e 1e e x x x f x k x kx '⎡⎤=+-=⎣⎦,当1k =时,()e x f x x '=,当()0f x '≥时,0x ≥,当()0f x '<时,0x <,所以()f x 的单调递增区间为[)0,∞+,单调递减区间为(),0∞-,(2)由题知12k ≤≤,[]0,x k ∀∈,()2f x x <,所以()21e 60x k x x ⎡⎤---<⎣⎦,因为12k ≤≤,所以()211e 60x x x k ⎡⎤---<⎣⎦令()21()1e 6x g x x x k=---即证()21()1e 60x g x x x k =---<在[]0,x k ∈上恒成立,因为22()e (e )x x g x x x x k k'=-=-当()0g x '=时,2ln x k=,当()0g x '≥时,2lnx k ≥,即()g x 在2ln ,k k ⎡⎤⎢⎥⎣⎦上单调递增,当()0g x '≤时,2ln x k ≤,即()g x 在20,ln k ⎡⎤⎢⎥⎣⎦上单调递减,因为(0)70g =-<,()()1e 6k g k k k =---,令()()()1e 6k h k g k k k ==---,所以()e 1k h k k '=-,因为12k ≤≤,所以()e 10k h k k '=->,所以()h k 在[]1,2上单调递增,所以2max ()(2)e 80h k h ==-<,所以()0g k <恒成立,因为(0)0,()0g g k <<,所以()21()1e 60x g x x x k =---<在[]0,x k ∈上恒成立,即得证.。
上海市徐汇区2022-2023学年高二下学期3月月考数学试题含解析
若 CH 面 OAHB , HA, HB 面 OAHB ,则 CH HA,CH HB ,
过
H
作
HA
a,
HB
b
,
OA
在
a
上,
OB
在
b
上,
OA,
OB
面
OAHB
,
则 CH
OA,CH
OB
,即 CH
a,CH
b ,
又 HA CH H , HA,CH 面 CHA ,则 a 面 CHA ,即 OA 面 CHA ,
由 CA 面 CHA ,故 OA CA ,同理证 OB CB ,
又 cos AOH OA OH
2 2
, cos COH
OH OC
, cos COB
OB OC
32 10
,
所以 cos COH
cos COB
3
,即 sin COH
4
,
cos AOH 5
5
而 ma
nb 表示面 OAHB
上的任意点,要使
a
6,1,
m
与向量
b
2,
n,1
平行,
所以
a
b
,则
6 2 1 n m
,解得
3
n
1 3
m 3
,所以
m
n
1,
故答案为:1.
9. 已知事件 A 与 B 互斥,它们都不发生的概率是 1 .且 P A 3P B ,则 P A ______. 5 【答案】 2 ## 0.4
5
【解析】
数是______.
241
【答案】120.5##
2
【解析】
2023-2024学年河南省南阳市高二下册3月月考数学模拟试题(含解析)
2023-2024学年河南省南阳市高二下册3月月考数学模拟试题第I卷(选择题,共60分)一.选择题(共12小题,满分60分,每小题5分)1.在等比数列{a n}中,若a1=27,,则a3=()A.3或﹣3B.3C.﹣9或9D.92.在等差数列{a n}中,已知a10=13,a3+a4+a9+a16=28,则{a n}的前17项和为()A.166B.172C.168D.1703.若数列{}是等差数列,a1=l,a3=﹣,则a5=()A.﹣B.C.D.﹣4.已知等差数列{a n}的前n项和为S n,且S10=310,S20=930,则S30=()A.1240B.1550C.1860D.21705.在等差数列{a n}中,a1+a3=8,a2a4=40,则公差为()A.1B.2C.3D.46.设等差数列{a n}的前n项和为S n,a1=2,S8≥S7≥S9,则公差d的取值范围是()A.B.C.D.7.已知等比数列{a n}的前n项和为S n,若=,则=()A.B.43C.D.418.已知等差数列{a n}的首项a1=2,公差d=8,在{a n}中每相邻两项之间都插入3个数,使它们和原数列的数一起构成一个新的等差数列{b n},则b2023=()A.4044B.4046C.4048D.40509.等差数列{a n}的前n项和是S n,且满足S5=S10,若S n存在最大值,则下列说法正确的是()A.a1+a16>0B.a2+a15<0C.a1+a14<0D.a2+a14>010.已知等比数列{a n}满足:a2+a4+a6+a8=20,a2⋅a8=8,则的值为()A.20B.10C.5D.11.已知数列{a n}满足a n=2n+kn,若{a n}为递增数列,则k的取值范围是()A.(﹣2,+∞)B.(2,+∞)C.(﹣∞,﹣2)D.(﹣∞,2)12.设等差数列{a n},{b n}的前n项和分别为S n,T n,若,则=()A.B.C.D.第Ⅱ卷(非选择题,共90分)二.填空题(共4小题,满分20分,每小题5分)13.等差数列{a n}的前n项和是S n,若S n=3(n+1)2﹣n﹣a,则实数a=.14.若等比数列{a n}的各项均为正数,且,则lna1+lna2+⋯+lna7=.15.在等比数列{a n}中,a5﹣a3=12,a6﹣a4=24,记数列{a n}的前n项和、前n项积分别为S n,T n,则的最大值是.16.首项为正数,公差不为0的等差数列{a n},其前n项和为S n,现有下列4个命题:①若S8<S9,则S9<S10;②若S11=0,则a2+a10=0;③若S13>0,S14<0,则{S n}中S7最大;④若S2=S10,则S n>0的n的最大值为11.使其中所有真命题的序号是.三.解答题(共6小题,满分70分)17.已知等差数列{a n}满足a4=6,a6=10.(1)求数列{a n}的通项公式;(2)设等比数列{b n}各项均为正数,其前n项和T n,若b3=a3,b5=a9,求T n.18.已知等比数列{a n}的前n项和为S n,a5﹣a1=90,S4=90.(1)求数列{a n}的通项公式;(2)已知数列{b n}中,满足b n=a n+log2a n,求数列{b n}的前n项和T n.19.已知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比数列.(1)求数列{a n}的通项公式;(2)设T n为数列的前n项和,求T n.20.已知数列{a n}中,a2=,a n=a n+1+2a n a n+1.(1)求数列{a n}的通项公式;(2)令{}的前n项和为T n,求证:T n<.21.在等差数列{a n}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足:,求数列{b n}的通项公式;(Ⅲ)令(n∈N*),求数列{c n}的前n项和T n.22.已知数列{a n}的各项均为正数,其前n项和为S n,且满足a1=1,a n+1=2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b n=,设数列{b n}的前n项和为T n,若∀n∈N*,不等式T n﹣na<0恒成立,求实数a的取值范围.答案与试题解析一.选择题(共12小题)1.解:因为a3是a1和a5的等比中项,则,解得a3=±3,由等比数列的符号特征知a3=3.故选:B.2.解:在等差数列{a n}中,∵a3+a4+a9+a16=4a8=28,∴a8=7,又a10=13,∴S17=.故选:D.3.解:数列{}是等差数列,设其公差为d,则2d=,∴,可得,即a5=.故选:D.4.解:∵等差数列{a n}的前n项和为S n,∴S10,S20﹣S10,S30﹣S20构成等差数列,∴2(S20﹣S10)=S10+S30﹣S20,即2×(930﹣310)=310+S30﹣930,∴S30=1860.故选:C.5.解:等差数列{a n}中,a1+a3=8,a2a4=40,∴,解得a1=1,d=3.故选:C.6.解:∵{a n}为等差数列,a1=2,∴,∴.故选:A.7.解:设S3=x,则S6=7x,由=,可得q≠1,因为{a n}为等比数列,所以S3,S6﹣S3,S9﹣S6仍成等比数列.因为==6,所以S9﹣S6=36x,所以S9=43x,故=.故选:A.8.解:设数列{b n}的公差为d1,由题意可知,b1=a1,b5=a2,b5﹣b1=a2﹣a1=8=4d1,故d1=2,故b n=2n,则b2023=2023×2=4046,故选:B.9.解:因为等差数列S n存在最大项,故等差数列的公差d<0,又S5=S10,即a6+a7+a8+a9+a10=0,即a8=0,则a1+a16<a1+a15=0,故选项A错误;a2+a15<a1+a15=0,故选项B正确;a1+a14>a1+a15=0,故选项C错误;而a2+a14=a1+a15=0,故选项D错误.故选:B.10.解:在等比数列{a n}中,由等比数列的性质可得:a4⋅a6=a2⋅a8=8.所以.故选:D.11.解:若{a n}为递增数列,则a n+1﹣a n>0,则有2n+1+k(n+1)﹣(2n+kn)=2n+1﹣2n+k=2n+k>0,对于n∈N+恒成立.∴k>﹣2n,对于n∈N+恒成立,∴k>﹣2.故选:A.12.解:根据条件:=.故选:A.二.填空题(共4小题)13.解:因为,当n≥2时,,因为{a n}是等差数列,所以当n=1时,a1=11﹣a也符合上式,故a=3.故3.14.解:∵{a n}是各项均为正数的等比数列,∴a2a6=a42,又a42+a2a6=2e6,∴2a42=2e6,又a4>0,∴a4=e3,∴lna1+lna2+•••+lna7=ln(a1a2•••a7)=lna47=7lne3=21.故21.15.解:等比数列{a n}中,a5﹣a3=12,a6﹣a4=24,所以q==2,a1===1,所以数列{a n}的前n项和为S n==2n﹣1,前n项积为T n=1×2×22×...×2n﹣1=2...+...+(n﹣1)=,所以==,当n=2或n=3时,=3,所以的最大值是23=8.故8.16.解:对于①,S8<S9,则a9>0,无法推得a10是否大于0,即S9<S10无法确定,故①错误;对于②,∵S11=0,∴=,即a2+a10=0,故②正确;对于③,S13>0,S14<0,则,即a7>0,,即a7+a8<0,故a7>0,a8<0,公差d<0,首项为正数,故{S n}中S7最大,故③正确;对于④,若S2=S10,则a3+a4+a5+a6+a7+a8+a9+a10=0,即4(a3+a10)=0,故a3+a10=2a1+11d=0,即,∵a1>0,∴d<0,∴==,令S n>0,则0<n<12,n∈N*,故S n>0的n的最大值为11,故④正确.故②③④.三.解答题(共6小题)17.解:(1)设等差数列{a n}的公差为d,∵a4=6,a6=10,∴,解得,故数列{a n}的通项公式a n=a1+(n﹣1)d=2n﹣2;(2)设各项均为正数的等比数列{b n}的公比为q(q>0),∵a n=2n﹣2,则a3=4,a9=16,∵a3=b3,a9=b5,∴b3=4,b5=16,即,解得2或﹣2(舍去),∴.18.解:(1)记等比数列{a n}的公比为q,由a5﹣a1≠0可知q≠1,,,解得a1=6,q=2,所以数列{a n}的通项公式为.(2)∵,∴=3×++n•log23=3×2n+1++n•log23﹣6.19.解:(1)设公差为d,则∵S4=14,且a1,a3,a7成等比数列∴4a1+6d=14,(a1+2d)2=a1(a1+6d)∵d≠0,∴d=1,a1=2,∴a n=n+1(2)=∴T n=﹣+﹣+…+==.20.解:(1)由a2=,a n=a n+1+2a n a n+1,可得a1=a2+2a1a2=+a1,解得a1=1,又对a n=a n+1+2a n a n+1两边取倒数,可得﹣=2,则{}是首项为1,公差为2的等差数列,可得=1+2(n﹣1)=2n﹣1,所以a n=;(2)证明:由(1)可得==(﹣),所以T n=(1﹣+﹣+﹣......+﹣+﹣)=[﹣],因为n∈N*,所以>0,则T n<×=.21.解:(Ⅰ)等差数列{a n}的公差d=2,a2是a1与a4的等比中项,可得a22=a1a4,即(a1+2)2=a1(a1+6),解得a1=2,则a n=a1+(n﹣1)d=2+2(n﹣1)=2n;(Ⅱ)数列{b n}满足:,可得a1=,即b1=8;n≥2时,a n﹣1=++…+,与,相减可得2=,即有b n=2(3n+1),上式对n=1也成立,可得b n=2(3n+1),n∈N*;(Ⅲ)=n(3n+1),则前n项和T n=(1•3+2•32+…+n•3n)+(1+2+…+n),设S n=1•3+2•32+…+n•3n,3S n=1•32+2•33+…+n•3n+1,相减可得﹣2S n=3+32+…+3n﹣n•3n+1=﹣n•3n+1,化简可得S n=,则T n=+n(n+1).22.解:(Ⅰ)由得,故,∵an>0,∴S n>0,∴=+1,(2分)∴数列是首项为,公差为1的等差数列.(3分)∴,∴,…(4分)当n≥2时,,a1=1,…(5分)又a1=1适合上式,∴a n=2n﹣1.…(6分)(Ⅱ)将a n=2n﹣1代入,…(7分)∴…(9分)∵T n﹣na<0,∴,∵n∈N+,∴…(10分)∴,∵2n+1≥3,,,∴.(12分)。
2021-2022学年山西省怀仁市第一中学校云东校区高二下学期第三次月考数学(文)试题 解析版
绝密★启用前山西省怀仁市第一中学校云东校区2021-2022学年高二下学期第三次月考数学(文)试题总分:150分;考试时间:120分钟一、选择题(共12小题,每小题5.0分,共60分)1.若(1)nx +的展开式共有12项,则n =( )A .11B .12C .13D .14 2.将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13 B .25 C .23 D .453.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A .15B .25C .12D .454.已知随机变量X 满足(1)5E X -=,(1)5D X -=,下列说法正确的是( ) A .()5E X =-,()5D X = B .()4E X =-,()4D X =- C .()5E X =-,()5D X =- D .()4E X =-,()5D X =5.设两个正态分布()()2111,0N μσσ>和()()2222,0N μσσ>的密度函数图象如图,则有( )A .12μμ<,12σσ<B .12μμ<,12σσ>C .12μμ>,12σσ<D .12μμ>,12σσ>6.10张奖券中有3张是有奖的,若某人从中依次抽取两张,则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率是( ) A .27 B .29 C .310 D .137.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( ) A .2π B .3π C .4π D .5π8.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .62C .82D .83 9.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A .55 B .255 C .355 D .45510.已知1021001210(1)(1)(1)(1)x a a x a x a x +=+-+-+⋅⋅⋅+-,则8a 等于( )A .5-B .5C .90D .18011.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()i i ,(i 1,2,,20)x y =⋅⋅⋅得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+ C .e xy a b =+ D .ln y a b x =+12.如图,在下列四个正方体中,A 、B 为正方体的两个顶点,M 、N 、Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .分卷Ⅱ二、填空题(共4小题,每小题5.0分,共20分)13.71x x ⎛⎫- ⎪⎝⎭的展开式中x 项的系数是________.14.直线380x -+=和圆222(0)x y r r +=>相交于A ,B 两点.若||6AB =,则r 的值为________.15.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为________.16.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的方差为________.三、解答题(共6小题,共70分,17题10分,其余各题每题12分)17.求下列圆的方程(每小题5分,共10分)(1)若圆C 的半径为1,其圆心与点(1,0)关于直线y x =对称,求圆C 的标准方程; (2)过点(4,1)A 的圆C 与直线10x y --=相切于点(2,1)B ,求圆C 的标准方程.18.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)根据0.050α=的独立性检验,能否认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k ≥0.050 0.010 0.001 k3.8416.63510.82819.在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1BC ∥平面1AD E ;(6分)(2)求直线1AA 与平面1AD E 所成角的正弦值.(6分)20.下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:ˆ9917.5yt =+.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 21.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况3互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.22.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(5分)(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.(7分)高二文科数学月考三答案解析1.【答案】A【解析】由二项式定理知展开式共有1n +项,所以112n +=,即11n =.故选A . 2.【答案】C【解析】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有15C 5=种排法,若2个0不相邻,则有25C 10=种排法,所以2个0不相邻的概率为1025103=+.故选:C .3.【答案】A【解析】从O ,A ,B ,C ,D 5个点中任取3个有{,,}O A B ,{,,}O A C ,{,,}O A D ,{,,}O B C ,{,,}O B D ,{,,}O C D ,{,,}A B C ,{,,}A B D ,{,,}A C D ,{,,}B C D 共10种不同取法,3点共线只{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.故选:A . 4.【答案】D【解析】:已知(1)5E X -=,(1)5D X -=,根据均值和方差的性质可得1()5E X -=,()5D X =,解得()4E X =-,()5D X =.故选D .5.【答案】A【解析】μ反映的是正态分布的平均水平,x μ=是正态密度曲线的对称轴,由图可知12μμ<;σ反映的正态分布的离散程度,σ越大,越分散,曲线越“矮胖”,σ越小,越集中,曲线越“瘦高”,由图可知12σσ<.故选A . 6.【答案】B【解析】在第一次抽中奖后,剩下9张奖券,且只有2张是有奖的,所以根据古典概型可知,第二次中奖的概率29P =,故选B . 7.【答案】D【解析】在正方体1111ABCD A B C D -,连接1BC ,1PC ,PB ,因为11AD BC ∥, 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111A B C D ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B =,所以1PC ⊥平面1PBB ,所以1PC PB ⊥,设正方体棱长为2,则1BC =11112PC D B ==,1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 8.【答案】C【解析】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=︒,因为2AB =,所以1BC =,从而求得1CC =22V =⨯⨯=C . 9.【答案】B【解析】由于圆上的点(2,1)在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(,)a a ,则圆的半径为a ,圆的标准方程为222()()x a y a a -+-=. 由题意可得222(2)(1)a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为(1,1)或(5,5),圆心到直线230x y --=的距离均为5d ==. 10.【答案】D 【解析】因为1010(1)(21)x x +=-+-,所以82810C (2)454180a =-=⨯=.11.【答案】D【解析】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+. 12.【答案】D 13.【答案】35-【解析】在71x x ⎛⎫- ⎪⎝⎭的展开式的通项7217C (1)k k kk T x -+=-中,令721k -=,得3k =,即得71x x ⎛⎫- ⎪⎝⎭的展开式中x 项的系数为337C (1)35⨯-=-.故选A .14.【答案】5【解析】因为圆心(0,0)到直线80x -+=的距离4d ==,由||AB =可得6=5r =.15.【答案】20 16.【答案】36017.【答案】(1)22(1)1x y +-=;(2)22(3)2x y -+=【解析】(1)因为(1,0)关于y x =的对称点为(0,1),所以圆C 是以(0,1)为圆心,以1为半径的圆,其方程为22(1)1x y +-=.(2)由题意知A ,B 两点在圆C 上,∴线段AB 的垂直平分线3x =过圆心C . 又圆C 与直线1y x =-相切于点(2,1)B ,∴1BC k =-. ∴直线BC 的方程为1(2)y x -=--,即3y x =-+.3y x =-+与3x =联立得圆心C 的坐标为(3,0),∴||r BC ===C 的方程为22(3)2x y -+=.18.【答案】(1)75%;60%;(2)能.【解析】(1)甲机床生产的产品中的一级品的频率为15075%200=,乙机床生产的产品中的一级品的频率为12060%200=. (2)零假设HO :甲机床的产品与乙机床的产品质量无差异 由公式得:22400(1508012050)40010 6.63527013020020039K ⨯-⨯==>>⨯⨯⨯,根据0.050α=的独立性检验,我们推断HO 不成立,即认为甲机床的产品与乙机床的产品质量有差异,此推断犯错误的概率不大于0.05.19.【解析】(1)在正方体1111ABCD A B C D -中,11AB A B ∥且11AB A B =,1111A B C D ∥且1111A B C D =,∴11AB C D ∥且11AB C D =,所以,四边形11ABC D 为平行四边形,则11BC AD ∥,∵1BC ⊂/平面1AD E ,1AD ⊂平面1AD E ,∴1BC ∥平面1AD E ;(2)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD ABCD -的棱长为2,则(0,0,0)A 、1(0,0,2)A 、1(2,0,2)D 、(0,2,1)E ,1(2,0,2)AD =,(0,2,1)AE =,设平面1AD E 的法向量为(,,)n x y z =,由10n AD n AE ⎧⋅=⎪⎨⋅=⎪⎩,得22020x z y z +=⎧⎨+=⎩,令2z =-,则2x =,1y =,则(2,1,2)n =-,11142cos ,323||n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23.20.【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5;(2)利用模型②得到的预测值更可靠.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为ˆ30.413.519226.1y =-+⨯=(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为ˆ9917.59256.5y =+⨯=(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线30.413.5y t =-+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型9917.5y t =+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 21.【答案】(1)见解析;(2)20243【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从而3321()C (0,1,2,3)33k kk P X k k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.所以,随机变量X 的分布列为:随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫ ⎪⎝⎭. 且{3,1}{2,0}M X Y X Y =====.由题意知事件{3,1}X Y ==与{2,0}X Y ==互斥,且事件{3}X =与{1}Y =,事件{2}X =与{0}Y =均相互独立, 从而由(1)知:()({3,1}{2,0})P M P X Y X Y ===== (3,1)(2,0)P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=.22.【答案】(1)详见解析;(2)6【解析】(1)因为AB AD =,O 为BD 中点,所以AO BD ⊥ 因为平面ABD平面BCD BD =,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO CD ⊥(2)作EF BD ⊥于F ,作FM BC ⊥于M ,连FM 因为AO ⊥平面BCD ,所以AO BD ⊥,AO CD ⊥ 所以EF BD ⊥,EF CD ⊥,BD CD D =,因此EF ⊥平面BCD ,即EF BC ⊥因为FM BC ⊥,FMEF F =,所以BC ⊥平面EFM ,即BC MF ⊥则EMF ∠为二面角E BC D --的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以OCD 为直角三角形因为2BE ED =,∴111212233FM BF ⎛⎫==+= ⎪⎝⎭ 从而23EF FM ==,∴1AO = AO ⊥平面BCD ,所以111113326BCDV AO S =⋅=⨯⨯⨯⨯=.。
江苏省宿迁北附同文实验学校2022-2023学年高二下学期3月月考数学试题(含答案解析)
江苏省宿迁北附同文实验学校2022-2023学年高二下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题B.A.62二、多选题6.从点P(1,2,3)出发,沿着向量v =(-4,-1,8)方向取点Q,使|PQ|=18,则Q点的坐标为()A.(-1,-2,3)B.(9,4,-13)C.(-7,0,19)D.(1,-2,-3)三、单选题四、多选题五、单选题12.下列利用方向向量、法向量判断线、面位置关系的结论中,正确的是()A .两条不重合直线12,l l 的方向向量分别是()()2,3,1,2,3,1a b =-=,则12l l ∥B .直线l 的方向向量为()1,1,2a =-,平面α的法向量为()6,4,1u =- ,则l α⊥C .两个不同的平面,αβ的法向量分别是()()2,2,1,3,4,2u v =-=-,则αβ⊥D .直线l 的方向向量()0,3,0a = ,平面α的法向量是()0,5,0u =-,则l α∥六、填空题13.在空间直角坐标系Oxyz 中,已知平面α的一个法向量是()1,1,2n =-,且平面α过点(0,3,1)A 若(,,)P x y z 是平面α上任意一点,则点P 的坐标满足的方程是_______.14.已知向量()2,1,1a =- ,()1,2,b t = ,若a 与b的夹角为钝角,则实数t 的取值范围为______.15.若异面直线1l 的方向向量与2l 的方向向量的夹角为150°,则1l 与2l 所成的角为______.16.平面α的法向量是()2,2,1n =--,点()1,3,0A -在平面α内,则点()2,1,4P -到平面α的距离为___________.七、解答题(1)求证:MN AB ⊥,MN (2)求异面直线AN 与CM 所成角的余弦值20.如图,已知正方形ABCD M 是线段EF 的中点.(1)求证:AM BD⊥.(2)求证:AM⊥平面21.已知正方形ABCDBC的中点.(1)求点D到平面PEF(2)求直线AC到平面22.如图,在平行六面体=3,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值.参考答案:故选:ABC111D B D D DB AA AB =+=-+- 11122EF EA AF D A AC =+=+ (2)()1111122D F D D D B =+= 11,,122x y z ∴==-=-18.(1)(2,4,1),(2,4,a b ==-- (2)219-【分析】(1)利用空间向量平行与垂直的坐标表示即可求解;由2AB =,1AF =,得()0,0,1E ,()2,2,1F 所以22,,122AM ⎛=-- ⎝ 所以2(AM BD ⋅=⨯- 所以AM BD⊥(2)由(1)知,AM = 设(),,n x y z = 是平面BDF 所以222n BD x y n DF y z ⎧⋅=-⎪⎨⋅=+=⎪⎩ 取1y =,得1x =,z =-因为22,,122AM ⎛=-- ⎝ 所以AM ⊥平面BDF .21.(1)31717;(2)17【分析】(1)建立如图坐标系,求出平面的法向量,即可求出点(2)平面A 1DA 的一个法向量为 设(),,x y z =m 为平面BA 1D 的一个法向量,又()(13,1,3,A B BD =--=- 则10,0,m A B m BD ⎧⋅=⎨⋅=⎩ 即3333x y x y ⎧--⎪⎨-+⎪⎩不妨取x =3,则3,2y z ==,所以()3,3,2m =为平面BA 1D 从而(3,0,0,AE m cos AE m AE m ⋅== 设二面角B -A 1D -A 的大小为θ因为[]0,θπ∈,所以1sin θ=。
2022-2023学年四川省成都市简阳市阳安中学高二年级下册学期3月月考数学(文)试题【含答案】
2022-2023学年四川省成都市简阳市阳安中学高二下学期3月月考数学(文)试题一、单选题1.已知全集,集合,则( ){}1,2,3,4,5U ={}{}1,3,2,3A B ==()U A B ⋃=A .B .C .D .{}5{}4,5{}1,2,3{}1,2,4,5【答案】B【分析】先求出,再由补集运算得出答案.A B ⋃【详解】,则,{}1,2,3A B = (){}4,5U A B ⋃= 故选:B .2.已知函数,则( )()221f x x =+()()22limx f x f x ∆→+∆-=∆A .3B .5C .7D .8【答案】D【分析】根据导数的定义求解即可.【详解】解:根据题意,,则,()4f x x'=()28f '=又.()()()022lim28x f x f f x ∆→+∆-'==∆故选:D .3.已知,若,则x 0等于( )()ln f x x x=()02f x '=A .e 2B .eC .ln 22D .ln 2【答案】B【分析】利用乘法求导法则求导,代入即可求解.【详解】由可得:,所以,()ln f x x x=()ln 1f x x ='+()000ln 12ef x x x '=+=⇒=故选:B4.点的直角坐标为,则点的极坐标为( )M (-M A .B .C .D .2,3π⎛⎫ ⎪⎝⎭22,3π⎛⎫⎪⎝⎭1,6π⎛⎫ ⎪⎝⎭52,6π⎛⎫ ⎪⎝⎭【分析】根据极坐标与直角坐标的互化公式,即可求解.【详解】由题意,点的直角坐标为,M (-根据,可得点极坐标为.222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩M 22,3π⎛⎫ ⎪⎝⎭故选:B.5.下列函数中,在内为增函数的是( )(0,)+∞A .B .C .D .sin y x =xy xe =3y x x =-ln y x x=-【答案】B【分析】选项A 根据正弦函数的性质进行判断,选项BCD 通过导数进行判断即可.【详解】A :因为当时,函数单调递减,故本选项不符合题意;3[,22x ππ∈sin y x =B :,因为时,,所以函数在内为增函数,故本选'(1)x x y xe y x e =⇒=+0x >'0>y xy xe =(0,)+∞项符合题意;C :,当时,,此时函数单调递减,故本选项不符3'231y x x y x =-⇒=-x ∈'0<y 3y x x =-合题意;D :,当时,,此时函数单调递减,故本选项不'11ln 1xy x x y x x -=-⇒=-=1x >'0<y ln y x x =-符合题意,故选:B6.若曲线在点处的切线与直线垂直,则实数等于( )2sin 2cos y x x =-π,22⎛⎫ ⎪⎝⎭10x ay -+=a A .B .C .D .1-12-2-2【答案】C【分析】由导数的几何意义求解即可.【详解】∵,∴,2sin 2cos y x x =-2cos 2sin y x x '=+∴曲线在点处的切线的斜率,2sin 2cos y x x =-π,22⎛⎫⎪⎝⎭π2ππ2cos 2sin 222x k y ===+='∵切线与直线垂直,∴直线的斜率为,10x ay -+=10x ay -+=112a -=--∴.2a =-7.若,满足约束条件则的最大值为x y 032742,x x y x y ,,≥⎧⎪+≤⎨⎪-≤⎩2z x y =+A .-2B .C .4D .572【答案】C【详解】分析:由题意作出其平面区域,当x ,y 都取到最大值时z 有最大值,代入即可.详解:由题意作出其平面区域,由解得A (1,2),32742x y x y +=⎧⎨-=⎩因为z=2x+y ,所以y=-2x+z,所以直线y=-2x+z 经过可行域A 时,纵截距z 最大,z 取得最大值,此时x=1,y=2,z=2x+y 有最大值2×1+2=4,故答案为:C点睛:(1)本题主要考查线性规划,意在考查学生对线性规划等基础知识的掌握能力. (2)解答线性规划时,要理解,不是纵截距最小,z 最小,要看函数的解析式,如:y=2x-z,直线的纵截距为-z,所以纵截距-z 最小时,z 最大.8.已知直线方程的一个参数方程可以是( ).3410x y ++=A .B .315415x t y t⎧=+⎪⎪⎨⎪=--⎪⎩415315x t y t⎧=-⎪⎪⎨⎪=--⎪⎩C .D .315415x t y t⎧=-⎪⎪⎨⎪=-+⎪⎩415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩【分析】对各选项消去参数,将参数方程化为普通方程,即可判断.【详解】解:对于A :消参得;315415x t y t⎧=+⎪⎪⎨⎪=--⎪⎩4310x y +-=对于B :消参得;415315x t y t⎧=-⎪⎪⎨⎪=--⎪⎩3470x y --=对于C :消参得;315415x t y t⎧=-⎪⎪⎨⎪=-+⎪⎩4310x y +-=对于D :消参得.415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩3410x y ++=故选:D .9.“”是“函数是上的单调增函数”的( )4a ≤()()e 33x f x a x =---R A .充要条件B .必要不充分条件C .充分不必要条件D .即不充分也不必要条件【答案】B【分析】根据单调性得到恒成立,计算得到,根据范围的大小关系得到答案.e 3xa +≥3a ≤【详解】函数是上的单调增函数,故恒成立.()()e 33x f x a x =---R ()()e 30x f x a '=--≥即恒成立,,故.e 3x a +≥e 33x+>3a ≤故“”是“函数是上的单调增函数”的必要不充分条件.4a ≤()()e 33x f x a x =---R 故选:B 10.已知函数在处取得极值为10,则( )()322f x x ax bx a =+++1x ==a A .4或-3B .4或-11C .4D .-3【答案】C【分析】根据函数在处有极值10,可知(1)和(1),可322()f x x ax bx a =+++1x =f '0=f 10=求出.a 【详解】由,得,322()f x x ax bx a =+++2()32f x x ax b '=++函数在处取得极值10,322()f x x ax bx a =+++1x =(1),(1),f ∴'0=f 10=,∴2230110a b a a b ++=⎧⎨+++=⎩或,∴411a b =⎧⎨=-⎩33a b =-⎧⎨=⎩当 时,,在处不存在极值;33a b =-⎧⎨=⎩2()3(1)0f x x '=- ∴1x =当时,411a b =⎧⎨=-⎩2()3811(311)(1)f x x x x x '=+-=+-,,,,,符合题意.11(3x ∴∈-1)()0f x '<(1,)x ∈+∞()0f x '>∴故选:C【点睛】本题主要考查利用导数研究函数的极值,意在考查学生对这些知识的理解掌握水平.11.函数的部分图像大致为( )()2e xx xf x +=A.B .C .D .【答案】C【分析】利用特殊值及极限思想即可分析得出.【详解】由,故D 错误,1110242f ⎛⎫⎫-=-< ⎪⎪⎝⎭⎭当时,,A ,B 错误.x →+∞()0f x →故选:C.12.设,,,则a ,b ,c 的大小关系为( )22e a =ln22b =1e c =【答案】D 【分析】构造函数,研究其单调性,进而可以比较a ,b ,c 的大小.ln ()(0)xf x x x =>【详解】令,,ln ()(0)xf x x x =>21ln ()x f x x -'=所以时,,单调递增,()0,e x ∈()0f x '>()f x 时,,单调递减,()e,+x ∈∞()0f x '<()f x ,,,22222ln e (e )e e a f ===ln22ln2ln4(4)2224b f ====⨯1ln ee e c ==因为,所以.2e 4e <<a b c <<故选:D.二、填空题13.曲线在点处的切线方程是__________.e cos xy x =()0,1【答案】10x y -+=【分析】对函数求导,求出斜率,再利用点斜式求解即可.【详解】因为,e cos xy x =所以,e sin e cos x xy x x '=-+所以切线的斜率为:,000|e sin 0e cos 01x y ='=-+=所以曲线在点处的切线方程为:e cos xy x =()0,1,即,()110y x -=⨯-10x y -+=故答案为:.10x y -+=14.直线被曲线(为参数)截得的弦长为的值为20ax y -+=22cos 12sin x y θθ=+⎧⎨=+⎩θa _______【答案】或043-【分析】化圆的参数方程为直角坐标方程,求出圆的圆心坐标和半径,利用直线被圆截得的弦长求出圆心到直线的距离,由点到直线的距离公式列式可求的值.a【详解】由得,22cos 12sin x y θθ=+⎧⎨=+⎩()()22214x y -+-=所以曲线表示以为圆心,以2为半径的圆,()2,1因为直线被曲线(为参数)截得的弦长为20ax y -+=22cos 12sin x y θθ=+⎧⎨=+⎩θ解得或0a =43a =-15.已知定义在上的奇函数的导函数是,当时,的图象如图所()3,3-()y f x =()f x '0x ≥()y f x =示,则关于x 的不等式的解集为______.()f x x '>【答案】()()3,10,1-- 【分析】先判断出的单调性,然后求得的解集.()f x ()0f x x '>【详解】依题意是奇函数,图象关于原点对称,()f x 由图象可知,在区间递减,;()f x ()()()3,1,1,3,f x --()'0f x <在区间递增,.()f x ()()()1,0,0,1,f x -()'0f x >所以的解集.()0f x x '>()()3,10,1-- 故答案为:()()3,10,1-- 16.已知偶函数,对任意的都有,且,则不等式()f x x ()()2'6f x xf x +>()12f =的解集为_________.()2231x f x x >-【答案】,或,或{1x x <-0x =}1x >【分析】由已知条件构造函数,求导后可判断出在上单调递增,22()()31g x x f x x =-+()g x (0,)+∞在上单调递减,由,可得,由为偶函数,可判断出为偶(,0)-∞()12f =(1)(1)0g g -==()f x ()g x 函数,而不等式转化为,偶函数的性质可得,从而可求出的范围,()2231x f x x >-()0g x >1x >x 再由可得,进而可求出不等式的解集(0)10g =>0x =【详解】解:令,则,22()()31g x x f x x =-+'2''()2()()6[2()()6]g x xf x x f x x x f x xf x =+-=+-因为对任意的都有,x ()()2'60f x xf x -+>所以当,,当,,0x >'()0g x >0x <'()0g x <所以在上单调递增,在上单调递减,()g x (0,)+∞(,0)-∞因为,所以,()12f =(1)(1)0g g -==因为为偶函数,所以,()f x ()()f x f x -=所以,2222()()()3()1()31()g x x f x x x f x x g x -=----+=-+=所以为偶函数,()g x 所以由,所以,所以,解得或,()0g x >()(1)g x g >1x >1x <-1x >因为,所以,(0)10g =>0x =综上,,或,或,1x <-1x >0x =所以不等式的解集为,或,或.{1x x <-0x =}1x >故答案为:,或,或{1x x <-0x =}1x >三、解答题17.已知函数()2395f x x x =-+.(1)求函数的单调递减区间;()f x (2)求函数的极值.()f x 【答案】(1)3,2⎛⎫-∞ ⎪⎝⎭(2)的极小值为,无极大值.()f x 74-【分析】(1)求导,由导函数小于0求出单调递减区间;(2)求出函数的递增区间,结合第一问求出极小值,无极大值.【详解】(1),令,解得:,()69f x x '=-()690f x x -'=<32x <故函数的单调递减区间是()f x 3,2⎛⎫-∞ ⎪⎝⎭(2)令得:()0f x ¢>32x >故在单调递减,在单调递增,()f x 3,2⎛⎫-∞ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭所以在处取得极小值,,()f x 32x =39373952424f ⎛⎫=⨯-⨯+=- ⎪⎝⎭所以的极小值为,无极大值.()fx 74-18.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),,[80,90),[90,100]⋯(1)求频率分布直方图中的值;a (2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.[40,60)[40,50)【答案】(1)0.006;(2);(3).0.4110【分析】(1)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;1a (2)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可0.4得该部门评分不低于80的概率的估计值为;0.4(3)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2 人,记为123,,A A A ,列出从这5人中选出两人所有基本事件,即可求相应的概率.12,B B所以0.006a =(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,(0.0220.018)100.4+⨯=所以该企业职工对该部门评分不低于80的概率的估计值为0.4(3)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;123,,A A A 受访职工评分在[40,50)的有: 50×0.004×10=2(人),即为.12,B B 从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{}{}{}{}12131112,,,,,,,A A A A A B A B {}{}{}{}{}{}232122313212,,,,,,,,,,,A A A B A B A B A B B B 又因为所抽取2人的评分都在[40,50)的结果有1种,即,{}12,B B 故所求的概率为110P =【点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.19.在平面直角坐标系中,已知直线:(t 为参数).以坐标原点O 为极点,xxOy 12:2x t l y ⎧=-⎪⎪⎨⎪=⎪⎩轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 3πρθ⎛⎫=+⎪⎝⎭(1)求曲线C 的直角坐标方程;(2)设点M 的直角坐标为,直线l 与曲线C 的交点为A ,B ,求的值.(0,2)||||MA MB +【答案】(1)22x y y +-=(2)【详解】(1)由,得.2sin 3πρθ⎛⎫=+ ⎪⎝⎭12sin 2ρθθ⎛⎫=+ ⎪⎝⎭两边同乘,即.ρ2sin cos ρρθθ=cos ,sin x y ρθρθ==C 22x y y +-=(2)将代入,得,122x t y ⎧=-⎪⎪⎨⎪=⎪⎩220x y y +-=220t ++=设A,B 对应的参数分别为12,t t则12122t t t t +=-=所以.120,0t t <<由参数的几何意义得t 12||||MA MB t t +=+=20.设函数,其中,为自然对数的底数.()()21ln ,x e f x ax a x g x x e =--=-a R ∈e 2.71828= (1)讨论的单调性;()f x (2)证明:当时,.1x >()0g x >【答案】(1)答案见解析(2)答案见解析【分析】(1)求导数,分和,两种情况讨论,即可求得的单调性;()221ax f x x -'=0a ≤0a >()f x (2)令,利用导数求得单调递增,结合,得到,进而证得()1e -=-x s x x()s x ()10s =1e 0x x -->.()0g x >【详解】(1)由函数,可得,()2ln f x ax a x =--()21212ax f x ax x x -'=-=当时,,在内单调递减;0a ≤()0f x '<()f x (0,)+∞当时,由有0a >()0f x '=x =当时,,单调递减;x ∈()0f x'<()f x 当时,,单调递增.)x ∈+∞()0f x ¢>()f x (2)证明:令,则,()1e -=-x s x x ()1e 1-'=-x s x 当时,,单调递增,1x >()0s x '>()s x 因为,所以,即,()10s =()()10s x s >=1e 0x x -->当时,可得,即1x >()1111e 11e 0e e e x x x x x g x x x x ----=-=-=>()0g x >【点睛】利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数()()()h x f x g x =-导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.21.已知函数图象上点处的切线方程为.()2ln f x a x bx =+()()1,1P f 230x y --=(1)求函数的解析式;()y f x =(2)函数,若方程在上恰有两解,求实数的取值范围()()ln 4g x f x m =+-()0g x =1,2e ⎡⎤⎢⎥⎣⎦m 【答案】(1);(2).2()4ln y f x x x ==-242ln 2m <≤-【分析】(1)求函数导函数,根据导数的几何意义和题意可知,,建立关()f x ()()12,11f f '==-于的方程组,求出,从而可得函数的解析式;,a b ,a b ()y f x =(2)求出函数的导函数,根据导数确定函数的单调性与最值,再结合函数的零点个数,列出()g x 不等式组,即可确定实数m 的取值范围.【详解】(1)由题意可知()()2a f x bx x +'=0x >∵函数图象上点处的切线方程为()2ln f x a x bx =+()()1,1P f 230x y --=∴()()12,11f f '==-∴221a b b +=⎧⎨=-⎩∴,4,1a b ==-∴;()24ln f x x x =-(2)函数(),()()2ln 44ln ln 4g x f x m x x m -=+-=+-0x >则()()42g x x x '=-0x >∴当时,;当时,;1e x ⎡∈⎢⎣()0g x '>x ⎤∈⎦()0g x '<∴函数在上单调增,在上单调减1e ⎡⎢⎣⎤⎦∵方程在上恰有两解,()0g x =12e ⎡⎤⎢⎥⎣⎦,∴,∴,解得.()10e 020g g g ⎧⎛⎫≤ ⎪⎪⎝⎭⎪⎪>⎨⎪≤⎪⎪⎩214ln 40e 204ln 24ln 40m m m ⎧--+-≤⎪⎪-+>⎨⎪-+-≤⎪⎩242ln 2m <≤-22.已知椭圆与直线有且只有一个交点,点分别为椭圆的上顶()2222:10x y C a b a b +=>>2x b =11,B F 点和右焦点,且.112B F =(1)求椭圆C 的标准方程;(2)直线不经过点且与椭圆交于两点,当直线l 1B ,M N 11,B M B N 线过定点.l 【答案】(1);(2)证明见解析.22142x y +=【分析】(1)根据椭圆的有关概念即可求得椭圆的标准方程;(2)设出直线方程和椭圆方程联立,结合韦达定理代入后得出与参数无关,从而得出定点.t 【详解】(1)由题意,2,2a a b a ⎧=⎪⇒==⎨=⎪⎩所以椭圆方程为22142x y +=(2)当直线的斜率存在时,不妨设的方程为:,联立直线与楠圆的方程(10B l l y kx t =+()222214240k x ktx t +++-=方程组的解为()()1122,,,M x y N x y 由书达定理,2121222244,2121tkt x x x xk k --=+=++1112122(B M B N x x k k k t xx +∴+==+=从而,故直线过定点2k t =(2,-当直线的斜率不存在时,()()1111,,,M x yN x y -11B M B N k k ∴+==从而与椭圆只有一个交点,不合题意2x =-综上直线过定点.(2,-【定点】方法点睛:探索曲线过定点的常见方法有两种:① 可设出曲线方程 ,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点(直线过定点,可以根据直线的各种形式的标准方程找出定点). ② 从特殊情况入手,先探求定点,再证明与变量无关.。
福建省厦门第一中学2022-2023学年高二下学期3月月考数学试题
福建省厦门第一中学2022-2023学年高二下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题....A .223B .8.已知函数()e 2xf x ax =--一整数解,则实数a 的取值范围是(A .22e 1e ,2e 2⎡⎫-⎪⎢⎣⎭C .22e 1e 1e 1e ,,4e 2e 22⎡⎫---⎛⎫⎪⎪⎢⎝⎭⎣⎭ 二、多选题9.如图是y =()f x 的导函数'()f x 的图象,对于下列四个判断,其中正确的判断是()f x取得极小值A.当x=﹣1时,()f x在[﹣2,1]上是增函数B.()f x取得极大值C.当x=1时,()f x在[﹣1,2]上是增函数,在[2,4]上是减函数D.()-的体积为定值A.三棱锥1A EFGB.不存在点G,使得1B D⊥BCC BC.设直线FG与平面1D.点F到直线EG距离的最小值为12.意大利著名数学家莱昂纳多三、填空题四、解答题(1)求证://BF 平面ADE (2)若二面角E BD F --20.已知函数()e sin x f x =(1)求函数()f x 的单调递增区间;(2)设()()g x f x '=,试判断曲线明理由.21.已知双曲线C :22x a -焦点1F ,2F 的距离的差为(1)求双曲线C 的方程;(2)在直线20x y t ++=上存在一点求t 的取值范围.22.已知()2ln f x x a x =-(1)讨论()y f x =的单调性;(2)若()y f x =有两个零点1204x x x λ+>恒成立,求实数。
河北省沧州市吴桥县吴桥中学2023-2024学年高二下学期3月月考数学试题
河北省沧州市吴桥县吴桥中学2023-2024学年高二下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若()()()()()201923201901232019122222x a a x a x a x a x -=+-+-+-+⋅⋅⋅+-,则01232019a a a a a -+-+⋅⋅⋅-的值为( )A .-2B .-1C .0D .12.某单位计划从5人中选4人值班,每人值班一天,其中第一、二天各安排一人,第三天安排两人,则安排方法数为( )A .30B .60C .120D .180 3.二项式821x x ⎛⎫- ⎪⎝⎭展开式的常数项为( ) A .70- B .70 C .358- D .3584.重庆,我国四大直辖市之一,在四大直辖市中,5A 级旅游点最多,资源最为丰富,不仅有山水自然风光,还有人文历史景观.现有甲、乙两位游客慕名来到重庆旅游,分别准备从武隆喀斯特旅游区、巫山小三峡、南川金佛山、大足石刻和酉阳桃花源5个国家5A 级旅游景区中随机选择其中一个景区游玩.记事件A :甲和乙至少一人选择巫山小三峡,事件B :甲和乙选择的景区不同,则条件概率()P B A =( )A .56B .67C .78D .895.文字的雏形是图形,远古人类常常通过创设一些简单的图形符号,借助不同的排列方式,表达不同的信息,如图.如果有两个“V ”,两个“⨯”和两个“d ”.把它们从上到下摆成一列来传递一些信息,其中第一个位置确定为“V ”,同一种图形不相邻,那么可以传递的信息数量有( )A .8个B .10个C .12个D .14个 6.某班团支部换届选举,从已产生的甲、乙、丙、丁四名候选人中选出三人分别担任书记、副书记和组织委员,并且规定:上届任职的甲、乙、丙三人不能连任原职,则不同的任职结果有( ).A .15B .11C .14D .237.已知()0.6P A =,()0.3P AB =,()|0.5P B A =,下列选项正确的是( ) A .()0.4P B =B .()06|.P A B =C .()|0.5P A B =D .()()()P AB P A P B ≠8.1234202220222022202220222022C 2C 3C 4C 2022C ++++⋅⋅⋅+=( )A .202321-B .202421-C .202110112⨯D .202210112⨯二、多选题9.下列说法正确的是( )A .已知2251818C C x x +-=,则x 可能取值为6B .已知2251818C C x x +-=,则x 可能取值为7C .在921x x ⎛⎫- ⎪⎝⎭的展开式中,各项系数和为0D .在921x x ⎛⎫- ⎪⎝⎭的展开式中,各项系数和为29 10.身高各不相同的六位同学A B C D E F 、、、、、站成一排照相,则说法正确的是( )A .A 、C 、D 三位同学从左到右按照由高到矮的顺序站,共有120种站法B .A 与C 同学不相邻,共有5424A A ⋅种站法C .A 、C 、D 三位同学必须站在一起,且A 只能在C 与D 的中间,共有144种站法 D .A 不在排头,B 不在排尾,共有504种站法11.我国南宋数学家杨辉1261年所著的《详解九章算法》一书中展示了二项式系数表,数学爱好者对杨辉三角做了广泛的研究.则下列结论正确的是( )A .第6行、第7行、第8行的第7个数之和为第9行的第8个数B .123356781C C C C +++=C .第2020行的第1010个数最大D .第12行中从左到右第2个数与第3个数之比为2:11三、填空题12.22x x +n 的展开式中第三项和第四项的二项式系数同时取最大,则n 的值为. 13.若()()()()72701271222x a a x a x a x +=+++++++L ,则4a =.14.已知甲同学从学校的2个科技类社团、4个艺术类社团、3个体育类社团中选择报名参加,若甲报名了两个社团,则在有一个是艺术类社团的条件下,另一个是体育类社团的概率为.四、解答题15.某食品生产厂生产某种市场需求量很大的食品,这种食品有A 、B 两类关键元素含量指标需要检测,设两元素含量指标达标与否互不影响.若A 元素指标达标的概率为34,B 元素指标达标的概率为89,按质量检验规定:两元素含量指标都达标的食品才为合格品.(1)一个食品经过检测,AB 两类元素至少一类元素含量指标达标的概率;(2)任意依次抽取该种食品4个,设ξ表示其中合格品的个数,求ξ分布列及()E ξ. 16.为深入学习贯彻党的二十大精神,推动全市党员干部群众用好“学习强国”学习平台,激发干事创业热情.某单位组织“学习强国”知识竞赛,竞赛共有10道题目,随机抽取3道让参赛者回答.已知小明只能答对其中的6道,试求:(1)抽到他能答对题目数X 的分布列;(2)求X 的期望和方差17.三部机器生产同样的零件,其中机器甲生产的占40%,机器乙生产的占25%,机器丙生产的占35%.已知机器甲、乙、丙生产的零件分别有3%、5%和1%不合格.三部机器生产的零件混合堆放在一起,现从中随机地抽取一个零件.(1)求取到的是不合格品的概率;(2)经检验发现取到的产品为不合格品,它是由哪一部机器生产出来的可能性大?请说明理由.18.一种电子玩具按下按钮后,会出现红球或绿球,已知按钮第一次按下后,出现红球与绿球的概率都是12,从按钮第二次按下起,若前次出现红球,则下一次出现红球、绿球的概率分别为13、23;若前次出现绿球,则下一次出现红球,绿球的概率分别为35、25,记第()N,1n n n ∈≥次按下按钮后出现红的概率为n P . (1)求2P 的值;(2)当,N 2n n ∈≥,求用1n P -表示n P 的表达式;(3)求n P 关于n 的表达式.19.2024年高三数学适应性考试中选择题有单选和多选两种题型组成.单选题每题四个选项,有且仅有一个选项正确,选对得5分,选错得0分,多选题每题四个选项,有两个或三个选项正确,全部选对得6分,部分选对得3分,有错误选择或不选择得0分.(1)已知某同学对其中4道单选题完全没有答题思路,只能随机选择一个选项作答,且每题的解答相互独立,记该同学在这4道单选题中答对的题数为随机变量X .(i )求()3P X =;(ii )求使得()P X k =取最大值时的整数k ;(2)若该同学在解答最后一道多选题时,除确定B ,D 选项不能同时选择之外没有答题思路,只能随机选择若干选项作答.已知此题正确答案是两选项与三选项的概率均为12,求该同学在答题过程中使得分期望最大的答题方式,并写出得分的最大期望.。
2021-2022学年广西玉林市第十一中学高二年级下册学期3月月考数学(文)试题【含答案】
2021-2022学年广西玉林市第十一中学高二下学期3月月考数学(文)试题一、单选题1.已知全集U =R ,集合{}216,{3}A x x B x x =<=>∣∣,则()UA B =( )A .()4,3-B .[)3,4C .(]4,3-D .()3,4【答案】C【分析】先化简集合A ,求得UB ,再去求()U A B ∩即可解决.【详解】因为{}216{44},{3}A x x x x B x x =<=-<<=>∣∣∣, 所以{}3UB x x =∣,则()(]4,3U A B ⋂=-.故选:C.2.设x ∈R ,则“12x -≤<”是“23x -≤”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】解不等式23x -≤,利用集合的包含关系判断可得出结论. 【详解】由23x -≤可得323x -≤-≤,解得15x -≤≤,因为{}12x x -≤< {}15x x -≤≤,因此,“12x -≤<”是“23x -≤”的充分而不必要条件. 故选:A.3.若复数z 满足2i1iz +=+,则复数z 的共轭复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A【分析】先求出z ,再求出共轭复数z ,判断出在第一象限. 【详解】()()()()2i 1i 2i 3i 1i 1i 1i 2z +-+-===++-,则i 32z +=,对应的点31,22⎛⎫⎪⎝⎭在第一象限. 故选:A.4.在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:甲是中国人,还会说英语; 乙是法国人,还会说日语; 丙是英国人,还会说法语; 丁是日本人,还会说汉语; 戊是法国人,还会说德语;则这五位代表的座位顺序应为( ) A .甲丙丁戊乙 B .甲丁丙乙戊 C .甲丙戊乙丁 D .甲乙丙丁戊【答案】C【分析】根据只有一人会德语,不能用德语交谈,结合条件进行分析,进而即得. 【详解】由题可知只有一人会德语,不能用德语交谈,故会德语的法国人戊两边只能做法国人乙和会说法语的英国人丙, 日本人丁应坐在法国人乙和中国人甲之间,这样邻座的两人都能互相交谈, 所以这五位代表的座位顺序应为甲丙戊乙丁. 故选:C.5.一车间为规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,测得的数据如下根据上表可得回归方程9.49.1y x =+,则实数a 的值为A .37.3 B .38 C .39 D .39.5【答案】C【分析】求出(),x y ,代入回归方程,即可得到实数a 的值. 【详解】根据题意可得:23453.54x +++==,26495412944a a y ++++==,根据回归方程过中心点(),x y 可得:1299.4 3.59.14a+=⨯+,解得:39a =; 故答案选C【点睛】本题主要考查线性回归方程中参数的求法,熟练掌握回归方程过中心点(),x y 是关键,属于基础题.6.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b<c<aD .c<a<b【答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系. 【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<. 故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围. 比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减; (2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减; (3)借助于中间值,例如:0或1等. 7.设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【分析】根据函数的解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数, 再根据函数的单调性法则,即可解出.【详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在0,上单调递增,在,0上单调递增, 而331y x x-==在0,上单调递减,在,0上单调递减,所以函数()331f x x x=-在0,上单调递增,在,0上单调递增.故选:A .【点睛】本题主要考查利用函数的解析式研究函数的性质,属于基础题.8.阅读如图所示的程序框图,运行相应的程序,输出S 的结果是( )A .128B .64C .16D .32【答案】C【分析】根据程序框图的循环逻辑写出执行步骤,即可确定输出结果. 【详解】根据流程图的执行逻辑,其执行步骤如下: 1、015S =≤成立,则021S ==; 2、115S =≤成立,则122S ==; 3、215S =≤成立,则224S ==; 4、415S =≤成立,则4216S ==; 5、1615S =≤不成立,输出16S =; 故选:C9.已知命题2:,10p x R x x ∃∈-+≥,命题:q 若a b <,则22a b <,则下列命题为真命题的是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝【答案】C【分析】分别求出命题p 和命题q 的真假,结合复合命题的真假即可得结果. 【详解】当0x =时,命题p 显然为真;当2,1a b =-=时,命题q 显然为假,q ⌝为真,所以p q ∧⌝为真, 故选:C. 10.函数2ln ||2x y x =+的图像大致为( )A .B .C .D .【答案】B【分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解. 【详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称, 又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.11.抛物线22(0)y px p =>的焦点到直线1y x =+2,则p =( ) A .1 B .2C .2D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:012211pd -+==+ 解得:2p =(6p =-舍去). 故选:B.12.已知F 是椭圆22:11615x y C +=的左焦点,P 为椭圆C 上任意一点,点Q 坐标为(4,4),则||||PQ PF +的最大值为( ) A .41 B .13C .3D .5【答案】B【分析】利用椭圆的定义求解. 【详解】如图所示:()42||||||2||2||841413PQ PF PQ a PF a QF ''+=+-≤+=-+,故选:B二、填空题13.已知幂函数()233my m m x =--在()0,∞+上单调递减,则m =___________.【答案】1-【分析】由系数为1解出m 的值,再由单调性确定结论. 【详解】由题意2331m m --=,解得1m =-或4m =, 若4m =,则函数为4y x =,在(0,)+∞上递增,不合题意. 若1m =-,则函数为1y x=,满足题意. 故答案为:1-.14.若已知函数()321f x x x =-+,则函数()y f x =在2x =处的切线方程为______.【答案】10150x y --=【分析】求出()2f 、()2f '的值,利用点斜式可得出所求切线的方程.【详解】因为()321f x x x =-+,则()232f x x '=-,所以,()25f =,()210f '=,因此,所求切线的方程为()5102y x -=-,即10150x y --=. 故答案为:10150x y --=.15.将正整数排成如表,则在表中第45行第83个数是________.【答案】2019【分析】由数表中每行的最后一个数,得到第n 行的最后一个数是2n ,再由2441936=,进而求得第45行第83个数.【详解】由数表可得每行的最后一个数分别是1,4,9,16,,可归纳出第n 行的最后一个数是2n ,又因为2441936=,所以第45行第83个数为1936+83=2019. 故答案为:2019.【点睛】本题主要考查了数表数列的应用,其中解答中根据数表中的数据,得出数字的排布规律是解答的关键,着重考查推理与运算能力. 16.已知下面四个命题:①“若20x x -=,则0x =或1x =”的逆否命题为“若0x ≠且1x ≠,则20x x -≠”; ②“1x <”是“2320x x -+>”的充分不必要条件;③命题P :存在0x ∈R ,使得2010x x ++<,则p ⌝:任意x ∈R ,都有210x x ++; ④若P 且q 为假命题,则p ,q 均为假命题. 其中真命题有____________________. 【答案】①②③.【分析】①“或”的否定为“且”; ②2x >时,2x 一320x +>也成立;③含有量词(任意、存在)的命题的否定既要换量词,又要否定结论;④命题p ,q 中只要有一个为假命题,“P 且q ”为假命题.【详解】对于①,交换条件和结论,并同时否定,而且“或”的否定为“且”,故①是真命题; 对于②2x >时,2x 一320x +>也成立,所以“1x <”是“2x 一320x +>”的充分不必要条件,故②是真命题;对于③含有量词(任意、存在)的命题的否定既要换量词,又要否定结论,故③是真命题“; 对于④命题p ,q 中只要有一个为假命题,“P 且q ”为假命题,故④是假命题,故答案为:①②③.三、解答题17.已知0m >,命题:(1)(5)0p x x +-≤,命题:11q m x m -≤≤+.(1)若5m =,若“p 或q ”是真命题,“p 且q ”是假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围. 【答案】(1)[4-,1)(5-⋃,6] (2)[4,)∞+【分析】(1)将5m =代入,解不等式,可分别求出命题p ,命题q 对应的x 的取值范围,结合已知可得p 与q 一真一假,分p 真q 假时和p 假q 真时,两种情况讨论,综合讨论结果可得答案; (2)根据充要条件判定的集合法,可得[1-,5]是[1m -,1]m +的真子集,根据真子集的定义构造关于m 的不等式组,解不等式组可得答案. 【详解】(1)解:当5m =时,:46q x -,:(1)(5)0p x x +-,即15x -,由“p 或q ”为真命题,“p 且q ”为假命题,可得p 与q 一真一假,p 真q 假时,由154,6x x x -⎧⎨<-<⎩或,此不等式组无解,p 假q 真时,由461,5x x x -⎧⎨<-<⎩或,解得41x -<-,或56x <,∴实数m 的取值范围为[4-,1)(5-⋃,6];(2)解:p 是q 的充分条件不必要条件,[1∴-,5]是[1m -,1]m +的真子集,∴1115m m --⎧⎨+⎩(等号不同时取) ,解得4m ,∴实数m 的取值范围为[4,)∞+. 18.《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:违章驾驶员人数 120 105 100 90 85(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程y bx a =+; (2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.参考数据:11415ni i i x y ==∑.【答案】(1)8.5125.5y x =-+;(2)49.【分析】(1)由表中的数据,根据最小二乘法和公式,求得b ,a 的值,得到回归直线方程; (2)令x =9,代入回归直线的方程,即可得到该路口9月份的不“礼让斑马线”违章驾驶员人数. 【详解】(1)由表中数据知:1234535x ++++==,12010510090851005y ++++==,所以1221141515008.55545ni ii nii x y nx yb xnx==-==---=-∑∑,()1008.53125.5a y bx =-=--⨯=,所以所求回归直线方程为8.5125.5y x =-+. (2)当x =9时,8.59125.549y =-⨯+=(人).19.2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)(i )若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.【答案】(1) 平均数37,中位数为35;(2) (ⅰ)93()155P A ==;(ⅱ)该小区年龄不超过80岁的成年人人数约为2000×0.88=1760. 【分析】(1)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;直方图左右两边面积相等处横坐标表示中位数;(2)(ⅰ)从6人中任选2人共有15个基本事件,至少有1人年龄不低于60岁的共有9个基本事件,由古典概型概率公式可得结果;(ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88.【详解】(1)平均数()150.15250.2350.3450.15550.165750.0537x =⨯+⨯+⨯+⨯+⨯++⨯=. 前三组的频率之和为0.15+0.2+0.3=0.65,故中位数落在第3组,设中位数为x , 则(x -30)×0.03+0.15+0.2=0.5,解得x =35,即中位数为35.(2)(ⅰ)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a ,b ,c ,d ,年龄在[60,70)的有2人,设为x ,y .则从中任选2人共有如下15个基本事件:(a ,b ),(a ,c ),(a ,d ),(a ,x ),(a ,y ),(b ,c ),(b ,d ),(b ,x ),(b ,y ),(c ,d ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(x ,y ). 至少有1人年龄不低于60岁的共有如下9个基本事件:(a ,x ),(a ,y ),(b ,x ),(b ,y ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(x ,y ). 记“这2人中至少有1人年龄不低于60岁”为事件A , 故所求概率()93155P A ==. (ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88, 故可以估计,该小区年龄不超过80岁的成年人人数约为2000×0.88=1760.【点睛】本题主要考查直方图以及古典概型概率公式的应用,属于中档题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先()11,A B ,()12,A B …. ()1,n A B ,再()21,A B ,()22,A B …..()2,n A B 依次()31,A B ()32,A B ….()3,n A B … 这样才能避免多写、漏写现象的发生.20.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,【答案】(1)第二种生产方式的效率更高. 理由见解析(2)80(3)能【详解】分析:(1)计算两种生产方式的平均时间即可.(2)计算出中位数,再由茎叶图数据完成列联表.(3)由公式计算出2k,再与6.635比较可得结果.详解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高. (iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知7981802m +==. 列联表如下:(3)由于()224015155510 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.点睛:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.21.已知椭圆2222x y C 1a b +=:()0,0a b >>4. (1)求椭圆的标准方程;(2)已知过点P (2,1)作弦且弦被P 平分,则此弦所在的直线方程.【答案】(1) 221164x y += (2) 240x y +-= 【详解】试题分析:(1)根据椭圆的性质列方程组解出a ,b ,c 即可;(2)设直线斜率为k ,把直线方程代入椭圆方程,根据根与系数的关系和中点坐标公式列方程即可得出k 的值,从而求出直线方程.试题解析:(1)c e a ==2b=4,所以a=4,b=2,c=221164x y += (2)设以点()2,1P 为中点的弦与椭圆交于()()1122,,,A x y B x y ,则12124,2x x y y +=+=,分别代入椭圆的方程,两式相减得()()()()1212121240x x x x y y y y +-++-=,所以()()1212480x x y y -+-=,所以121212y y k x x -==--,由直线的点斜式方程可知,所求直线方程为()1122y x -=--,即240x y +-=. 点睛:弦中点问题解法一般为设而不求,关键是求出弦AB 所在直线方程的斜率k,方法一利用点差法,列出有关弦AB 的中点及弦斜率之间关系求解;方法二是直接设出斜率k ,利用根与系数的关系及中点坐标公式求得直线方程.22.已知函数()2ln f x x x ax =+-.()1当3a =时,求()f x 的单调增区间;()2若()f x 在()0,1上是增函数,求a 得取值范围.【答案】(1) ()10,,1,2⎛⎫+∞ ⎪⎝⎭.(2)a ≤【分析】(1)求单调增区间,先求导,令导函数大于等于0即可;(2)已知()f x 在区间(0,1)上是增函数,即()0f x '≥在区间(0,1)上恒成立,然后用分离参数求最值即可.【详解】(1)当3a =时,()2ln 3f x x x x =+-,所以()21231(21)(1)23x x x x f x x x x x'-+--=+-==, 由0f x 得,102x <<或1x >, 故所求()f x 的单调递增区间为()10,,1,2⎛⎫+∞ ⎪⎝⎭. (2)由()12f x x a x '=+-,∵()f x 在()0,1上是增函数, 所以120x a x +-≥在()0,1上恒成立,即12a x x ≤+恒成立,∵12x x +≥x =,所以a ≤(a ∈-∞.【点睛】本题考查利用导数研究函数的单调性和对勾函数在定区间上的最值问题,体现了分类讨论和转化的思想方法,考查了学生灵活应用知识分析解决问题的能力.。
福建省连城县第一中学2022-2023学年高二下学期3月月考数学试题
福建省连城县第一中学2022-2023学年高二下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________.....设函数()f x 的导函数为R 都有()()f x f x '>成立,则(.()(ln 20222022f f <()(ln 20222022f f =()(ln 20222022f f >()ln 2022f 与2022f二、多选题三、填空题13.曲线()ln f x x x =在点()()1,1f 处的切线的方程为_________.14.如图,在长方体1111ABCD A B C D -中,P 是线段1D B 上一点,且12BP D P =,若1AP xAB y AD z AA =++ ,则x y z ++=___________.15.已知函数()(3112sin 03f x x x x x=-+>16.已知函数()(1)ln (1)f x x x a x =+--是_________.四、解答题(1)求,M N 的距离;(2)求11cos ,BA CB 的值.18.设函数()13f x =(1)求()f x 的增区间;参考答案:因为11()10,(1) e3ef f=+>=由零点存在性定理可知:y 故选:BC.(2)依题意得()11,0,2A ∴()11,1,2BA =- ,1CB = 113BA CB =⋅ ,16BA = ∴1111cos ,BA CB BA CB BA CB =⋅⋅在同一个直角坐标系中作出函数x y e =和cos y x =的图象如下:假设当0x x =时,函数x y e =和cos y x =的相交,(),0x π∈- ()0,x x π∴∈-时,()()0h x h x '>⇒单调递增;()0,0x x ∈时,()h x '单调递减;即得()()0max =h x h x ()00h = ()00h x ∴>又()10h e ππ--=-< ∴综上可得,函数()h x 在()0,0x 上无零点,在()0,x π-上只有一个零点即函数()h x 在(),0π-上只有一个零点.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围;(4)利用导数证明不等式;(5)利用导数研究零点问题等其本质是利用导数研究原函数的单调性,求极值或最值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年春季高二年级3月月考
数学(文科)试题
一、选择题(本大题共12小题,共60.0分)
1.若由一个列联表中的数据计算得,那么有把握认为两个变量有关系.
A. B. C. D.
2.在一次实验中,测得的四组值分别是,,,,则y与x之间
的线性回归方程为
A. B. C. D.
3.已知x,y的取值如表所示,若y与x线性相关,且,则
D.
4.工人月工资元与劳动生产率千元变化的回归直线方程为,下列判断不正确
的是
A. 劳动生产率为1000元时,工资约为130元
B. 工人月工资与劳动者生产率具有正相关关系
C. 劳动生产率提高1000元时,则工资约提高130元
D. 当月工资为210元时,劳动生产率约为2000元
5.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间小时,
不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是
A. 11小时
B. 13小时
C. 15小时
D. 17小时
6.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2
位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则
A. 乙可以知道两人的成绩
B. 丁可能知道两人的成绩
C. 乙、丁可以知道对方的成绩
D. 乙、丁可以知道自己的成绩
7.用反证法证明“若则或”时,应假设( )
A. 或
B. 且
C.
D.
8.在平面几何里有射影定理:设三角形ABC的两边,D是A点在BC上的射影,则
拓展到空间,在四面体中,面ABC,点O是A在面BCD内的射影,且O在内,类比平面三角形射影定理,得出正确的结论是
A. B.
C. D.
9.已知i是虚数单位,复数z满足,则复平面内表示z的共轭复数的点在
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
10.设有下面四个命题
:若复数z满足,则;:若复数z满足,则;
:若复数,满足,则;:若复数,则.
其中的真命题为
A.
, B. , C. , D. ,
11.
由公式算得:
附表:
参照附表,得到的正确结论是
A. 有以上的把握认为“爱好体育运动与性别有关”
B. 有以上的把握认为“爱好体育运动与性别无关”
C. 在犯错误的概率不超过的前提下,认为“爱好体育运动与性别有
关”
D. 在犯错误的概率不超过的前提下,认为“爱好体育运动与性别无
关”
12.执行如图程序框图,如果输入的,,那么输出的
A. 3
B. 4
C. 5
D. 6
二、填空题(本大题共4小题,共20.0分)
13.如图是一组数据的散点图,经最小二乘法计算,
得y与x之间的线性回归方程为,则
______.
14.复数为虚数单位的共轭复数是______.
15.复数z满足,则的最小值为______.
16.对于三次函数,定义:设是函数的导数的导数,
若方程有实数解,则称点为函数的“拐点”有同学发现“任何一个三次函数都有拐点;任何一个三次函数都有对称中心;且拐点就是对称中心”请你
将这一发现为条件,函数,则它的对称中心为______;计算
______.
三、解答题(本大题共6小题,共70.0分)
17.
18.已知复数,且为纯虚数.
求复数z;
若,求复数w的模.
19.随着IT业的迅速发展,计算机也在迅速更新换代,平板电脑因使用和移动便携以及时尚
新潮性,而备受人们尤其是大学生的青睐,为了解大学生购买平板电脑进行学习的情况,某大学内进行了一次匿名调查,共收到1500份有效试卷,调查结果显示700名女同学中有300人,800名男同学中有400人,拥有平板电脑
Ⅰ完成下列列联表:
Ⅱ分析是否有的把握认为购买平板电脑与性别有关?
附:独立性检验临界值表;
参考公式;,其中
20.用综合法或分析法证明:
如果,,则求证.
21.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数
据:
(1)请在图中画出上表数据的散点图;
请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
试根据求出的线性回归方程,预测记忆力为9的同学的判断力.
相关公式:,.
22.2018年11月5日至10日,首届中国国际进口博览会在国家会展中心上海举行,吸引了
58个“一带一路”沿线国家的超过1000多家企业参展,成为共建“一带一路”的又一个重要支撑某企业为了参加这次盛会,提升行业竞争力,加大了科技投入该企业连续6年来的科技投入
并根据数据绘制散点图如图所示:
根据散点图的特点,甲认为样本点分布在指数曲线的周围,据此他对数据进行了一些初步处理,如下表:
其中,.
请根据表中数据,建立y关于x的回归方程保留一位小数;
根据所建立的回归方程,若该企业想在下一年收益达到2亿,则科技投入的费用至少
要多少?其中
乙认为样本点分布在二次曲线的周围,并计算得回归方程为,
以及该回归模型的相关指数,试比较甲乙两人所建立的模型,谁的拟合效果更好.附:对于一组数据,,,,其回归直线方程的斜率和截距的最小二乘估计分别为,,相关指数:.。