谷氨酸棒状杆菌基因编辑技术综述-分子生物学论文-生物学论文

合集下载

谷氨酸棒状杆菌生产流程

谷氨酸棒状杆菌生产流程

谷氨酸棒状杆菌生产流程谷氨酸棒状杆菌(Corynebacterium glutamicum)是一种重要的微生物菌株,广泛应用于食品添加剂、药品和化工等领域。

本文将介绍谷氨酸棒状杆菌的生产流程。

一、谷氨酸棒状杆菌的培养基制备1.选择适宜的碳源和氮源:谷氨酸棒状杆菌可以利用多种碳源和氮源进行生长,常用的碳源包括葡萄糖、淀粉和甘油等,常用的氮源包括硝酸盐、尿素和天然蛋白质等。

2.加入必需元素:谷氨酸棒状杆菌需要大量的镁离子、钾离子和钙离子等元素进行生长,因此在培养基中需要加入适量的这些元素。

3.调节pH值:谷氨酸棒状杆菌适宜生长的pH范围为7.0-7.5,因此在培养基中需要调节pH值。

4.灭菌处理:为了避免其它微生物污染,需要对培养基进行灭菌处理。

二、谷氨酸棒状杆菌的预培养1.选取合适的菌种:选择活力强、生长快、产量高的谷氨酸棒状杆菌菌株进行预培养。

2.制备接种液:将选取的谷氨酸棒状杆菌菌株接种到含有适宜碳源和氮源的液体培养基中进行预培养,待细胞生长到一定程度后制备接种液。

3.调节接种液浓度:通过测定细胞密度来调节接种液浓度,一般要求接种液的细胞密度为10^7-10^8 CFU/mL。

三、谷氨酸棒状杆菌的发酵过程1.接种:将调节好浓度的接种液加入到含有适宜碳源和氮源、必需元素和pH值调节好的发酵罐中进行接种。

2.控制温度:谷氨酸棒状杆菌适宜生长温度为30-35℃,因此在发酵过程中需要控制发酵罐内温度。

3.控制pH值:谷氨酸棒状杆菌生长过程中会产生大量的有机酸,会导致pH值下降,因此需要在发酵过程中定期测量pH值并进行调节。

4.控制通气量:谷氨酸棒状杆菌需要充足的氧气进行生长,因此需要在发酵过程中控制通气量。

5.添加发酵助剂:为了提高谷氨酸棒状杆菌的产量和质量,可以在发酵过程中添加适当的发酵助剂,如L-丙氨酸、亚油酸等。

四、谷氨酸棒状杆菌的分离和提纯1.分离:将发酵液离心沉淀后取上清液,通过滤纸或膜过滤等方法去除悬浮物,然后进行分离。

生物博士论文代谢工程改造谷氨酸棒杆菌生产S腺苷甲硫氨酸

生物博士论文代谢工程改造谷氨酸棒杆菌生产S腺苷甲硫氨酸

生物博士论文代谢工程改造谷氨酸棒杆菌生产S腺苷甲硫氨酸生物博士论文:代谢工程改造谷氨酸棒杆菌生产S腺苷甲硫氨酸摘要:谷氨酸棒杆菌是一种常见的细菌,具有广泛的应用前景。

本研究通过代谢工程的手段,对谷氨酸棒杆菌进行改造,使其能够高效生产S 腺苷甲硫氨酸。

通过合理调节代谢通路和基因表达水平,成功提高了酶的活性和底物利用率,从而实现了高效的生产。

引言:S腺苷甲硫氨酸是一种重要的天然产物,具有广泛的生物学活性和医药应用价值。

传统的生产方法存在着繁琐的操作步骤、底物利用率低、产率不高等问题。

因此,开展代谢工程改造谷氨酸棒杆菌,用于S 腺苷甲硫氨酸的生产具有重要的意义。

材料与方法:1. 谷氨酸棒杆菌菌株的筛选与培养条件优化;2. 代谢通路的构建与优化;3. 基因的表达水平调控;4. 酶的活性分析方法;5. S腺苷甲硫氨酸的生产与检测。

结果与讨论:1. 谷氨酸棒杆菌菌株筛选出在培养条件下生长良好、生产S腺苷甲硫氨酸能力较强的菌株;2. 通过代谢通路的构建与优化,成功提高了底物利用率和产物合成速率;3. 通过基因的表达水平调控,增加关键酶的表达量,提高了酶的活性;4. 采用新的活性分析方法,准确测量了酶的活性,并与控制组进行比较分析;5. 在优化后的培养条件下,谷氨酸棒杆菌成功生产了高纯度的S腺苷甲硫氨酸。

结论:本研究通过代谢工程的方法,成功改造了谷氨酸棒杆菌,使其能够高效生产S腺苷甲硫氨酸。

优化的代谢通路、基因表达水平和培养条件,提高了酶的活性和底物利用率,为S腺苷甲硫氨酸的工业化生产提供了新的途径。

关键词:生物博士论文、代谢工程、谷氨酸棒杆菌、S腺苷甲硫氨酸、底物利用率、酶的活性、培养条件、生产极的优化、基因表达水平、工业化生产。

基于T7_转录系统的谷氨酸棒杆菌重组蛋白高效表达系统的创建

基于T7_转录系统的谷氨酸棒杆菌重组蛋白高效表达系统的创建

第46卷第4期2023年7月河北农业大学学报JOURNAL OF HEBEI AGRICULTURAL UNIVERSITYVol.46 No.4Jul.2023基于T7转录系统的谷氨酸棒杆菌重组蛋白高效表达系统的创建任晓昕1,韩琳琳1,武子淇1,谷 敏2,徐大庆1(1.河北农业大学 生命科学学院,河北 保定071000;2.河北省蠡县农业农村局,河北 保定 071400)摘要:本研究以前期构建的大肠杆菌-谷氨酸棒杆菌穿梭载体pAU2为基础,通过添加T7 RNA聚合酶编码基因及人工合成的克隆表达区,构建了1个新的谷氨酸棒杆菌分泌型基因高效表达载体pAU29KS。

pAU29KS载体克隆/表达盒使用T7启动子作为目的基因的启动子,通过载体序列中T7 gene 1基因编码的T7 RNA聚合酶与T7启动子互作来进行目的基因的高效转录;启动子区下游使用谷氨酸棒杆菌核糖体结合位点RBS保守序列(gaaagga)来高效起始目的蛋白合成;克隆/表达盒RBS与多克隆位点MCS之间使用谷氨酸棒杆菌强信号肽cgl_2070编码序列来进行目的蛋白的胞外高效分泌。

以嗜热脂肪土芽孢杆菌的α-淀粉酶AmyF作为报告蛋白,进行谷氨酸棒杆菌C. glutamicum/pAU29KS表达系统的蛋白分泌生产能力检测。

透明圈法检测结果显示,工程菌株C.glutamicum/pAU29KS-amyF能够在淀粉平板上产生清晰可见的透明圈;培养物上清液的SDS-PAGE考马斯亮蓝染色和Western Blotting检测结果都显示出清晰的特异性条带,与AmyF预测分子量相一致;淀粉酶活性检测结果显示,培养物上清液呈现高淀粉酶活力,而细胞裂解上清液未检测到淀粉酶活力,说明高效表达的α-淀粉酶在强信号肽cgl_2070的介导下完全分泌到胞外培养基中。

本研究构建的基于T7转录系统的C. glutamicum/pAU29KS能够对目标蛋白进行高效分泌生产,是一套新的谷氨酸棒杆菌分泌型重组蛋白表达系统。

谷氨酸棒状杆菌表达蛋白原理

谷氨酸棒状杆菌表达蛋白原理

谷氨酸棒状杆菌表达蛋白原理谷氨酸棒状杆菌是一种常见的细菌,广泛应用于生物工程领域。

它具有很强的表达蛋白能力,因此被广泛用于重组蛋白的生产。

谷氨酸棒状杆菌表达蛋白的原理主要包括以下几个步骤:1. 选择合适的表达载体:表达载体是将目标基因导入宿主细胞中的载体,谷氨酸棒状杆菌的表达载体一般包含启动子、选择标记、多克隆位点等功能元件。

启动子能够促使目标基因的转录,选择标记能够筛选出表达目标蛋白的细菌克隆,多克隆位点则方便将目标基因插入载体中。

2. 构建重组质粒:将目标基因插入表达载体的多克隆位点,通过酶切和连接等分子生物学技术手段,将目标基因与表达载体连接起来,形成重组质粒。

3. 转化宿主细胞:将构建好的重组质粒转化到谷氨酸棒状杆菌的宿主细胞中。

转化的方法多种多样,可以通过热激、化学法或电击法等方式将重组质粒导入细菌细胞内。

4. 诱导表达:经过转化后的细菌细胞会在适当的培养条件下进行繁殖,并通过添加适当的诱导剂来诱导目标基因的表达。

常用的诱导剂包括异丙基硫代半乳糖苷(IPTG)等。

5. 收获表达蛋白:经过一定时间的培养和诱导后,细菌细胞内会产生大量的目标蛋白。

通过离心、超声破碎等方法,将细菌细胞打破,释放出目标蛋白。

随后,通过柱层析、电泳等分离纯化技术,将目标蛋白纯化出来。

总结起来,谷氨酸棒状杆菌表达蛋白的原理主要包括构建表达载体、转化宿主细胞、诱导表达和收获表达蛋白这几个关键步骤。

通过这些步骤,可以高效地在谷氨酸棒状杆菌中表达目标蛋白,并获得纯化的蛋白产物。

谷氨酸棒状杆菌的表达系统具有许多优点。

首先,谷氨酸棒状杆菌是一种常见的细菌,易于培养和繁殖,生长速度较快。

其次,谷氨酸棒状杆菌具有很高的表达蛋白能力,可以产生大量的目标蛋白。

此外,谷氨酸棒状杆菌的表达系统还具有高度可调控性,通过调整诱导剂的浓度和时间,可以灵活地控制目标蛋白的表达水平。

然而,谷氨酸棒状杆菌表达系统也存在一些局限性。

首先,由于谷氨酸棒状杆菌是一种革兰氏阴性菌,其表达系统对一些复杂蛋白的表达效果较差。

谷氨酸棒状杆菌

谷氨酸棒状杆菌

未知驱动探索,专注成就专业
谷氨酸棒状杆菌
谷氨酸棒状杆菌(Bacillus subtilis)是一种常见的芽孢杆菌,广泛存在于土壤和水体中。

它是一种厌氧细菌,具有较高的耐热性和抗逆性。

谷氨酸棒状杆菌是一种革兰氏阳性菌,其细胞形态为长杆状。

它可以形成孢子,在恶劣的环境条件下存活,并在有利条件下发芽繁殖。

这种菌株的生长速度较快,能够利用多种有机物和无机物作为碳、氮和能源源。

谷氨酸棒状杆菌在生物技术中具有广泛的应用价值。

它能产生多种有用的代谢产物,如多种酶和抗生素。

此外,谷氨酸棒状杆菌还被用作生物农药,能有效对抗一些农业病原菌。

总的来说,谷氨酸棒状杆菌是一种重要的微生物资源,具有较强的环境适应性和生物活性,对环境和工业具有积极的作用。

1。

谷氨酸棒状杆菌高效发酵谷氨酸的关键分子机理研究进展

谷氨酸棒状杆菌高效发酵谷氨酸的关键分子机理研究进展

谷氨酸棒状杆菌高效发酵谷氨酸的关键分子机理研究进展杨阳;张苗苗;高越;郭晓鹏;李文建;冷非凡;陆栋【摘要】谷氨酸是世界上产量最大的氨基酸,在食品、医药、工农业等领域具有广泛的用途.谷氨酸棒状杆菌是工业生产谷氨酸的主要菌株,从发现谷氨酸棒状杆菌以来,国内外在谷氨酸过量产生机理方面的研究已取得了一定的科研成果.本文就发酵过程中基因转录水平、关键酶酶活、细胞膜与运输蛋白的结构3个层面机理的研究进展做一综述.最后对谷氨酸过量产生的机理进行分析,将来需从生理作用及调控因子等方面研究,进一步完善谷氨酸过量产生机理,以期对提高谷氨酸产量以及开发微生物合成其他生物产品提供参考和方向.【期刊名称】《食品工业科技》【年(卷),期】2019(040)005【总页数】6页(P311-315,321)【关键词】谷氨酸棒状杆菌;谷氨酸发酵;分子机理【作者】杨阳;张苗苗;高越;郭晓鹏;李文建;冷非凡;陆栋【作者单位】兰州理工大学生命科学与工程学院,甘肃兰州730050;中国科学院近代物理研究所,甘肃兰州730000;中国科学院近代物理研究所,甘肃兰州730000;甘肃省微生物资源开发利用重点实验室,甘肃兰州730070;中国科学院近代物理研究所,甘肃兰州730000;中国科学院近代物理研究所,甘肃兰州730000;中国科学院近代物理研究所,甘肃兰州730000;甘肃省微生物资源开发利用重点实验室,甘肃兰州730070;兰州理工大学生命科学与工程学院,甘肃兰州730050;中国科学院近代物理研究所,甘肃兰州730000;甘肃省微生物资源开发利用重点实验室,甘肃兰州730070【正文语种】中文【中图分类】TS201.1谷氨酸是食物蛋白质的重要组成,在营养代谢、能量供应、免疫响应、氧化应激及信号通路调节等过程中发挥重要作用[1]。

因此,谷氨酸作为一种重要氨基酸被广泛应用于食品、饲料、医药、化妆品等行业。

谷氨酸是由α-酮戊二酸与游离氨在谷氨酸脱氢酶的催化下发生还原氨基化而形成。

利用谷氨酸棒状杆菌高效表达枯草芽孢杆菌的谷氨酰胺合成酶发酵生产L-谷氨酰胺

利用谷氨酸棒状杆菌高效表达枯草芽孢杆菌的谷氨酰胺合成酶发酵生产L-谷氨酰胺

利用谷氨酸棒状杆菌高效表达枯草芽孢杆菌的谷氨酰胺合成酶发酵生产L-谷氨酰胺白婧;吴桐思雨;王期;殷志敏【摘要】谷氨酰胺合成酶(GS)是用于合成L-谷氨酰胺(L-Gln)过程中的关键酶,然而GS的酶活受到多种因素的影响,导致其酶活不强,产物L-Gln偏低.本研究以GS的基因为研究对象,构建谷氨酸棒状杆菌(Corynebacterium glutamicum)的高效表达系统.利用C.glutamicum中的两种强启动子:tac启动子(Ptac)和麦芽糖启动子(Pmal),比较不同启动子的作用下GS的酶活力;其次,为了避免腺苷酰化对C.glutamicum的GS的抑制作用,将GS的腺苷酰化位点突变成苯丙氨酸(Tyr405Phe);同时由于枯草芽孢杆菌(Bacillus subtilis)的GS不受腺苷酰化作用的影响,故将Bacillus subtilis的GS基因导入到C.glutamicum的表达系统中,比较两种基因来源不同GS的酶活高低,以期达到高产L-Gln的目的.本研究第一次应用Bacillus subtilis来源的GS在C.glutamicum的系统中表达.最终的结果表明,在C.glutamicum的表达系统中,Ptac比Pmal的效果更好,来自Bacillus subtilis的GS比来自C.glutamicum的GS酶活力更高.重组菌BJ2有最高的酶活力和产量,L-Gln的最终产量达到32.5 g/L.【期刊名称】《南京师大学报(自然科学版)》【年(卷),期】2015(038)002【总页数】8页(P78-85)【关键词】谷氨酸棒状杆菌;tac启动子;mal启动子;谷氨酰胺合成酶【作者】白婧;吴桐思雨;王期;殷志敏【作者单位】南京师范大学生命科学学院,生物化学与生物制品研究所,江苏省分子医学重点实验室,江苏南京210023;南京师范大学生命科学学院,生物化学与生物制品研究所,江苏省分子医学重点实验室,江苏南京210023;南京师范大学生命科学学院,生物化学与生物制品研究所,江苏省分子医学重点实验室,江苏南京210023;南京师范大学生命科学学院,生物化学与生物制品研究所,江苏省分子医学重点实验室,江苏南京210023【正文语种】中文【中图分类】Q789目前很多蛋白和非蛋白代谢产物都可以通过基因工程技术,在载体上连接目的基因的编码序列,导入受体菌中以达到产生新的代谢途径或获得高产菌株的目的[1].在细菌中,大肠杆菌作为受体菌长期以来一直受到大家的青睐.但是大肠杆菌是革兰氏阴性菌,外排到培养液中的代谢产物极其有限,而且高表达外源基因经常会形成无活性的包涵体.因此,我们急需一种更加高效的可以分泌代谢产物的菌体.谷氨酸棒状杆菌(Corynebacterium glutamicum)是革兰氏阳性菌,非致病菌且不产生孢子,长期以来一直用于工业生产多种L型氨基酸[2].每年大约有700 000 t的L-谷氨酸和300 000 t的L-赖氨酸都是通过谷氨酸棒状杆菌发酵生产出来的.自从Corynebacterium glutamicum ATCC13032和ATCC14067的全基因组测序完成以后,它在工业生产和基因工程方面的应用潜能进一步被挖掘[3].在过去,人们期望通过经典的随机诱变育种技术筛选出高产L-谷氨酰胺(L-Gln)的菌株,这种方法工作量大、随机性、不可控性的缺陷很明显.后来人们又用酶法将L-Glu转变成L-Gln,这种方法的缺点是成本过高,难以进一步放大生产,另一个问题是ATP的再生问题[4,6].因此,更加明智的方法是利用现代分子生物学技术,构建高产L-Gln的工程菌株[5].为了实现L-Gln的工业化生产和提高L-Gln的产量,作者采用基因重组手段构建了多种重组菌株,比较了含有不同启动子和不同来源的谷氨酰胺合成酶的重组菌在发酵液中的表现.最终实验结果表明,将强启动子tac与枯草芽孢杆菌的谷氨酰胺合成酶组合,构建得到的BJ2工程菌株,在谷氨酸棒状杆菌的发酵体系中培养,表现出了较强的酶活和较高的L-Gln产量,本研究为今后国内高产菌株的开发与应用奠定了坚实的基础.1 材料与方法1.1 材料1.1.1 菌株与质粒C.glutamicum ATCC13032,E.coli DH5α为本实验室保存;E.coli-C.glutamicum 穿梭表达质粒pEKEX2为南京师范大学尚广东副教授馈赠;pET-3C质粒由本实验室保存.1.1.2 试剂和仪器Prime STAR HS DNA Polymerase、DNA限制性内切酶、T4 DNA连接酶、DL2000 DNA marker均购自TaKaRa公司;质粒小提试剂盒和胶回收试剂盒、PCR纯化试剂盒为Axygen公司产品;PCR引物购自上海英俊生物技术公司;30%的丙烯酰胺购自上海伯乐生物公司;卡那霉素、蛋白分子量标准购自上海生工公司;细菌基因组提取试剂盒购自北京天根生化科技有限公司;谷氨酰胺合成酶(GS)酶活测试盒,葡萄糖测试盒,谷氨酰胺测试盒均购自南京建成生物科技有限公司;Flag抗体,荧光标记二抗购自Cell Signaling Technology;胰蛋白胨、酵母粉为进口分析纯,其余试剂均为国产分析纯;电转化仪为Bio-Rad公司的Gene PulserⅡ;PCR仪为Bio-Rad公司的S1000;美国宝特Bio-Tek生产的酶标仪;英国Sanyo公司生产的超声波破碎仪(Soniprep150);Agilent 1260 Infinity HPLC检测系统.1.1.3 DNA 测序由南京思普金生物公司完成测序.1.2 方法1.2.1 质粒的构建本实验所使用和构建的质粒和工程菌株均列于表1,PCR引物列于表2.以C.glutamicum ATCC13032的基因组为模板[7,8],扩增得到1 434 bp的谷氨酰胺合成酶基因glnA,为解决C.glutamicum的谷氨酰胺合成酶受到腺苷酰化作用的影响[9-12],设计定点突变引物,通过融合PCR的方法,将glnA 405位的酪氨酸(Tyr405)突变成苯丙氨酸(Phe405)[8,13,14],以SalⅠ-SacⅠ酶切后,连接到 E.coli-C.glutamicum 穿梭表达载体pEKEX2上,获得pEKEX2-Ptac-glnAm;有文献报道,枯草芽孢杆菌的GS不受腺苷酰化作用的影响[12],以实验室保存的重组质粒pET3C-glnABS为模板,扩增出来源于Bacillus subtilis 的谷氨酰胺合成酶基因glnABS,用SalⅠ-KpnⅠ双酶切之后,插入到pEKEX2中,获得重组质粒pEKEX2-Ptac-glnABS.麦芽糖(mal)启动子是C.glutamicum表达系统中的强启动子[15],我们构建了pEKEX2-Pmal-glnAm,pEKEX2-Pmal-glnABS.首先设计引物分别将mal启动子和glnAm、glnABS进行融合PCR,将获得的融合片段Pmal-glnAm和Pmal-glnABS用ApaⅠ-KpnⅠ双酶切,纯化后插入载体pEKEX2中.透明颤菌(Vitreoscilla)含有血红蛋白(VHb),能够解决细菌在贫氧条件下的生长问题.本实验尝试利用透明颤菌的血红蛋白基因(vgb)来解决C.glutamicum发酵过程中能量供给不足的难题,从而提高L-Gln的产量[16].为此分别构建了 pEKEX2-Ptac-glnAm-vgb-Flag、pEKEX2-Ptac-glnABS-vgb-F、pEKEX2-Ptac-glnAm-F-Ptac-vgb-F和 pEKEX2-Ptac-glnABS-F-Ptac-vgb-F.表1 本研究的菌株和质粒Table 1 List of strains and plasmids used in thisstudy来源E.coli DH5α F-,Δ(lacZYA-argF)U169,deoR,recA1,endA1,phoA,supE44,gyrA96,relA1,λ-,thi-1,hsdR17(RK-,MK+) 本实验室保存C.glutamicum ATCC 13032 Wild-type 本实验室保存pEKEX2 E.coli-C.glutamicum shuttle vector,KmR 本实验室保存BJ-1 C.glutamicum ATCC13032/pEKEX2 本研究构建BJ-2 C.glutamicum ATCC13032/pEKEX 2-Ptac-glnABS 本研究构建BJ-3 C.glutamicum ATCC13032/pEKEX 2-Ptac-glnAm 本研究构建BJ-4 C.glutamicum ATCC13032/pEKEX2-Pmal-glnABS 本研究构建BJ-5 C.glutamicum ATCC13032/pEKEX2-Pmal-glnAm 本研究构建BJ-6 C.glutamicum ATCC13032/pEKEX2-Ptac-glnAm-vgb-F 本研究构建BJ-7 C.glutamicum ATCC13032/pEKEX2-Ptac-glnABS-vgb-F 本研究构建BJ-8 C.glutamicum ATCC13032/pEKEX2-Ptac-glnAm-F-Ptac-vgb-F 本研究构建BJ-9 C.glutamicum ATCC13032/pEKEX2-Ptac-glnABS-F-Ptac-vgb-F 本研究构建菌种和质粒基因型表2 本研究所使用的引物Table 2 List of primers used in this study引物序列(5'to 3')Primer1 GCGTCGAC AAGGAGATATAGATATGGCGTTTG(SalⅠ)Primer2 CTGGTGGTAGTTCGAAGAGGTCCTTGTCCAC Primer3 GTGGACAAGGACCTCTTCGAACTACCACCAG Primer4 CGAGCTC TTAGCAGTCGAAGTACAATTCGAATTCCTGCTG(SacⅠ)Primer5 GCGTCGAC AAGGAGATATAGA TATGGCAAAGTACACTAGAG(SalⅠ)Primer6 CGGGATCC TTGACAATTAATCATCGGCTCGTATAATGTGTG(KpnⅠ)Primer8 GGTTTGCTGGTCTAACATATCTATATCTCCTTCATGCAAGCTTGGCGTAATC Primer9 GATTACGCCAAGCTTGCATGAAGGAGATATAGATATGTTAGACCAGCAAACCPrimer10 CGAGCTC ATATTGAGACATATACTGTTCGCGCTC(BamHⅠ)P rimer7 GGGGTACC TTACTTATCGTCGTCATCCTTGTAATCTTCAACCGCTTGAGC(SacⅠ)Primer11 GCGGGCCC CCTCTCGCGTGCCCCAAC(ApaⅠ)Primer12 GTTTCAAACGCCATGAGGTCCTCATCTT Primer13 AAGATGAGGACCTCATGGCGTTTGAAAC Primer14 GGGGTACC TTAGCAGTCGAAGTACAATTCGAATTCCTG(KpnⅠ)Primer15 GCGGGCCCCC TCTCGCGTGCCCCAAC(ApaⅠ)Primer16 TGTACTTTGCCATGAGGTCCTCATCTT Primer17 AAGATGAGGACCTCATGGCAAAGTACA Primer18 GGGGTACC TTAATATTGAGACATATACTGTTCGCG(KpnⅠ)1.2.2 发酵生产L-Gln的培养条件、生产曲线和葡萄糖残糖量的检测1.2.2.1 发酵生产 L-Gln 的培养条件C.glutamicum的种子液培养用LBG培养基(葡萄糖5 g/L,胰蛋白胨10 g/L,酵母粉5 g/L,氯化钠5 g/L,固体培养基中添加1.5%的琼脂粉);感受态细胞的制备和电转化用LBHIS培养基(蛋白胨5 g/L,氯化钠5 g/L,酵母提取物2.5 g/L,脑心浸出液18.5 g/L,山梨醇91 g/L,固体培养基中添加1.5%的琼脂粉);发酵培养基(葡萄糖100 g/L,硫酸铵70 g/L[17,18],玉米浆 12 g/L,氯化钠2 g/L,磷酸氢二钾 8 g/L,磷酸二氢钾 2 g/L,硫酸镁 0.5 g/L,硫胺素 1 mg/L,生物素6 μg/L,硫酸锰 0.4 mg/L,四硼酸钠 0.04 mg/L,硫酸锌0.1 mg/L,硫酸亚铁5 g/L[19,20]).含有Pmal的重组菌,麦芽糖在发酵培养基中既作碳源,又作诱导剂.接菌前,在培养基中加入50 μg/mL的卡那霉素(Kan),培养过夜后,转接至20 mL的发酵培养基中,使初始OD值约为0.2;当菌体长到对数中后期时,加入0.5 mmol/L的IPTG诱导GS表达;整个发酵过程中,培养温度30 ℃,用NH3·H2O 调控 pH,使发酵培养基中的 pH 保持在 6.0~6.5[17,21].1.2.2.2 生长曲线的测定和残糖量的检测选取重组菌 BJ1(Wild-type/pEKEX2)、BJ2(Wild-type/pEKEX2-Ptac-glnABS)和BJ3(Wild-type/pEKEX2-Ptac-glnAm)在发酵培养基中培养,初始的OD值为0.2,在发酵前期32 h,每隔2 h测一次OD;32 h后,每隔4 h测一次OD.用从南京建成生物科技有限公司购买的葡萄糖测试盒,测定发酵培养基中剩余的葡萄糖的含量.1.2.3 谷氨酸棒状杆菌ATCC13032感受态细胞的制备和电转化1.2.3.1 谷氨酸棒状杆菌ATCC13032感受态细胞的制备从-80℃冰箱中取出冻存的野生型的C.glutamicum ATCC13032,在LBG固体培养基上划线复壮,在30℃培养箱中培养24 h.然后,挑取单菌落至4 mL的LBG 液体培养基中,在30℃的摇床中,220 r/min培养16 h.接着,转接至160 mL的LBHIS液体培养基中,当培养基中的C.glutamicum的OD600值达到0.5左右时收菌,5 000 g,4℃离心20 min,弃上清,用40 mL的冰预冷的TG缓冲液(1 mmol/L Tris-HCl缓冲液pH 7.5,10%甘油)和冰预冷的10%甘油分别清洗沉淀菌2次,最后用500 μL的10%的冰预冷的甘油重悬沉菌,分装在1.5 mL的EP管中,每管100 μL,在-80℃冰箱中保存.1.2.3.2 电转化方法从-80℃冰箱中取出C.glutamicum ATCC13032的感受态细胞,放在冰上融化,电击杯也放在冰上遇冷;吸取1 μL的重组质粒至感受态细胞中,反复吹打混匀后,将其转至电击杯中,注意不能有气泡,放入电转仪Gene PulserⅡ电击,25 F、12.5 kV/cm、200 Ω;电击后立刻转移到 1.5 mL 的 EP 管中,加入800 μL 的LBHIS液体培养基,46℃水浴锅中热击6 min;放在30℃的摇床200 r/min,培养1.5 h后涂布在LBHIS固体培养基上,30℃下培养1 d~2 d.1.2.4 Western blot检测重组蛋白的表达用接菌环从平板上挑取新复壮重组菌,接菌到4 mL的LBG液体培养基中(含有50 μg/mL Kan),30℃,220 r/min震荡培养12 h.将菌液转接至20 mL新鲜的发酵培养基中,使初始OD600为0.2,30℃,220 r/min震荡培养,待OD600值达到7~10时,加入终浓度为0.5 mmol/L的IPTG,诱导过夜.取5 mL培养液4℃下12 000 g离心2 min收菌,用预冷的PBS溶液洗涤2次,最后用200 μL PBS 溶液重悬,加入14.3 mmol/L β-巯基乙醇和0.5 mmol/L PMSF后进行超声波破碎[22].4℃下12 000 g离心30 min去除细胞碎片,收集上清即得蛋白粗提液,用标准Western blot方法检测重组蛋白的表达[23].1.2.5 谷氨酰胺合成酶的酶活力的检测粗酶液提取方法同1.2.4,利用谷氨酰胺合成酶(GS)酶活测试盒检测重组菌中GS的酶活.1.2.6 HPLC 检测 L-Gln 的产量本实验选用Hypersil NH2柱(4.6×150 mm,直径5 μm),以乙腈-50 mmol/L磷酸二氢钾缓冲液(用磷酸调pH值至4.0),70∶30为流动相;流速为1.0 mL/min;紫外检测波长为215 nm;柱温为40℃.2 结果与分析2.1 生长曲线的测定和葡萄糖消耗量的检测生长曲线是测定细胞绝对生长数的常用方法,也是判定细胞活力的重要指标.本实验通过对重组谷氨酸棒状杆菌生长曲线的测定,可以得到重组菌BJ1、BJ2、BJ3进入对数生长期和稳态期的时间.如图1(a)所示,重组菌的生长曲线与含有空载体的对照菌BJ1基本相同,这说明导入外源表达载体不会影响重组菌的正常生长.重组菌BJ2、BJ3在4 h~13 h为对数生长期,15 h之后进入稳态期;含有空载体的对照菌BJ1的对数生长期为4 h~16 h,在18 h以后进入稳态期.通常,为更好地诱导酶的表达,需要在对数生长期的中后期添加0.1 mmol/L~1.0 mmol/L IPTG,因此,根据图1(a)所示,在重组菌生长到对数生长期的中后期约为7 h~10 h时,及时向发酵培养基中加入0.5 mmol/L的IPTG.为精确地测定培养基中葡萄糖的含量,整个发酵过程中没有向培养基中加入额外的葡萄糖和其他碳源.如图1(b)所示,前24 h,葡萄糖的含量急剧下降,说明在进入对数生长期之后,菌体迅猛增长,消耗大量的碳源来维持能量;在24 h时,菌体已生长到稳态期,葡萄糖的剩余量约为30 mmol/L;24 h~60 h,葡萄糖的下降趋势缓慢;60 h时,葡萄糖基本消耗殆尽.因此,为了保证发酵菌液的长势良好、代谢旺盛,需在24 h前补加足够菌体生长的葡萄糖,并在24 h、36 h和48 h分别补加10 g/L的葡萄糖.图1 生长曲线和葡萄糖的消耗曲线Fig.1 Growth curve and the glucose consumption tendency(a)BJ1、BJ2和BJ3发酵培养过程中的生长曲线.过夜培养的种子液转接到新鲜发酵培养基中,使初始OD600为0.2,在32 h之前每隔2 h测一次OD600的吸光值,之后每隔4 h测一次OD值;(b)BJ2、BJ3、BJ8、BJ9培养基中残糖量的测定,从12 h开始每隔12 h取样测一次葡萄糖的含量(a)Growth curve for BJ1,BJ2 and BJ3 cells in MS medium at 30 ℃.The overnight culture was diluted to an OD600of 0.2 in A medium,incubated and OD600was measured every 2 h(before 32 h)or 4 h(after 32 h);(b)The graph shows the consumption rate of glucose by C.glutamicumATCC13032 BJ2/BJ3/BJ8/BJ9 through whole fermentation2.2 谷氨酰胺合成酶的酶活检测GS的酶活力用南京建成生物技术公司生产的谷氨酰胺合成酶(GS)酶活测试盒检测.如图2(a)所示,GS的酶活力在60 h时达到最大值.BJ2酶活力大约为对照组BJ1酶活力的10倍左右,BJ3的酶活力大约为BJ1酶活力的5倍左右;重组菌BJ2,BJ3都是在Ptac作用下的,与同在Pmal作用下的BJ4,BJ5的酶活力相比,BJ2,BJ3的GS酶活力远远高于BJ4、BJ5.结果表明,无论是连接Bacillus subtilis的GS还是C.glutamicum的GS,Ptac转录表达GS的效果都要比Pmal的效果好,可能因为在重组谷氨酸棒状杆菌的发酵过程中,含有Pmal的重组菌所用的碳源和诱导剂均为麦芽糖,麦芽糖作为碳源的效果不如葡萄糖好,麦芽糖作诱导剂的效果也远不如IPTG好;其次,比较在相同启动子作用下,不同来源的GS酶活力高低.BJ2的酶活力大约为BJ3的2~3倍;BJ4和BJ5相比,在发酵前期酶活力相差无异,60 h之后,BJ4的酶活上升,明显高于BJ5.结果表明,在相同启动子作用下,Bacillus subtilis的GS酶活力更高,可能因为来源Bacillus subtilis的GS不会受到腺苷酰化作用的影响,即使C.glutamicum的GS为避免腺苷酰化的影响,将glnA Tyr405突变成Phe405,也没有将GS的来源换掉效果好.因此我们将Bacillus subtilis的GS应用于谷氨酸棒状杆菌的表达系统中,对发酵生产L-Gln有重要的参考价值.图2 不同菌种的GS酶催化活性Fig.2 Catalyzes activity with different promoter and different GS(a)单启动子酶活.新鲜活化的菌液接种到含有20 mL发酵培养基的250 mL的锥形瓶中,30℃,220 r/min震荡培养60 h,pH控制在6.5,每12 h取样测一次酶活;(b)为了研究VHb蛋白对GS酶活的影响,将新鲜活化的BJ6~BJ9菌株接种到含有20 mL发酵培养基的250 mL锥形瓶中,30℃,220 r/min震荡培养60 h,pH控制在6.5,每隔12 h取样测一次酶活(a)Cells were grown in 250 mL Erlenmeyer flasks containing 20 mL of MS medium at 30℃ for 60 h with shaking(220 r/min).The data measured every 12 h.pH was controlled at 6.5;(b)To understand the effect of vgb’s loci on glutamine synthetase activity,BJ6~ BJ9 strains were grown in 250 mL Erlenmeyer flasks containing 20 mL MS medium at 30 ℃ for 60 h with shaking(220 r/min).The data measured every 12 h,pH was controlled at6.5为了验证vgb基因是否在L-Gln的发酵生产中发挥作用,我们又构建了4个重组菌株,分别命名为BJ6、BJ7、BJ8和BJ9(表2).由于Pmal的作用没有Ptac效果好,因此构建BJ6、BJ7、BJ8、BJ9时选用的启动子都是Ptac.BJ6、BJ7是单启动子设计,表达融合蛋白;BJ8、BJ9是双启动子设计,分别表达GS和VHb,其目的是检测VHb蛋白对GS酶活力和L-Gln产量的影响.加入vgb基因后(图2b),各个重组菌GS的酶活力没有显著差异,而且酶活反而下降,与对照组BJ1的酶活相似,说明VHb蛋白对GS的表达有负影响,导致其酶活下降,可能因为一个载体上同时表达两种蛋白,而且它们互相抑制从而导致酶活下降.2.3 Western blot检测重组蛋白的表达为了更加精确地检测重组菌BJ6~BJ9中,目的蛋白VHb和GS的表达情况,我们在构建时于目的基因glnAm、glnABS和vgb的羧基端加了Flag-标签(表1),用Flag抗体(1∶1000)检测重组蛋白的表达水平以及稳定性.如图3所示,GS和VHb蛋白均能正常稳定表达,且没有降解,表明在重组菌BJ6~BJ9中,GS酶活下降的原因是在同一个表达载体pEKEX2上,同时表达2个蛋白VHb和GS,VHb对GS的酶活有抑制作用.图3 重组蛋白的表达检测Fig.3 The expression of recombinant proteinFlag标签抗体检测BJ6~BJ9的蛋白提取液中融合蛋白表达情况:BJ6表达C.glutamicum 的GS酶和VHb的融合蛋白(69 kDa),BJ7表达Bacillus subtilis的GS酶和VHb的融合蛋白(67 kDa),BJ8分别表达C.glutamicum的GS酶(53 kDa)和VHb蛋白(16 kDa),BJ9分别表达Bacillus subtilis的GS酶(51 kDa)和VHb蛋白(16 kDa)(※)We used Flag antibody to examine fu sion expression of the exogenous proteins,BJ6 for the expression of C.glutamicum GS and VHb fusion proteins(69 kDa),BJ7 for the expression of Bacillus subtilis GS andVHb fusion proteins(67 kDa),BJ8 for GS of C.glutamicum(53 kDa)and VHb(16 kDa),BJ9 for GS of Bacillus subtilis(51 kDa)and VHb protein(※) 2.4 结合HPLC和谷氨酰胺测试盒检测重组谷氨酸棒状杆菌发酵生产L-Gln的产量所有重组菌处于同样的发酵条件,发酵培养条件在材料与方法中提及.结合HPLC 和谷氨酰胺测试盒,发酵生产60 h后,重组菌BJ2的L-Gln终产量最高,为32.63 g/L(表3),BJ3为25.7 g/L.BJ2的产量大约为对照组BJ1的3倍,BJ1的产量为10.13 g/L.重组菌BJ6~BJ9的L-Gln的终产量和BJ1基本相同.上述结果表明,L-Gln的产量和GS的酶活力成正比,且Bacillus subtilis来源的GS酶产量比C.glutamicum的GS突变体还要高.为了比较麦芽糖启动子对L-Gln产量的影响,我们也检测了重组菌BJ3和BJ4的发酵情况.实验结果表明,L-Gln的产量没有显著提高,这表明麦芽糖启动子可能不适用于在谷氨酸棒状杆菌发酵生产L-Gln,这与酶活数据也是吻合的.表3 谷氨酰胺测试盒检测各重组C.glutamicum中L-Gln的产量Table 3 Production of L-Gln by re combinant C.glutamicum g·L-1Strains and plasmids L-Glutamine Strains and plasmids L-Glutamine BJ1(pEKEX2) 10.13 BJ6(pEKEX2-Ptac-glnAm-vgb-F) 8.99 BJ2(pEKEX2-Ptac-glnABS) 32.63BJ7(pEKEX2-Ptac-glnABS-vgb-F) 15.41 BJ3(pEKEX2-Ptac-glnAm) 25.77BJ8(pEKEX2-Ptac-glnAm-F-Ptac-vgb-F) 10.13 BJ4(pEKEX2-Pmal-glnABS) 9.57 BJ9(pEKEX2-Ptac-glnABS-F-Ptac-vgb-F) 12.77 BJ5(pEKEX2-Pmal-glnAm) 9.89图4 HPLC检测L-Gln标品和部分样品的的含量Fig.4 HPLC analysis of commercial glutamineHPLC检测系统为Agilent 1260 Infinity;色谱条件为色谱柱:Hypersil NH2柱(4.6×150 mm,5 μm);流动相:乙腈-磷酸二氢钾缓冲液(50 mmol/L,pH 4.0);流速:1.0 mL/min,检测波长:215 nm.(a)L-Gln 标品出峰的时间为 11.421 min,L-Gln 标准品的浓度为 2 mmol/L.(b)HPLC检测重组菌BJ2样品图,发酵时间46 h,出峰时间为11.419 min,样品浓度为2 mmol/LThe reactions catalyzed by C.glutamicum were monitored by HPLC according to a known protocol with modifications.Briefly,HPLC analysis was carried out using an Agilent 1260 Infinitysystem with the HypersilNH2column(4.6×150 mm,5 μm)at a flow rate of 1.0 mL/min.The mobile phase was a mixture of acetonitrile-KH2PO4(50 mmol/L,pH4.0).Production of L-Gln was detected by UV absorbance at 215 nm.The retention of L-Gln was around 11.421 min,the concentration of L-Gln standard was 2 mmol/L.(b)The production of L-Gln of recombinant strain BJ2 for 46 h was monitored by HPLC and the retention of L-Gln of BJ2 was around 11.419 min,the concentration of L-Gln of BJ2 was 2 mmol/L3 讨论本研究比较Pmal和Ptac中哪一个更适用于在谷氨酸棒状杆菌的表达系统中表达GS.应用Pmal表达GS,是之前文献中没有报道过的,但是很遗憾Pmal并没有在转录表达GS的过程中发挥强启动子的作用,可能因为含有Pmal的重组菌BJ4、BJ5的培养基中使用的碳源是麦芽糖.因为葡萄糖效应,会优先利用葡萄糖,麦芽糖不被优先利用,所以BJ4、BJ5的培养基碳源和诱导剂均为麦芽糖;含Ptac的重组菌BJ2、BJ3、BJ6~BJ9用IPTG做诱导剂,并且葡萄糖作为碳源.麦芽糖和葡萄糖不同的是,葡萄糖是速效碳源,麦芽糖为碳源时,菌体生长速度较葡萄糖为碳源时生长得更缓慢,不利于菌体的生长和代谢产物的积累.如果在含Pmal的重组菌的培养基中添加葡萄糖作碳源,Pmal可能不能很好地诱导表达GS,因此本实验研究结果表明,Ptac比Pmal能更好地在谷氨酸棒状杆菌中表达和增加GS的酶活力.来源于Bacillus subtilis的GS酶活力高于C.glutamicum的GS突变体,为今后进一步通过基因工程技术的发酵生产L-Gln做了很好的铺垫.在发酵的前期阶段,碳源含量过高,会导致渗透压过大,不利于菌的生长;发酵后期,碳源含量过高,菌体会继续生长,也不利于合成代谢产物;所以本实验采取中间补糖的方案,有利于发酵终产物的积累.BJ6~BJ9加入vgb基因后,GS的酶活力反而下降,可能因为在同一载体上,同时表达2个蛋白,2个蛋白互相影响,导致GS酶活下降.为了能在重组菌中发挥VHb的功能,在今后的研究中,可能将vgb基因通过基因敲入整合进C.glutamicum ATCC13032的基因组中,对菌体的生长及L-谷氨酰胺的发酵生产起到积极的促进作用.[参考文献][1] Li Y,Yang G,Huang X,et al.Recombinant Glutamine Synthetase(GS)from C.glutamicum existed as both hexamers &dedocamers and C-terminal His-tag enhanced inclusion bodies formation in E.coli[J].Applied Biochemistry and Biotechnology,2009,159(3):614-622.[2] Beckers G,Nolden L,Burkovski A.Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status[J].Microbiology,2001,147(Pt 11):2 961-2 970.[3] Merrick M J,Edwards R A.Nitrogen control in bacteria[J].Microbiol Rev,1995,59(4):604-622.[4] Rehm N,Burkovski A.Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum:influence on amino acid poolsand production[J].Applied Microbiology and Biotechnology,2010,89(2):239-248.[5] Binder S,Siedler S,Marienhagen J,et al.Recombineering in Corynebacterium glutamicum combined with optical nanosensors:a general strategy for fast producer strain generation[J].Nucleic Acids Research,2013,41(12):6 360-6 369.[6] Behensky P,Stenzl V,Adamek F,et al.Conversion of glutamate to glutamine by permeabilized Corynebacterium glutamicum[J].Folia Microbiol(Praha),1999,44(5):487-490.[7] Ikeda M,Nakagawa S.The Corynebacterium glutamicum genome:features and impacts on biotechnological processes[J].Appl Microbiol Biotechnol,2003,62(2/3):99-109.[8] Kalinowski J,Bathe B,Bartels D,et al.The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins [J].J Biotechnol,2003,104(1/2/3):5-25.[9] Rehm N,Burkovski A.Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum:influence on amino acid pools and production[J].Appl Microbiol Biotechnol,2011,89(2):239-248. [10] Harper C,Hayward D,Wiid I,et al.Regulation of nitrogen metabolism in Mycobacterium tuberculosis:a comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor[J].IUBMB Life,2008,60(10):643-650.[11] Silberbach M,Burkovski A.Application of global analysistechniques to Corynebacterium glutamicum:new insights into nitrogen regulation[J].J Biotechnol,2006,126(1):101-110.[12] Strosser J,Ludke A,Schaffer S,et al.Regulation of GlnK activity:modification,membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum[J].Mol Microbiol,2004,54(1):132-147. [13] Knoppova M,Phensaijai M,Vesely M,et al.Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis[J].Curr Microbiol,2007,55(3):234-239. [14] Lee J.Development and characterization of expression vectors for Corynebacterium glutamicum[J].J Microbiol Biotechnol,2014,24(1):70-79.[15] Okibe N,Suzuki N,Inui M,et al.Isolation,evaluation and use of two strong,carbon source-inducible promoters from Corynebacterium glutamicum[J].Letters in Applied Microbiology,2010,50(2):173-180. [16] Wang Q,Min C,Yan T,et al.Production of glutamine synthetase in Escherichia coli using SUMO fusion partner and application to l-glutamine synthesis[J].World Journal of Microbiology and Biotechnology,2011,27(11):2 603-2 610.[17] Park J H,Lee S Y.Fermentative production of branched chain amino acids:a focus on metabolic engineering[J].Applied Microbiology and Biotechnology,2009,85(3):491-506.[18] Schmi R,Uhlemann E M,Nolden L,et al.Response to nitrogen starvation in Corynebacterium glutamicum[J].FEMS Microbiol Lett,2000,187(1):83-88.[19] Kusumoto I.Industrial production of L-glutamine[J].J Nutr,2001,131(Suppl 9):2 552S-2 555S.[20] Lee Y B,Jo J H,Kim M H,et al.Enhanced production of α-ketoglutarate by fed-batch culture in the metabolically engineered strainsof Corynebacterium glutamicum[J].Biotechnology and Bioprocess Engineering,2013,18(4):770-777.[21] Park J H,Lee S Y.Fermentative production of branched chain amino acids:a focus on metabolic engineering[J].Appl Microbiol Biotechnol,2010,85(3):491-506.[22] An S J,Yim S S,Jeong K J.Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide[J].Protein Expr Purif,2013,89(2):251-257.[23] Fan Y,Chen H,Qiao B,et al.c-Jun NH2-terminal kinase decreases ubiquitination and promoters stabilization of p21WAF1/CIP1 in K562cells [J].Biochem Biophys Res Commun,2007,355:263-268.。

谷氨酸棒状杆菌的简单探究

谷氨酸棒状杆菌的简单探究

谷氨酸棒状杆菌的简单探究农学院2014级植物保护5班毛雪纯201430630415摘要:谷氨酸棒状杆菌(Corynebacterium glutamicum)是兼性厌氧菌,为革兰氏阳性。

其主要特征为无芽孢,不运动、菌落湿润,细胞短杆,小棒状,两端钝圆,整体呈圆形,不分枝,菌体约0.7~0.9×1.0~2.5微米。

谷氨酸棒状杆菌是工业微生物发酵工程方面十分常见实用的微生物之一,可用于生产谷氨酸进而生产出谷氨酸钠,即日常调味料味精。

本文将从谷氨酸棒状杆菌代谢,分泌模式等多方面进行初步探究。

关键词:微生物发酵工程,谷氨酸棒状杆菌,工业微生物一、谷氨酸棒状杆菌的利用:谷氨酸棒状杆菌可以在用于生产谷氨酸,其在发酵过程中要在无菌条件下不断地通入空气,并且通过搅拌形成细小的气泡,使空气可以迅速溶解在培养液中;在30-37℃,中性偏碱的条件下,经28~32小时,会生成大量的谷氨酸。

通过对谷氨酸棒状杆菌的调控,如允许丝氨酸,苏氨酸,精氨酸等氨基酸积累的关键点的成功抑制,使谷氨酸棒杆菌在生物技术上的应用潜力很快增加。

在近几十年,开发谷氨酸棒杆菌的高产菌株的研究引起了人们的兴趣,科学家们采取了包括传统的突变和筛选、定向基因工程在内的不同策略。

二、谷氨酸棒状杆菌的成分:分别用凯式定氮法、定磷法、锁式抽取法、灼烧烘干法可以测量出工业发酵过的废弃谷氨酸棒状杆菌中粗蛋白、核酸、粗脂肪、灰分的含量。

详见下表:表1谷氨酸棒状杆菌主要成分表(%)由上表可以看出在工业上废弃的谷氨酸棒状杆菌中粗蛋白的含量非常丰富,大大超过了酵母菌体中的蛋白含量。

而核酸的水解产物肌苷酸、鸟甘酸是十分重要的呈味物质,谷氨酸棒状杆菌中核酸含量与酵母中核酸的含量相当。

实验结果表明谷氨酸棒状杆菌中含有17种氨基酸,含有7种人体必需的氨基酸。

而且必需氨基酸含量占总氨基酸量的38.95 %,氨基酸含量占菌体干重的60.41 %。

以上结果可以看出,就算是废弃的谷氨酸棒状杆菌也具有较高的开发利用价值,谷氨酸棒状杆菌蛋白水解后的氨基酸的种类和含量都比较丰富,是生产蛋白水解物的理想原料,废弃谷氨酸棒状杆菌具有良好的研究前景。

一种谷氨酸棒杆菌基因无痕敲除载体的构建及应用

一种谷氨酸棒杆菌基因无痕敲除载体的构建及应用

一种谷氨酸棒杆菌基因无痕敲除载体的构建及应用王蕾,汪俊卿,薛乐,李丕武,王腾飞,苏静,王瑞明**(齐鲁工业大学(山东省科学院)生物工程学院,山东济南250353)摘要:以谷氨酸棒杆菌(C〇iynebacte_riumg/ufamicum)23604编码赖氨酸胞内转运蛋白基因tysP为敲除对象,利用重叠PCR技术将 tysP基因的上下游同源臂融合,并构建了由木糖启动子Pw和毒素蛋白基因mazF组成的筛选盒,同时无缝克隆连接至带有卡那霉素 抗性基因的pTOPO载体中,经电转化及两次同源单交换筛选,实现tysP基因的无痕敲除。

结果表明,经过卡那霉素抗性筛选、木糖二次 筛选及基因组PCR鉴定后,成功获得tysP基因缺失菌株C. g/utamicum 23604A(ysP;发酵后C. g/ufam’cum 23604AfysP赖氨酸产量较对 照菌株产量提高了 10.8%。

该实验以大肠杆菌毒素蛋白基因mazF作为反向筛选标记的敲除载体,实现谷氨酸棒杆菌tysP的高效敲除;tysP基因的敲除使得赖氨酸不能进入胞内而在胞外积累,从而达到增产赖氨酸的目的。

关键词:谷氨酸棒杆菌;同源单交换;基因敲除;m az_F基因;/ysP基因中图分类号:Q815文章编号:0254-5071(2018)02-0121-06d o i:10.11882/j.is s n.0254-5071.2018.02.025Construction and application of a vector for marker-free targeted genetic knockout inCorynGbacterium glutam icumWANG Lei, WANG Junqing, XUE Le, LI Piwu, WANG Tengfei, SU Jing, WANG Ruiming* (College o f B iological Engineering,Qilu University o f Technology (Shandong Academ y o f S ciences),Jinan 250353, China)A b s tra c t:A gene lysP encoding /ysine intrace//u/ar transporters in Corynebacterium glutamicum23604 was knocked out. Two homo/ogous arms of the lysP gene were first fused by overlapping PCR technology, and then ligated to the vector pTO P O which contained a MazF-cassette consisted of a xylose promoter P X y i and a toxin protein gene mazF,after electroporation and two single homologous exchanges, the lysP gene was non-trace knocked out successfully. Results showed that one lysP gene deletion strain C. glutamicum 23604AlysP was confirmed by kanamycin resistance screening and P C R identification. After fermentation, the yield of lysine by C. glutamicum 23604AlysP increased by 10% compared with the control strain. Using the Escherichia coli protein toxin knockout gene M azF as reverse filter mark vector, lysP gene of C. glutamicum was knocked out effectively. The knockout of gene lysP made lysine not enter the cell and just accumulate in the extra, thus achieved the aim of increasing lysine production.K e y w o rd s:Corynebacterium glutamicum;homologous single-crossover; gene knockout; mazF gene; lysP gene谷氨酸棒杆菌(Cbrynebacterium glutamicum)是从土壤中分离到的一种无病原性的兼性厌氧的革兰氏阳性菌。

谷氨酸棒状杆菌_密码子优化_概述及解释说明

谷氨酸棒状杆菌_密码子优化_概述及解释说明

谷氨酸棒状杆菌密码子优化概述及解释说明1. 引言1.1 概述本文将介绍谷氨酸棒状杆菌和密码子优化的概念、原理、应用领域以及优势与挑战。

谷氨酸棒状杆菌是一种常见的细菌,具有很强的生存能力和适应性。

密码子优化作为一种基因工程技术,可以改变DNA序列中密码子的使用频率来提高蛋白质表达效率,并在药物研发、农业生产等领域具有广泛用途。

本文通过对谷氨酸棒状杆菌及密码子优化的综述,旨在加深对这两个领域的理解和认识。

1.2 文章结构本文分为五个部分:引言、谷氨酸棒状杆菌、密码子优化、概述及解释说明和结论。

引言部分将对谷氨酸棒状杆菌和密码子优化进行简介,明确文章目标和框架;谷氨酸棒状杆菌部分将介绍其定义、特征以及在科学研究中的重要性;密码子优化部分将详细阐述其原理与方法以及在不同领域的应用;概述及解释说明部分将对谷氨酸棒状杆菌的密码子优化进行概览,并探讨其意义、方法和策略;最后结论部分将对整篇文章进行总结并给出几个重要的结论。

1.3 目的本文旨在全面介绍谷氨酸棒状杆菌和密码子优化,阐明其作为生物科学领域中重要研究课题和技术手段的意义。

通过对相关背景知识和理论基础的介绍,读者能够了解到这两个主题所涉及到的重要概念、原理和方法,并认识到其在药物开发、基因工程等领域中的巨大潜力。

希望本文能够为研究人员提供一个全面而清晰的参考,促进相关领域的深入探索与应用。

2. 谷氨酸棒状杆菌2.1 定义及特征谷氨酸棒状杆菌(Escherichia coli)是一种常见的革兰阴性杆菌,属于大肠杆菌科。

它是一种非常灵活的细菌,以其快速生长和容易培养的特点而广泛被科学家所研究。

谷氨酸棒状杆菌有着多样的形态,通常呈现为直径约为0.5至1.0微米、长度约为2至6微米的棒状细胞。

进一步的分类还可以根据它们在实验室中产生某些遗传特征是否相同来区分不同血清型。

2.2 研究背景谷氨酸棒状杆菌是一种具有重要生物学意义和广泛应用领域的微生物。

由于其对人类及其他动物或植物的影响,以及在食品安全和环境保护等方面具有重要作用,因此吸引了广泛的关注和研究。

I-B-Svi型CRISPR-Cas系统在谷氨酸棒状杆菌中的基因编辑

I-B-Svi型CRISPR-Cas系统在谷氨酸棒状杆菌中的基因编辑

I-B-Svi型CRISPR-Cas系统在谷氨酸棒状杆菌中的基因编辑谷氨酸棒状杆菌(Corynebacterium glutamicum)是一种不具有CRISPR-Cas 系统的生产氨基酸的重要工业微生物,在发酵过程中会产生许多有用的代谢产物,如:谷氨酸、丁二烯等,在工业生产中有非常重要的地位。

随着基因工程和基因编辑技术的快速发展,很多研究人员试图在基因水平上人工掌控微生物的生长和代谢,以使利益最大化。

但因谷氨酸棒状杆菌与Cas9存在生物相容性问题(表达Cas9的菌株无法生长),目前CRISPR/Cas9系统无法直接应用于谷氨酸棒状杆菌的基因编辑中。

基因组编辑技术(简称基因编辑技术)与常说的基因工程一样都是改变细胞的遗传特性,但不同点主要在于基因编辑技术直接针对细胞的染色体,从而使其功能远大于依靠载体的传统基因工程。

CRISPR-Cas是原核中的适应性免疫系统,是最前沿的基因编辑技术,可对原核和真核细胞基因组中的基因进行缺失、插入、和替换,且具有简单、快速和有效的显著的优势。

文献报道的能够进行基因编辑的方法主要包括2类II型(CRISPR/Cas9)和V型(Cpfl/Cas12a),尤以化脓链球菌中的II型CRISPR/Cas9系统应用最为广泛。

但该系统也具有其局限性,如:脱靶和生物相容性等。

I型CRISPR-Cas系统是自然界中最常见的类型,该系统中的Cas3在降解DNA时通常是逐步降解而不是直接产生双链断裂,这也可能是为什么I型CRISPR-Cas系统是自然界中最常见的原因。

然而,迄今为止,除本实验室外,源自I型CRISPR-Cas系统的基因编辑工具未见报道。

本实验室从化工制药厂的活性污泥中分离得到一株能够以甾体化合物为唯一碳源进行生长的放线菌,我们将其命名为:维吉尼亚链霉菌IBL14(Streptomyces virginiae IBL14),该菌株的全基因组测序分析发现:基因组上存在一个I-B-Svi型CRISPR-Cas系统。

谷氨酸棒杆菌

谷氨酸棒杆菌

METABOLIC ENGINEERING AND SYNTHETIC BIOLOGYMetabolic engineering of Corynebacterium glutamicum for increasing the production of L -ornithine by increasing NADPH availabilityLing-Yan Jiang •Yuan-Yuan Zhang •Zhen Li •Jian-Zhong LiuReceived:19February 2013/Accepted:15June 2013/Published online:9July 2013ÓSociety for Industrial Microbiology and Biotechnology 2013Abstract The experiments presented here were based on the conclusions of our previous proteomic analysis.Increasing the availability of glutamate by overexpression of the genes encoding enzymes in the L -ornithine biosyn-thesis pathway upstream of glutamate and disruption of speE ,which encodes spermidine synthase,improved L -ornithine production by Corynebacterium glutamicum.Production of L -ornithine requires 2moles of NADPH per mole of L -ornithine.Thus,the effect of NADPH avail-ability on L -ornithine production was also investigated.Expression of Clostridium acetobutylicum gapC ,which encodes NADP-dependent glyceraldehyde-3-phosphate dehydrogenase,and Bacillus subtilis rocG ,which encodes NAD-dependent glutamate dehydrogenase,led to an increase of L -ornithine concentration caused by greater availability of NADPH.Quantitative real-time PCR anal-ysis demonstrates that the increased levels of NADPH resulted from the expression of the gapC or rocG gene rather than that of genes (gnd ,icd ,and ppnK )involved in NADPH biosynthesis.The resulting strain,C.glutamicum D APRE::rocG ,produced 14.84g l -1of L -ornithine.This strategy of overexpression of gapC and rocG will be useful for improving production of target compounds using NADPH as reducing equivalent within their synthetic pathways.Keywords Corynebacterium glutamicum ÁL -Ornithine ÁNADP-dependent glyceraldehyde-3-phosphatedehydrogenase gene ÁNAD-dependent glutamate dehydrogenase gene ÁNADPH availabilityIntroductionL -Ornithine,a non-essential amino acid and an importantconstituent of the urea cycle,is the precursor of other amino acids,such as citrulline and arginine.It is effective for the treatment and prophylaxis of liver diseases [24]and has been applied to promote wound healing [28].Recently,it was demonstrated that L -ornithine supplementation increased serum levels of growth hormone and insulin-like growth factor-1after strength-trained athletes engaged in heavy-resistance exercise [33].Many studies have reported that high yields of L -ornithine can be produced from a citrulline-or arginine-requiring mutant of a coryneform bacterial strain generated by classical mutagenesis [3,12,15,34].Although this mutant produces a high yield of L -ornithine,cultures are unstable owing to reversion of the auxotrophic phenotype,which causes significant inhibition of the production of L -ornithine.Several recent reports have described progress in the metabolic engineering of microorganisms used for L -orni-thine production.Lee and Cho reported that an engineered Escherichia coli strain,W3110(D argF D argI D argR D-proB D speF ,P araB -arg214),produced 13.2mg per gram of dry cell weight (DCW)of L -ornithine and that addition of glutamate to the culture favored L -ornithine production [18].Hwang et al.reported that overexpression of ar-gCJBD by C.glutamicum strain ATCC 13032(D argF-D argR D proB )resulted in the production of 16.49mg g -1DCW of L -ornithine.The concentration of L -ornithine in the culture medium was 179.14mg l -1[8].Proline can be converted into L -ornithine by ornithine cyclodeaminase,L.-Y.Jiang ÁY.-Y.Zhang ÁZ.Li ÁJ.-Z.Liu (&)Biotechnology Research Center and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry,School of Life Science,Sun Yat-Sen University,Guangzhou 510275,People’s Republic of Chinae-mail:lssljz@J Ind Microbiol Biotechnol (2013)40:1143–1151DOI 10.1007/s10295-013-1306-2which is a key enzyme responsible for enhancing L-orni-thine production by C.glutamicum in proline-supple-mented media[16].Hwang and Cho reported thatoverexpression of the Ncgl1469open reading frame,encoding N-acetylglutamate synthase activity,increased L-ornithine production in C.glutamicum by39%[6]. Recently,the same investigators deleted gntK,whichencodes gluconate kinase,of C.glutamicum ATCC13032(D argF D argR)to obtain C.glutamicum SJC8399,whichproduced13.16g l-1of L-ornithine[7].The L-ornithine-producing strain C.glutamicum ATCC13032(D argF-D argR)named ORN1was constructed and shown toproduce L-ornithine from arabinose when araBAD fromE.coli was expressed[26].Recently,this group also con-structed the strain C.glutamicum ORN1(pEKEx3-xylA Xc-xylB Cg)to effectively produce L-ornithine from xylose[23].In a previous study[21],we reported the construction ofa strain of C.glutamicum ATCC13032(D argF D-proB D kgd)that produced up to4.78g l-1of L-ornithine.Comparative proteomic analysis revealed the mechanismof L-ornithine overproduction by the engineered strain.Theexpression levels of202proteins varied significantly inC.glutamicum ATCC13032(D argF D proB D kgd)com-pared with those in the wild-type strain.Of these proteins,52proteins were identified.L-Ornithine overproduction inthe engineered strain was related to the upregulation of theexpression levels of enzymes involved in the L-ornithinebiosynthesis pathway and downregulation of the expressionlevels of proteins involved in the pentose phosphate path-way.The expression levels of enzymes in ornithine bio-synthesis(ArgCJBD)downstream of glutamate are muchhigher than that in the upstream pathway of glutamate.Theresults suggested possible strategies for further enhancing L-ornithine production.The present study is based on this proteomic analysis and describes our efforts to genetically engineer C.glutamicum to produce even higher levels of L-ornithine.Production of L-ornithine required2moles of NADPH per mole of L-ornithine.Thus,the effect of NADPH availability on L-ornithine production was also investigated.Materials and methodsMicroorganism and mediaThe bacterial strains used in this study are listed in Table1.E.coli DH5a was used for plasmid construction.C.glu-tamicum D AP was used as the parental strain for generating mutants.Luria–Bertani(LB)was used to propagate E.coli and C.glutamicum for generating recombinant DNA.For L-ornithine production by C.glutamicum,the seed medium consisted of(per liter)25g glucose,10g yeast extract,10g corn steep liquor,15g(NH4)2SO4, 2.5g MgSO4Á7H2O,1g of KH2PO4,0.5g K2HPO4,0.5g Na2HPO4,and10g CaCO3.The fermentation medium[20] consisted of(per liter)80.0g glucose,14.0g yeast extract, 37.9g(NH4)2SO4, 1.6g MgSO4Á7H2O, 1.0g KH2PO4, 0.5g K2HPO4,0.5g Na2HPO4,20mg FeSO4Á7H2O, 20mg MnSO4Á4H2O,2.0g molasses,5.0g KAc,5.0g succinic acid,10g CaCO3,and1ml Tween80(added after8h of fermentation).The initial pH of the above media was adjusted to7.0.Culture conditionsFor L-ornithine fermentations,a1.0-ml sample of the seed culture grown with shaking at150rpm at30°C for12h,was inoculated into10ml of the fermentation medium in a100-ml flask,incubated at30°C and shaken at150rpm for72h. Kanamycin(50l g ml-1for E.coli and25l g ml-1for C.glutamicum),chloramphenicol(20l g ml-1for E.coli and 10l g ml-1for C.glutamicum),or ampicillin(50l g ml-1for E.coli)were added to the medium as required.Primers,plasmid construction,and gene knockouts Plasmids constructed for this study are listed in Table1. The chromosomal DNA of C.glutamicum was isolated as described by Eikmanns et al.[4].The preparation of competent cells and electroporation of C.glutamicum was performed as described by Van der Rest et al.[31].The mutant genotypes of C.glutamicum were confirmed using colony PCR.Amplification of pgi,pfkA,gapA,pyk,pyc,gltA,and gdh from the genomic DNA of C.glutamicum ATCC13032 employed the primers listed in Table2.The products were ligated to pEC-XK99E DNA[13].Clostridium acetobu-tylicum gapC was amplified from pB3gapC[5]using the primers gapCF and gapCR(Table2)and ligated to pEC-XK99E to obtain pEC-gapC.B.subtilis rocG was amplified from genomic DNA using the primers rocGF and rocGR (Table2)and ligated to pEC-XK99E to obtain pEC-rocG.The suicide vector pK18mobsacB[25]was modified to improve its efficiency.The lethality of the expression of sacB depends on its level of expression in corynebacteria [9].Therefore,a1.85-kb DNA fragment containing the sacB cluster was amplified from pK18mobsacB[25]DNA using PCR and the primers sacBF and sacBR(Table2). This converted the native promoter of the sacB cluster to the tac-M promoter,which is a strong promoter in cory-nebacteria[32].The entire backbone of pK18mobsacB, except for sacB,was amplified using the primers pk18msF and pk18msR(Table2).The two fragments were digested with Spe I and Eco RV and ligated together to form the inducible suicide vector pK-JL(5,570bp).The disruption of genes was performed using the non-replicable integration vector pK18mobsacB or pK-JL,which allows for marker-free deletion of the target gene[25].For the construction of pK18mobsacB-D speE,theflanking sequences of speE were amplified from C.glutamicum ATCC13032using the primers speEF5/speER5and speEF3/ speER3.The product and pK18mobsacB DNAs were digested with Bam HI/Xba I,Xba I/Sal I,and Bam HI/Sal I, respectively,and then ligated to generate pK18mobsacB-D speE.The construction of pK18mobsacB-D argR was similar,but the primers argRF5/argRR5and argRF3/argRR3 were used.For the construction of pK-D speE::rocG,the primers speEF5and speER3were used with pK18mobsacB-D speE as template.The resulting fragment was ligated to the pMD18-T simple vector to generate pMD18-T-D speE.The rocG fragment was amplified using primers p tac-rocGF/ rocGR and pEG-rocG DNA as the template.The resulting fragment,P tac-M-rocG,was digested with Xba I and inserted into the cognate site of pMD18-T-D speE.The D speE::P tac-M-rocG fragment was cleaved from the resulting plasmid and was ligated to Bam HI/Sal I-digested pK-JL to obtain pK-D speE::rocG.For the construction of pK-D argR::gapC, primers argR5and argR3were used with pK18mobsacB-D argR DNA as template.The resulting fragment was ligatedTable1 C.glutamicum strains and plasmids used in this studyStrain or plasmid Description a SourceC.glutamicum strainsATCC13032Wild-type ATCCD AP ATCC13032,D argF,D proB21D APE ATCC13032,D argF,D proB,D speE This study D APER ATCC13032,D argF,D proB,D speE,D argR This study D APRE::rocG ATCC13032,D argF,D proB,D argR,D speE::P tac-M-rocG This study D APER::gapC ATCC13032,D argF,D proB,D speE,D argR::P tac-M-gapCD APE::rocG-R::gapC ATCC13032,D argF,D proB,D speE::P tac-M-rocG,D argR::P tac-M-gapCClostridium acetobutylicum Wild type,CICC8011CICC Bacillus subtilis Wild type,CICC10033CICC Escherichia coli DH5a supE44,hsdR17,recA1,thi-1,endA1,lacZ,gyrA96,relA1Invitrogen PlasmidPMD18-T vector TA cloning vector,Amp r TaKaRa pK18mobsacB sacB,lacZ a,Kan r,mcs mobilizable vector,allows for selectionof double crossover C.glutamicum25pK-JL K18mobsacB derivative,sacB under the control of the tac-M promoter,Kan r This study pK18mobsacB-D speE pK18mobsacB with2162bp Bam HI-Sal I fragment containing internaldeletion of199bp fragment of speEThis studypK18mobsacB-D argR pK18mobsacB with1574bp Bam HI-Sal I fragment containing internaldeletion of506bp fragment of argRThis study pK-D speE::rocG pK-JL withflanking fragment of speE internally inserted P tac-M-rocG This study pK-D argR::gapC pK-JL withflanking fragment of argR internally inserted P tac-M-gapC This study pEC-XK99E C.glutamicum/E.coli shuttle expression vector,Kan r13pEC-pgi pEC-XK99E derivative containing C.glutamicum pgi,Kan r This study pEC-pfkA pEC-XK99E derivative containing C.glutamicum pfkA,Kan r This study pEC-gap pEC-XK99E derivative containing C.glutamicum gap,Kan r This study pEC-pyk pEC-XK99E derivative containing C.glutamicum pyk,Kan r This study pEC-pyc pEC-XK99E derivative containing C.glutamicum pyc,Kan r This study pEC-gltA pEC-XK99E derivative containing C.glutamicum gltA,Kan r This study pEC-gdh pEC-XK99E derivative containing C.glutamicum gdh Kan r This study pEC-gapC pEC-XK99E derivative containing C.acetobutylicum gapC,Kan r This study pEC-rocG pEC-XK99E derivative containing B.subtilis rocG,Kan r This study a argF,ornithine carbamoyltransferase gene;proB,c-glutamyl kinase gene;speE,spermidine synthase gene;argR,arginine repressor gene; rocG,NADH-dependent glutamate dehydrogenase gene;pgi,glucose-6-phosphate isomerase gene;pfkA,6-phosphofructokinase gene;gap, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase gene;gapC,NADP-dependent glyceraldehyde-3-phosphate dehydrogenase gene; pyk,pyruvate kinase gene;pyc,pyruvate carboxylase gene;gltA,citrate synthase gene;gdh,NADPH-dependent glutamate dehydrogenase;sacB, levansucrase gene;Amp r,ampicillin resistance;Kan r,kanamycin resistanceTable2Primers used in this studya Restriction enzyme cleavage sites are underlined Primer Sequence a and purpose(50–30)sacBF CGGCGACTAGTTGAGCTGTTGACAATTAATCATCGTGTGGTACCATGTGTGGAATTGTGAGCGGATAACAATTCCGCGGGTTCTTTAGGCCCGTAGTCT(Spe I,Sac II),PCR for sacBsacBR GCCGCGATATCTCTCGTGATGGCAGGTT(Eco RV),PCR for sacBpk18msF GCGCCGATATCGTTCGTCTGGAAGGCAGTA(Eco RV),PCR forthe backbone of pK18mobsacB except for sacBpk18msR GCGCGACTAGTGCATGGGCATAAAGTTGC(Spe I),PCR forthe backbone of pK18mobsacB except for sacBspeEF5CGATGGATCCCGACCGCTACAAGGCATAA(Bam HI),deletion of speEspeER5GCGTCTAGAGCGGAAATAATGGCGAAA(Xba I),deletion of speEspeEF3CGCTCTAGACGATTCTGCCTCTGGATTA(Xba I),deletion of speEspeER3CGAT GTCGAC CACCATCTGCCCAACG(Sal I),deletion of speEargRF5CGCT GGATCC TTTAAGCACGGCGTTATTT(Bam HI),deletion of argRargRR5CGG TCTAGA TGCGAGTCACGGGATTTA(Xba I),deletion of argRargRF3CGG TCTAGA GGTAAGGTATAACCCGAGTGT(Xba I),deletion of argRargRR3CGAT GTCGAC GACTTGATGCCCACGAGA(Sal I),deletion of argRpgiF GTAGGATCCAGGAGTTTTCATGGCGGAC(Bam HI),PCR for pgipgiR GCGTCTAGAAGCGACTACCTATTTGCG(Xba I),PCR for pgipfkF CGAGTCGACAAGGAGGAAGACATGCGAATTGC(Sal I),PCR for pfkApfkR CCGCTGCA GACTATCCAAACATTGCCTG(Pst I),PCR for pfkAgapF GGCGGTACCAGGAGACACAACATGACCATT(Kpn I),PCR for gapgapR CGGGGATCCATTAGAGCTTGGAAGCTACGAG(B am HI),PCR for gappykF CGAGAGCTCAAGGAGTAGGCTTATGGGCGT(Sac I),PCR for pykpykR CCGGGTACCGATTAGAGCTTTGCAATCCT(Kpn I),PCR for pykpycF CGCGAGCTCAAGGAGTACTCTAGTGTCGACTCACACAT(Sac I),PCR for pycpycR CGCTCTAGATTAGGAAACGACGACGAT(Xba I),PCR for pycgltF GCCGAATTCAAGGAGAACAAATATGTTTGAAAG(Eco RI),PCR for gltAgltR GTAGAGCTCTTTAGCGCTCCTCGCGAGGAACCAACT(Sac I),PCR for gltAgdhF CGCTCTAGAAAGGAGGAAATCATGACAGTTG(Xba I),PCR for gdhgdhR CGGGTCGACTCTTAGATGACGCCCTGT(Sal I),PCR for gdhgapCF GCGGGTACCGGAGGTAGTTAGAATGGCAAAGATAGC(Kpn I),PCR for gapC gapCR CGCGGATCCCTATTTTGCTATT(Bam HI),PCR for gapCrocF CCGTCTAGAGGAGGGAAAAAGATGTCAGCAA(Xba I),PCR for rocGrocR GGCGTCGACAAATTAGACCCATCCG(Sal I),PCR for rocGp tac-rocGF GCTCTAGATGAGCTGTTGACAATTAATCATCGTGTGGTACCATGTGTGGAATTGTGAGCGGATAACAATTGGAGGGAAAAAGATGTCAGCAA(Xba I),PCR for the P tacM-rocG fragmentrocGR GCTGATCCTCTAGAAAATTAGACCCATCCG(Xba I),PCR for the P tacM-rocG fragment p tac-gapCF CGACTAGTTGAGCTGTTGACAATTAATCATCGTGTGGTACCATGTGTGGAATTGTGAGCGGATAACAATTAAGGAGGAGTTAGAATGGCAAAGATAGC(spe I),PCR for the P tacM-gapC fragmentgapCR2CGCTCTAGACTATTTTGCTATT(Xba I),PCR for the P tacM-gapC fragmentzwfF ACCCGCAGGATAAACGA,qRT-PCR for zwfzwfR GCTAGATCATAAATGGC,qRT-PCR for zwfppnkF GTTTACCGACCGACTTGTG,qRT-PCR for ppnKppnkR GCTGACCTGGGATCTTTATT,qRT-PCR for ppnKicdF AGGACCAGGGCTACGACAT,PCR for icdicdR GCGGAACCCTTAACAGC,PCR for icdgndF AACCGCAGCACTGACAAA,PCR for gndgndR CAGGGATGCTACGAACTCT,PCR for gnd16s-F TCGATGCAACGCGAAGAAC,PCR for16sRNA16s-R GAACCGACCACAAGGGAAAAC,PCR for16sRNAto the pMD18-T simple vector to generate pMD18-T-D argR. The gapC fragment was amplified using the primers p tac-gapF and gapCR2with pEG-gapC DNA as the template.The resulting fragment,P tac-M-gapC,was digested with Xba I and inserted into the cognate site of pMD18-T-D argR.The D argR::P tac-M-gapC fragment was cleaved from the result-ing plasmid using Bam HI/Sal I and was ligated to Bam HI/ Sal I-digested pK-JL DNA to obtain pK-D argR::gapC.These nonreplicable integration vectors,including pK18mobsacB-D speE,pK18mobsacB-D argR,pK-D speE:: rocG,and pK-D argR::gapC were used to transform C. glutamicum to disrupt the site-specific gene using the protocol described by Scha¨fer et al.[25].Quantitative real-time PCR(qRT-PCR)Total RNA from C.glutamicum grown for54h in shake flasks was isolated using an RNA extraction kit(Dongsh-eng Biotech,Guangzhou,China),following the manufac-turer’s instructions.Thefirst-strand cDNA was synthesized using an All-in-One TM First-Strand cDNA Synthesis Kit (GeneCopoeia,Guangzhou,China).qRT-PCR was per-formed using the All-in-One TM qPCR Mix kit(GeneCo-poeia,Guangzhou,China)on an iCycler iQ5Real-Time PCR system(Bio-Rad Laboratories,Richmond,CA,USA). One hundred nanograms of cDNA was used as template. The PCR conditions were as follows:95°C for10min, followed by45cycles of denaturation at95°C for10s, annealing at60°C for20s,and extension at72°C for 15s.The primers for qRT-PCR are listed in Table2.The 2-DD Ct quantification technique was used to analyze data [19].The data were normalized to the level of expression of16S rRNA.NADPH assayAfter aerobic cultivation of C.glutamicum on a rotary shaker (150rpm)at30°C for54h,the cells were harvested by centrifugation and washed twice with water.Intracellular NADPH was extracted and quantified using the Enzy-chrom TM NADP?/NADPH Assay kit(BioAssay Systems, Hayward,CA),following the manufacturer’s instructions.Enzyme assayTwo-milliliter cell cultures at50h were harvested by centrifugation,washed twice with water,and subjected to sonication in0.4ml of50mM Tris–Cl(pH7.5)containing 20%glycerol,100mM NaCl,1mM EDTA,and1mM phenylmethylsulfonylfluoride.Then the resulting broken-cells suspension was centrifuged for15min at4°C and 14,000rpm to obtain cell-free extracts.Glutamate dehy-drogenase activity was determined spectrophotometrically by measuring the oxidation of NADPH(or NADH)at a wavelength of340nm and25°C,as described previously [1].The standard reaction mixture contained 2.9ml of 55mM Tris–Cl(pH7.5)containing2%glycerol,10mM NaCl,100mM NH4Cl,10mM2-ketoglutarate,0.2mM NADPH(or NADH),and100l l crude extract.Reaction was initiated by the addition of the cell-free extracts.One unit of glutamate dehydrogenase activity was defined as the amount of enzyme that catalyzed the oxidation of1mmol NADPH(or NADH)in1min under the above conditions. Glyceraldehyde-3-phosphate dehydrogenase activity was determined spectrophotometrically by measuring the reduction of NAD(or NADP)at a wavelength of340nm and25°C,as described previously[22].The standard reaction mixture contained2.9ml of50mM Tris–Cl(pH 8.5)containing3mM b-mercaptoethanol,1mM NADP, 1mM DL-glyceraldehyde3-phosphate,1mM H3PO4,and 100l l crude extract.Reaction was initiated by the addition of the cell-free extracts.One unit of glyceraldehyde-3-phosphate dehydrogenase activity was defined as the amount of enzyme that catalyzed the reduction of1mmol NAD(or NADP)in1min under the above conditions.Analysis of cell growth and ornithineCell growth was monitored by measuring the optical density of the culture at600nm(OD600)using a spectrophotometer (UV2450,Shimadzu Corporation,Japan)after adding 0.2mol l-1HCl to dissolve CaCO3.DCW was estimated according to the formula1OD600=0.28g DCW l-1[8]. L-Ornithine concentrations were determined by colorimetry using ninhydrin as described previously[2].Statistical analysisAll experiments were conducted in triplicate,and data were averaged and presented as mean±standard deviation (SD).One-way analysis of variance(ANOVA)followed by Tukey’s test was used to determine significant differences using OriginPro(version7.5)software.Statistical signifi-cance was defined as p\0.05.Results and discussionEffect of expression of genes involved in glutamate biosynthesis on the production of L-ornithineWe previously conducted a comparative proteomic analy-sis between wild-type C.glutamicum and a triple knockout mutant of genes by2-DE gel electrophoresis[21].The results showed that the amount of enzymes involved in ornithine biosynthesis(ArgCJBD)downstream ofglutamate is much higher than that of enzymes actingupstream of glutamate.This indicated that overexpression of the enzymes upstream of glutamate would increaseglutamate concentration,leading to increased production of L-ornithine in an appropriately engineered strain of C.glu-tamicum.Furthermore,theflux of Pgi,PfkA,GapA,Pyk,Pyc,GltA,and Gdh increases in parallel with increasedglutamate production by C.glutamicum[29].Thus,the genes pgi,pfkA,gap,pyk,pyc,gltA,and gdh were over-expressed in C.glutamicum D AP.As shown in Fig.1, overexpression of pgi,pfkA,gap,pyk,and gdh slightly improved L-ornithine production compared with C.glu-tamicum D AP.These results support our assumptions based on our comparative proteomic analysis.Of the aforementioned seven genes,overexpression of thegenes gap or gdh showed a more positive effect on L-ornithineproduction.The reactions,catalyzed by the enzymes encodedby gap or gdh,require NAD or NADPH.Thus,we askedwhether these cofactors affect the production of L-ornithine.Moreover,the three reactions utilizing NADPH in the L-ornithine biosynthetic pathway are catalyzed by NADP-dependent isocitrate dehydrogenase,NADPH-dependent glutamate dehydrogenase,or NADP-dependent N-acetyl-gamma-glutamyl-phosphate reductase.Therefore,we inves-tigated the effect of the availability of endogenous NADPH on L-ornithine production by overexpressing these enzymes (Fig.2).Overexpression of the genes gap,gdh,gapC,and rocG resulted in an increase of L-ornithine concentration compared with overexpression of pEC-XK99E by C.glu-tamicum D AP(10.14±0.18g l-1,10.05±0.17g l-1, 10.59±0.0.30g l-1,10.62±0.02g l-1,respectively,vs 8.66±0.16g l-1,P\0.01).Glyceraldehyde-3-phosphate dehydrogenase,catalyzingoxidation of D-glyceraldehyde-3-phosphate into1,3-di-phosphoglycerate,is a key enzyme of glycolysis and playsa crucial role in catabolic carbohydrate metabolism.Overexpression of NAD-dependent glyceraldehyde-3-phosphate dehydrogenase can drive more metabolicflux ofcarbon into the Embden–Meyerhof–Parnas(EMP)path-way,hence improving the internal glutamate pool.Over-expression of gdh in C.glutamicum resulted in an increasedinternal glutamate pool[11].The increased internal gluta-mate pool resulted in enhanced L-ornithine production.C.acetobutylicum gapC encodes NADP-dependent gly-ceraldehyde-3-phosphate dehydrogenase.The GapC cata-lyzes glyceraldehyde-3-phosphate and NADP to form3-phospho-D-glyceroyl phosphate and NADPH.Overexpres-sion of the gapC gene results in an increase of the intracellularNADPH concentration.Overexpression of C.acetobutylicumgapC increases the production of CoQ10[5].The overex-pression of C.acetobutylicum gapC together with theknockout of the endogenous gapA gene improves lycopeneand e-caprolactone production[22].B.subtilis rocG encodes an NAD-dependent glutamate dehydrogenase that converts 2-oxoglutarate to glutamate in the presence of NADH.The expression of rocG provides more NADPH for L-ornithine production as an outcome of the consumption of2-oxoglu-tarate by the NADPH-independent reaction.Figure2also shows that overexpression of the gdh gene caused significant inhibition of growth.Kholy et al.[11] reported the same result.C.glutamicum overexpressing the gdh gene showed somewhat slower growth on glucose and acetate medium than that of the wild type.The overexpressionof the other three genes did not inhibit cell growth.Thus,the genes gapC and rocG were selected for further study.Gene deletion strategy to increase L-ornithine productionOur previous proteome analysis[20]demonstrated that spermidine synthase encoded by speE was upregulated in the L-ornithine-producing strain C.glutamicum compared with wild type.We reasoned that this upregulation might result in the degradation of L-ornithine.Therefore,we deleted speE from C.glutamicum D AP to generate C.glutamicum D APE.Deletion of speE enhanced the production of L-ornithine.Strain D APE produced 10.87±0.37g l-1of L-ornithine,which is12.0%higher than that of C.glutamicum D AP(9.71±0.18g l-1; Table3).The expression of the arg operon that controls the L-ornithine biosynthetic pathway is regulated by the argi-nine repressor(ArgR).Further,the DNA-binding affinity of ArgR for the upstream of the argB gene plays an important role in the biosynthesis of L-ornithine biosyn-thesis by C.glutamicum[17].Deletion of argR is another strategy for enhancing the level of expression of the arg operon.Thus,we deleted the argR gene of the C.glu-tamicum D APE to generate C.glutamicum D APER.C.glutamicum D APER produced12.12±0.57g l-1of L-ornithine(Table3),which was11.5%higher than that of C.glutamicum D APE.Effect of NADPH availabilityTo reduce the metabolic burden caused by plasmid repli-cation,the genes gapC or rocG were integrated into the chromosome of C.glutamicum D APER.The individual chromosomal integration of the gapC gene led to an increase in the concentration of L-ornithine from 12.12±0.57to13.23±0.54g l-1(P\0.01;Table3). The individual chromosomal integration of the rocG gene also led to an increase of L-ornithine concentration com-pared with C.glutamicum D APER(14.84±0.57g l-1vs 12.12±0.57g l-1;P\0.01;Table3).Moreover,these modifications resulted in a significant increase in the con-centration of intracellular NADPH.However,the simulta-neous integration of gapC and rocG genes did not further increase the intracellular concentrations of L-ornithine and NADPH.In order to understand the mechanism of L-orni-thine production,we determined the transcriptional level of gapC and rocG,and their corresponding enzyme activities. The data are shown in Table4.The individual chromo-somal integration of the gapC gene led to a reduction of Gap enzyme activity,and increase of total glyceraldehyde-3-phosphate dehydrogenase activities.The expression of GapC enzyme resulted in the evaluated NADPH concen-tration.The individual chromosomal integration of the rocG gene led to a reduction of Gdh enzyme activity,and increase of total glutamate dehydrogenase activities,which can provide more NADPH for L-ornithine biosynthesis,and thereby improving L-ornithine production.The data shownTable3L-Ornithine production by the engineered strains Strain OD600L-Ornithine(g l-1)NADPH(l mol g-1)D AP26.23±0.519.71±0.18 2.13±0.16D APE25.53±0.6510.87±0.37 2.00±0.42D APER13.65±0.2812.12±0.57 3.04±0.21D APER::gapC13.10±0.2113.23±0.5411.46±0.63D APRE::rocG11.65±0.9914.84±0.5711.37±0.16D APE::rocG-R::gapC12.50±0.8514.20±0.7111.46±0.71Table4Transcriptional levels of genes and specific activity of enzymes in the engineered strainsStrain Relative mRNAexpression a Specific glyceraldehyde-3-phosphatedehydrogenase activity(U mg-1protein)aSpecific glutamate dehydrogenase activity(U mg-1protein)agapC rocG Gap GapC Total Gdh RocG TotalD APER205.2205.28,077.78,077.7D APER::gapC 1.4122.9468.1591.0D APRE::rocG 1.46,772.04,785.511,557.5D APE::rocG-R::gapC 1.6 1.4106.8516.2623.06,774.94,800.711,575.6a Values are averages based on the results obtained with at least three independent experiments and the standard deviations were consistently\10%。

谷氨酸棒状杆菌果糖代谢阻断工程菌的构建

谷氨酸棒状杆菌果糖代谢阻断工程菌的构建

谷氨酸棒状杆菌果糖代谢阻断工程菌的构建许湄雪;王北辰;刘金雷;范荣;陆浩;韩武洋;李天明;冯惠勇【期刊名称】《食品科学》【年(卷),期】2016(037)021【摘要】谷氨酸棒状杆菌不仅可以利用葡萄糖和果糖作为碳源进行糖类代谢,也可以利用这些碳源作为底物生产葡萄糖酸、甘露醇及山梨醇等产品.为了提高底物利用率和目的产物的积累量,利用代谢工程阻断糖类代谢的磷酸烯醇式丙酮酸-糖磷酸转移酶系统(phosphoenolpyruvate carbohydrate phosphotransferase system,PTS)和失活相应磷酸激酶.是实现此目标的有效手段.本实验利用同源重组和反向筛选等技术手段,分别获得ptsF单基因缺失工程菌CG△ptsF和ptsF、ptsH、ptsI三基因缺失工程菌CG△ptsF△ptsH△ptsI.工程菌的生长情况研究表明:在以葡萄糖为唯一碳源的培养基上,工程菌CG△ptsF和工程菌CG△ptsF△ptsH△pttsI与野生型生长情况基本一致,说明葡萄糖代谢不受3个基因影响;在以蔗糖为唯一碳源的培养基上,工程菌CG△ptsF和工程菌CG△ptsF△ptsH△ptsI的生长速率分别是野生型的48.4%和29.7%,菌体浓度分别是野生型的61.6%和34.1%;在以果糖为唯一碳源的培养基上,工程菌CG△ptsF菌体浓度是野生型43.2%,工程菌CG△ptsF△ptsH△ptsI生长为0,证明其完全阻断了果糖代谢,同时说明果糖的PTS系统受ptsF、ptsH和ptsI基因编码的PTS相关蛋白的联合控制.果糖代谢阻断工程菌的获得,为进一步构建以果糖原型为底物的甘露醇或山梨醇生产工程菌株提供了遗传资源,也为谷氨酸棒状杆菌的糖类代谢研究提供了理论依据.【总页数】7页(P157-163)【作者】许湄雪;王北辰;刘金雷;范荣;陆浩;韩武洋;李天明;冯惠勇【作者单位】河北科技大学生物科学与工程学院,河北石家庄 050018;威斯康星大学,威斯康星麦迪逊 53706,美国;河北科技大学生物科学与工程学院,河北石家庄050018;河北科技大学生物科学与工程学院,河北石家庄 050018;河北科技大学生物科学与工程学院,河北石家庄 050018;河北科技大学生物科学与工程学院,河北石家庄 050018;河北科技大学生物科学与工程学院,河北石家庄 050018;河北科技大学生物科学与工程学院,河北石家庄 050018【正文语种】中文【中图分类】Q789【相关文献】1.丙酮丁醇梭菌代谢工程菌的构建及其发酵性能 [J], 方雪;刘刚;邢苗;王绍文2.谷氨酸棒状杆菌葡萄糖代谢阻断工程菌的构建 [J], 韩武洋;刘金雷;杜红燕;王北辰;仪宏;李天明3.用于钝齿棒杆菌木糖代谢途径研究的基因工程菌构建 [J], 张凤琴;刘俊;陈小举;晏娟;4.用于钝齿棒杆菌木糖代谢途径研究的基因工程菌构建 [J], 张凤琴;刘俊;陈小举;晏娟5.CRISPR/Cas9介导的果糖低消耗酿酒酵母工程菌的构建 [J], 陈红;赵风光;李战胜;杨家明;韩双艳因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谷氨酸棒状杆菌基因编辑技术综述-分子生物学论文-生物学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:谷氨酸棒杆菌是生产氨基酸、有机酸等的重要菌株,广泛应用在食品、医药领域。

利用基因编辑技术对谷氨酸棒杆菌进行基因功能研究,在提高目的产物产量、发现新的基因功能等方面有重要意义。

近年来,基因编辑技术发展日新月异,从基于同源重组的传统基因编辑技术到以人工核酸酶介导的基因编辑均在谷氨酸棒杆菌中得到合理应用。

其中,CRISPR技术以其快速、简便、编辑效率高等优点成为现阶段研究者用于改造谷氨酸棒杆菌的主要技术,但是更为简单、高效的编辑手段依旧需要进一步研究开发,以获得优良菌株应用于工业生产当中。

关键词:谷氨酸棒杆菌; 基因编辑; 同源重组; CRISPR;Abstract:Corynebacterium glutamicum, an important microorganism to produce amino acids and organic acids, has been widely applied in food and medicine fields. Therefore, using editing toolsto study the function of unknown genes in C. glutamicum has great significance for systematic development of industrial strain with efficient and novel production capability. Recently, gene editing has been greatly developed. Traditional gene editing based on homologous recombination and gene editing mediated by nuclease are successfully applied in C. glutamicum. Among these, the CRISPR system has been developed to be a main tool used for gene knockout of C. glutamicum due to its advantages of efficiency, simplicity and good target specificity. However, more efficient and reliable knockout system is still urgently demanded, to help develop high-performing strains in industrial application.Keyword:Corynebacterium glutamicum; gene editing; homologous recombination; CRISPR;谷氨酸棒状杆菌Corynebacterium glutamicum是从土壤中分离到的一种非致病性的兼性厌氧菌,是革兰氏阳性菌[1]。

自Kinoshita[2]等在20世纪50年代研究发现谷氨酸棒状杆菌可以高产谷氨酸之后,利用复杂繁琐的化学合成法合成谷氨酸的技术逐渐被淘汰,新的微生物发酵生产技术成为氨基酸生产的主要技术,由此开启了谷氨酸工业生产的新纪元。

除谷氨酸外,谷氨酸棒状杆菌还被用于赖氨酸、异亮氨酸和维生素D等的生产[3,4,5,6],在食品、医药、农业等领域得到了广泛应用。

随着分子生物学技术的发展,谷氨酸棒状杆菌在基因工程改造方面的研究逐渐深入。

Ozaki等于1984年首次从谷氨酸棒状杆菌中分离得到质粒DNA并进行基因操作[7]。

基于这些质粒,研究人员构建了大肠杆菌-谷氨酸棒状杆菌穿梭载体,并建立了高效的DNA转化技术。

从此,谷氨酸棒杆菌中的基因操作技术得以开发,并成功地用于基因功能的分析及生产菌株的构建[8]。

目前,已经对53株谷氨酸棒状杆菌进行了基因组测序,如谷氨酸棒杆菌ATCC13032[9]、谷氨酸棒状杆菌S9114[10]、谷氨酸棒状杆菌ATCC14067[11]等,为深入了解谷氨酸棒状杆菌的代谢机制,发掘其更多生产功能提供了依据。

基因编辑技术是对生物体内源基因进行DNA的插入、删除、修改或替换[12]。

传统的基因编辑技术主要是以同源重组为基础进行基因组的定向修饰,随着基因工程技术的不断发展,基于核酸酶的基因编辑技术得以开发利用,其原理是通过核酸酶特异性地识别并切割靶DNA双链,激发细胞内源性的修复机制,从而实现基因定向改造[13,14]。

本文主要是对谷氨酸棒状杆菌现有报道的基因编辑技术进行汇总、比较,以期为谷氨酸棒状杆菌基因编辑的研究提供帮助。

1 、传统基因编辑技术传统基因编辑技术主要依赖于同源重组,将含有目的基因同源序列的外源基因导入宿主菌,然后通过核酸链间等位替换的方式对目的基因进行突变、缺失或插入[15],主要包括自杀质粒介导的同源重组、Cre/loxP介导的位点特异性重组、RecT介导的单链重组多种方式,在谷氨酸棒状杆菌中均有报道。

1.1 、自杀质粒介导的同源重组自杀质粒,也称非复制型质粒,其携带的复制元件可以在大肠杆菌中正常作用,但在待改造菌株中无法正常发挥其功能[16]。

自杀质粒介导的同源重组又分为一次交换重组和双交换重组两种方式。

一次交换重组主要是通过引入抗性标记的方法使外源基因插入宿主菌的基因组中,从而使目的基因失活。

但是,抗性基因的引入可能造成极性效应,影响菌体的生长或其他功能性基因的表达。

为了克服这一缺陷,双交换重组得到了应用,即在一次交换重组的基础上再进行一次等位替换,丢掉基因编辑过程中不需要的外源部分(图1[17])。

在谷氨酸棒状杆菌中,依赖于双交换重组的基因敲除系统主要是通过含有反向筛选标记的自杀性质粒来实现的,其中最常用的反向筛选标记为蔗糖致死基因sacB基因。

早在1994年,Sch?fer等[18]便将源于大肠杆菌的pK系列质粒如pK18、pK19与RP4质粒的转移机制相结合,再将来源于枯草芽孢杆菌的sacB基因扩增到具有转移性质的pK 系列质粒中,基于同源重组的原理对谷氨酸棒状杆菌的基因组进行改造,敲除了其基因组上的thrB基因。

在此基础上,Tan等[17]对sacB 基因的启动子进行了更换、筛选,其中包括启动子PsacB、Pneo、PlacM 以及PF104,实验结果显示启动子PlacM在谷氨酸棒状杆菌中的使用效果。

随着研究的深入,一些新的反向筛选标记也逐渐被开发利用,2011年,Kim等[19]将链霉素抗性基因rpsL作为谷氨酸棒杆菌基因编辑过程的反向筛选标记,提高了谷氨酸棒杆菌的编辑效率,2014年,Ma等[20]开发了upp基因作为反向筛选标记,并结合Ⅰ-SceⅠ介导的重组系统,实现了突变体的高效筛选。

此外,与自杀质粒具有相同作用的条件复制型质粒也经常出现在谷氨酸棒杆菌的基因编辑过程中。

目前在谷氨酸棒状杆菌中有报道的主要是温度敏感型质粒,其在不同温度条件下,质粒拷贝数不同[21]。

在谷氨酸棒状杆菌的基因敲除过程中,经常使用含有温敏型复制子的质粒有pBS5T[22]和pSFKT2[23]。

Chinen等[22]利用质粒pBS5T对谷氨酸棒状杆菌的pfk基因和aceE基因进行了敲除。

随着基因工程的发展,已经有研究尝试含有将sacB 负筛选标记的自杀质粒与温度敏感型复制子相结合,来提高谷氨酸棒状杆菌基因敲除过程的筛选效率[23]。

图1 由自杀质粒介导的基因敲除的双交换重组机制[17]Fig. 1 Thedouble-exchangeintegration mechanism of gene knockout mediated by suicide plasmid.1.2 、Cre/loxP介导的位点特异性重组随着基因编辑技术的发展,为了进一步提高基因编辑过程中的重组效率,研究者在同源序列的两端加入两个能被序列特异性重组酶识别的位点,使得重组酶能够识别这两个位点并进行重组。

在谷氨酸棒状杆菌中,基于Cre/loxP特异位点重组技术的基因敲除体系已经得到发展[24,25,26,27]。

Cre/loxP重组系统是由Cre重组酶和其所识别的两个loxP位点共同组成,当两个loxP位点方向相同且位于同一条DNA链上,Cre酶介导两个loxP位点完成分子内重组,使loxP位点间的序列被剪切,并留下1个loxP位点。

根据两个loxP位点之间序列及位置的不同,Cre酶能够实现两个loxP位点间的序列倒位或者丢失。

通过自杀质粒在基因组中导入loxP位点,再利用Cre切除loxP位点中序列的方式实现目的基因的敲除[25,28,29,30]。

2005年,Nobuakis 等[25]便采用Cre/loxP将谷氨酸棒状杆菌中250 bp的片段成功敲除。

随着谷氨酸棒状杆菌基因敲除技术研究的深入,Hu等[31]还将自杀性质粒介导的同源重组与Cre/loxP技术结合,开发了pDTW109基因敲除系统。

其在pDTW-201和pDTW-202质粒中都存在连接有loxp、loxpLE 和loxpRE重组位点的kan盒;pDTW109包含有重组酶Cre,通过连接目的基因上下游同源臂和带有loxP位点的kan盒实现目的基因的敲除,最终在Cre作用下通过基因重组去除loxP位点中的kan盒,提高了谷氨酸棒状杆菌基因敲除的筛选效率。

1.3、RecT介导的单链重组RecT单链重组不依赖于菌体本身的RecA重组系统,而是依赖于来源于原噬菌体Rac中的recT基因编码的RecT重组系统。

相较于菌株本身的重组系统,该系统操作更为简单,且不受DNA序列及长度的影响。

1998年 A. Francis Stewart课题组[32]通过突变大肠杆菌recBCsbcA菌株中的sbcA基因,激活了已经整合在基因组上的来源于原噬菌体Rac的RecT重组系统,并成功实现了目的基因的编辑,从此RecT介导的基因编辑系统得以建立。

此后,RecT介导的基因编辑系统在沙门氏菌[33]、分枝杆菌[34]、枯草芽孢杆菌[35]等多种微生物中都得到应用。

谷氨酸棒杆菌作为一种重要的工业生产菌株,RecT 介导的单链重组系统由于其操作简单,筛选效率高的优势也逐渐得到应用,并不断优化。

2013年,Binder等[36]受其他微生物研究过程中重组系统的启发,首次构建了谷氨酸棒杆菌的RecT重组体系,并将其与纳米传感器技术相结合,实现了基于荧光激发的单细胞水平检测,提高了突变体的分离效率。

相关文档
最新文档