高中数学专项练习题

合集下载

高中数学练习题及答案

高中数学练习题及答案

高中数学练习题及答案【一】函数与方程1. 已知函数 \(f(x)\) 满足 \(f(x+1) = 3x^2 - 2x + 1\),求 \(f(2)\) 的值。

答案:将 \(x+1\) 替换为 \(x\),得到 \(f(x) = 3(x-1)^2 - 2(x-1) + 1\)。

将 \(x\) 替换为 2,得到 \(f(2) = 3(2-1)^2 - 2(2-1) + 1 = 4\)。

2. 解方程组:\[\begin{align*}2x + 3y &= 7 \\4x + 6y &= 14\end{align*}\]答案:将第一个方程两倍后与第二个方程相减,得到 \(0 = 0\)。

因此两个方程是同一直线上的无穷多解。

【二】数列与数列求和1. 求等差数列 \(1, 4, 7, 10, \ldots\) 的第 15 项。

答案:首项 \(a_1 = 1\),公差 \(d = 4 - 1 = 3\)。

第 15 项为 \(a_{15} = a_1 + (15-1)d = 1 + 14 \times 3 = 43\)。

2. 求等比数列 \(3, 6, 12, 24, \ldots\) 的前 10 项和。

答案:首项 \(a_1 = 3\),公比 \(r = \frac{6}{3} = 2\)。

前 10 项和为\(S_{10} = \frac{a_1(r^{10}-1)}{r-1} = \frac{3(2^{10}-1)}{2-1} = 3 \times (2^{10}-1) = 3072\)。

【三】平面解析几何1. 已知平面上点 \(A(-1, 2)\),直线 \(l\) 过点 \(A\) 且与直线 \(x - y + 3 = 0\) 平行,求直线方程。

答案:直线 \(x - y + 3 = 0\) 的法向量为 \(\vec{n} = (1, -1)\)。

因为直线 \(l\) 平行于该直线,所以它的法向量也为 \(\vec{n}\)。

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。

(完整word版)高中数学计算题专项练习一(3)

(完整word版)高中数学计算题专项练习一(3)

高中数学计算题专项练习一高中数学计算题专项练习一一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.2.(1)若=3,求的值;(2)计算的值.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).5.计算的值.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.10.计算(1)(2).11.计算(1)(2).12.解方程:log2(x﹣3)﹣=2.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).14.求下列各式的值:(1)(2).15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.16.求值:.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.18.求值:+.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.20.计算(1)(2)(lg5)2+lg2×lg50 21.不用计算器计算:.22.计算下列各题(1);(2).23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.24.求值:(1)(2)2log525﹣3log264.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).26.计算下列各式(1);(2).27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.28.计算下列各题:(1);(2)lg25+lg2lg50.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.30.(1)计算:;(2)解关于x的方程:.高中数学计算题专项练习一参考答案与试题解析一.解答题(共30小题)1.(Ⅰ)求值:;(Ⅰ)解关于x的方程.考点:有理数指数幂的化简求值.专题:计算题.分析:(Ⅰ)利用对数与指数的运算法则,化简求值即可.(Ⅰ)先利用换元法把问题转化为二次方程的求解,解方程后,再代入换元过程即可.解答:(本小题满分13分)解:(Ⅰ)原式=﹣1++log2=﹣1﹣1+23=﹣1+8+=10.…(6分)(Ⅰ)设t=log2x,则原方程可化为t2﹣2t﹣3=0…(8分)即(t﹣3)(t+1)=0,解得t=3或t=﹣1…(10分)Ⅰlog2x=3或log2x=﹣1Ⅰx=8或x=…(13分)点评:本题考查有理指数幂的化简求值以及换元法解方程,是基础题.要求对基础知识熟练掌握.2.(1)若=3,求的值;(2)计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)利用已知表达式,通过平方和与立方差公式,求出所求表达式的分子与分母的值,即可求解.(2)直接利用指数与对数的运算性质求解即可.解答:解:(1)因为=3,所以x+x﹣1=7,所以x2+x﹣2=47,=()(x+x﹣1﹣1)=3×(7﹣1)=18.所以==.(2)=3﹣3log22+(4﹣2)×=.故所求结果分别为:,点评:本题考查有理数指数幂的化简求值,立方差公式的应用,考查计算能力.3.已知,b=(log43+log83)(log32+log92),求a+2b的值.考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:直接利用有理指数幂的运算求出a,对数运算法则求出b,然后求解a+2b的值解答:解:==.b=(log43+log83)(log32+log92)=(log23+log23)(log32+log32)==,Ⅰ,,Ⅰa+2b=3.点评:本题考查指数与对数的运算法则的应用,考查计算能力.4.化简或计算:(1)()﹣[3×()0]﹣1﹣[81﹣0.25+(3)]﹣10×0.027;(2).考点:有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的运算法则进行化简求值即可.解答:解:(1)原式=﹣(3×1)﹣1﹣﹣10×=﹣﹣1﹣3=﹣1.(2)原式=+﹣2=+﹣2=﹣2+﹣2.点评:本题考查有理数指数幂的运算法则,考查学生的运算能力,属基础题,熟记有关运算法则是解决问题的基础.5.计算的值.考点:有理数指数幂的化简求值.专题:计算题.分析:根据分数指数幂运算法则进行化简即可.解答:解:原式===.点评:本题主要考查用分数指数幂的运算法则进行化简,要求熟练掌握分数指数幂的运算法则.6.求下列各式的值.(1)(2)已知x+x﹣1=3,求式子x2+x﹣2的值.考点:有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用有理指数幂的运算性质和对数的运算性质化简求值.(2)把已知的等式两边平方即可求得x2+x﹣2的值.解答:解:(1)==;(2)由x+x﹣1=3,两边平方得x2+2+x﹣2=9,所以x2+x﹣2=7.点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,是基础的计算题.7.(文)(1)若﹣2x2+5x﹣2>0,化简:(2)求关于x的不等式(k2﹣2k+)x<(k2﹣2k+)1ˉx的解集.考点:指数函数的单调性与特殊点;方根与根式及根式的化简运算.专题:计算题;转化思想.分析:(1)由﹣2x2+5x﹣2>0,解出x的取值范围,判断根号下与绝对值中数的符号,进行化简.(2)先判断底数的取值范围,由于底数大于1,根据指数函数的单调性将不等式进行转化一次不等式,求解即可.解答:解:(1)Ⅰ﹣2x2+5x﹣2>0Ⅰ,Ⅰ原式===(8分)(2)Ⅰ,Ⅰ原不等式等价于x<1﹣x,Ⅰ此不等式的解集为(12分)点评:本题考查指数函数的单调性与特殊点,求解本题的关键是判断底数的符号,以确定函数的单调性,熟练掌握指数函数的单调性是正确转化的根本.8.化简或求值:(1)3a b(﹣4a b)÷(﹣3a b);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用分数指数幂的运算法则即可得出;(2)利用对数的运算法则和lg2+lg5=1即可得出.解答:解:(1)原式==4a.(2)原式=+50×1=lg102+50=52.点评:本题考查了分数指数幂的运算法则、对数的运算法则和lg2+lg5=1等基础知识与基本技能方法,属于基础题.9.计算:(1);(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)先将每一个数化简为最简分数指数幂的形式,再利用运算性质化简.(2)先将每一个对数式化简,再利用对数运算性质化简.解答:解:(1)===﹣45;(2)(lg8+lg1000)lg5+3(lg2)2+lg6﹣1+lg0.006=(3lg2+3)•lg5+3(lg2)2﹣lg6+(lg6﹣3)=3lg2•lg5+3lg5+3(lg2)2﹣3=3lg2(lg5+lg2)+3lg5﹣3=3lg2+3lg5﹣3=3﹣3=0.点评:本题考察运算性质,做这类题目最关键的是平时练习时要细心、耐心、不怕麻烦,考场上才能熟练应对!10.计算(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:函数的性质及应用.分析:(1)利用指数幂的运算性质即可得出;(2)利用对数函数的运算性质即可得出.解答:解:(1)原式=|2﹣e|﹣+﹣=e﹣2﹣+=e﹣2﹣e+=﹣2.(2)原式=+3=﹣4+3=2﹣4+3=1.点评:熟练掌握指数幂的运算性质、对数函数的运算性质是解题的关键.11.计算(1)(2).考点:对数的运算性质;有理数指数幂的运算性质.专题:计算题.分析:(1)直接利用对数的运算法则求解即可.(2)直接利用有理指数幂的运算法则求解即可.解答:解:(1)==(2)==9×8﹣27﹣1=44.点评:本题考查对数的运算法则、有理指数幂的运算法则的应用,考查计算能力.12.解方程:log2(x﹣3)﹣=2.考点:对数的运算性质.专题:计算题.分析:由已知中log2(x﹣3)﹣=2,由对数的运算性质,我们可得x2﹣3x﹣4=0,解方程后,检验即可得到答案.解答:解:若log2(x﹣3)﹣=2.则x2﹣3x﹣4=0,…(4分)解得x=4,或x=﹣1(5分)经检验:方程的解为x=4.…(6分)点评:本题考查的知识点是对数的运算性质,其中利用对数的运算性质,将已知中的方程转化为整式方程是解答醒的关键,解答时,易忽略对数的真数部分大于0,而错解为4,或﹣1.13.计算下列各式(Ⅰ)lg24﹣(lg3+lg4)+lg5(Ⅰ).考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算的性质可得结果;(Ⅰ)利用指数幂的运算性质可得结果;解答:解:(Ⅰ)lg24﹣(lg3+lg4)+lg5=lg24﹣lg12+lg5=lg=lg10=1;(Ⅰ)=×+﹣﹣1=32×23+3﹣2﹣1=72.点评:本题考查对数的运算性质、指数幂的运算性质,考查学生的运算能力,属基础题.14.求下列各式的值:(1)(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据对数和指数的运算法则进行求解即可.解答:解:(1)原式==log﹣9=log39﹣9=2﹣9=﹣7.(2)原式=== =.点评:本题主要考查对数和指数幂的计算,要求熟练掌握对数和指数幂的运算法则.15.(1)计算(2)若xlog34=1,求4x+4﹣x的值.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.分析:(1)利用指数幂的运算性质即可;(2)利用指数式和对数式的互化和运算性质即可.解答:解:(1)原式===3.(2)由xlog34=1,得x=log43,Ⅰ4x=3,,Ⅰ4x+4﹣x==.点评:熟练掌握对数和指数幂的运算性质是解题的关键.16.求值:.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:根据有理数指数幂的定义,及对数的运算性质,即可求出的值.解答:解:原式…(4分)…(3分)=…(1分)点评:本题考查的知识点是对数的运算性质,有理数指数幂的化简求值,其中掌握指数的运算性质和对数的运算性质,是解答本题的关键.17.计算下列各式的值(1)0.064﹣(﹣)0+160.75+0.25(2)lg25+lg5•lg4+lg22.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质可求;(2)利用对数运算性质可求;解答:解:(1)原式==0.4﹣1+8+=;(2)原式=lg25+2lg5•lg2+lg22=(lg5+lg2)2=(lg10)2=1点评:本题考查对数的运算性质、有理数指数幂的运算,属基础题,熟记有关运算性质是解题基础.18.求值:+.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:直接利用对数的运算法则,求出表达式的值即可.解答:解:原式==3+9+2000+1=2013.点评:本题考查对数的运算法则的应用,基本知识的考查.19.(1)已知a>b>1且,求log a b﹣log b a的值.(2)求的值.考点:对数的运算性质.专题:计算题.分析:(1)通过a>b>1利用,平方,然后配出log a b﹣log b a的表达式,求解即可.(2)直接利用对数的运算性质求解的值解答:解:(1)因为a>b>1,,所以,可得,a>b>1,所以log a b﹣log b a<0.所以log a b﹣log b a=﹣(2)==﹣4.点评:本题考查对数与指数的运算性质的应用,整体思想的应用,考查计算能力.20.计算(1)(2)(lg5)2+lg2×lg50考点:对数的运算性质;根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题:计算题.分析:(1)把根式转化成指数式,然后利用分数指数幂的运算法则进行计算.(2)先把lg50转化成lg5+1,然后利用对数的运算法则进行计算.解答:解:(1)===(6分)(2)(lg5)2+lg2×lg50=(lg5)2+lg2×(lg5+lg10)=(lg5)2+lg2×lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(12分)点评:本题考查对数的运算法则和根式与分数指数幂的互化,解题时要注意合理地进行等价转化.21.不用计算器计算:.考点:对数的运算性质.专题:计算题.分析:,lg25+lg4=lg100=2,,(﹣9.8)0=1,由此可以求出的值.解答:解:原式=(4分)=(8分)=(12分)点评:本题考查对数的运算性质,解题时要认真审题,注意公式的灵活运用.22.计算下列各题(1);(2).考点:对数的运算性质.专题:计算题.分析:(1)直接利用对数的运算性质求解表达式的值.(2)利用指数的运算性质求解表达式的值即可.解答:解:(1)==9+﹣1=(2)===﹣45.点评:本题考查指数与对数的运算性质的应用,考查计算能力.23.解下列方程:(1)lg(x﹣1)+lg(x﹣2)=lg(x+2);(2)2•(log3x)2﹣log3x﹣1=0.考点:对数的运算性质.专题:计算题.分析:(1)先根据对数运算性质求出x,再根据对数的真数一定大于0检验即可.(2)设log3x=y,得出2y2﹣y﹣1=0,求出y的值,再由对数的定义求出x的值即可.解答:解:(1)原方程可化为lg(x﹣1)(x﹣2)=lg(x+2)所以(x﹣1)(x﹣2)=x+2即x2﹣4x=0,解得x=0或x=4经检验,x=0是增解,x=4是原方程的解.所以原方程的解为x=4(2)设log3x=y,代入原方程得2y2﹣y﹣1=0.解得y1=1,.log3x=1,得x1=3;由,得.经检验,x1=3,都是原方程的解.点评:本题主要考查对数的运算性质和对数函数的定义域问题.属基础题.24.求值:(1)(2)2log525﹣3log264.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)首先变根式为分数指数幂,然后拆开运算即可.(2)直接利用对数式的运算性质化简求值.解答:解:(1)====.(2)2log525﹣3log264==4﹣3×6=﹣14.点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.25.化简、求值下列各式:(1)•(﹣3)÷;(2)(注:lg2+lg5=1).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算性质化简即可;(2)利用对数的运算性质化简即可.解答:解:(1)原式=﹣b﹣3÷(4)…..3分=﹣…..7分(2)解原式=…..2分=…..4分=…..6分=….7分.点评:本题考查对数的运算性质,考查有理数指数幂的化简求值,熟练掌握其运算性质是化简的基础,属于基础题.26.计算下列各式(1);(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数幂的运算法则即可得出;(2)利用对数的运算法则和换底公式即可得出.解答:解:(1)原式=﹣1﹣+=.(2)原式=+lg(25×4)+2+1==.点评:本题考查了指数幂的运算法则、对数的运算法则和换底公式,属于基础题.27.(1)计算;(2)设log23=a,用a表示log49﹣3log26.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(1)把第一、三项的底数写成平方、立方的形式即变成幂的乘方运算,第二项不等于0根据零指数的法则等于1,化简求值即可;(2)把第一项利用换底公式换成以2为底的对数,第二项利用对数函数的运算性质化简,log23整体换成a即可.解答:解:(1)原式=+1+=+1+=4;(2)原式=﹣3log22×3=log23﹣3(1+log23)=a﹣3(1+a)=﹣2a﹣3.点评:本题是一道计算题,要求学生会进行根式与分数指数幂的互化及其运算,会利用换底公式及对数的运算性质化简求值.做题时注意底数变乘方要用到一些技巧.28.计算下列各题:(1);(2)lg25+lg2lg50.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)利用指数的运算法则,直接求解表达式的值即可.(2)利用对数的运算性质,直接化简求解即可.解答:解:(1)原式===.(5分)(2)原式lg25+lg2lg50=lg25+2lg2lg5+lg25=(lg2+lg5)2=1 (5分)点评:本题考查对数的运算性质,有理数指数幂的化简求值,考查计算能力.29.计算:(1)lg25+lg2•lg50;(2)30++32×34﹣(32)3.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题;函数的性质及应用.分析:(1)直接利用对数的运算性质即可求解(2)直接根据指数的运算性质即可求解解答:解:(1)原式=lg25+lg2(1+lg5)=lg25+lg2lg5+lg2=lg5(lg5+lg2)+lg2=lg5+lg2=1(2)原式=1+3+36﹣36=4.…(14分)点评:本题主要考查了对数的运算性质及指数的运算性质的简单应,属于基础试题30.(1)计算:;(2)解关于x的方程:.考点:对数的运算性质;有理数指数幂的运算性质;有理数指数幂的化简求值;函数的零点.专题:计算题.分析:(1)根据分数指数幂运算法则进行化简即可.(2)利用对数函数的性质和对数的运算法则进行计算即可.解答:解:(1)原式==﹣3;(2)原方程化为log5(x+1)+log5(x﹣3)=log55,从而(x+1)(x﹣3)=5,解得x=﹣2或x=4,经检验,x=﹣2不合题意,故方程的解为x=4.点评:本题主要考查分数指数幂和对数的运算,要求熟练掌握分数指数幂和对数的运算法则.。

高中数学练习题及答案

高中数学练习题及答案

高中数学练习题及答案一、选择题1. 已知函数f(x) = 2x^2 - 3x + 5,求f(2)的值。

A. 9B. 15C. 17D. 192. 一个圆的半径为3,求该圆的面积。

A. 28πB. 9πC. 18πD. 36π3. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5的值。

A. 17B. 14C. 21D. 204. 直线y = 2x + 1与x轴的交点坐标是什么?A. (-1/2, 0)B. (0, 1)C. (1/2, 0)D. (1, 0)5. 已知三角形ABC的三边长分别为a=3,b=4,c=5,求三角形的面积。

A. 6B. 3√3C. 4√3D. 5√3二、填空题6. 函数y = 3x^3 - 2x^2 + x - 5的导数是______。

7. 已知抛物线y^2 = 4x,求该抛物线的焦点坐标。

8. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

9. 已知一个球的体积为(4/3)π,求该球的半径。

10. 已知正弦函数sin(x)的周期是2π,求余弦函数cos(x)的周期。

三、解答题11. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求该函数的极值点。

12. 解不等式:2x^2 - 5x + 2 > 0。

13. 已知点A(1, 2)和点B(4, 6),求直线AB的斜率和方程。

14. 证明:对于任意实数x,等式e^x ≥ x + 1恒成立。

15. 已知函数h(x) = √x,求该函数的定义域和值域。

答案:1. B2. A3. A4. A5. B6. 9x^2 - 4x + 17. 焦点坐标为(1, 0)8. 59. √(3/π)10. 2π11. 极小值点x = 1,极大值点x = 512. x < 1/2 或 x > 213. 斜率k = 2,方程为2x - y - 2 = 014. 证明略15. 定义域为[0, +∞),值域为[0, +∞)本试卷涵盖了高中数学的多个知识点,包括函数、导数、不等式、几何图形、三角函数等,旨在帮助学生全面复习和巩固所学知识。

高中数学应用题专项练习

高中数学应用题专项练习

高中数学应用题专项练习1. 题目一已知一条直线与x轴交于点A(2,0),与y轴交于点B(0,3)。

求直线的斜率k及方程的解析式。

2. 题目二一只小猪在厨房里吃食物。

已知小猪每天吃食物的质量是它上一天吃食物质量的1/4,第一天吃了800克。

请问,第五天它吃了多少克食物?3. 题目三某地的人口数量年增长率为3%。

已知该地的人口数量在2010年是500万人,请问到了2020年这里的人口数量是多少人?4. 题目四小明身高150cm,目标是长到170cm。

每一年他的身高会增长5cm。

请问,需要几年才能达到他的目标身高?5. 题目五一辆汽车从A地沿直线道路以每小时60公里的速度开往B地,途中耗时4小时。

然后汽车以60公里/小时的速度返回A地。

请问,汽车返回A地需要多长时间?6. 题目六有一条跑步道,每800米设有一块标志石。

小明从起点开始在跑步道上跑步,每分钟跑300米,他跑到第5块标志石时停下来休息。

请问,小明跑步的总时间是多少分钟?7. 题目七某项工程需要15个人在30天内完成。

目前已经有10个人参与,已经过了7天。

请问,剩余的工程需要多少人才能在剩下的时间内完成?8. 题目八一部手机总共有100个应用程序,其中有60%的应用程序是社交类应用。

已知手机用户每天平均使用手机3小时,其中1小时是用于社交类应用。

请问,用户每天平均使用手机的社交类应用的个数是多少个?9. 题目九一个蔬菜市场上有100件土豆,其中20%的土豆是坏的。

顾客每次购买4个土豆。

请问,如果顾客每天购买20个土豆,他需要几天才能购买到不坏的土豆?10. 题目十数列1,3,6,10,15等是一种特殊的数列,每一项的值都是前一项的值加上当前项的下标值。

请问第10项的值是多少?。

高中数学排列组合专题练习题

高中数学排列组合专题练习题

高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。

所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。

2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。

若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。

所以共有\(2×6×4 = 48\)种排法,故选 B。

3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。

偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。

0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。

此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。

高中数学计算题专项练习

高中数学计算题专项练习

高中数学计算题专项练习一、有理数的加减乘除一、其中a,b,c,d为实数且d≠0,求下列式子的值。

(1) a-2b+3c-d;(2) a(b+c-d)-2(bc-d^2);(3) a^2+(b-c)^2-d^2;(4) a/b-c/d。

二、不用计算器计算下列式子。

(1) -1.5+0.8-2.7;(2) 3-2(-1)+7(0.5);(3) -0.2×4+1.3×5;(4) 0.0035÷0.14.三、口算练习。

(1) 0.7+1.2-0.5;(2) 4.8-3.6-1.2;(3) (-0.3)+(-0.4)+(-0.5);(4) 2+(-7)-(-2.5).二、二次函数一、根据以下函数的图像,找出这个函数的零点、顶点和对称轴的方程。

二、求以下二次函数的基本形式,并判断其中的参数a 是否大于0。

(1) y=x^2+6x+5;(2) y=-x^2+2x-3;(3) y=2x^2-8x;(4) y=-3(x-5)^2+12。

三、解以下方程。

(1) x^2-4x-5=0;(2) 2x^2+5x-3=0;(3) x^2-6x+9=0;(4) -3x^2+18x-27=0。

四、求以下函数的定义域和值域。

(1) y=x^2-2x+3;(2) y=-2x^2+4x-3。

三、三角函数一、计算下列式子的值。

(1) sin30°+cos60°;(2) tan45°-cot45°;(3) 2sin120°cos45°-cos30°;(4) sin^2 45°+cos^2 60°。

二、求下列三角函数的周期,并画出一周期的图像。

(1) y=sin2x;(2) y=cos3x;(3) y=tan4x。

三、在[0,π]内解下列方程。

(1) sin2x=0;(2) cos2x=cosx;(3) 2sinx+sin2x=0。

高中数学《等差数列》专项练习题

高中数学《等差数列》专项练习题

等差数列练习题一、选择题1、等差数列-6,-1,4,9,……中的第20项为()A、89B、-101C、101D、-892、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的()A、第60项B、第61项C、第62项D、不在这个数列中3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为A、4B、5C、6D、不存在4、等差数列{a n}中,a1 + a7 = 42,a10 - a3 = 21,则前10项的S10等于()A、720B、257C、255D、不确定5、等差数列中连续四项为a,x,b,2x,那么a:b等于()A、14B、13C、13或1 D、126、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新数列{ C n },其通项公式为()A、C n= 4n - 3B、C n= 8n - 1C、C n= 4n - 5D、C n= 8n - 97、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有()A、6项B、8项C、10项D、12项8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100,则数列{a n + b n}的前100项和为()A、0B、100C、10000D、505000二、填空题9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。

10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。

11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30,则从a15到a30的和是______ 。

12、已知等差数列110,116,122,……,则大于450而不大于602的各项之和为______ 。

高中数学必修1___交集、并集、补集专项练习

高中数学必修1___交集、并集、补集专项练习

交集、并集、补集专项练习一、选择题:1、 已知{}{}22,022≤<-==--=x x B x x x A 则等于( )A 、{}21≤≤-x x B 、{}2 C 、{}1- D 、{}2,1- 2、 已知集合{}{})0,1(),1,1(),0,0(,0),(,1),(22-==-=⎭⎬⎫⎩⎨⎧==C y x y x B x y y x A ,则C B A ⋂⋃)(等于( )A 、{})1,1(),0,0(B 、{})0,0(C 、{})1,1(D 、C 3、 设{}{}Z U Z x x x B Z x x x A =∈≤=∈<=全集,,1,,3则)(B C A z ⋂等于( )A 、{}Z x x x ∈≤,2B 、ΦC 、{}32<<x x D 、{}2 4、 已知{}⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈==∈==Z n n x x P Z n n x x N Z n n x x M ,21,,2,,,则下列选项中正确的是( ) A 、N M = B 、NMC 、)(P M N ⋃=D 、)(P M N ⋂=5、 已知,R U =且{}{},043,922<--=>=x x x B x x A 则)(B A C u ⋃等于( )A 、{}1≤x xB 、{}13-≤≤-x xC 、{}13->-<x x x 或D 、{}31≥≤x x x 或 6、 设集合{}21≤≤-=x x A ,集合{},a x x B ≤=若=⋂B A Φ,则实数a 的集合为( )A 、{}2<a aB 、{}1-≥a aC 、{}1-<a aD 、{}21≤≤-a a 7、 设全集{}R y x y x U ∈=、),(,⎭⎬⎫⎩⎨⎧=--=133),(x y y x M ,{}1),(+≠=x y y x B ,则)()(N C M C u u ⋂为( )A 、ΦB 、{})3,2(C 、{}1),(+=x y y xD 、{}32),(==y x y x 或8、(2004年全国高考题)已知集合{},42<=x x M {}0322<--=x x x N ,则集合N M ⋂=( )A 、{}2-<x xB 、{}3>x xC 、{}21<<-x xD 、{}32<<x x9、(2004年全国高考题)已知集合{},,,1),(22R y R x y x y x M ∈∈=+={}R y R x y xy x N ∈∈=-=,,0),(2则集合N M ⋂中元素个数为( )A 、1B 、2C 、3D 、410、(2004年高考题)已知{}{},06,3122≤-+=>+=x x x B x x A 则=⋂B A ( )A 、{}123>-≤<-x x x 或B 、{}2123<≤-≤<-x x x 或 C 、{}2123≤<-<<-x x x 或 D 、{}213≤<-<x x x 或 11、(2004年全国高考题)不等式03)2(<-+x x x 的解集为( )A 、{}30,2<<-<x x x 或B 、{}3,02><<-x x x 或 C 、{}0,2>-<x x x 或 D 、{}3,0><x x x 或12、设P M 、是两个非空集合,规定{}P x M x x P M ∉∈=-且,|,根据这一规定)(P M M --等于( )A 、MB 、PC 、P M ⋃D 、P M ⋂ 二、填空题:13、已知集合N M 、满足{}{}R x x y y N R x x y y M ∈+-==∈+==,1|,,122,则有______=⋂N M 。

高中数学《数列求和与综合问题》专项练习题(含答案解析)

高中数学《数列求和与综合问题》专项练习题(含答案解析)

高中数学《数列求和与综合问题》专项练习题(含答案解析)一、选择题1.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .44D .44+1A [因为a n +1=3S n ,所以a n =3S n -1(n ≥2), 两式相减得,a n +1-a n =3a n ,即a n +1a n=4(n ≥2),所以数列a 2,a 3,a 4,…构成以a 2=3S 1=3a 1=3为首项,公比为4的等比数列,所以a 6=a 2·44=3×44.]2.已知数列{a n }是等差数列,其前n 项和为S n ,若a 1a 2a 3=15,且3S 1S 3+15S 3S 5+5S 5S 1=35,则a 2等于( ) A .2B .12C .3D .13C [∵在等差数列中,S 2n -1=(2n -1)a n ,∴S 1=a 1,S 3=3a 2,S 5=5a 3,∴35=1a 1a 2+1a 2a 3+1a 1a 3,∵a 1a 2a 3=15,∴35=a 315+a 115+a 215=a 25,即a 2=3.]3.已知数列{b n }满足b 1=1,b 2=4,b n +2=⎝ ⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2,则该数列的前23项的和为( )A .4 194B .4 195C .2 046D .2 047A [当n 为偶数时,b n +2=⎝⎛⎭⎪⎫1+sin 2n π2b n +cos 2n π2=b n +1,有b n +2-b n =1,即偶数项成等差数列,所以b 2+b 4+…+b 22=11b 2+11×102×1=99.当n 为奇数时,b n +2=2b n ,即奇数项成等比数列,所以b 1+b 3+…+b 23=b 11-2121-2=212-1=4 095.所以该数列的前23项的和为99+4 095=4 194,故选A .]4.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 2 0192 019=( )A .1 010B .1 009C .2 020D .2 019A [S 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019), =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2 018+1), =1+2×2 018+11 0102=2 019×1 010,∴S 2 0192 019=1 010,故选A .]5.已知数列{a n }的前n 项和S n =2+λa n ,且a 1=1,则S 5=( ) A .27 B .5327C .3116D .31C [∵S n =2+λa n ,且a 1=1,∴S 1=2+λa 1, 即λ=-1,∴S n =2-a n ,当n ≥2时,S n =2-(S n -S n -1),∴2S n =2+S n -1,即S n =12S n -1+1,∴S n -2=12(S n -1-2),∴S n -2=(-1)×⎝ ⎛⎭⎪⎫12n -1.当n =1时也满足.∴S 5=2-⎝ ⎛⎭⎪⎫124=3116.故选C .]6.设曲线y =2 018x n +1(n ∈N *)在点(1,2 018)处的切线与x 轴的交点的横坐标为x n ,令a n =log 2 018x n ,则a 1+a 2+…+a 2 017的值为( )A .2 018B .2 017C .1D .-1D [因为y ′=2 018(n +1)x n ,所以切线方程是y -2 018=2 018(n +1)(x -1),所以x n =nn +1,所以a 1+a 2+…+a 2 017=log 2 018(x 1·x 2·…·x 2 017)=log 2 018⎝ ⎛⎭⎪⎫12×23×…×2 0172 018=log 2 01812 018=-1.]7.在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87等于( )A .1403B .60C .80D .160C [法一:a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a1q 2×1q 3291-q 3=q 21+q +q 2×a 11-q 871-q =47×140=80.故选C . 法二:设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87,因为b 1q =b 2,b 2q =b 3,且b 1+b 2+b 3=140,所以b 1(1+q +q 2)=140,而1+q +q 2=7,所以b 1=20,b 3=q 2b 1=4×20=80.故选C .]8.设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5,则数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和的最大值为( )A .49B .1C .4181D .151315A [a 1=9,a 2为整数,可知:等差数列{a n }的公差d 为整数,由S n ≤S 5,∴a 5≥0,a 6≤0,则9+4d ≥0,9+5d ≤0,解得-94≤d ≤-95,d 为整数,d =-2.∴a n =9-2(n -1)=11-2n . 1a n ·a n +1=111-2n9-2n =12⎝⎛⎭⎪⎫19-2n -111-2n , 数列⎩⎨⎧⎭⎬⎫1a n ·a n +1前n 项和为 12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫19-2n -111-2n =12⎝⎛⎭⎪⎫19-2n -19, 令b n =19-2n ,由于函数f (x )=19-2x 的图象关于点⎝ ⎛⎭⎪⎫92,0对称及其单调性,可知:0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴最大值为49.故选A .]二、填空题 9.已知a n =2n ,b n =3n -1,c n =b n a n,则数列{c n }的前n 项和S n 为________.5-3n +52n [由题设知,c n =3n -12n ,所以S n =221+522+823+…+3n -12n , ①2S n =2+521+822+…+3n -12n -1,②由②-①得,S n =2+321+322+…+32n -1-3n -12n .故所求S n =2+32⎝ ⎛⎭⎪⎫1-12n -11-12-3n -12n =5-3n +52n .]10.已知数列{a n }和{b n }满足a 1=1,a n +1a n=n +1n,b n a n=sin 2n π3-cos 2n π3,n ∈N *,则数列{b n }的前47项和等于________.1 120 [依题意得a n +1n +1=a nn ,故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是常数列,于是有a n n =1,a n =n 2,b n =-n 2cos 2n π3,b 3k -2+b 3k -1+b 3k =3k -223k -122-(3k )2=-9k +52(k ∈N *),因此数列{b n }的前47项和为S 47=S 48-b 48=-9×161+162+52×16+482=1 120.]11.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.2 [由S nS 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n 2n -1d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d 4k -10,2k -12-d0,得⎩⎪⎨⎪⎧d =2,k =14.∴数列{a n }的公差为2.]12.记S n 为正项等比数列{a n }的前n 项和,若S 4-2S 2=3,则S 6-S 4的最小值为________.12 [由题可知数列{a n }的公比q >0,a n >0,则3=(a 4-a 2)+(a 3-a 1)=a 1(q +1)·(q 2-1),则有q >1,所以3S 6-S 4=3a 6+a 5=3a 1q +1q 4=a 1q +1q 2-1a 1q +1q 4=1q 2-⎝ ⎛⎭⎪⎫1q 22=14-⎝ ⎛⎭⎪⎫1q 2-122≤14(当且仅当q =2时,取等号),所以S 6-S 4≥12,即S 6-S 4的最小值为12.]三、解答题13.(2018·黔东南州二模)已知数列{a n }的前n 项和为S n ,且满足S n =43(a n -1),n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =log 2a n ,记数列⎩⎨⎧⎭⎬⎫1b n -1b n +1的前n 项和为T n ,证明:T n <12.[解] (1)当n =1时,有a 1=S 1=43(a 1-1),解得a 1=4.当n ≥2时,有S n -1=43(a n -1-1),则a n =S n -S n -1=43(a n -1)-43(a n -1-1),整理得:a na n -1=4,∴数列{a n }是以q =4为公比,以a 1=4为首项的等比数列.∴a n =4×4n -1=4n (n ∈N *)即数列{a n }的通项公式为:a n =4n (n ∈N *). (2)由(1)有b n =log 2a n =log 2 4n =2n ,则1b n +1b n -1=12n +12n -1=12⎝⎛⎭⎪⎫12n -1-12n +1. ∴T n =12⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝⎛⎭⎪⎫1-12n +1. 易知数列{T n }为递增数列, ∴T 1≤T n <12,即13≤T n <12.14.(2018·邯郸市一模)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2.(1)求T n -S n ; (2)求数列⎩⎨⎧⎭⎬⎫b n 2n 的前n 项和R n .[解] (1)依题意可得b 1-a 1=3,b 2-a 2=5,…,b n -a n =2n +1, ∴T n -S n =(b 1+b 2+…+b n )-(a 1+a 2+…+a n ) =n +(2+22+…+2n )=2n +1+n -2. (2)∵2S n =S n +T n -(T n -S n )=n 2-n , ∴S n =n 2-n2,∴a n =n -1. 又b n -a n =2n +1, ∴b n =2n +n .∴b n2n =1+n2n , ∴R n =n +⎝ ⎛⎭⎪⎫12+222+…+n 2n ,则12R n =12n +⎝ ⎛⎭⎪⎫122+223+…+n 2n +1,∴12R n =12n +⎝ ⎛⎭⎪⎫12+122+…+12n -n2n +1, 故R n =n +2×12-12n +11-12-n 2n =n +2-n +22n .。

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。

高中数学计算题专项练习1-(3096)

高中数学计算题专项练习1-(3096)

2019年高中数学计算题专项练习1一.解答题(共30 小题)1.计算:( 1);( 2).2.计算:( 1) lg1000+log 342﹣ log 314﹣ log 48;(2) .3.( 1)解方程: lg ( x+1) +lg ( x ﹣ 2)=lg4 ; ( 2)解不等式: 21﹣ 2x> .4.( 1)计算: 2× ×( 2)计算: 2log 510+log 50.25.5.计算:( 1) ;( 2).6.求 log 89×log 332﹣log 1255 的值.7.( 1)计算 .( 2)若 ,求 的值.8.计算下列各式的值0.75( 1) 0.064﹣(﹣ ) +16 +0.25( 2) lg5+ ( log 32)?( log 89) +lg2 .9.计算:( 1) lg 22+lg5?lg20 ﹣ 1;(2).10.若 lga 、 lgb 是方程 2x 2﹣ 4x+1=0 的两个实根,求的值.11.计算(Ⅰ)(Ⅱ) .12.解方程:.13.计算:(Ⅰ)(Ⅱ).14.求值:( log 62) 2+log 63×log 612.15.( 1)计算( 2)已知 ,求 的值.16.计算(Ⅰ);(Ⅱ) 0.0081 ﹣() + ? ? .17.(Ⅰ)已知全集 U={1 , 2, 3, 4, 5,6} , A={1 , 4, 5} , B={2 , 3, 5} ,记 M= ( ?U A ) ∩B ,求集合 M ,并写出 M 的所有子集;(Ⅱ)求值:.18.解方程: log 2( 4x ﹣ 4) =x+log 2( 2x+1﹣ 5)219.(Ⅰ)计算( lg2) +lg2 ?lg50+lg25 ;(Ⅱ)已知a=,求÷.20.求值:( 1) lg14 ﹣+lg7 ﹣ lg18(2).21.计算下列各题:(1)( lg5)2+lg2 ×lg50 ;﹣1,求的值.( 2)已知 a﹣ a =122.( 1)计算;( 2)关于 x 的方程 3x 2﹣ 10x+k=0 有两个同号且不相等的实根,求实数k 的取值范围.23.计算题(1)(2)24.计算下列各式:(式中字母都是正数)(1)(2).25.计算:( 1);(2) lg25+lg2 ×lg50+ ( lg2)2.26.已知 x+y=12 , xy=27 且 x< y,求的值.27.( 1)计算:;b,用 a, b 表示.( 2)已知 a=log3 2, 3 =528.化简或求值:( 1);( 2).29.计算下列各式的值:( 1);( 2).30.计算log( 1) lg20 ﹣ lg2 ﹣ log 23?log32+2(2)(﹣1)0+()+().参考答案与试题解析一.解答题(共30 小题)1.计算:( 1);( 2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用指数幂的运算法则即可得出;( 2)利用对数的运算法则即可得出.解答:解:( 1)原式 ===.( 2)原式 ===.点评:熟练掌握指数幂的运算法则、对数的运算法则是解题的关键.2.计算:(1) lg1000+log 342﹣ log 314﹣ log48;(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算性质即可得出;( 2)利用指数幂的运算性质即可得出.解答:解:( 1)原式 =;( 2)原式 =.点评:熟练掌握对数的运算性质、指数幂的运算性质是解题的关键.3.( 1)解方程: lg( x+1) +lg ( x﹣ 2)=lg4 ;( 2)解不等式:21﹣2x>.考点 : 对数的运算性质;指数函数单调性的应用.专题 : 计算题.分析:( 1)原方程可化为 lg (x+1 )( x ﹣ 2) =lg4 且可求( 2)由题意可得1﹣ 2x ﹣2,结合指数函数单调性可求x 的范围2> =2解答:解:( 1)原方程可化为 lg ( x+1 )(x ﹣ 2)=lg4 且∴( x+1 )(x ﹣ 2) =4 且 x > 2∴ x 2﹣ x ﹣ 6=0 且 x >2 解得 x= ﹣2(舍)或 x=3( 2)∵ 21﹣ 2x> =2 ﹣2∴ 1﹣ 2x >﹣ 2 ∴点评: 本题主要考查了对数的运算性质的应用,解题中要注意对数真数大于0 的条件不要漏掉,还考查了指数函数单调性的应用.4.( 1)计算: 2× ×( 2)计算: 2log 510+log 50.25.考点 : 对数的运算性质.专题 : 计算题;函数的性质及应用.分析: ( 1)把各根式都化为 6 次根下的形式,然后利用有理指数幂的运算性质化简;( 2)直接利用对数式的运算性质化简运算.解答:× ×解( 1)计算: 2= ===6;( 2) 2log 510+log 50.25==log 5100×0.25 =log 525 =2log 55=2 .点评: 本题考查了指数式的运算性质和对数式的运算性质,解答的关键是熟记有关运算性质,是基础的运算题.5.计算:(1) ;(2).考点:对数的运算性质.专题:计算题.分析:(1)利用有理指数幂的运算法则,直接求解即可.( 2)利用对数的运算形状直接求解即可.解答:解:( 1)﹣ 13﹣ 1+8=12⋯(6 分)=0.2﹣ 1+2 =5( 2)===⋯(12 分)点评:本题考查指数与对数的运算性质的应用,考查计算能力.6.求 log 9×log32﹣log 5 的值.83125考点:对数的运算性质.专题:计算题.分析:利用对数的运算性质进及对数的换底公式行求解即可解答:解:原式 ====3点评:本题主要考查了对数的运算性质的基本应用,属于基础试题7.( 1)计算.( 2)若,求的值.考点:对数的运算性质.专题:计算题.分析:( 1)把对数式中底数和真数的数4、8、 27 化为乘方的形式,把底数的分数化为负指数幂,把真数的根式化为分数指数幂,然后直接利用对数的运算性质化简求值;( 2)把已知条件两次平方得到﹣ 12﹣ 2得答案.x+x与 x +x,代入解答:解:( 1)===2 ﹣ 4﹣ 1=﹣ 3;( 2)∵,∴,∴ x+x﹣ 1.=5 则( x+x ﹣122 ﹣ 2) =25 ,∴ x +x=23 ∴=.点评: 本题考查了有理指数幂的化简与求值,考查了对数的运算性质,是基础的计算题.8.计算下列各式的值0 0.75( 1) 0.064﹣(﹣ ) +16 +0.25( 2) lg5+ ( log 32)?( log 89) +lg2 .考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题. 分析:( 1)化小数指数为分数指数, 0 次幂的值代1,然后利用有理指数幂进行化简求值;( 2)首先利用换底公式化为常用对数,然后利用对数的运算性质进行化简计算.解答:0.75解:( 1) 0.064﹣(﹣ ) +16 +0.25==( 0.4) ﹣1﹣1+8+0.5=2.5﹣ 1+8+0.5=10 ;( 2) lg5+ ( log 32)?( log 89) +lg2= =1+=1+ = .点评: 本题考查了对数的运算性质,考查了有理指数幂的化简与求值,是基础的运算题.9.计算:( 1) lg 22+lg5?lg20 ﹣ 1;(2).考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.分析: ( 1)把 lg5 化为 1﹣ lg2, lg20 化为 1+lg2 ,展开平方差公式后整理即可;( 2)化根式为分数指数幂, 化小数指数为分数指数, 化负指数为正指数, 然后进行有理指数幂的化简求值.2解答: 解:( 1) lg 2+lg5 ?lg20 ﹣12=lg 2+( 1﹣ lg2 )( 1+lg2)﹣ 122;=lg 2+1﹣ lg 2﹣ 1=0( 2)==2 3=2 ?3 ﹣ 7﹣2﹣ 1=98.点评: 本题考查了有理指数幂的化简与求值,考查了对数的运算性质,解答的关键是熟记有关性质,是基础题.10.若 lga 、 lgb 是方程 2x 2﹣ 4x+1=0 的两个实根,求的值.考点 : 对数的运算性质;一元二次方程的根的分布与系数的关系.专题 : 计算题;转化思想.分析:lga 、 lgb 是方程 2x 2﹣4x+1=0 的两个实根,先由根与系数的关系求出,再利用对数的运算性质对化简求值.解答:解: ,2=( lga+lgb )( lga ﹣ lgb )2=2[ (lga+lgb ) ﹣ 4lgalgb ]=2(4﹣ 4× )=4点评: 本题考查对数的运算性质,求解的关键是熟练掌握对数的运算性质,以及一元二次方程的根与系数的关系.11.计算(Ⅰ)(Ⅱ) .考点 : 对数的运算性质;有理数指数幂的化简求值.专题 : 计算题.分析: ( 1)根据对数运算法则化简即可( 2)根据指数运算法则化简即可解答:解:( 1)原式 =(2)原式 ==点评:本题考查对数运算和指数运算,注意小数和分数的互化,要求能灵活应用对数运算法则和指数运算法则.属简单题12.解方程:.考点:对数的运算性质.专题:计算题;函数的性质及应用.分析:利用对数的运算性质可脱去对数符号,转化为关于x 的方程即可求得答案.解答:解:∵,∴log5( x+1) +log 5(x﹣ 3) =log 55,∴( x+1 )?( x﹣ 3)=5,其中, x+1> 0 且 x﹣ 3> 0解得 x=4 .故方程的解是4点评:本题考查对数的运算性质,考查方程思想,属于基础题.13.计算:(Ⅰ)(Ⅱ).考点:对数的运算性质;运用诱导公式化简求值.专题:计算题;函数的性质及应用.分析:( I)利用诱导公式,结合特殊角的三角函数值即可求解( II )利用对数的运算性质及指数的运算性质即可求解解答:解:(I)(每求出一个函数值给( 1 分),6 分( II )(每求出一个式子的值可给( 1 分), 12 分)点评:本题主要考查了诱导公式在三角化简求值中的应用及对数的运算性质的简单应用,属于基础试题14.求值:( log62)2+log 63×log 612.考点:对数的运算性质.分析:先对后一项:log 63×log 612 利用对数的运算法则进行化简得到:log63+log 63×log 62,再和前面一项提取公因式 log62 后利用对数的运算性质: log a( MN ) =log a M+log a N 进行计算,最后再将前面计算的结果利用log 62+log 63=1 进行运算.从而问题解决.解答:解:原式=(log62+log63)log62+log63=log 62+log 63=1.∴( log62)2+log 63×log 612=1.点评:本小题主要考查对数的运算性质、对数的运算性质的应用等基础知识,考查运算求解能力.属于基础题.对数的运算性质:log a( MN ) =log a M+log a N; log an=log a M ﹣ log a N ;log a M =nlog a M 等.15.( 1)计算( 2)已知,求的值.考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)化根式为分数指数幂,把对数式的真数用同底数幂相除底数不变,指数相减运算,然后利用对数式的运算性质化简;( 2)把给出的等式进行平方运算,求出﹣ 1的结果.x+x ,代入要求的式子即可求得解答:解( 1)===;(2)由,得:,所以, x+2+x ﹣1=9,故x+x ﹣1=7,所以,.点评:本题考查了有理指数幂的化简与求值,考查了对数式的运算性质,解答的关键是熟记有关性质,是基础题.16.计算(Ⅰ);(Ⅱ) 0.0081﹣()+??.考对数的运算性质;根式与分数指数幂的互化及其化简运算.点:专函数的性质及应用.题:分 (Ⅰ)利用对数的运算法则,由已知条件能求出结果.析 (Ⅱ)利用指数的运算法则,由已知条件,能求出结果.:解 解:(Ⅰ)答 ===:= = =﹣ .(Ⅱ)0.0081 ﹣()+??4 3=0.3﹣ +3=.=[( 0.3) ] ﹣([ )]+ 点 本题考查指数和对数的运算法则,是基础题,解题时要认真解答,避免出现计算上的低级错误. 评 :17.(Ⅰ)已知全集 U={1 , 2, 3, 4, 5,6} , A={1 , 4, 5} , B={2 , 3, 5} ,记 M= ( ?U A ) ∩B ,求集合 M ,并写出 M 的所有子集;(Ⅱ)求值:.考点 : 对数的运算性质;交、并、补集的混合运算.专题 : 函数的性质及应用.分析: ( I )利用集合的运算法则即可得出.( II )利用对数的运算法则即可得出. 解答: 解:(Ⅰ)∵ U={1 , 2, 3, 4, 5, 6} , A={1 , 4,5} ,∴ C U A={2 , 3, 6} ,∴ M= ( ?U A ) ∩B={2 , 3, 6} ∩{2 , 3,5}={2 , 3} .∴ M 的所有子集为: ? , {2} , {3} , {2 , 3} .(Ⅱ)= = = .点评: 本题考查了集合的运算法则、对数的运算法则,属于基础题.18.解方程: log 2( 4x ﹣ 4) =x+log 2( 2x+1﹣ 5)考点 : 对数的运算性质.专题 : 计算题.分析:利用对数的运算法则将方程变形为 ,将对数式化为指数式得到 ,通过换元转化为二次方程,求出x 的值,代入对数的真数检验.xx+1解答: 解: log 2( 4 ﹣ 4) =x+log 2( 2 ﹣ 5)即为log 2(4x ﹣ 4)﹣ log 2( 2x+1﹣ 5)=x即为所以令 t=2x即解得 t=4 或 t=1所以 x=2 或 x=0 (舍)所以方程的解为x=2.点评:本题考查对数的真数大于0、对数的运算法则、二次方程的解法,解题过程中要注意对数的定义域,属于基础题.19.(Ⅰ)计算( lg2)2;+lg2 ?lg50+lg25(Ⅱ)已知 a= ,求÷.考点:对数的运算性质;根式与分数指数幂的互化及其化简运算.专题:计算题.分析:(Ⅰ)利用对数的运算法则进行运算,利用结论lg2+lg5=0 去求.(Ⅱ)先将根式转化为同底的分数指数幂,利用指数幂的运算性质,化为最简形式,然后在将 a 值代入求值.解答:解:(Ⅰ)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(Ⅱ)原式 =.∵ a= ,∴原式 =.点评:本题考查对数的四则运算法则,根式与分数指数幂的互化,以及同底数幂的基本运算性质,要求熟练掌握相应的运算公式.20.求值:( 1) lg14 ﹣+lg7 ﹣ lg18(2).考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)应用和、差、积、商的对数的运算性质计算即可;( 2)利用指数幂的运算性质(m n mn计算即可.a) =a解答:解:( 1)∵ lg14﹣+lg7﹣ lg18=( lg7+lg2 )﹣ 2(lg7﹣ lg3 )+lg7 ﹣( lg6+lg3 )=2lg7 ﹣ 2lg7+lg2+2lg3 ﹣ lg6 ﹣ lg3( 2)∵=﹣1﹣+=﹣+=.(8分)点评:本题考查对数与指数的运算性质,关键在于熟练掌握对数与指数幂的运算性质进行计算,属于中档题.21.计算下列各题:(1)( lg5)2+lg2 ×lg50 ;﹣ 1的值.( 2)已知 a﹣ a =1,求考点:对数的运算性质;有理数指数幂的化简求值.专题:计算题.分析:(1)直接利用对数的运算性质,求出表达式的值;﹣ 12﹣ 2的值,然后化简,求出它的值( 2)通过 a﹣ a =1,求出 a +a解答:2×lg50=2×(lg5+1) =lg5( lg2+lg5) +lg2=1 ;解:( 1)( lg5) +lg2( lg5 ) +lg2﹣ 12﹣ 2( 2)因为 a﹣ a =1,所以 a +a﹣ 2=1,2﹣2∴a +a =3,==0 .点评:本题主要考查对数的运算性质和有理数指数幂的化简求值的知识点,解答本题的关键是熟练对数的运算性质,此题难度一般.22.( 1)计算;( 2)关于 x 的方程 3x 2﹣ 10x+k=0 有两个同号且不相等的实根,求实数k 的取值范围.考点:根式与分数指数幂的互化及其化简运算;一元二次方程的根的分布与系数的关系.专题:计算题.分析:( 1)转化为分数指数幂,利用指数幂的运算法则进行计算;( 2)由维达定理的出k 的关系式,解不等式即可.解答:( 1)解:原式 ===a 0(∵ a≠0)( 2)解:设 3x 2﹣ 10x+k=0 的根为 x 1,x 2由 x 1+, x 1 ?由条件点评: 本题考查根式和分数指数幂的转化、指数的运算法则、及二次方程根与系数的关系,属基本运算的考查.23.计算题( 1)( 2)考点 : 根式与分数指数幂的互化及其化简运算;对数的运算性质.专题 : 计算题.分析: ( 1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;( 2)运用对数运算性质及对数与指数的互逆运算化简可得.解答:解:( 1)原式 = ﹣(﹣ 2) 24﹣ = ﹣64+ +1﹣ =﹣;×(﹣ 2) +( 2)原式 =83224×8﹣ log 3 32+log 3 ﹣log 3 ﹣ 3 =log 3 ﹣ 9=﹣ 9.点评: 考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.24.计算下列各式: (式中字母都是正数)( 1)(2).考点 : 根式与分数指数幂的互化及其化简运算;有理数指数幂的化简求值.专题 : 函数的性质及应用. 分析:( 1)利用及其根式的运算法则即可;( 2)利用立方和公式即可得出. 解答:解:( 1)原式 == ?= ==.( 2)原式 ===.点评:熟练掌握根式的运算法则、立方和公式是解题的关键.25.计算:( 1);( 2) lg25+lg2 ×lg50+ ( lg2)2.考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:( 1)由指数幂的含义和运算法则,,=|3﹣π|,求解即可.( 2)利用对数的运算法则,各项都化为用lg2 表达的式子即可求解.解答:解:( 1)==1+2+ π﹣3=π(2) lg25+lg2 ×lg50+ ( lg2)2=2﹣ 2lg2+lg2 (2﹣ lg2 ) +( lg2)2=2.点评:本题考查指数和对数式的化简和求值、考查指数和对数的运算法则、属基本运算的考查.26.已知 x+y=12 , xy=27 且 x< y,求的值.考点:有理数指数幂的运算性质.专题:计算题.分析:利用已知条件求出x﹣ y 的值,利用分母有理化直接求解所求表达式的值.解答:解:∵ x+y=12 , xy=27∴( x﹣ y)2=( x+y )2﹣ 4xy=122﹣ 4×27=36(3分)∵ x< y∴x﹣ y= ﹣ 6(5 分)∴===(9分)==(12分)点评:本题考查有理指数幂的运算,考查计算能力.27.( 1)计算:;(b,用 a, b 表示.2)已知 a=log3 2, 3 =5考点:有理数指数幂的运算性质;对数的运算性质.专题:计算题.分析:( 1)根据指数幂的运算性质和恒等式0a,进行化简求值;a =1、0 =1( 2)根据指对互化的式子把3b化成对数式,再把化为分数指数幂的形式,由对数的运算性质将30 =5拆成 3×2×5 后,再进行求解.解答:解:( 1)原式 =(7 分)(2)∵ 3b=5∴ b=log 35∴(14 分)点评:本题考查了指数和对数运算性质的应用,常用的方法是将根式化为分数指数幂的形式,指数式和对数式互化,以及将真数拆成几个数的积或商的形式.28.化简或求值:( 1);( 2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)由原式有意义,得到a≥1,然后把各根式进行开平方和开立方运算,开方后合并即可.(2)直接运用对数式的运算性质进行求解计算.解答:解:( 1)因为 a﹣ 1≥0,所以 a≥1,所以=a﹣1+|1﹣ a|+1﹣ a=|1﹣ a|=a﹣ 1;( 2)=2lg5+2lg2+lg5 ( 1+lg2 ) +( lg2)2=2 ( lg2+lg5 ) +lg5+lg2 ( lg5+lg2 ) =2+lg5+lg2=3 .点评:本题考查了有理指数幂的化简求值,考查了对数的运算性质,解答此题的关键是由根式有意义得到 a 的取值范围,此题是基础题.29.计算下列各式的值:(1);(2).考点:有理数指数幂的化简求值;对数的运算性质.专题:计算题.分析:(1)根据分数指数与根式的互化以及幂的乘方运算法则,还有零指数、负指数的运算法则,化简可得值;( 2)运用对数运算性质化简可得.解答:解:( 1)原式 =;.点评:考查学生灵活运用根式与分数指数幂互化及其化简运算的能力,以及分母有理化的应用能力.30.计算log( 1) lg20 ﹣ lg2 ﹣ log 23?log32+2(2)(﹣1)0+()+().考点:有理数指数幂的化简求值;对数的运算性质.专题:函数的性质及应用.分析:(1)利用对数的运算法则、对数的换底公式及其对数恒等式即可得出;( 2)利用指数幂的运算法则即可得出.解答:解:( 1)原式 ==1﹣1+ = ;(2)原式 =1===2 .点评:数列掌握对数的运算法则、对数的换底公式及其对数恒等式、指数幂的运算法则是解题的关键.。

高中数学向量专项练习(含答案)

高中数学向量专项练习(含答案)

高中数学向量专项练习一、选择题1. 已知向量若则()A. B. C. 2 D. 42. 化简+ + + 的结果是()A. B. C. D.3.已知向量, 若与垂直, 则()A. -3B. 3C. -8D. 84.已知向量, , 若, 则()A. B. C. D.5.设向量, , 若向量与平行, 则A. B. C. D.6.在菱形中, 对角线, 为的中点, 则()A. 8B. 10C. 12D. 147.在△ABC中, 若点D满足, 则()A. B. C. D.8.在中, 已知, , 若点在斜边上, , 则的值为().A. 6B. 12C. 24D. 489.已知向量若, 则()A. B. C. D.10.已知向量, , 若向量, 则实数的值为A. B. C. D.11.已知向量, 则A. B. C. D.12.已知向量, 则A. B. C. D.13.的外接圆圆心为, 半径为, , 且, 则在方向上的投影为A. 1B. 2C.D. 314.已知向量, 向量, 且, 则实数等于()A. B. C. D.15.已知平面向量, 且, 则实数的值为()A. 1B. 4C.D.16.是边长为的等边三角形, 已知向量、满足, , 则下列结论正确的是()A. B. C. D.17.已知菱形的边长为, , 则()A. B. C. D.18.已知向量, 满足, , 则夹角的余弦值为( )A. B. C. D.19.已知向量=(1, 3), =(-2, -6), | |= , 若(+ )·=5, 则与的夹角为()A. 30° B. 45° C. 60° D. 120°20.已知向量, 则的值为A. -1B. 7C. 13D. 1121.如图, 平行四边形中, , 则()A. B. C. D.22.若向量 , , 则 =( )A. B. C. D.23.在△ 中, 角 为钝角, , 为 边上的高, 已知 , 则 的取值范围为(A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424. 已知平面向量 , , 则向量 ( )A. B. C. D.25.已知向量 , , 则A. (5,7)B. (5,9)C. (3,7)D.(3,9) 26.已知向量 , 且 , 则实数 =( )A. -1B. 2或-1C. 2D. -227.在 中, 若 点 满足 , 则 ( )A. B. C. D.28.已知点 和向量 , 若 , 则点 的坐标为( )A. B. C. D.29.在矩形ABCD 中, 则 ( )A. 12B. 6C.D.30. 已知向量 , ,则 ( ).A. B. C. D.31.若向量 与 共线且方向相同, 则 ( )A. B. C. D.32.设 是单位向量, 且 则 的最小值是( )A. B. C. D.33.如图所示, 是 的边 上的中点, 记 , , 则向量 ( )A. B. C. D.34.如图, 在 是边BC 上的高, 则 的值等于 ( )ADCB35.已知平面向量的夹角为, ()A. B. C. D.36.已知向量且与共线, 则()A. B. C. D.二、填空题37. 在△ABC中, AB=2, AC=1, D为BC的中点, 则=_____________.38.设, , 若, 则实数的值为()A. B. C. D.39.空间四边形中, , , 则()A. B. C. D.40. 已知向量, , 满足, , 若, 则的最大值是 .41. 化简: = .42. 在中, 的对边分别为, 且, , 则的面积为 .43. 已知向量=(1, 2), •=10, | + |=5 , 则| |= .44.如图, 在中, 是中点, , 则.45. 若| |=1, | |=2, = + , 且⊥, 则与的夹角为________。

高中数学找规律专项练习

高中数学找规律专项练习

高中数学找规律专项练习本文档将提供一些高中数学找规律的专项练,帮助学生加深对数学规律的理解和应用。

以下是一些练题供参考。

1. 数列规律练题目一已知数列 $a_n$ 的前三项如下,找出该数列的规律并写出第 10 项:$$a_1 = 2, \quad a_2 = 5, \quad a_3 = 8$$解答:我们观察数列的前三项可以发现,每一项都比前一项大 3。

因此,数列的规律是每一项都比前一项大 3。

根据数列的规律,可以得出第 10 项的表达式为:$$a_{10} = a_1 + (10 - 1) \cdot 3$$计算得出:$$a_{10} = 2 + 9 \cdot 3 = 29$$所以,第 10 项为 29。

题目二有数列 $b_n$,前三项如下:$$b_1 = 1, \quad b_2 = 3, \quad b_3 = 9$$写出数列 $b_n$ 的规律,并计算第 5 项。

解答:通过观察数列的前三项,我们可以发现每一项都是前一项的3倍。

因此,数列的规律是每一项都是前一项的3倍。

根据数列的规律,我们可以得到第 5 项的表达式为:$$b_5 = b_4 \cdot 3$$进一步展开计算,我们可以得到:$$\begin{align*}b_4 &= b_3 \cdot 3 = 9 \cdot 3 = 27 \\b_5 &= b_4 \cdot 3 = 27 \cdot 3 = 81\end{align*}$$所以,第 5 项为 81。

2. 函数规律练题目一函数 $f(x)$ 的图像如下,写出函数 $f(x)$ 的规律:解答:通过观察函数的图像,我们可以发现函数 $f(x)$ 的规律是在$x$ 轴上所对应的 $y$ 坐标值,等于 $x^2$。

因此,函数 $f(x)$ 的规律是 $f(x) = x^2$。

题目二函数 $g(x)$ 满足以下条件:- 当 $x = 1$ 时,$g(x) = 3$- 当 $x = 2$ 时,$g(x) = 5$- 当 $x = 3$ 时,$g(x) = 7$写出函数 $g(x)$ 的规律。

高中数学切点弦问题专项练习题(含答案解析)

高中数学切点弦问题专项练习题(含答案解析)

高中数学切点弦问题专项练习题(含答案解析)一、解答题1.已知椭圆2222:1(0)x y a b a b Γ+=>>的左、右焦点分别为1F 、2F,M 是椭圆上的动点,12MF F △的最大面积为1.(1)求椭圆Γ的方程;(2)求证:过椭圆2222:1(0)x y a b a b Γ+=>>上的一点()00,T x y 的切线方程为:00221x x y y a b⋅⋅+=;(3)设点P 是直线:2l x =上的一个动点,过P 做椭圆Γ的两条切线,切点分别为A ,B ,则直线AB 是否过定点?若是,求出这个定点坐标,否则,请说明理由.【答案】(1)2212x y +=;(2)证明见解析;(3)直线AB 过定点(1,0).【分析】(1)当M 是椭圆的短轴端点时,12MF F △的面积最大,得到1bc =,再结合离心率及222a b c =+,可求得椭圆方程;(2)联立2222002211x y a b x x y y a b ⎧+=⎪⎪⎨⋅⋅⎪+=⎪⎩,得222222224420000()20a y b x x a b x x b a a y +−+−=(*) ,又点()00,T x y 在椭圆上得22222200b x a y a b +=,即可将方程变形为2220()0a b x x −=,即直线和椭圆仅有一个公共点,可证得l 为椭圆的公切线.(3)设(2,)P t ,切点11(,)A x y ,22(,)B x y ,由切线方程可知1121x x y y ⋅+⋅=,2221x x y y ⋅+⋅=,又P 在切线上,∴111x ty +=,221x ty +=,可知直线AB 的方程为:1x ty +=,可得直线AB 过定点(1,0) 【详解】 (1)M 是椭圆上的动点 M y b ∴≤,∴121211||222MF F M SF F y c b bc =⋅≤⋅⋅=,即M y b =时,()12max1MF F S bc ==2c e a ==,即222a c =,又222a b c =+,1b c ∴==,a ∴=∴椭圆Γ的方程为2212x y +=(2)证明:联立2222002211x y a b x x y y a b ⎧+=⎪⎪⎨⋅⋅⎪+=⎪⎩,得222222224420000()20a y b x x a b x x b a a y +−+−=(*)点()00,T x y 在椭圆上,∴222222220000221(0)x y a b b x a y a b a b+=>>⇒+=∴222222220020a b x a b xx a b x −+=,即222200(2)0a b x xx x −+= ∴2220()0a b x x −=, 得0x x =,故直线和椭圆仅有一个公共点, ∴l 为椭圆的公切线(3)设(2,)P t ,切点11(,)A x y ,22(,)B x y ,由(2)的结论可知, 切线,PA PB 的方程分别为1121x x y y ⋅+⋅=,2221x x y y ⋅+⋅= P 在切线上,∴111x ty +=,221x ty +=∴1122(,),(,)x y x y 都满足1x ty +=,即直线AB 的方程为:1x ty += ∴直线AB 过定点(1,0).【点睛】思路点睛:本题考查椭圆的简单性质,椭圆的切线方程,直线与椭圆的位置关系,圆锥曲线中定点问题的两种解法:(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 2.已知抛物线C :y 2=4x 和直线l :x =-1.(1)若曲线C 上存在一点Q ,它到l 的距离与到坐标原点O 的距离相等,求Q 点的坐标; (2)过直线l 上任一点P 作抛物线的两条切线,切点记为A ,B ,求证:直线AB 过定点. 【答案】(1)1,2Q ⎛ ⎝;(2)证明见解析. 【解析】试题分析:(1)设Q (x ,y ),则(x +1)2=x 2+y 2,又y 2=4x ,解得Q;(2)设点(-1,t )的直线方程为y -t =k (x +1),联立y 2=4x ,则Δ=0,得k 2+kt -1=0,则切点分别为A ,B ,所以A ,B ,F 三点共线,AB 过点F (1,0)。

高中数学三角函数专项练习(含答案)

高中数学三角函数专项练习(含答案)

高中数学三角函数专项练习(含答案)一、填空题1.如图,在棱长均为23的正四面体ABCD 中,M 为AC 中点,E 为AB 中点,P 是DM 上的动点,Q 是平面ECD 上的动点,则AP PQ +的最小值是______.2.在ABC 中,7AB =,23BC =,1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △的面积有最大值,且最大值为3;②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.3.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.4.已知函数23tan ,,,2332()63233,,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 5.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.6.在直角坐标系中,ABC 的顶点()cos ,sin A αα,()cos ,sin B ββ,C ⎝,且ABC 的重心G 的坐标为⎝,()cos αβ-=__________. 7.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.8.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)9.在ABC 中,设a ,b ,c 分别为角A ,B ,C 对应的边,记ABC 的面积为S ,且sin 2sin 4sin b B c C a A +=,则2Sa 的最大值为________. 10.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数()()sin cos sin cos 0f x x x x x ωωωωω=++->,则下列结论错误的是( )①1ω=时,函数()f x 图象关于π4x =对称;②函数()f x 的最小值为-2;③若函数()f x 在π,04⎡⎤-⎢⎥⎣⎦上单调递增,则(]03ω∈,;④1x ,2x 为两个不相等的实数,若()()124f x f x +=且12x x -的最小值为π,则2ω=. A .②③B .②④C .①③④D .②③④13.已知点P 是曲线y =α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .0,6π⎛⎤ ⎥⎝⎦B .,62ππ⎡⎫⎪⎢⎣⎭C .,63ππ⎡⎤⎢⎥⎣⎦D .0,3π⎛⎤ ⎥⎝⎦14.已知,a b Z ∈,满足)sin 50a b ︒=,则a b +的值为( )A .1B .2C .3D .415.已知点1F ,2F 分别为椭圆()2222:10x yC a b a b+=>>的左、右焦点,点M 在直线:l x a =-上运动,若12F MF ∠的最大值为60︒,则椭圆C 的离心率是( )A .13B .12C .32D .3316.在三棱锥A BCD -中,5,2,2AC AD AB CD BC BD ======,则这个三棱锥的外接球的半径为( ) A .2105B .2103C .253D .2517.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()33f π=,且()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .1418.如图是某市夏季某一天从6时到14时的温度变化曲线,若该曲线近似地满足函数()sin y A x B ωϕ=++,则该市这一天中午12时天气的温度大约是( )A .25C ︒B .26C ︒ C .27C ︒D .28C ︒19.已知函数2()sin f x x x =⋅各项均不相等的数列{}n x 满足||(1,2,3,,)2i x i n π≤=.令*1212()([()()()())]n n F n x x x f x f x f x n N =+++⋅+++∈.给出下列三个命题:(1)存在不少于3项的数列{},n x 使得()0F n =;(2)若数列{}n x 的通项公式为*1()()2n n x n N =-∈,则(2)0F k >对k *∈N 恒成立;(3)若数列{}n x 是等差数列,则()0F n ≥对n *∈N 恒成立,其中真命题的序号是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)20.设锐角ABC ∆的三个内角,,A B C 的对边分别为,,a b c 且1c =,2A C =,则ABC ∆周长的取值范围为( ) A .(0,22)+B .(0,33)C .(22,33)+D .(22,33]三、解答题21.已知向量()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,若函数()12f x a b =⋅+的最小正周期为π. (1)求()f x 的解析式;(2)若关于x 的方程22cos 22cos 23301212a f x x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦在04π⎡⎤⎢⎥⎣⎦,有实数解,求实数a 的取值范围.22.在海岸A 处,发现北偏东45︒方向,距离A 为31-海里的B 处有一艘走私船,在A 处北偏西75︒方向,距离A 为2海里的C 处有一艘缉私艇奉命以103海里/时的速度追截走私船,此时,走私船正以10海里/时的速度从B 处向北偏东30方向逃窜.(1)问C 船与B 船相距多少海里?C 船在B 船的什么方向? (2)问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间. 23.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求证:()()f x g x ≤;(2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值.24.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.25.已知函数2()232sin cos ()f x x x x a a R =-++∈,且(0)3f = (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围. 26.设函数()f x a b =⋅,其中向量(2cos ,1)a x =,(cos 32)=+b x x m ; 求:(1)函数的最小正周期和单调递增区间;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求实数m 的值,使函数()f x 的值域恰为17,22⎡⎤⎢⎥⎣⎦.27.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 28.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间; (2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.29.已知ABC ∆的外接圆...,内角A ,B ,C 的对边分别为a ,b ,c ,又向量()sin sin ,m A C b a =--,sin sin n A C B ⎛⎫=+ ⎪ ⎪⎝⎭,且m n ⊥. (1)求角C ;(2)求三角形ABC 的面积S 的最大值并求此时ABC ∆的周长.30.已知两个不共线的向量a ,b 满足a =,(cos ,sin )b =θθ,R θ∈. (1)若//a b ,求角θ的值;(2)若2a b -与7a b -垂直,求||a b +的值;(3)当0,2π⎡⎤θ∈⎢⎥⎣⎦时,存在两个不同的θ使得||||a ma =成立,求正数m 的取值范围.【参考答案】一、填空题12.①③31 4.47,912ππ⎧⎫⎨⎬⎩⎭5.165386.237.⎝⎭8.8,83⎛⎫ ⎪⎝⎭910. 3 21,32⎡⎢⎣⎦二、单选题 11.A 12.B 13.A 14.B 15.C 16.A 17.C 18.C 19.D 20.C 三、解答题21.(1)()sin(2)6f x x π=-;(2)1a 或732a +-.【解析】(1)根据向量数量积的坐标运算及三角公式,化简可得()f x 的解析式; (2)先化简()sin 212f x x π+=,利用换元法,设sin 2cos2t x x =-,把目标方程转化为关于t 的方程,分离参数后进行求解.【详解】 (1)因为()()()3cos ,cos ,sin ,cos 0a x x b x x ωωωωω=-=>,所以()2111cos 213sin cos 22222x f x a b x x x x ωωωωω+=⋅+=-+=-+ sin(2)6x πω=-.因为()f x 的最小正周期为π,所以22ππω=,即1ω=,所以()sin(2)6f x x π=-. (2)由(1)可知()sin 212f x x π+=.因为2(sin 2cos 2)x x +22sin 22sin 2cos 2cos 2x x x x =++12sin 2cos2x x =+, 222(sin 2cos 2)sin 22sin 2cos 2cos 2x x x x x x -=-+12sin 2cos2x x =-,所以22(sin 2cos2)12sin 2cos211(sin 2cos2)x x x x x x ⎡⎤+=+=+--⎣⎦.令sin 2cos2t x x =-,则22(sin 2cos 2)2x x t +=-,则方程22cos 22cos 23301212a fx x f x x a ππ⎡⎤⎡⎤⎛⎫⎛⎫++-+--+= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦可化为()2222330a t t a ---+=,即22230at t a +--=.因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以2,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以sin 2cos 22[1,1]4t x x x π⎛⎫=-=-∈- ⎪⎝⎭.所以由题意可知,方程22230at t a +--=在[1,1]t ∈-时有解; 令2()223g t at t a =+--,当0a =时,()23g t t =-,由()0g t =得32t =(舍);当0a ≠时,则22230at t a +--=可化为212132t a t-=-,令22132t y t-=-,[1,1]t ∈-,设32u t =-,则1(3),[1,5]2t u u =-∈,2212(3)11(3)222u u y u u⎡⎤--⎢⎥--⎣⎦==⨯1762u u ⎛⎫=+- ⎪⎝⎭,因为7u u+≥u = 当1u =时,7u u+取到最大值8,所以3,1]y ∈,所以13,1]a ∈,解得1a 或732a +-. 所以实数a 的取值范围是1a 或732a +- 【点睛】本题主要考查三角函数的性质,利用向量的坐标运算及三角公式把目标函数化简为最简形式,是这类问题常用求解方向,方程有解问题通常利用分离参数法来解决,侧重考查数学运算的核心素养.22.(1)=BC C 船在B 船的正西方向;(2)缉私艇沿东偏北30才能最快追上走私船. 【解析】(1)在ABC 中根据余弦定理计算BC ,再利用正弦定理计算ABC ∠即可得出方位; (2)在BCD △中,利用正弦定理计算BCD ∠,再计算BD 得出追击时间. 【详解】解:(1)由题意可知1=AB ,2AC =,120BAC ∠=︒, 在ABC 中,由余弦定理得:2222cos1206BC AB AC AB AC =+-︒=, BC ∴,由正弦定理得:sin sin AC BCABC BAC=∠∠,即2sin ABC∠解得:sin ABC ∠=, 45ABC ∴∠=︒,C ∴船在B 船的正西方向.(2)由(1)知=BC 120DBC ∠=︒, 设t 小时后缉私艇在D 处追上走私船,则10BD t =,CD =,在BCD △10sin tBCD∠, 解得:1sin 2BCD ∠=, 30BCD ∴∠=︒,BCD ∴△是等腰三角形,10t ∴=,即t =∴缉私艇沿东偏北30【点睛】本题考查了正余弦定理解三角形,以及解三角形的实际应用,考查转化能力和运算能力,属于中档题.23.(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【解析】 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果.(2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果. 【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤,所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤. (2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”.令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<,所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减.从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=.()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为M x 在区间00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立”当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤,综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.24.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】 【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+()24f x x π⎛⎫∴=+ ⎪⎝⎭ 令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()224f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.25.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值.(2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围.【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin 3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭, [0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦, ()f x 在[0,]π上有且只有一个零点, 223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题. 26.(1)T π=,,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈;(2)12. 【解析】【分析】(1)由数量积的坐标运算可得2()2cos 2f x x x m =+,然后将其化为基本型,即可求出周期和单调递增区间(2)由02x π≤≤,可得()3m f x m ≤≤+,和题目条件对应即可求出m【详解】(1)∵2()2cos 2f x a b x x m =⋅=+1cos22x x m =++2sin 216x m π⎛⎫=+++ ⎪⎝⎭, ∴函数()f x 的最小正周期T π=, 可知,当222262k x k πππππ-≤+≤+,k Z ∈时,函数单调递增, 解得:36k x k ππππ-≤≤+, 故函数的单调递增区间为,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k z ∈. (2)∵02x π≤≤, ∴72666x πππ≤+≤, ∴1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭, ∴()3m f x m ≤≤+, 又17()22f x ≤≤, 故12m =. 【点睛】本题考查的是三角函数的图象及其性质,解决这类问题时首先应把函数化成三角函数基本型.27.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2 【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解.【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =, 从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭. (2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭ ∴2,3B k k Z ππ+=∈,∴:,62k B k Z ππ=-+∈, 又∵B 是锐角,∴3B π=. ∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】 本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.28.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1.【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果.【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+, 所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π= 当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题.29.(1) 3C π=. (2) max S = 【解析】【分析】(1)由0m n m n ⊥⇒⋅=,利用坐标表示化简,结合余弦定理求角C (2)利用(1)中222c a b ab =+-,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长.【详解】(1)∵0m n m n ⊥⇒⋅=,∴()())sin sin sin sin sin 0A C A C b a B -+-=,且2R =()2202242a c b b a R R R ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭, 化简得:222c a b ab =+-.由余弦定理:2222cos c a b ab C =+-,∴12cos 1cos 2C C =⇒=, ∵0C π<<,∴3C π=.(2)∵()22222sin 6a b ab c R C +-===,∴2262a b ab ab ab ab =+-≥-=(当且仅当a b =时取“=”)1sin 2S ab C ==≤所以,max S =ABC ∆为正三角形,此时三角形的周长为 【点睛】本题主要考查了利用数量积判断两个平面向量的垂直关系,正弦定理,余弦定理,基本不等式,属于中档题.30.(1),3k k Z πθθπ⎧⎫=+∈⎨⎬⎩⎭|(23)⎣⎭【解析】【分析】(1)由题得tan θ=2)先求出1a b ⋅=,再利用向量的模的公式求出||7a b +=;(3)等价于2476m πθ⎛⎫+=- ⎪⎝⎭在0,2π⎡⎤θ∈⎢⎥⎣⎦有两解,结合三角函数分析得解.【详解】(1)由题得sin 0,tan θθθ=∴=所以角θ的集合为,3k k Z πθθπ⎧⎫=+∈⎨⎬⎩⎭| . (2)由条件知2a =, 1b =,又2a b -与7a b -垂直,所以()()2781570a b a b a b -⋅-=-⋅+=,所以1a b ⋅=.所以222||||2||4217a b a a b b +=+⋅+=++=,故||7a b +=.(3)由3a b ma +=,得223a b ma +=, 即2222233a a b b m a +⋅+=,即2434b m +⋅+=,)27cos 4m θθ+=,所以2476m πθ⎛⎫+=- ⎪⎝⎭. 由0,2π⎡⎤θ∈⎢⎥⎣⎦得2,663πππθ⎡⎤+∈⎢⎥⎣⎦,又θ要有两解,结合三角函数图象可得,2647m ≤-<2134m ≤<又因为0m >m ≤<即m 的范围⎣⎭. 【点睛】本题主要考查向量平行垂直的坐标表示,考查向量的模的计算,考查三角函数图像和性质的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.。

高中数学专项试题及答案

高中数学专项试题及答案

高中数学专项试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-4x+3的零点个数是()。

A. 0B. 1C. 2D. 32. 已知等差数列{an}的前三项分别为2,5,8,则该数列的公差为()。

A. 1B. 2C. 3D. 43. 圆的方程为x^2+y^2-6x-8y=0,其圆心坐标为()。

A. (3, 4)B. (-3, -4)C. (3, -4)D. (-3, 4)4. 函数y=\frac{1}{x}的图象在第一象限的斜率是()。

A. 正B. 负C. 零D. 不存在5. 集合A={1, 2, 3},集合B={2, 3, 4},则A∩B=()。

A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}6. 若直线y=2x+1与直线y=-x+4平行,则它们的斜率()。

A. 相等B. 互为相反数C. 互为倒数D. 无法确定7. 已知复数z=2+3i,其模长为()。

A. √7B. √13C. √21D. √318. 函数y=|x-1|的单调递增区间是()。

A. (-∞, 1)B. (1, +∞)C. (-∞, 1] ∪ [1, +∞)D. (-∞, 1] ∪ (1, +∞)9. 抛物线y^2=4x的焦点坐标为()。

A. (0, 0)B. (1, 0)C. (0, 1)D. (2, 0)10. 若函数f(x)=x^3-3x+1在x=1处取得极值,则该极值为()。

A. 0B. 1C. -1D. 2二、填空题(每题4分,共20分)1. 已知函数f(x)=x^3-3x^2+2,f'(x)=______。

2. 抛物线y=x^2-4x+3的顶点坐标为______。

3. 圆的方程x^2+y^2-4x-6y+9=0的半径为______。

4. 函数y=\sqrt{x}的定义域为______。

5. 集合{a, b, c}与集合{c, d, e}的并集为______。

三、解答题(每题10分,共50分)1. 已知函数f(x)=2x^3-9x^2+12x-5,求f(x)的单调区间。

高中数学三角函数专项练习题(含答案)

高中数学三角函数专项练习题(含答案)

高中数学三角函数专项练习题(含答案)一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.设函数()f x 是定义在实数集R 上的偶函数,且()()2f x f x =-,当[0,1]x ∈时,3()f x x =,则函数()|cos |()g x x f x π=-在15,22⎡⎤-⎢⎥⎣⎦上所有零点之和为___________.3.如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为43,则这个圆锥的体积为___________.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.5.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.6.平行六面体1111ABCD A B C D -的各棱长均相等,1160BAD DAA A AB ∠=∠=∠=,直线1AC ⋂平面1A BD E =,则异面直线1D E 与AD 所成角的余弦值为_________.7.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,32b =7sin BAD ∠=,2cos BAC ∠=,则AD =__________. 8.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .9.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.10.已知1OB →=,,A C 是以O 为圆心,220BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知()1,0A -,()3,0B ,P 是圆22:45O x y +=上的一个动点,则sin APB ∠的最大值为( ) A .33B .53C .34D .5413.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ=14.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭15.《九章算术》卷五“商功”:今有刍甍,下广3丈,袤4丈;上袤2丈,无广;高1丈.其描述的是下图的一个五面体,底面ABCD 是矩形,4AB =,3BC =,2EF =,//EF 底面ABCD 且EF 到底面ABCD 的距离为1.若DE AE BF CF ===,则该刍甍中点F 到平面EBC 的距离为( )A .15B .35C 10D 2516.如图所示,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△ACD ',所成二面角A CD B '--的平面角为α,则( )A .A DB α'∠≤B .A DB α'∠≥C .A CB α∠'≤D .A CB α'∠≥17.已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=( )A .15B .25C .35D .4518.已知ABC 的三边是连续的三个自然数,且最大角是最小角的2倍,则ABC 内切圆的半径r =( ) A .1B .72C .32D .219.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( )A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞20.△ABC 中,BD 是AC 边上的高,A=4π,cosB=-55,则BD AC =( )A .14B .12C .23D .34三、解答题21.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C 对墙的投影(即过C 作AB 的垂线垂足为投影)恰在线段AB (包括端点)上,求点C 离墙的水平距离的范围;(2)在(1)的条件下,当点C 离墙的水平距离为多少时,视角θ(ACB ∠)最大?22.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知33sin cos 022b A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,且2sin 6sin sin A B C =⋅. (1)求A ;(2)若()b c a R λλ+=∈,求λ的值.23.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 24.已知函数22cos 3sin 2f x xx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值.25.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是2,2⎡⎤-⎣⎦. (1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+ ⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性.26.在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .27.已知向量9(sin ,1),(sin ,cos )8a x b x x ==-, 设函数(),0,2f x a b x π⎡⎤=⋅∈⎢⎥⎣⎦.(Ⅰ)求()f x 的值域(Ⅱ)设函数()f x 的图像向左平移2π个单位长度后得到函数()h x 的图像,若不等式()()sin 20f x h x x m ++-<有解,求实数m 的取值范围.28.已知函数22()sin 22sin 26144f x x t x t t ππ⎛⎫⎛⎫=---+-+ ⎪ ⎪⎝⎭⎝⎭,,242x ππ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,最小值为()g t .(1)求当1t =时,求8f π⎛⎫⎪⎝⎭的值;(2)求()g t 的表达式; (3)当112t -≤≤时,要使关于t 的方程2()9g t k t =-有一个实数根,求实数k 的取值范围. 29.已知函数()f x 的图象是由函数()sin g x x =的图象经如下变换得到:先将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向左平移3π个单位长度.(1)求函数(2)y f x =在[0,]π上的单调递增区间;(2)已知关于x 的方程2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β.求26cos(22)m αβ--的值.30.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值【参考答案】一、填空题1.3π 2.734.2⎝5.16538 6.567.489.742ω<<或91322ω<≤.10.⎡⎢⎣⎦二、单选题 11.A 12.D 13.C 14.A 15.C 16.B 17.C 18.B 19.C 20.A 三、解答题21.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可. 【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有 2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为: 1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x x BCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得: 2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-, 因为15y ≤≤,所以有55562564y y y y+-≥⋅=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力. 22.(1)3A π=;(2)6λ=. 【解析】 【分析】(1)根据诱导公式、正弦定理、同角三角函数基本关系式,结合已知等式,化简tan 3A =(0,)A π∈,可得A 的值;(2)由已知根据余弦定理可得2223a a bc λ+=,利用正弦定理可得26a bc =,联立即可解得λ的值. 【详解】(133sin cos 022b A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭3cos sin 0b A a B ⇒-+=, 3cos sin sin 0B A A B ⇒-+=(0,)sin 0B B π∈∴≠,tan 3,(0,)3A A A ππ∴=∈∴=;(2)22sin 6sin sin 6A B C a ac =⋅⇒=,2222222cos )(3a b c bc B b c b bc bc c +⋅=++=--=-,而()b c a R λλ+=∈,22()3a a bc λ=-,而26a ac =,所以有2302λλλλ=⇒=>∴=【点睛】本题考查了诱导公式、正弦定理、同角三角函数基本关系式、余弦定理,考查了数学运算能力.23.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =,从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭∴2,3B k k Z ππ+=∈,∴:,62kB k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.24.(1)1,,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈;(2)[)3,4,3-. 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 23sin 212sin 216x x a x a f x π⎛⎫=+++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=, 所以()1235tan 2tan33x x x π++==-.【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.25.(1)2a =,2b =-或2a =-,42b =函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减. 【解析】 【分析】(1)先求得sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,再讨论0a >和0a <的情况,进而求解即可; (2)由(1)()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭则()2sin 224g x x π⎛⎫=++ ⎪⎝⎭进而判断单调性即可 【详解】解:(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦, ①当0a >时,由题意可得12a ab a a b ⎧⎛⨯++=⎪ ⎨⎝⎭⎪⨯++=⎩即22a b a b ⎧++=⎪⎨⎪+=⎩解得2a =,2b =-; ②当0a <时,由题意可得21a a b a a b ⎧⎛⨯++=⎪ ⎨⎝⎭⎪⨯++=⎩,即22a b a b ⎧++=⎪⎨⎪+=⎩,解得2a =-,4b =(2)由(1)当0a <时,2a =-,4b =所以()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈, 当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增,同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力 26.见解析 【解析】选择①:利用三角形面积公式和余弦定理可以求接求出AC 的长;选择②:在ABC ∆,ACD ∆中,分别运用正弦定理,可以求接求出AC 的长;【详解】解:选择①:113sin 2sin 2224ABC S AB BC ABC BC π∆=⋅⋅⋅∠=⋅⋅⋅=所以BC =由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠482220⎛=+-⨯⨯= ⎝⎭所以AC ==选择②设BAC CAD θ∠=∠=,则04πθ<<,4BCA πθ∠=-,在ABC ∆中sin sin AC AB ABC BCA =∠∠,即23sin sin 44AC ππθ=⎛⎫- ⎪⎝⎭所以sin 4AC θ=- ⎪⎝⎭在ACD ∆中,sin sin AC CD ADC CAD =∠∠,即4sin sin 6AC πθ= 所以2sin AC θ=.所以2sin sin 4θθ=- ⎪⎝⎭2sin cos θθ=, 又04πθ<<,所以sin θ=,所以2sin AC θ== 【点睛】 本题考查了正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.27.(Ⅰ)11,88⎡⎤-⎢⎥⎣⎦(Ⅱ)9,4⎛⎫-+∞ ⎪⎝⎭ 【解析】(Ⅰ)根据向量的数量积的坐标运算可得函数()f x 的解析式,化成二次函数型函数,求得值域;(Ⅱ)首先根据三角函数的变换规则求得()h x 的解析式,要使()()sin 20f x h x x m ++-<在0,2x π⎡⎤∈⎢⎥⎣⎦有解,即不等式()()sin2m f x h x x >++在0,2x π⎡⎤∈⎢⎥⎣⎦有解,令()()sin2y f x h x x =++求出函数的最小值,即可得实数m 的取值范围.【详解】解:(1)()222991sin cos 1cos cos cos cos 888f x x x x x x x =+-=-+-=-+- ()211cos 28f x x ⎛⎫∴=--+ ⎪⎝⎭, 0,2x π⎡⎤∈⎢⎥⎣⎦ 0cos 1x ∴≤≤()1188f x ∴-≤≤ ()f x ∴的值域为11,88⎡⎤-⎢⎥⎣⎦(2)函数()21cos cos 8f x x x =-+-的图像向左平移2π个单位长度后得到函数()h x 的图像,()2211cos cos sin sin 2288h x x x x x ππ⎛⎫⎛⎫∴=-+++-=--- ⎪ ⎪⎝⎭⎝⎭, 依题意,不等式()()sin2m f x h x x >++在0,2x π⎡⎤∈⎢⎥⎣⎦有解, 设()()5sin2cos sin sin24y f x h x x x x x =++=--+ 52sin cos cos sin ,0,42y x x x x x π⎡⎤=+--∈⎢⎥⎣⎦,令[]cos sin ,0,1,142t x x x x t ππ⎛⎫⎡⎤=-=+∈∴∈- ⎪⎢⎥⎝⎭⎣⎦, 则[]2211,1,142y t t t t ⎛⎫=-+-=--∈- ⎪⎝⎭∴函数()()sin2y f x h x x =++的值域为9,04⎡⎤-⎢⎥⎣⎦. ∴ min 94m y >=- 故实数m 的取值范围为9,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】本题考查正弦函数的性质,二次函数的性质以及辅助角公式,属于中档题.28.(1)4-(2)22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)--22∞⋃+∞(,)(,) 【解析】【分析】 (1)直接代入计算得解;(2)先求出1sin(2)[,1]42x π-∈-,再对t 分三种情况讨论,结合二次函数求出()g t 的表达式;(3)令2()()9h t g t k t =-+,即2()(6)t 10h t k =-++有一个实数根,利用一次函数性质分析得解.【详解】(1)当1t =时,2()sin 22sin 2444f x x t x ππ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭,所以48f π⎛⎫=- ⎪⎝⎭. (2)因为[,]242x ∈ππ,所以32[,]464x πππ-∈-,所以1sin(2)[,1]42x π-∈- 2()[sin(2)]614f x x t t π=---+([,]242x ∈ππ) 当12t <-时,则当1sin(2)42x π-=-时,2min 5[()]54f x t t =-+ 当112t -≤≤时,则当sin(2)4x t π-=时,min [()]61f x t =-+ 当1t >时,则当sin(2)14x π-=时,2min [()]82f x t t =-+ 故22515421()611282(1)t t t g t t t t t t ⎧⎛⎫-+<- ⎪⎪⎝⎭⎪⎪⎛⎫=-+-≤≤⎨ ⎪⎝⎭⎪⎪-+>⎪⎩(3)当112t -≤≤时,()61g t t =-+,令2()()9h t g t k t =-+即2()(6)t 10h t k =-++ 欲使2()9g t kt =-有一个实根,则只需1()02(1)0h h ⎧-≤⎪⎨⎪≥⎩或1()02(1)0h h ⎧-≥⎪⎨⎪≤⎩ 解得-2k ≤或2k ≥.所以k 的范围:--22∞⋃+∞(,)(,). 【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.29.(1)(2 )y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦(2)6- 【解析】【分析】(1)先求出()2sin 3f x x π⎛⎫=+ ⎪⎝⎭,再利用三角函数的图像和性质求函数(2)y f x =在[0,]π上的单调递增区间;(2)先化简得2()422f x g x π⎛⎫-+ ⎪⎝⎭223x π⎛⎫=-+ ⎪⎝⎭,再利用三角函数的性质求出cos)αβ-(的值得解. 【详解】(1)将()sin g x x =图象上所有点的纵坐标伸长到原来的2倍,得到2sin y x =的图象, 再将2sin y x =的图象向左平移3π个单位长度后得到2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象, 故()2sin 3f x x π⎛⎫=+ ⎪⎝⎭. (2)2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令222232k x k πππππ-++,k ∈Z 51212k x k ππππ-+,k ∈Z ,又[0,]x π∈所以(2)y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦. (2)2()422f x g x π⎛⎫-+ ⎪⎝⎭24sin 4sin 232x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222cos 24cos 23x x π⎛⎫=-+- ⎪⎝⎭23cos 22x x =-+223x π⎛⎫=-+ ⎪⎝⎭. 因为2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β,所以23x m π⎛⎫-= ⎪⎝⎭在[0,)π内有两个不同的解α,β,且52,333x πππ⎡⎫-∈-⎪⎢⎣⎭, 所以2233ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或22333ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 于是56παβ+=或116παβ+=. 当56παβ+=时,5cos()cos 6παβαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭5cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭ sin 23πα⎛⎫=-= ⎪⎝⎭ 当116παβ+=时, 11cos()cos 6παβαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭113cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭sin 23πα⎛⎫=--= ⎪⎝⎭, 因此,26cos(22)m αβ--()2262cos ()1m αβ=---22621612m m ⎛⎫=⋅--=- ⎪⎝⎭. 【点睛】本题主要考查三角函数图像的变换和三角函数的单调区间的求法,考查三角函数图像的零点问题,考查三角恒等变换和求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.30.(1)见解析;(2)178-. 【解析】【分析】(1)运用向量数量积的坐标表示,求出a ·b ;运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)33cos cos sin sin cos22222x x a b x x x ⋅=⋅-⋅=cos a b ⎛+= ⎝=∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x += (2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭ ∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==- 【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专项练习题
高中数学专项练习题
专项练习一. 选择题:本大题共5小题,每小题7分,共35分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数唯一的零点在区间内,那么下面命题错误的( )
A 函数在或内有零点
B 函数在内无零点
C 函数在内有零点
D 函数在内不一定有零点
2.若,,则与的关系是 ( )
A B
C D
3. 函数零点的个数为 ( )
A B C D
4. 已知函数y=f(x)有反函数,则方程f(x)=0 ( )
A 有且仅有一个根
B 至多有一个根
C 至少有一个根
D 以上结论都不对
5. 某林场计划第一年造林亩,以后每年比前一年多造林,则第四年造林( )
A 亩
B 亩
C 亩
D 亩
二. 填空题:本大题共4小题,每小题6分,共24分。

6.用二分法求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是
7.函数f(x)=lnx-x+2的零点个数为
8. 设函数y=f(x)的图象在[a,b]上连续,若满足,则方程f(x)=0在[a,b]上有实根.
9. 若点(2,1)既在函数的图象上,又在它的反函数的图象上,则=__________________,=__________________
三. 解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。

10.(本小题13分)
某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?
11.(本小题14分)
设与分别是实系数方程和的一个根,且,求证:方程有且仅有一根介于和之间。

12.(本小题14分)
函数在区间上有最大值,求实数的值
B组题(共100分)
四. 选择题:本大题共5小题,每小题7分,共35分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

13.如果二次函数y=x2+mx+(m+3)有两个不同的零点,则m的取值范围是( )
A (-2,6)
B [-2,6]
C {-2,6}
D (-,-2)(6,+)
14.已知f(x)=x2-4x-4,当x[t,t+1]时函数f(x)的最小值是t的函数,设为g(t),则当t1时,g(t)等于 ( )
A. t2+2t-7
B. t2-2t+7
C. t2-2t-7
D. t2+2t+7
15. 若函数在区间上的图象为连续不断的一条曲线,则下列说法正确的是( )
A 若,不存在实数使得;
B 若,存在且只存在一个实数使得;
C 若,有可能存在实数使得;
D 若,有可能不存在实数使得;
16. 设,用二分法求方程内近似解的过程中得则方程的根落在区间( )
A B C D 不能确定
17. 直线与函数的`图象的交点个数为( )
A 个
B 个
C 个
D 个
五. 填空题:本大题共4小题,每小题6分,共24分。

18.函数的定义域是
19.已知函数,则函数的零点是__________
20. 年底世界人口达到亿,若人口的年平均增长率为,年底世界人口为亿,那么与的函数关系式为
21. 若函数的零点个数为,则______
六. 解答题:本大题共3小题,共41分,解答题应写出文字说明、证明过程或演算步骤。

22.(本小题13分)证明函数在上是增函数
23.(本小题14分)借助计算器,用二分法求出在区间内的近似解(精确到)
24.(本小题14分)建造一个容积为立方米,深为米的无盖长方体蓄水池,池壁的造价为每平方米元,池底的造价为每平方米元,把总造价(元)表示为底面一边长(米)的函数并求出其最小值.
C组题(共50分)
七. 选择或填空题:本大题共2题。

25.在这三个函数中,当时,使恒成立的函数的个数是 ( )
A 个
B 个
C 个
D 个
26.函数与函数在区间上增长较快的一个是
八. 解答题:本大题共3小题,解答题应写出文字说明、证明过程或演算步骤。

27.已知且,求使方程有解时的的取值范围
28.曙光公司为了打开某种新产品的销路,决定进行广告促销,在一年内,预计年销量Q(万件)与广告费x(万元)之间的函数关系式是Q=已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需投入32万元,若每件售价是年平均每件成本的150%与年平均每件所占广告费的50%之和,当年产销量相等试将年利润y(万元)表示为年广告费x万元的函数,并判断当年广告费投入100万元时,该公司是亏损还是盈利?
29.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。

(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?。

相关文档
最新文档