初二数学命题练习题及解析
沪科版数学八年级上册第13章三角形中的边角关系、命题与证明检测题及答案解析
第13章 三角形中的边角关系、命题与证明检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015·福建泉州)已知△ABC 中,AB =6,BC =4,那么边AC 的长可能是下列哪个值( )A.11B.5C.2D.12. 等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15 cmB .20 cmC .25 cmD .20 cm 或25 cm3. 命题:① 邻补角互补;② 对顶角相等;③ 同旁内角互补;④ 两点之间线段最短;⑤直线都相等.其中真命题有( )A. 1个B. 2个C. 3个D. 4个4.已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( )A.小于直角B.等于直角C.大于直角D.不能确定5.(2015·福建漳州中考)下列命题中,是假命题的是( )A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等6. 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°7. 不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对8. 如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A +∠B +∠C +∠D +∠E +∠F的度数是( )A. 180°B.360°C.540°D.720°9. 下面关于基本事实和定理的联系说法不正确的是( )A .基本事实和定理都是真命题B .基本事实就是定理,定理也是基本事实C .基本事实和定理都可以作为推理论证的依据D .基本事实的正确性不需证明,定理的正确性需证明10.(2015·山东滨州)在△ABC 中,∠A ∶∠B ∶∠C =3∶4∶5,则∠C 等于( )A.45°B.60°C.75°D.90°二、填空题(每小题3分,共24分)11.(2015·四川南充中考)如图,点D 在△ABC 边BC 的延长线上, CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的大小是_____度.第11题图12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2= 度.第12题图 第8题图13.“两条直线被第三条直线所截,同位角相等”的条件是 ,结论是 .14.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .15.设错误!未找到引用源。
数学命题及其关系的练习题及答案
数学命题及其关系的练习题及答案关于数学命题及其关系的练习题及答案1.1命题及其关系重难点:了解命题及其逆命题、否命题与逆否命题;明白四种命题之间的关系;会利用两个命题互为逆否命题的关系判别命题的真假.考纲要求:①了解命题及其逆命题、否命题与逆否命题.②理解必要条件、充分条件与充要条件的意义,会分析四种命题的互相关系.经典例题:已知命题;若是的充分非必要条件,试求实数的取值范围.当堂练习:1. 给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若,则有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是 ( )A.①② B.②③C.①③ D.③④1. “△ABC中,若∠C=90°,则∠A、∠B都是锐角”的否命题为()A.△ABC中,若∠C≠90°,则∠A、∠B都不是锐角B.△ABC中,若∠C≠90°,则∠A、∠B不都是锐角C.△ABC中,若∠C≠90°,则∠A、∠B都不一定是锐角D.以上都不对3. 给出4个命题:①若,则x=1或x=2;②若,则;③若x=y=0,则;④若,x+y是奇数,则x,y中一个是奇数,一个是偶数.那么:()A.①的逆命题为真 B.②的否命题为真C.③的逆否命题为假 D.④的逆命题为假4. 命题“若△ABC不是等腰三角形,则它的任何两个内角不相等.”的`逆否命题是()A.“若△ABC是等腰三角形,则它的任何两个内角相等.”B.“若△ABC任何两个内角不相等,则它不是等腰三角形.”C.“若△ABC有两个内角相等,则它是等腰三角形.”D.“若△ABC任何两个角相等,则它是等腰三角形.”5. 命题p:若A∩B=B,则;命题q:若,则A∩B≠B.那么命题p与命题q的关系是()A.互逆 B.互否C.互为逆否命题 D.不能确定6. 对以下四个命题的判断正确的是 ( )(1)原命题:若一个自然数的末位数字为0,则这个自然数能被5整除(2)逆命题:若一个自然数能被5整除,则这个自然数的末位数字为0(3)否命题:若一个自然数的末位数字不为0,则这个自然数不能被5整除(4)逆否命题:若一个自然数不能被5整除,则这个自然数的末位数字不为0A.(1)、(3)为真,(2)、(4)为假 B.(1)、(2)为真,(3)、(4)为假C.(1)、(4)为真,(2)、(3)为假 D.(2)、(3)为真,(1)、(4)为假7. 直线的倾斜角为钝角的一个必要非充分条件是()A.k<0 B.k<-1 C.k<1 D.k>-28. 直线,互相平行的一个充分条件是()A.,都平行于同一个平面 B.,与同一个平面所成的角相等C.平行于所在的平面 D.,都垂直于同一个平面9. 已知a1,a2,a3,a4是非零实数,则a1a4=a2a3是a1,a2,a3,a4成等比数列的()A.充分非必要条件 B.必要非充分条件C.充分且必要条件 D.既不充分又不必要条件10. 在ΔABC中,条件甲:A<B,条件乙:cosA>cosB,则甲是乙的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件11. 在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是 (把符合要求的命题序号都填上).12.命题则对复合命题的下述判断:①p或q为真;②p或q为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中判断正确的序号是(填上你认为正确的所有序号).13. 设集合A=x2+x-6=0,B=mx+1=0,则B是A的真子集的一个充分不必要的条件是_ .14. 设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的__________条件.15. 写出下列命题的逆命题、否命题、逆否命题,并指出他们的真假:(1)若xy=0,则x,y中至少有一个是0;(2)若x>0,y>0,则xy>0;16. 设集合,,则“或”是“”的条件?17. 已知x的一元二次方程(m∈Z)① mx2-4x+4=0 ② x2-4mx+4m2-4m-5=0求方程①和②都有整数解的充要条件18.设α,β是方程x2-ax+b=0的两个实根,试分析a>2且b >1是两根α、β均大于1的什么条件?参考答案:经典例题:【解析】由,得.:.由,得.:B={}.∵是的充分非必要条件,且, AB.即当堂练习:1.C;2.B;3.A;4.C;5.C;6.C;7.C;8.D;9.B; 10.C; 11. ②; 12.①④⑤⑥; 13. m=(也可为或0);14. 充分不必要.15. 【解析】(1)逆命题:若x=0,或y=0则xy=0;否命题:xy≠0,则x≠0且y≠0;逆否命题:若x≠0,且y≠0则xy≠0;(2)逆命题:若xy>0,则x>0,y>0;否命题:若x≤0,或y≤0则xy≤0;逆否命题:若xy≤0;则x≤0,或y≤016. 【解析】“或”,,因为“或”,但,故“或”是“”的必要不充分条件.17. 【解析】方程①有实根的充要条件是解得m1.方程②有实根的充要条件是,解得故m=-1或m=0或m=1.当m=-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m=1.反之,m=1①②都有整数解.∴①②都有整数解的充要条件是m=1.18. 【解析】根据韦达定理得a=α+β,b=αβ.判定的条件是p:结论是q:(注意p中a、b满足的前提是Δ=a2-4b≥0)(1)由,得a=α+β>2,b=αβ>1,∴qp(2)为证明pq,可以举出反例:取α=4,β=,它满足a=α+β=4+>2,b=αβ=4×=2>1,但q不成立.综上讨论可知a>2,b>1是α>1,β>1的必要但不充分条件.【关于数学命题及其关系的练习题及答案】。
初二数学定义与命题试题答案及解析
初二数学定义与命题试题答案及解析1.有下列命题:①两直线平行,同旁内角相等;②无限小数是无理数;③的平方根是±;④点P(1,﹣2)在第四象限,其中是真命题的有.(填序号)【答案】③④【解析】利用平行线的性质、无理数的概念、平方根的意义及平面直角坐标系的知识分别进行判断后即可判定命题的真假.解:①两直线平行,同旁内角互补,故原命题错误,为假命题;②无限不循环小数是无理数,故原命题错误,为假命题;③的平方根是±,正确,为真命题;④点P(1,﹣2)在第四象限,正确,为真命题,故答案为:③④.点评:本题考查了平行线的性质、无理数的概念、平方根的意义及平面直角坐标系的知识,属于基础题,难度较小.2.“等腰梯形同一底上的两个角相等”这个命题的逆命题是,它是命题(填“真”或“假”).【答案】同一底上的两个角相等的梯形是等腰梯形,真【解析】将原命题的假设与结论反下就可得到其逆命题.解:“等腰梯形在同一底上的两个角相等”的条件是:有一梯形为等腰梯形,结论是:同一底上的两个角相等;则它的逆命题是:同一底上的两个角相等的梯形是等腰梯形,是真命题,故答案为:同一底上的两个角相等的梯形是等腰梯形,真.点评:考查了命题与定理,正确的写出一个命题的逆命题的关键是搞清楚原命题的条件和结论.3.命题“任意两个直角都相等”的题设是,结论.【答案】两个角是直角,相等【解析】任何一个命题都是由条件和结论组成.解:“任意两个直角都相等”的题设是:两个角是直角,结论是:相等.故答案为:两个角是直角,相等.点评:本题考查了命题的条件和结论的叙述.4.“有两个角相等的三角形是等腰三角形”的逆命题是.【答案】等腰三角形的两个底角相等【解析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.解:因为原命题的题设是:“有两个角相等”,结论是“这个三角形是等腰三角形”,所以命题“有两个角相等的三角形是等腰三角形”的逆命题是“等腰三角形的两个底角相等”.故答案为:等腰三角形的两个底角相等.点评:本题考查了命题与定理,根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.5.“等腰梯形同一底上的两个角相等”改为如果,那么.【答案】同一底边上的两个角相等,这个梯形是等腰梯形【解析】任何一个命题都可以写成“如果…那么…”的形式.如果是条件,那么是结论.解:“等腰梯形同一底上的两个角相等”改为如果同一底边上的两个角相等,那么这个梯形是等腰梯形,故答案为:同一底边上的两个角相等,这个梯形是等腰梯形.点评:本题考查了命题的叙述形式.属于基础题,比较简单.6.(1)命题“两锐角之和一定是钝角”的题设:,结论:;(2)命题“内错角相等,两直线平行”的题设:,结论:.【答案】(1)命题“两锐角之和一定是钝角”的题设:两个角是锐角,结论:两个角的和为钝角;(2)命题“内错角相等,两直线平行”的题设:内错角相等,结论:两直线平行.两个角是锐角,两个角的和为钝角;内错角相等,两直线平行.【解析】把命题改写成“如果…,那么…”的形式,然后根据如果后面的是题设,那么后面的是结论写出即可.解:(1)命题“两锐角之和一定是钝角”的题设:两个角是锐角,结论:两个角的和为钝角;(2)命题“内错角相等,两直线平行”的题设:内错角相等,结论:两直线平行.两个角是锐角,两个角的和为钝角;内错角相等,两直线平行.点评:本题考查了命题与定理,把命题改写成“如果…,那么…”的形式是解题的关键,难度较小.7.试写出命题“两条直线相交,只有一个交点”的题设部分和结论部分.判断它是真命题还是假命题,并简要说明理由.【答案】见解析【解析】命题分为题设和结论两部分,题设是如果后面的部分,结论是那么后面的部分.解:这个命题的条件是两条直线相交,结论是它们只有一个交点,是真命题,因为平面内两条直线只有两种位置关系:相交和平行,没有交点就平行,有一个交点就是相交.点评:考查了命题与定理的知识,一般命题可写成“如果…那么…”的形式,其中如果后面的部分是题设,那么后面的部分是结论.8.用几何符号语言表示“互为邻补角的平分线互相垂直”的题设与结论,并画出图形.【答案】见解析【解析】首先根据题意画出图形,然后将命题的题设当做条件,将结论当做问题的结论,用几何语言描述出来即可.解:已知:AB,CD相交于O,OE,OF分别平分∠AOC,∠AOD,求证:OE⊥OF.点评:此题主要考查了邻补角与垂线,题目比较基础,但有很多同学不能根据命题画出图形,写出已知与求证,从而导致错误.9.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.(1)等角的余角相等;(2)平行线的同旁内角的平分线互相垂直;(3)和为180°的两个角叫做邻补角.【答案】见解析【解析】先根据有关性质与定理,对命题的真假进行判断,如果是假命题,再举出反例即可.解:(1)等角的余角相等,正确,是真命题;(2)平行线的同旁内角的平分线互相垂直,正确,是真命题;(3)和为180°的两个角叫做邻补角,错误,是假命题,如两个不同书本上的两个和为180°的角.点评:此题考查了命题与定理,关键是掌握有关性质与定理,对命题的真假进行判断,正确的命题叫真命题,错误的命题叫做假命题.10.下列命题中,不正确的是()A.一组邻边相等的矩形是正方形B.等腰梯形的对角线相等C.直角三角形斜边上的高等于斜边的一半D.圆既是轴对称图形,又是中心对称图形【答案】C【解析】对每个选项逐一判断后即可得到答案.解:A、邻边相等的矩形是正方形,正确,不符合题意;B、等腰梯形的对角线相等,正确,不符合题意;C、直角三角形斜边上的中线等于斜边的一办,错误,符合题意;D、圆既是轴对称图形,又是中心对称图形,正确,符合题意.故选C.点评:本题考查了命题与定理,利用基本概念对每个命题进行分析,作出正确的判断.11.观察下列命题:(1)如果a<0,b>0,那么a+b<0;(2)同角的补角相等;(3)同位角相等;(4)如果a2>b2,那么a>b;(5)有公共顶点且相等的两个角是对等角.其中真命题的个数是()A.1B.2C.3D.4【答案】A【解析】利用学过的定义、性质及定理进行判断即可求解.解:(1)当a=﹣1,b=3时命题错误;(2)同角的补角相等,正确;(3)只有两直线平行,同位角才相等;(4)当a=﹣3,b=2时命题错误;(5)有公共顶点且相等的两个角是对顶角,错误故选A.点评:本题考查了命题与定理,解题的关键是熟练掌握有关的定理及性质.12.下列四个命题是真命题的是()A.同位角相等B.如果两个角的和是180度,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直【答案】C【解析】利用学习过的有关的性质、定义及定理进行判断后即可得到正确的结论.解:A、只有两直线平行,同位角才相等,故选项错误;B、两个角的和是180度,只能是互补,不一定是邻补角,故选项错误;C、在同一平面内,平行于同一直线的两条直线互相平行,故选项正确;D、在同一平面内,垂直于同一条直线的两条直线互相平行,故选项错误;故选C.点评:本题考查了命题与定理的知识,解题的关键是熟悉有关的性质、定理及定义.13.下列定理没有逆定理的是()A.线段垂直平分线上的点到线段两端点的距离相等B.相似三角形的三边对应成比例C.同角的余角相等D.直角三角形斜边上的中线等于斜边的一半【答案】C【解析】没有逆定理就是逆命题不正确的选项.解:A、逆命题是到线段两端点距离相等的点在线段的垂直平分线上;B、逆命题是三边对应成比例的两三角形相似;C、没有逆命题;D、一边上的中线等于这边的一半的三角形是直角三角形.点评:本题考查了命题与定理的知识,解题的关键是了解这些命题的逆命题,然后判断其真假.14.下列命题中逆命题是假命题的是()A.如果两个三角形的三条边都对应相等,那么这两个三角形全等B.如果a2=9,那么a=3C.对顶角相等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;B、逆命题为:如果a=3,那么a2=9.是真命题;C、逆命题为:相等的角是对顶角.是假命题;D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.故选C.点评:此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.15.在命题:“三角形的一个外角大于三角形的每一个内角”、“底边及一个内角相等的两个等腰三角形全等”、“两条平行线被第三条直线所截,一对同旁内角的平分线互相垂直中,真命题的个数有()A.0B.1C.2D.3【答案】B【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而得出答案.解:三角形的一个外角大于任何与之不相邻的一个内角,故原命题错误,为假命题;底边及一个底角相等的两个等腰三角形全等,故原命题错误,为假命题;两条平行线被第三条直线所截,一对同旁内角的平分线互相垂直,正确,为真命题,故选B.点评:本题考查了命题与定理的知识,能够熟练掌握有关的命题及定理是解答本题的关键.16.下列各命题中,属于假命题的是()A.若m﹣n=0,则m=n=0B.若m﹣n>0,则m>nC.若m﹣n<0,则m<nD.若m﹣n≠0,则m≠n【答案】A【解析】利用不等式的性质逐项进行判断后即可得到答案,也可举出反例.解:A、m﹣n=0,则m=n,但不一定都为0,故错误,是假命题;B、C、D移项即可得到答案,故正确,是真命题.故选A.点评:本题考查了命题与定理的知识,判断一个命题的真假时可以举出反例.17.有下列四个命题:①等弧所对的圆周角相等;②相等的圆周角所对的弧相等;③平分弦的直径垂直于弦;④三点确定一个圆.其中正确的有()A.1个B.2个C.3个D.4个【解析】根据圆周角,圆周角定理,垂径定理以及确定圆的条件即可求解.解:①同圆或等圆中,等弧所对的圆周角相等,故正确;②在同圆或等圆中,相等的圆周角所对的弧相等,故错误;③平分弦(不是直径)的直径垂直于弦,故错误;④不在同一直线上的三点确定一个圆,故错;故选A.点评:本题主要考查了圆周角的性质定理,以及确定圆的条件等圆的基本知识.解题的关键是要注意命题的细节,逐一做出准确的判断.18.下列句子中不是命题的是()A.负数都小于零B.所有的素数都是奇数C.过直线l外一点作l的垂线D.直角都相等【答案】C【解析】分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解:C不是可以判断真假的陈述句,不是命题;A、B、D均是用语言表达的、可以判断真假的陈述句,都是命题.故选C.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.19.(2013•河西区一模)下列命题中真命题是()A.任意两个等边三角形必相似B.对角线相等的四边形是矩形C.以40°角为内角的两个等腰三角形必相似D.一组对边平行,另一组对边相等的四边形是平行四边形【答案】A【解析】根据相似三角形的判定、矩形和平行四边形的判定即可作出判断.解:A,正确;B,错误,等腰梯形的对角线相等,但不是矩形;C,错误,没有说明这个40度角是顶角还是底角;D,错误,等腰梯形也满足此条件,但不是平行四边形.故选A.点评:本题考查了特殊四边形的判定和全等三角形的判定和性质.20.下列命题是假命题的是()A.单项式﹣的系数是﹣4πB.x<y,则x+2008<y+2008C.平移不改变图形的形状和大小D.若|x+2|+(y﹣5)2=0则x=﹣2,y=5【答案】A【解析】分析是否为假命题,可以举出反例,也可以运用相关基础知识分析找出真命题,从而利用排除法得出答案.解:A、单项式﹣的系数是﹣,是假命题,故正确;B、由不等式的性质可知是真命题,故错误;C、由平移的性质可知是真命题,故错误;D、由非负数的性质可知是真命题,故错误.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.。
初二数学命题的证明同步练习题及答案
初二数学命题的证明同步练习题及答案初二数学命题的证明同步练习题及答案证明同步练习题及答案如下24.2命题与证明第1题. 已知四个命题:(1)如果一个数的相反数等于它本身,则这个数是0;(2)一个数的倒数等于它本身,则这个数是1;(3)一个数的算术平方根等于它本身,则这个数是1或0;(4)如果一个数的绝对值等于它本身,则这个数是正数.其中真命题有( )A.1个B.2个C.3个D.4个答案:B第2题. 判断下列命题的真假.①大于锐角的角是钝角;②如果一个实数有算术平方根,那么它的算术平方根是整数;③如果,那么点是线段的中点.答案:①②③假命题.第3题. 下列命题称为公理的是( )A.垂线段最短B.同角的补角相等C.邻角的平分线互相垂直D.内错角相等两直线平行答案:A答案:B第9题. 举反例说明一个角的余角大于这个角是假命题,错误的是( )A.设这个角是,它的余角是,B.设这个角是,它的余角是,C.设这个角是,它的余角是,D.设这个角是,它的余角是,答案:C第10题. 下列语句中,不是命题的句子是( )A.过一点作已知直线的垂线B.两点确定一条直线C.钝角大于D.凡平角都相等答案:A第11题. 命题有两条边和一个角对应相等的两个三角形全等的题设是,结论是,它是命题.答案:如果两个三角形中有两条边和一个角对应相等;这两个三角形全等;假.第12题. 把命题不相等的角不是对顶角改为如果那么的形式为 .答案:如果两个角不相等,那么这两个角不是对顶角.第13题. 如图,, .求证: .答案:因为, .所以 .即 .又,所以 .第14题. 已知:如图,,,,,求证: .答案:因为,,所以,所以,因为,所以,所以,因为,所以 .第15题. 如图,,且,那么图中与相等的角(不包括 )的个数是( )A.2B.4C.5D.6答案:C第16题. 如图,在中,,在上取一点,使,是的中点,是的中点,延长交的延长线于,求证: .答案:连结,取中点,连结,,为中点,为中点,为中点,, . ,,上文即是证明同步练习题及答案。
(易错题精选)初中数学命题与证明的难题汇编及解析
(易错题精选)初中数学命题与证明的难题汇编及解析一、选择题1.下列命题属于真命题的是()A.同旁内角相等,两直线平行B.相等的角是对顶角C.平行于同一条直线的两条直线平行D.同位角相等【答案】C【解析】【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】A、同旁内角互补,两直线平行,是假命题;B、相等的角不一定是对顶角,是假命题;C、平行于同一条直线的两条直线平行,是真命题;D、两直线平行,同位角相等,是假命题;故选C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.2.下列语句正确的个数是()①两个五次单项式的和是五次多项式②两点之间,线段最短③两点之间的距离是连接两点的线段④延长射线AB,交直线CD于点P⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质对各项进行分析即可.【详解】①两个五次单项式的和可能为零、五次单项式或五次多项式,错误;②两点之间,线段最短,正确;③两点之间的距离是连接两点的线段的长度,错误;④延长射线AB,交直线CD于点P,正确;⑤若小明家在小丽家的南偏东35︒方向,则小丽家在小明家的北偏西35︒方向,正确; 故语句正确的个数有3个故答案为:C .【点睛】本题考查语句是否正确的问题,掌握单项式和多项式的性质、线段的定义以及性质、射线的定义、方位角的性质是解题的关键.3.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B ≥90°,(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.4.下列各命题的逆命题是真命题的是A .对顶角相等B .全等三角形的对应角相等C .相等的角是同位角D .等边三角形的三个内角都相等【答案】D【解析】【分析】分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【详解】A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.故选D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.5.下列说法中,正确..的是( )A.图形的平移是指把图形沿水平方向移动.B.平移前后图形的形状和大小都没有发生改变.C.“相等的角是对顶角”是一个真命题D.“直角都相等”是一个假命题【答案】B【解析】图形的平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移,平移前后图形的形状和大小都没有发生改变.而相等的角不一定是对顶角,C是一个假命题,直角都相等是真命题.故选B6.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.A.5个B.4个C.3个D.2个【答案】D【解析】【分析】利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.【详解】解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题.真命题有2个,故选D.【点睛】本题主要考查了命题与定理的知识,解决本题的关键是要熟练掌握点到直线的距离的定义、平行线的性质、线段公理等知识.7.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角【答案】B【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8.下列命题中,是真命题的是()A.将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12xB.若一个数的平方根等于其本身,则这个数是0和1C.对函数y=2x,其函数值y随自变量x的增大而增大D.直线y=3x+1与直线y=﹣3x+2一定互相平行【答案】A【解析】【分析】利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.【详解】解:A、将函数y=12x+1向右平移2个单位后所得函数的解析式为y=12x,正确,符合题意;B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;C、对函数y=2x,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命题,不符合题意;D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,故选:A.【点睛】本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.9.下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.一组数据的众数可以不唯一C.一组数据的标准差就是这组数据的方差的平方根D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c2【答案】B【解析】【分析】正确的命题是真命题,根据定义判断即可.【详解】解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;B、一组数据的众数可以不唯一,故正确;C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;D、已知a、b、c是Rt△ABC的三条边,当∠C=90°时,则a2+b2=c2,故此选项错误;故选:B.【点睛】此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.10.下列说法正确的是()A.两锐角分别相等的两个直角三角形全等B.两条直角边分别相等的两直角三角形全等C.一个命题是真命题,它的逆命题一定也是真命题D.经过旋转,对应线段平行且相等【答案】B【解析】【分析】A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;【详解】A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;D、经过旋转,对应线段相等,故D选项错误;故选:B.【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.下列命题是假命题的是()A.三角形的外心到三角形的三个顶点的距离相等B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限D.若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£【答案】B【解析】【分析】利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.【详解】A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;D. 若关于x的一元一次不等式组213x mx-≤⎧⎨+>⎩无解,则m的取值范围是1m£,正确,是真命题;故答案为:B 【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.12.39.下列命题中,是假命题的是()A.同旁内角互补B.对顶角相等C.直角的补角仍然是直角D.两点之间,线段最短【答案】A【解析】同旁内角不一定互补,同旁内角互补的条件是两直线平行,故选A.13.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.14.已知下列命题:①若a>b,则ac>bc;②若a=1;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a >b ,则ac >bc 是假命题,逆命题是假命题;②若a=1是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A .点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.15.下列选项中,能说明命题“若22a b >,则a b >”是假命题的反例是( )A .1a =-,2b =B .2a =,1b =-C .1a =,2b =-D .2a =-,1b =【答案】D【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题,作答本题直接利用选项中数据代入求出答案.【详解】A. 当1a =-,2b =时,2a <2b ,a <b ,则此选项不是假命题的反例;B. 当2a =,1b =-时,2a >2b ,a >b ,则此选项不是假命题的反例;C. 当1a =,2b =-时,2a <2b ,a >b ,则此选项不是假命题的反例;D. 当2a =-,1b =时,2a >2b ,a <b ,则此选项是假命题的反例,故选:D .【点睛】本题考查真命题与假命题.要说明数学命题的错误,只需举出一个反例即可,反例就是符合已知条件但不满足结论的例子.16.下列命题是真命题的是( )A .同旁内角相等,两直线平行B .对角线互相平分的四边形是平行四边形C .相等的两个角是对顶角D .圆内接四边形对角相等【答案】B【解析】【分析】由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由圆内接四边形的性质得出D是假命题;综上,即可得出答案.【详解】A.同旁内角相等,两直线平行;假命题;B.对角线互相平分的四边形是平行四边形;真命题;C.相等的两个角是对顶角;假命题;D.圆内接四边形对角相等;假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;熟练掌握相关性质和定理、定义是解题关键.17.下列命题的逆命题不正确...的是()A.相等的角是对顶角B.两直线平行,同旁内角互补C.矩形的对角线相等D.平行四边形的对角线互相平分【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:对顶角相等.正确;B、逆命题是:同旁内角互补,两直线平行,正确;C、逆命题是:对角线相等的四边形是矩形,错误;D、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C.【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.18.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3【答案】C【解析】【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.19.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.20.下列说法正确的是()A.若a>b,则a2>b2B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形C.两直线平行,同旁内角相等D.三角形的外角和为360°【答案】D【解析】【分析】利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.【详解】A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误;B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本选项错误;C、两直线平行,同旁内角互补,故本选项错误;D、三角形的外角和为360°,故本选项正确;故选:D【点睛】本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.。
初二数学试题大全
初二数学试题答案及解析1.已知下列命题:①若a﹥b则a+b﹥0;②若a≠b则a2≠b2;③角的平分线上的点到角两边的距离相等;④平行四边形的对角线互相平分。
其中原命题和逆命题都正确的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】略2.分式方程的解是 .【答案】【解析】略3.的算术平方根是【答案】 2【解析】略4.若x、y为实数,且满足,则的值是________.【答案】1【解析】∵,∴x-3=0,y+3=0,∴x=3,y=-3,所以.故填1.5.我市开展了“寻找雷锋足迹”的活动,某中学为了了解八年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了八年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,估计该校八年级800名学生在“学雷锋活动月”中做好事不少于5次的人数有().A.384B.256C.160D.416【答案】D.【解析】先求出50人中大于等于5次的人数,即16+10=26人,然后求出26人占50人的百分比,26÷50×100%=52%,再求出800名学生在“学雷锋活动月”中做好事不少于5次的人数:800×52%=416人,故选D.【考点】统计图的分析与应用.6.(本题6分)如图,点E、C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F,那么△ABC与△DEF全等吗?为什么?【答案】详见解析.【解析】根据平行线的性质可得∠B=∠DEF,再由BE=CF可得BC=EF,又因∠ACB=∠F,根据ASA即可判定△ABC≌△DEF.试题解析:全等,理由如下:∵AB∥DE,∴∠B=∠DEF.∵BE=CF,∴BC=EF.∵∠ACB=∠F,∴△ABC≌△DEF.【考点】全等三角形的判定.7.已知、是两个连续的整数,且,则等于()A.7B.8C.9D.10【答案】C【解析】因为,而、是两个连续的整数,且,所以a=4,b=5,所以=9,故选:C.【考点】二次根式的估算.8.已知;那么等于()A.B.C.D.【答案】D【解析】同底数幂相除,底数不变,指数相减,则.【考点】同底数幂的除法9.(2011•东莞)已知:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【答案】见解析【解析】根据两直线平行内错角相等即可得出∠A=∠C,再根据全等三角形的判定即可判断出△ADF≌△CBE,得出AF=CE,进而得出AE=CF.证明:∵AD∥CB,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),∴AF=CE,∴AF+EF=CE+EF,即AE=CF.【考点】全等三角形的判定与性质.10.(2015秋•龙口市期末)已知关于x的方程+2=解为负数,则m的取值范围为.【答案】m>﹣4且m≠﹣2.【解析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据解为负数求出m的范围即可.解:去分母得:m+2(x+2)=x解得:x=﹣m﹣4,∵关于x的方程+2=解为负数,∴﹣m﹣4<0,∴m>﹣4,∵x+2≠0,∴x≠﹣2,∴m的取值范围为:m>﹣4且m≠﹣2.故答案为:m>﹣4且m≠﹣2.【考点】分式方程的解.11.(2015秋•新泰市期末)如图,坐标平面上,△ABC≌△DEF,其中A、B、C的对应顶点分别为D,E,F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点的纵坐标都是﹣3,D、E两点在y轴上,则点F到y轴的距离为()A.2 B.3 C.4 D.5【答案】C【解析】如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.由AB=BC,△ABC≌△DEF,就可以得出△AKC≌△CHA≌△DPF,就可以得出结论.解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P,∴∠DPF=∠AKC=∠CHA=90°,∵AB=BC,∴∠BAC=∠BCA,在△AKC和△CHA中,,∴△AKC≌△CHA(AAS),∴KC=HA,∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4,∴KC=4,∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF,在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.【考点】全等三角形的性质;坐标与图形性质.12.(2015秋•郴州校级期中)已知等腰三角形的两边长分别为5cm和8cm,且它的周长小于20cm,则第三边长为 cm.【答案】5cm.【解析】根据5cm和8cm为腰长分类讨论即可.解:当5cm边长为腰时,三角形的三边为5cm、5cm、8cm.5+5+8=18<20,合题意.当8cm为腰时,三角形的三边为5cm、8cm、8cm.8+8+5=21>20,不符合题意.∴三角形的第三边长为5cm.故答案为:5cm.【考点】等腰三角形的性质;三角形三边关系.13.当x 时,分式值为0.【答案】=﹣1【解析】根据分式的值为零的条件可以求出x的值.解:根据题意得:x2﹣1=0,且x﹣1≠0解得:x=﹣1故答案是:=﹣1【考点】分式的值为零的条件.14.观察下列各式:①;②=3;③,…请用含n(n≥1)的式子写出你猜想的规律:.【答案】=(n+1).【解析】从给出的三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,依此可以找出规律.解:从①②③三个式子中,我们可以发现计算出的等号后面的系数为等号前面的根号里的整数加分数的分子,根号里的还是原来的分数,即=(n+1).【考点】二次根式的乘除法.15.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE;(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.【答案】(1)证明见解析;(2)70°.【解析】(1)根据中点的定义可得:AC=BC,根据角平分线的定义可证∠ACD=∠BCE,利用SAS可证△ACD≌△BCE;(2)根据角平分线的定义可以求出∠BCE=60°,根据全等三角形对应角相等可以求出∠E=∠D=50°,根据三角形内角和定理可以求出∠B的度数.试题解析:(1)∵C是线段AB的中点,∴AC=BC,∵CD平分∠ACE,∴∠ACD=∠DCE,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),(2)∵∠ACD=∠BCE=∠DCE,且∠ACD+∠BCE+∠DCE=180°,∴∠BCE=60°,∵△ACD≌△BCE,∴∠E=∠D=50°,∴∠B=180°-(∠E+∠BCE)= 180°-(50°+60°)=70°【考点】1.全等三角形的判定与性质;2.角平分线的性质;3.三角形内角和定理.16.如图,在△ABC中,∠C=90°,AD平分∠BAC.(1)当∠B=40°时,求∠ADC的度数;(2)若AB=10cm,CD=4cm,求△ABD的面积.【答案】(1)65°;(2)20cm2.【解析】解:(1)∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD平分∠BAC,∴,∴∠ADC=∠B+∠BAD=65°;(2)过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S AB•DE=×10×4=20cm2.17.已知菱形的两条对角线的长分别是4cm和8cm,则它的边长为 cm.【答案】2【解析】根据菱形的性质及勾股定理即可求得其边长的值.解:菱形的两条对角线分别是4cm,8cm,得到两条对角线相交所构成的直角三角形的两直角边是×4=2和×8=4,那么根据勾股定理得到它的斜边即菱形的边长=2cm.故答案为218.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是个;第n个图形中三角形的个数是个.【答案】17;4n﹣3【解析】解:观察图形发现规律:后一个图形比前一个图形多4个三角形,∵第一个图形中只有一个三角形,∴第n个图形中有4(n﹣1)+1=4n﹣3个三角形.令n=5,则4×5﹣3=17(个).故答案为:17;4n﹣3.【点评】本题考查了图形的变化类,解题的关键是发现“后一个图形比前一个图形多4个三角形”这一规律.本题属于基础题,难度不大,解决该题型题目时,根据图形的变化找出变化规律是关键.19.(2012•苏州)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4 B.6 C.8 D.10【答案】C【解析】解:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故选C.【点评】此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.20.(1)如图①,在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF分别交AD、BC于点E、F,求证:OE=OF.(2)在图①中,过点O作直线GH分别交AB、CD于点G、H,且满足GH⊥EF,连结EG、GF、FH、HE.如图②,试判断四边形EGFH的形状,并说明理由;(3)在(2)的条件下,若平行四边形ABCD变为矩形时,四边形EGFH是;若平行四边形ABCD变为菱形时,四边形EGFH是;若平行四边形ABCD变为正方形时,四边形EGFH是.【答案】(1)见解析(2)见解析(3)菱形;菱形;正方形【解析】(1)由于平行四边形对角线的交点是它的对称中心,即可得出OE=OF、OG=OH;根据对角线互相平分的四边形是平行四边形即可判断出EGFH的性质;(2)当EF⊥GH时,平行四边形EGFH的对角线互相垂直平分,故四边形EGFH是菱形;(3)若平行四边形ABCD变为矩形,即AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2);若平行四边形ABCD变为菱形,即AC⊥BD时,对四边形EGFH的形状不会产生影响,故结论同(2);当四边形ABCD是正方形,则对角线相等且互相垂直平分;可通过证△BOG≌△COF,得OG=OF,从而证得菱形的对角线相等,根据对角线相等的菱形是正方形即可判断出EGFH的形状.(1)证明:∵四边形ABCD是平行四边形,∴AO=CO,AD∥BC,∴∠DAC=∠BCA,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴EO=FO;(2)解:四边形EGFH是菱形;理由:如图②:由(1)可知,OE=OF,同理可得:OG=OH,∴四边形EGFH是平行四边形,又∵EF⊥GH,∴四边形EGFH是菱形;(3)解:若平行四边形ABCD变为矩形时,四边形EGFH是菱形;理由:由(2)知四边形EGFH是菱形,当AC=BD时,对四边形EGFH的形状不会产生影响;故答案为:菱形;若平行四边形ABCD变为菱形时,四边形EGFH是菱形;理由:由(2)知四边形EGFH是菱形,当AC⊥BD时,对四边形EGFH的形状不会产生影响;故答案为:菱形;若平行四边形ABCD变为正方形时,四边形EGFH是四边形EGFH是正方形;理由:∵四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∠BOG+∠BOF=∠COF+∠BOF=90°∴∠BOG=∠COF;在△BOG和△COF中,∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;由(3)知四边形EGFH是菱形,又EF=GH,∴四边形EGFH是正方形.故答案为:正方形.【点评】此题主要考查了四边形综合、平行四边形、菱形、矩形、正方形的判定和性质以及全等三角形的判定和性质;熟练掌握各特殊四边形的联系和区别是解答此类题目的关键.21.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A点B.B点C.C点D.D点【答案】B【解析】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【点睛】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.22.直线y=kx+b过点(2,2)且与直线y=﹣3x相交于点(1,a),则两直线与x轴所围成的面积为()A.2B.2.4C.3D.4.8【答案】B【解析】把点(1,a)代入直线y=-3x求出a=-3,且与x轴的交点为原点,再利用待定系数法求出直线k=5、b=-8,从而得到直线的解析式y=5x-8,然后求出与x轴的交点(,0),然后利用三角形的面积公式列式进行计算即可得.故选:B23.若,则____________.【答案】2.5【解析】由 =0可得x-y=0,即x=y,所以= .24.函数的图象上有两点、且,下列结论正确的是()A.B.C.D.与之间的大小关系不能确定【答案】D【解析】试题解析:∵k=-1<0 ∴函数值y随x的增大而增大∴当x2>x1>0时,或<0时,当<0,x1>0时,因此,与之间的大小关系不能确定故选D.25.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,最短边cm,则最长边AB的长是()A.5 cm B.6 cm C.cm D.8 cm【答案】D【解析】利用三角形的内角和和角的比求出三角的度数,再由最小边BC=4cm,即可求出最长边AB的长.设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°,解得x=30°,即∠A=30°,∠C=3×30°=90°,所以此三角形为直角三角形,故AB=2BC=2×4=8cm.故选D.“点睛”本题很简单,考查的是直角三角形的性质,即在直角三角形中30°的角所对的边等于斜边的一半.26.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知乙公司比甲公司人均多捐40元,且甲公司的人数比乙公司的人数多20%.问甲、乙两公司各有多少人?【答案】甲公司有300人,乙公司有250.【解析】利用等量关系:甲公司的人数=乙公司的人数×(1+20%).根据这个等量关系可得出方程求解.试题解析:设乙公司有x人,则甲公司有(1+20%)x人.根据题意,得解得经检验,是所列方程的解.(1+20%)x = 300答:甲公司有300人,乙公司有250人.27.在证明命题“一个三角形中至少有一个内角不大于60°”成立时,我们利用反证法,先假设______,则可推出三个内角之和大于180°,这与三角形内角和定理相矛盾.【答案】一个三角形中每一个内角都大于60°【解析】用反证法证明命题:“三角形的内角中至少有一个内角不大于60°”时,应假设命题的否定成立,而命题“三角形的内角中至少有一个内角不大于60°”的否定是:三角形的三个内角都大于60°;故答案是:三角形的三个内角都大于60°。
沪科版八年级数学上册《第13章三角形中的边角关系,命题与证明 》单元试题及解析
沪科版八年级数学上册《第13章三角形中的边角关系,命题与证明》单元试题及解析一、选择题(本大题共15小题,共45分)1.如图,△ABC的角平分线BD与中线CE相交于点O.有下列两个结论:①BO是△CBE的角平分线;②CO是△CBD的中线.其中()A. 只有①正确B. 只有②正确C. ①和②都正确D. ①和②都不正确2.下列说法正确的是()①三角形的角平分线是射线;②三角形的三条角平分线都在三角形内部,且交于同一点;③三角形的三条高都在三角形内部;④三角形的一条中线把该三角形分成面积相等的两部分.A. ①②B. ②③C. ③④D. ②④3.具备下列条件的△ABC中,不是直角三角形的是()A. ∠A+∠B=∠CB. ∠A−∠B=∠CC. ∠A:∠B:∠C=1:2:3D. ∠A=∠B=3∠C4.已知三角形的两边长是2cm,3cm,则该三角形的周长l的取值范围是()A. 1<l<5B. 1<l<6C. 5<l<9D. 6<l<105.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A. 1个B. 2个C. 3个D. 4个6.下列说法错误的是()A. 锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高线在三角形外部C. 直角三角形只有一条高线D. 任意三角形都有三条高线、三条中线、三条角平分线7.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A. 1个B. 2个C. 3个D. 4个8.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()对.A. 4B. 5C. 6D. 79.下列说法正确的是()A. 三角形的内角中最多有一个锐角B. 三角形的内角中最多有两个锐角C. 三角形的内角中最多有一个直角D. 三角形的内角都大于60°10.已知△ABC中,∠A=2(∠B+∠C),则∠A的度数为()A. 100°B. 120°C. 140°D. 160°11.已知三角形两个内角的差等于第三个内角,则它是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等边三角形12.等腰三角形的底边BC=8cm,且|AC−BC|=2cm,则腰长AC的长为()A. 10cm或6cmB. 10cmC. 6cmD. 8cm或6cm13.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°−∠B,④∠A=∠B=12∠C 中,能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个14.已知三角形的三边分别为2,a,4,那么a的取值范围是()A. 1<a<5B. 2<a<6C. 3<a<7D. 4<a<615.在△ABC中,∠A=12∠B=13∠C,则此三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形二、填空题(本大题共8小题,共24分)16.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE//AB,交AC于E,则∠ADE的大小是______ .17.在△ABC中,AC=5cm,AD是△ABC中线,把△ABC周长分为两部分,若其差为3cm,则BA=______ .18.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是.19.如图,在△ABC中,∠B=42°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.20.已知a,b,c是三角形的三边长,化简:|a−b+c|−|a−b−c|=______.21.等腰三角形的周长为20cm,一边长为6cm,则底边长为____cm.22.如图,∠A+∠B+∠C+∠D+∠E+∠F=______ 度.23.如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=______度.三、解答题(本大题共4小题,共31分)24.如图所示,求∠1的大小.25.已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°.(1)求∠DAE的度数;(2)试写出∠DAE与∠C−∠B有何关系?(不必证明)26.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.27.将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB=______ 度,∠DBC+∠DCB=______度,∠ABD+∠ACD=______ 度;(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD、∠ACD、∠A三者之间存在的数量关系.答案和解析1.【答案】A【解析】解:∵△ABC的角平分线BD与中线CE相交于点O,∴∠ABD=∠CBD,AE=BE,∴∠EBO=∠CBO,∴BO是△CBE的角平分线,又∵BO和DO不一定相等,∴CO不一定是△CBD的中线故选A.根据角平分线的定义和中线的定义,可直接得出结论.本题考查了三角形的角平分线、中线和高线,是基础知识要熟练掌握.2.【答案】D【解析】解:①三角形的角平分线是线段,说法错误;②三角形的三条角平分线都在三角形内部,且交于同一点,说法正确;③锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;④三角形的一条中线把该三角形分成面积相等的两部分,说法正确.故选D.根据三角形的角平分线的定义与性质判断①与②;根据三角形的高的定义及性质判断③;根据三角形的中线的定义及性质判断④即可.本题考查了三角形的角平分线、中线和高的定义及性质,是基础题.从三角形的一个顶点向它的对边作垂线,垂足与顶点之间的线段叫做三角形的高;三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线;三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3.【答案】D【解析】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形,D选项中∠A=∠B=3∠C,即7∠C=180°,三个角没有90°角,故不是直角三角形,故选:D.由直角三角形内角和为180°求得三角形的每一个角,再判断形状.注意直角三角形中有一个内角为90°.4.【答案】D【解析】解:第三边的取值范围是大于1而小于5.又∵另外两边之和是5,∴周长的取值范围是大于6而小于10.故选D.根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.考查了三角形的三边关系,解题的关键是了解三角形的三边关系:两边之和大于第三边,两边之差小于第三边.5.【答案】C【解析】解:首先可以组合为13,10,5;13,10,7;13,5,7;10,5,7.再根据三角形的三边关系,发现其中的13,5,7不符合,则可以画出的三角形有3个.故选:C.从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.考查了三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边.这里一定要首先把所有的情况组合后,再看是否符合三角形的三边关系.6.【答案】C【解析】解:A、解:A、锐角三角形的三条高线、三条中线、三条角平分线分别交于一点,故本选项说法正确;B、钝角三角形有两条高线在三角形的外部,故本选项说法正确;C、直角三角形也有三条高线,故本选项说法错误;D、任意三角形都有三条高线、中线、角平分线,故本选项说法正确;故选:C.根据三角形的高线、中线、角平分线的性质分析各个选项.本题考查了三角形的角平分线、中线和高线,是基础题,熟记概念是解题的关键.7.【答案】C【解析】解:三条线段首尾顺次相接组成的图形叫三角形,故①错误;三角形的角平分线是线段,故③错误;三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,故④错误;所以正确的命题是②、⑤、⑥,共3个.故选:C.要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.此题综合考查三角形的定义以及三角形的三条重要线段.8.【答案】A【解析】解:等底同高的三角形的面积相等,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,又△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等.故选A.根据三角形的面积公式知,等底同高的三角形的面积相等,据此可得面积相等的三角形.本题考查了三角形的面积,理解三角形的面积公式,掌握等底同高的三角形的面积相等是解题的关键.9.【答案】C【解析】解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D、若三角形的内角都大于60°,则三个内角的和大于180°,这样的三角形不存在,故本选项错误.故选C.根据三角形内角和定理对各选项进行逐一分析即可.本题考查的是三角形内角和定理,即三角形内角和是180°.10.【答案】B【解析】解:∵∠A=2(∠B+∠C),∠A+∠B+∠C=180°,∴∠A+12∠A=180°,∠A=120°.故选B.根据三角形的内角和定理和已知条件即可得到∠A的方程,从而求解.此题考查了三角形的内角和定理.11.【答案】C【解析】【分析】本题考查了三角形内角和定理:三角形内角和是180°.利用三角形内角和可直接根据两已知角求第三个角或依据三角形中角的关系,用代数方法求三个角,也可在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.设三角形三个内角分别为∠A、∠B、∠C,且∠A−∠B=∠C,则∠B+∠C=∠A,根据三角形内角和定理得到∠A+∠B+∠C=180°,于是可计算出∠A=90°,由此可判断三角形为直角三角形.【解答】解:设三角形三个内角分别为∠A、∠B、∠C,且∠A−∠B=∠C,则∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴∠A+∠A=180°,∴∠A=90°,∴这个三角形为直角三角形.故选C.12.【答案】A【解析】解:∵|AC−BC|=2cm,∴AC−BC=2cm或−AC+BC=2cm,∵BC=8cm,∴AC=(2+8)cm或AC=(8−2)cm,即10cm或6cm.故选A根据绝对值的性质求出AC的长即可.本题考查的是等腰三角形的性质,熟知“等腰三角形的两腰相等”是解答此题的关键.13.【答案】D【解析】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=31+2+3×180°=90°,∴△ABC是直角三角形,∴②正确;③∵∠A=90°−∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,∴③正确;④∵∠A=∠B=12∠C,∴∠C=2∠A=2∠B,∵∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,∴∠C=90°,∴△ABC是直角三角形,∴④正确;故选D.根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.本题考查了三角形内角和定理的应用,能求出每种情况的∠C的度数是解此题的关键,题目比较好,难度适中.14.【答案】B【解析】解:由于在三角形中任意两边之和大于第三边,∴a<2+4=6,任意两边之差小于第三边,∴a>4−2=2,∴2<a<6,故选B.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.本题考查了构成三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边,难度适中.15.【答案】B【解析】解:∵∠A=12∠B=13∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°,解得∠A=30°,所以,∠B=2×30°=60°,∠C=3×30°=90°,所以,此三角形是直角三角形.故选B.用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.16.【答案】40°【解析】解:∵DE//AB,∴∠ADE=∠BAD,∵∠B=46°,∠C=54°,∴∠BAD=180°−46°−54°=80°,∵AD平分∠BAC,∴∠BAD=40°,∴∠ADE=40°,故答案为40°.根据DE//AB可求得∠ADE=∠BAD,根据三角形内角和为180°和角平分线平分角的性质可求得∠BAD的值,即可解题.本题考查了三角形内角和为180°性质,考查了角平分线平分角的性质,本题中求∠ADE=∠BAD是解题的关键.17.【答案】8cm或2cm【解析】解:∵AD是△ABC中线,∴BD=CD.AD把△ABC周长分为的两部分分别是:AB+BD,AC+CD,|(AB+BD)−(AC+CD)|=|AB−AC|=3,如果AB>AC,那么AB−5=3,AB=8cm;如果AB<AC,那么5−AB=3,AB=2cm.故答案为:8cm或2cm.先根据三角形中线的定义可得BD=CD,再求出AD把△ABC周长分为的两部分的差等于|AB−AC|,然后分AB>AC,AB<AC两种情况分别列式计算即可得解.本题考查了三角形的角平分线、中线和高线,熟记概念并求出AD把△ABC周长分为的两部分的差等于|AB−AC|是解题的关键.18.【答案】75°【解析】【分析】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.先根据直角三角形两锐角互余求出∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠1=90°−60°=30°,∴∠α=30°+45°=75°.故答案为:75°.19.【答案】69°【解析】【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得12∠DAC+1 2∠ACF=12(∠B +∠B+∠1+∠2)=111°;最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.本题考查了三角形内角和定理、三角形外角性质.解题时注意挖掘出隐含在题干中已知条件“三角形内角和是180°”.【解答】解:∵三角形的外角∠DAC和∠ACF 的平分线交于点E ,∴∠EAC=12∠DAC,∠ECA=12∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴12∠DAC+12∠ACF=12(∠B+∠2)+12(∠B+∠1)=12(∠B+∠B+∠1+∠2),∵∠B=42°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴12∠DAC+12∠ACF=111°∴∠AEC=180°−(12∠DAC+12∠ACF)=69°.故答案是:69°.20.【答案】2a−2b【解析】解:∵a,b,c是三角形的三边长,∴a+c>b,b+c>a,∴a−b+c>0,a−b−c<0,∴|a−b+c|−|a−b−c|=(a−b+c)−(b+c−a)=a−b+c−b−c+a=2a−2b,故答案为:2a−2b.先根据三角形的三边关系定理得出a+c>b,b+c>a,再去掉绝对值符号合并即可.本题考查了三角形三边关系定理,绝对值,整式的加减的应用,解此题的关键是能正确去掉绝对值符号.21.【答案】6或8【解析】解:①6cm是底边时,腰长=12(20−6)=7cm,此时三角形的三边分别为7cm、7cm、6cm,能组成三角形,②6cm是腰长时,底边=20−6×2=8cm,此时三角形的三边分别为6cm、6cm、8cm,能组成三角形,综上所述,底边长为6cm或8cm.故答案为:6或8.分6cm是底边与腰长两种情况讨论求解.本题考查了等腰三角形的性质,难点在于要分情况讨论.22.【答案】360【解析】解:如右图所示,∵∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,∴∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,又∵∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,∴∠AHG+∠DNG+∠EGN=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360°.利用三角形外角性质可得∠AHG=∠A+∠B,∠DNG=∠C+∠D,∠EGN=∠E+∠F,三式相加易得∠AHG+∠DNG+∠EGN=∠A+∠B+∠C+∠D+∠E+∠F,而∠AHG、∠DNG、∠EGN是△GHN的三个不同的外角,从而可求∠A+∠B+∠C+∠D+∠E+∠F.本题考查了三角形内角和定理.解题的关键是三角形内角和定理与三角形外角性质的联合使用,知道三角形的外角和等于360°.23.【答案】45【解析】解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°−∠ABD−∠D=180°−110°−25°=45°.根据三角形的外角的性质及三角形的内角和定理可求得.本题考查三角形外角的性质及三角形的内角和定理,比较简单.24.【答案】解:如图所示,∵∠ACB=180°−140°=40°,且∠1是△ABC的外角,∴∠1=∠A+∠ACB=80°+40°=120°.【解析】先根据邻补角的定义求得∠ACB,再根据三角形外角性质,求得∠1的度数即可.本题主要考查了三角形的外角性质的运用,解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.25.【答案】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°−30°−50°=100°.∵AE是∠BAC的平分线,∴∠BAE=50°.在Rt△ABD中,∠BAD=90°−∠B=60°,∴∠DAE=∠BAD−∠BAE=60°−50=10°;(2)∠C−∠B=2∠DAE.【解析】(1)由三角形内角和定理可求得∠BAC=100°,由角平分线的性质知∠BAE=50°,在Rt△ABD中,可得∠BAD=60°,故∠DAE=∠BAD−∠BAE;(2)由(1)可知∠C−∠B=2∠DAE.本题利用了三角形内角和定理、角的平分线的性质、直角三角形的性质求解.26.【答案】解:∵∠AFE=90°,∴∠AEF=90°−∠A=90°−35°=55°,∴∠CED=∠AEF=55°,∴∠ACD=180°−∠CED−∠D=180°−55°−42°=83°.答:∠ACD的度数为83°.【解析】根据三角形外角与内角的关系及三角形内角和定理解答.三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.27.【答案】(1)140;90;50;(2)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°−∠A.证明如下:在△ABC中,∠ABC+∠ACB=180°−∠A.在△DBC中,∠DBC+∠DCB=90°.∴∠ABC+∠ACB−(∠DBC+∠DCB)=180°−∠A−90°.∴∠ABD+∠ACD=90°−∠A.(3)∠ACD−∠ABD=90°−∠A.【解析】解:(1)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°−40°=140°,在△DBC中,∵∠BDC=90°,∴∠DBC+∠DCB=180°−90°=90°,∴∠ABD+∠ACD=140°−90°=50°;故答案为:140;90;50.(2)见答案;(3)见答案.【分析】(1)根据三角形内角和定理可得∠ABC+∠ACB=180°−∠A=140°,∠DBC+∠DCB=180°−∠DBC=90°,进而可求出∠ABD+∠ACD的度数;(2)根据三角形内角和定义有90°+(∠ABD+∠ACD)+∠A=180°,则∠ABD+∠ACD=90°−∠A.(3)由(1)(2)的解题思路可得:∠ACD−∠ABD=90°−∠A.本题考查三角形外角的性质及三角形的内角和定理,实际上证明了三角形的外角和是360°,解答的关键是沟通外角和内角的关系.。
初二数学试题带解析及答案
初二数学试题带解析及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 3.1415926B. √2C. 0.33333D. 1/3解析:无理数是不能表示为两个整数的比值的实数。
选项A是圆周率π的近似值,是无理数;选项B的√2是无理数,因为不能表示为两个整数的比;选项C是有限小数,可以表示为1/3;选项D是分数,也是有限小数。
因此,正确答案是B。
答案:B2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8解析:根据勾股定理,直角三角形的斜边长度等于两直角边的平方和的平方根。
即c = √(a² + b²),其中a和b是直角边,c是斜边。
将3和4代入公式得c = √(3² + 4²) = √(9 + 16) = √25 = 5。
答案:A3. 下列哪个代数式是二次方程?A. x + 2 = 0B. x² + 3x - 2 = 0C. 2x - 5 = 0D. x³ - 4 = 0解析:二次方程是形如ax² + bx + c = 0的方程,其中a、b、c是常数,且a≠0。
选项B符合这个形式,是二次方程。
答案:B4. 一个数的平方根是8,这个数是?A. 64B. 16C. -64D. -16解析:一个数的平方根是8,意味着这个数是8的平方。
即x =8² = 64。
负数没有实数平方根,所以选项C和D不正确。
答案:A5. 如果一个多项式f(x) = ax³ + bx² + cx + d,其中a ≠ 0,那么这个多项式的次数是?A. 1B. 2C. 3D. 4解析:多项式的次数是多项式中最高次项的次数。
在这个多项式中,最高次项是ax³,所以次数是3。
答案:C二、填空题(每题2分,共10分)6. 一个数的相反数是-5,这个数是______。
初中数学命题与证明的易错题汇编及答案解析
一、选择题
1.下列命题中,真命题的是( )
A.两条直线被第三条直线,同位角相等
B.若a⊥b,b⊥c,则a⊥c
C.点p(x,y),若y=0,则点P在x轴上
D.若 =a,则a=﹣l
【答案】C
【解析】
【分析】
根据平行线的性质对A进行判断;根据平行线的判定方法对B进行判断;根据x轴上点的坐标特征对C进行判断;根据二次根式的性质对D进行判断.
C、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;
D、相反数等于他本身的数是0,正确,是真命题,不符合题意
考点:命题与定理.
7.下列命题正确的是( )
A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.
B.两个全等的图形之间必有平移关系.
C.三角形经过旋转,对应线段平行且相等.
12.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()
A.1B.2C.3D.4
【答案】A
【解析】
【分析】
根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.
【详解】
故选D.
【点睛】
本题考核知识点:判断命题的真假.解题关键点:熟记相关性质或定义.
17.下列命题的逆命题成立的有( )
①勾股数是三个正整数②全等三角形的三条对应边分别相等
③如果两个实数相等,那么它们的平方相等④平行四边形的两组对角分别相等
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
沪科版数学八年级上册 第十三章-三角形中的边角关系、命题和证明 巩固练习(解析版)
沪科版数学八年级上册-第十三章-三角形中的边角关系,命题与证明-巩固练习一、单选题1.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90°B.120°C.135°D.180°2.如图,∠1=100°,∠C=70°,则∠A的大小是()A.10°B.20°C.30°D.80°3.有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A. B.C. D.4.若一个三角形的一边长为3 cm,则它的周长可能为()A.4 cmB.5 cmC.6 cmD.8 cm5.下面四个图形中,线段BE是△ABC的高的图是()A. B. C. D.6.对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2﹣1;③不等式组的解集为:﹣1<x<4;④点(1,﹣2)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③④C.①②④D.①②③7.若线段2a+1,a,a+3能构成一个三角形,则a的范围是()A.a>0B.a>1C.a>2D.1<a<38.到三角形各顶点的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点二、填空题9.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。
量角器的O刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是________.10.如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是________.11.命题“同位角相等”的逆命题是________12.一个三角形的两边长分别是3和8,周长是偶数,那么第三边边长是________.13.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为________.14.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.15.如图,已知△中, ,剪去后变成四边形,则=________.16.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t 秒时,边CD所在直线恰好与边AB所在直线垂直,则t的值为________.三、解答题17.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制订出两种以上的划分方案以供选择(画图说明).18.如图,按规定,一块横板中AB、CD的延长线相交成85°角,因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB、CD的延长线相交所成的角是不是符合规定?为什么?四、综合题19.已知,如图,在△ABC中,AD平分∠BAC,DE、DF分别是△ADC的高和角平分线(∠C >∠DAC).(1)若∠B=80°,∠C=40°,求∠DAE的度数;(2)试猜想∠EDF、∠C与∠DAC有何种关系?并说明理由.20.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射.若被b 反射出的光线n与光线m平行,且∠1=50°,则∠2=________,∠3=________;(2)在(1)中,若∠1=55°,则∠3=________;若∠1=40°,则∠3=________;(3)由(1)、(2)请你猜想:当两平面镜a,b的夹角∠3等于多少度时,可以使任何射到平面镜a上的光线m,经过平面镜a,b的两次反射后,入射光线m与反射光线n平行,请说明理由.21.如图:△ABC的边BC的高为AF,AC边上的高为BG,中线为AD,AF=6,BC=12,BG=5,(1)求△ABD的面积.(2)求AC的长.(3)△ABD和△ACD的面积有何关系.答案一、单选题1.【答案】D【解析】【解答】解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故答案为:D【分析】在题目中,根据相邻三个角的角度和为180°,即可求得9个角的角度和,根据三个三角形为全等三角形,即可求得三个角的角度和。
初中数学——命题与证明练习试卷
初中数学——命题与证明练习试卷一、选择题(共10小题;共50分)1. 命题“度数之和为的两角互为余角”的题设是A. B. 两个角C. 度数之和为D. 度数之和为的两个角2. 【测试】下列命题中,是真命题的有①同位角相等;②对顶角相等;③同一平面内,如果直线,直线,那么;④同一平面内,如果直线,直线,那么.A. 个B. 个C. 个D. 个3. 下列命题中,假命题有()同位角相等;()若,则与是邻补角;()互余的两个角都小于;()不相交的两条直线是平行线.A. 个B. 个C. 个D. 个4. 下列命题错误的是A. 等腰三角形两腰上的中线相等B. 等腰三角形两腰上的高相等C. 等腰三角形的中线与高重合D. 等腰三角形顶角平分线上任一点到底边两端点的距离相等5. 下列说法不正确的是A. 基本事实和定理都是真命题B. 基本事实就是定理,定理也是基本事实C. 基本事实和定理都可以作为推理论证的依据D. 基本事实的正确性不需证明,定理的正确性需证明6. 命题“两点确定一条直线”是A. 定义B. 假命题C. 基本事实D. 定理7. 下列句子中属于命题的是A. 直角都相等吗?B. 作直线的垂线C. 在线段上取点D. 垂线段最短8. 下列命题:一组对边平行,另一组对边相等的四边形是平行四边形;对角线互相垂直且平分的四边形是菱形;一个角为且一组邻边相等的四边形是正方形;对角线相等的平行四边形是矩形.其中真命题的个数是A. B. C. D.9. 下面命题错误的个数有①数轴上的点与实数一一对应;②一个实数的立方根不是正数就是负数;③无限小数是无理数;④有根号的数是无理数;⑤无理数包括正无理数,,负无理数.A. 个B. 个C. 个D. 个10. 下列命题是真命题的是A. 两边及其中一边的对角分别相等的两个三角形全等B. 平分弦的直径垂直于弦C. 一组对边平行且一组对角相等的四边形是平行四边形D. 两条直线被第三条直线所截,内错角相等二、填空题(共6小题;共30分)11. 把“对顶角相等”改成“如果,那么”的形式:.12. 把下列命题写成“如果,那么”的形式:()两直线相交,只有一个交点;;()邻补角互补..13. 把下列命题写成“如果那么”的形式.()内错角相等,两直线平行;答:;()对顶角相等;答:;()同角的补角相等.答:.14. 下列语句中,是命题的打“”,不是打“”.()我的数学老师真好!()每个人都可以学好数学.()两数相加.15. 命题“同角的余角相等”的题设是,结论是.16. 如图,在平行四边形中,,,以点为圆心,以任意长为半径作弧,分别交,于点,,再分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点,连接并延长交于点,则的长为.三、解答题(共6小题;共78分)17. 写出下列命题的逆命题,并在后面的括号里判断逆命题是否正确.(1)同旁内角互补,两直线平行;()(2)全等三角形的对应角相等.()18. 判断下列命题是真命题还是假命题,并说明理由.(1)若,,则;(2)能被整除的整数,它的末位数字是.19. 先化简,再求值:,其中.20. 用反证法证明:如图,在中,,是内的一点,且.求证:.21. 用反证法证明:在中,如果,分别是边,上的点,那么,不能互相平分.22. 求证:等腰三角形的底角必为锐角.答案第一部分1. D2. D 【解析】①两直线平行,同位角相等,原命题是假命题;②对顶角相等,是真命题;③同一平面内,如果直线,直线,那么;是真命题;④同一平面内,如果直线,直线那么.是真命题;故选:D.3. A4. C 【解析】根据全等三角形的判定定理,A选项正确;根据全等三角形的判定定理,B选项正确;非等边三角形的等腰三角形的腰上的中线与高不重合,C错误;根据三线合一的性质,D正确.5. B6. C7. D8. B9. D10. C【解析】【分析】、根据全等三角形的判定方法,判断即可.<br><resource type="latex">、根据垂径定理的推理对进行判断;<br><resource type="latex">、根据平行四边形的判定进行判断;<br><resource type="latex">、根据平行线的判定进行判断.【解析】解:、由两边及其中一边的对角分别相等无法证明两个三角形全等,故错误,是假命题;<br><resource type="latex">、平分弦非直径的直径垂直于弦,故错误,是假命题;<br><resource type="latex">、一组对边平行且一组对角相等的四边形是平行四边形,故正确,是真命题;<br><resource type="latex">、两条平行线被第三条直线所截,内错角相等,故错误,是假命题;故选:.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证实的,这样的真命题叫做定理.第二部分11. 如果两个角是对顶角,那么这两个角相等【解析】题设为:对顶角,结论为:相等,故写成“如果,那么”的形式是:如果两个角是对顶角,那么它们相等.12. 如果两条直线相交,那么它们只有一个交点,如果两个角是邻补角,那么它们互补13. 如果两条直线被第三条直线所截得内错角相等,那么这两条直线平行,如果两个角是对顶角,那么这两个角相等,如果两个角是同一个角的补角,那么这两个角相等14. ,,15. 两个角是同角的余角,这两个角相等16.【解析】根据作图的方法得:平分,.四边形是平行四边形,,,,,,.第三部分17. (1)两直线平行,同旁内角互补;正确(2)对应角相等的三角形全等;不正确18. (1)真命题.理由:因为,,所以,所以该命题是真命题.(2)假命题.理由:能被整除,但它的末位数字不是,所以该命题是假命题.19.当时,.20. 假设.如图,把绕点逆时针旋转,使与重合,得到,连接.,,,,又,,,即,又,,与矛盾,不成立..21. 已知:在中,,分别是边,上的点.求证:,不能互相平分.证明:假设,互相平分,连接则四边形为平行四边形,则,即,这与在中,,交于点相矛盾,所以,互相平分的结论不成立,故,不能互相平分.22. 已知:在中,.求证:,必为锐角.假设,不是锐角,则,则,这与三角形的内角和为相矛盾,所以假设不成立,故,必为锐角.。
初二数学命题练习题及解析
初二数学命题练习题及解析 数学命题同步练习题及【答案】如下文第1题. 以下命题中,真命题是( )A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是矩形C.四个角相等的菱形是正方形D.两条对角线互相垂直且相等的四边形是正方形【答案】:C.第2题. 以下命题中,假命题是( )A.两条直角边对应相等的两个直角三角形全等B.等腰三角形顶角的平分线把它分成两个全等三角形C.有一个角是60的等腰三角形是等边三角形D.顶角相等的两个等腰三角形全等【答案】:D.第3题. 以下判断正确的选项是( )A. 是与的公分母B. 是与的公分母C.两个分式的和还是分式D.两个分式的差可能是整式【答案】:D.第4题. 指出以下语句中,①直角大于锐角;②AOB是钝角?③,那么1与2互为余角;④两条平行线不相交.是命题的是( ) A.①②③ B.①②④ C.①③④ D.②③④【答案】:C.第5题. 命题三角形的一个外角等于和它不相邻的两个内角的和的条件是________________,结论是________________.【答案】:一个角是三角形的外角;等于和它不相邻的两个内角的和.第6题. △ABC中,A,B,C的对边分别为a,b,c,以下命题中的假命题是( )A.假设C-B,那么C=90B.假设C=90,那么C.假设A=30,B=60,那么AB=2BCD.假设,那么C=9【答案】:D.第7题. 以下命题中,假命题是( )A.两条直角边对应相等的两个直角三角形全等B.等腰三角形顶角的平分线把它分成两个全等三角形C.有一个角是60的等腰三角形是等边三角形D.顶角相等的两个等腰三角形全等【答案】:D.第8题. 四个命题:(1)如果一个数的相反数等于它本身,那么这个数是0;(2)一个数的倒数等于它本身,那么这个数是1;(3)一个数的算术平方根等于它本身,那么这个数是1或0;(4)如果一个数的绝对值等于它本身,那么这个数是正数.其中真命题有A.1个B.2个C.3个D.4个【答案】:B上文即是数学命题同步练习题及【答案】。
初二数学试题大全
初二数学试题答案及解析1.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120度.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为【答案】6【解析】略2.解不等式组并把解在数轴上表示出来.【答案】解:解不等式①,得;……………………………………………………2分解不等式②,得. ………………………………………………………2分不等式①、②的解集在数轴上表示如下:………………………………1分∴不等式组的解集.【解析】略3.下列式子错误的是()A.B.C.D.【答案】 B【解析】略4.不等式 2x -4>0在数轴上表示正确的是()【答案】 C【解析】略5.两个连续整数a、b满足a<<b,则以a、b为边的直角三角形斜边上的中线为 .【答案】2.5或2【解析】略6.要使有意义,则x可以取的最小整数是 .【答案】2【解析】略7.到三角形的三边距离相等的点是【】A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点【答案】A【解析】分析:题目要求到三边距离相等,可两两分别思考,根据角平分线上的点到角两边的距离相等可得答案.解答:解:中线交点即三角形的重心,三角形重心到一个顶点的距离等于它到对边中点距离的2倍,B错误;高的交点是三角形的垂心,到三边的距离不相等,C错误;线段垂直平分线上的点和这条线段两个端点的距离相等,D错误;∵角平分线上的点到角两边的距离相等,∴要到三角形三条边距离相等的点,只能是三条角平分线的交点,A正确.故选A.8.(8分)如图,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于F.试确定AD与EF的位置关系,并说明理由.【答案】垂直,见解析【解析】先根据条件DE∥AC,DF∥AB证明四边形AEDF是平行四边形,然后再证明四边形AEDF为菱形即可.试题解析:证明:∵AD平分∠BAC∴∠BAD=∠CAD∵DE∥AC∴∠ADE=∠CAD∴∠ADE=∠BAD∴AE=DE∵DF∥AB∴四边形AEDF是平行四边形∴AF=DE,DF=AE∴AE=DE=AF=DF∴四边形AEDF为菱形∴AD⊥EF【考点】菱形的判定与性质.9.小明在纸上随手写下一串数字“1010010001”,则数字“1”出现的频率是40%.【答案】40%【解析】频率=频数÷总数.数字的总数是10,有4个1,因而1出现的频率是:4÷10×100%=40%.【考点】频数与频率10.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是.【答案】2.【解析】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,难点在于作辅助线构造出直角三角形.连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半解答.解:如图,连接AC、CF,在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,∠ACD=∠GCF=45°,所以,∠ACF=45°+45°=90°,所以,△ACF是直角三角形,由勾股定理得,AF===4,∵H是AF的中点,∴CH=AF=×4=2.故答案为:2.【考点】1.直角三角形斜边上的中线;2.勾股定理;3.正方形的性质.11.命题“如果a=b,那么a2=b2”的逆命题是.【答案】如果,那么a=b.【解析】把一个命题的条件和结论互换就得到它的逆命题.命题“如果a=b,那么”的条件是如果a=b,结论是”,故逆命题是如果,那么a=b.【考点】命题与定理12.(6分)如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB 长2.5米,顶端A在AC 上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?【答案】0.5【解析】由题意可知滑杆AB与AC、CB正好构成直角三角形,故可用勾股定理进行计算.试题解析:解:设AE的长为x米,依题意得CE=AC-x,∵AB=DE=2.5,BC=1.5,∠C=90°,∴AC==2,∵BD=0.5,∴在Rt△ECD中,CE===1.5∴2-x=1.5,x=0.5,即AE=0.5,答:梯子下滑0.5.【考点】勾股定理13.函数中,自变量x的取值范围是.【答案】.【解析】根据题意得:且,解得:.故答案为:.【考点】1.函数自变量的取值范围;2.分式有意义的条件;3.二次根式有意义的条件.14.一次函数的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C.【解析】根据一次函数的性质可得一次函数的图像经过一、二、四象限,不经过第三象限,故答案选C.【考点】一次函数的性质.15.已知一次函数y=kx-3的图象与正比例函数y=的图象相交于点(-2,a).(1)求出一次函数解析式.(2)点A(x1,y1),B(x2,y2)都在一次函数图象上,若x1<x2,试比较y1与y2的大小.【答案】(1)y=-x-3;(2)y1>y2.【解析】(1)直接把点(-2,a)代入正比例函数的解析式y=x可求出a;将求得的交点坐标代入到直线y=kx-3中即可求得其表达式;(2)利用一次函数的性质得出答案即可.试题解析:(1)∵正比例函数y=x的图象过点(-2,a),∴a=-1,∵一次函数y=kx-3的图象经过点(-2,-1)∴-1=-2k-3∴k=-1∴y=-x-3(2)∵一次函数y=-x-3中k=-1<0,∴y随着x的增大而减小,∵x1<x2,∴y1>y2.【考点】1.两条直线相交或平行问题;2.一次函数图象上点的坐标特征.16.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),由两个图形中阴影部分的面积相等,可以验证(填写序号).①②③④【答案】③.【解析】∵图甲中阴影部分的面积=,图乙中阴影部分的面积=,而两个图形中阴影部分的面积相等,∴=.故可以验证③.故答案为:③.【考点】平方差公式的几何背景.17.已知x-2的算术平方根是3,2x-y+12的立方根是1,求x+y的值.【答案】44.【解析】根据9的算术平方根是3,1的立方根是1,求出x和y值,即可得出结论.试题解析:因为9的算术平方根是3所以,x-2=9,解得,x=11.因为1的立方根是1,所以2x-y+12=1,解得,y=33,∴x+y=11+33="44" .【考点】1.算术平方根的意义;2.立方根的意义.18.若a>0,b<-2,则点(a,b+2)在第_________象限.【答案】四【解析】因为b<-2,所以b+2<0,又因为a>0,所以点(a,b+2)在第四象限.【考点】象限内点的坐标特点.19.下列叙述中正确的是()A.的平方根是B.9的平方根是C.9的算术平方根是D.9的算术平方根是【答案】D.【解析】A、负数没有平方根,故不正确;B、9的平方根是,故不正确;C、9的算术平方根是3,故不正确;9的算术平方根是3,故正确.故选D.【考点】①平方根;②算术平方根.20.(2011秋•海珠区期末)如图,已知AB=AD,∠ABC=∠ADC,求证:BC=DC.【答案】见解析【解析】根据等腰三角形性质推出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形判定推出即可.证明:∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴BC=DC.【考点】全等三角形的判定与性质.21.(2011•滨州)若某三角形的两边长分别为3和4,则下列长度的线段能作为其第三边的是()A.1B.5C.7D.9【答案】B【解析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.解:根据三角形的三边关系,得:第三边>两边之差,即4﹣3=1,而<两边之和,即4+3=7,即1<第三边<7,∴只有5符合条件,故选:B.【考点】三角形三边关系.22.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC= 度.【答案】18°.【解析】试题解析:设∠A=x,则∠C=∠ABC=2x.根据三角形内为180°知,∠C+∠ABC+∠A=180°,即2x+2x+x=180°,所以x=36°,∠C=2x=72°.在直角三角形BDC中,∠DBC=90°-∠C=90°-72°=18°.【考点】三角形内角和定理.23.已知m是方程x2﹣x﹣3=0的一个实数根,则代数式(m2﹣m)(m﹣+1)的值为.【答案】6;【解析】把x=m代入已知方程,得到m2﹣m=3,m2﹣3=m,然后代入所求的代数式进行求值即可.解:∵m是方程x2﹣x﹣3=0的一个实数根,∴m2﹣m﹣3=0,∴m2﹣m=3,m2﹣3=m,∴(m2﹣m)(m﹣+1)=3×(+1)=3×(1+1)=6.故答案是:6.【考点】一元二次方程的解.24.解方程:.【答案】见解析【解析】解:去分母得:12﹣2(x+3)=x﹣3,去括号得:12﹣2x﹣6=x﹣3,移项合并得:3x=9,解得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.25.点P是正方形ABCD边AB上一点(不与A,B重合),连接PD并将线段PD绕点P顺时针旋转90°,得到线段PE,连接BE,则∠CBE等于.【答案】45°【解析】在AD上取一点F,使DF=BP,连接PF,由正方形的性质就可以得出△DFP≌△PBE,就可以得出∠DFP=∠PBE,根据AP=AF就可以得出∠DFP的值,就可以求出∠CBE的值.解:在AD上取一点F,使DF=BP,连接PF,∵四边形ABCD是正方形,∴AD=AB,∠A=∠ABC=90°.∴AD﹣DF=AB﹣BP,∠ADP+∠APD=90°,∴AF=AP.∴∠AFP=∠APF=45°,∴∠DFP=135°.∵∠DPE=90°∴∠APD+∠BPE=90°.∴∠ADP=∠BPE.在△DFP和△PBE中,,∴△DFP≌△PBE(SAS),∴∠DFP=∠PBE,∴∠PBE=135°,∴∠EBC=135°﹣90°=45°.故答案为:45°.点评:本题考查了正方形的性质的运用,直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.26.下列命题中,真命题是()A.四边相等的四边形是正方形B.对角线相等的菱形是正方形C.正方形的两条对角线相等,但不互相垂直平分D.矩形、菱形、正方形都具有“对角线相等”的性质【答案】B【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:A、可判断为菱形,故本选项错误,B、对角线相等的菱形是正方形,故本选项正确,C、正方形的两条对角线相等,且互相垂直平分,故本选项错误,D、菱形的对角线不一定相等,故本选项错误,故选B.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.27.一幢高层住宅楼发生火灾,消防车立即赶到,在距住宅楼9米的B处升起梯搭在火灾窗口(如图),已知云梯长15米,云梯底部距地面2米,发生火灾的住户窗口A离地面有米.【答案】14【解析】根据AB和AC的长度,构造直角三角形,根据勾股定理就可求出直角边BC的长/解:∵AC⊥BC,∴∠ACB=90°;根据勾股定理,得AC===12,∴AF=12+2=14(米);答:发生火灾的住户窗口距离地面14米;故答案为:14.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.28.计算:(1+)2+3(1+)(1﹣)【答案】2.【解析】先算乘方,再算乘法,最后算加减即可.解:原式=1+2+2+3(1﹣2)=3+2﹣3=2.【点评】本题考查的是二次根式的混合运算,熟知二次根式的混合运算与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的是解答此题的关键.29.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是( ) A.(SAS) B.(SSS) C.(ASA) D.(AAS)【答案】B【解析】用圆规就是截取线段相等,则作角相等的依据就是SSS.【考点】三角形全等的性质30.如右下图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为().A.3B.C.D.2【答案】D【解析】利用勾股定理求出AC=,由翻折的性质可知AE=DE,BC=DC=3,因此可知CE=-DE,然后在直角三角形BCE中,由勾股定理可得DE=.【考点】勾股定理31.计算:【答案】【解析】首先根据平方根和立方根的计算法则求出各式的值,然后进行求和得出答案.试题解析:原式=2-2+=【考点】实数的计算32.如图,AB=AC,∠BAC=900,BD⊥AE于D,CE⊥AE于E,且BD>CE,求证:BD=EC+ED【答案】证明过程见解析【解析】根据垂直得出∠ADB=∠AEC=90°,从而根据∠CAE+∠BAD=90°∠ABD+∠BAD=90°得出∠ABD=∠CAE,从而得到△ABD和△CAE全等,根据全等得到AD=CE,BD=AE,最后根据AE=AD+DE得出答案.试题解析:∵BD⊥AE,CE⊥AE ∴∠ADB=∠AEC=90°又∵∠CAE+∠BAD=90°∠ABD+∠BAD=90°∴∠ABD=∠CAE 在△ABD和△CAE中∠ADB=∠AEC,∠ABD=∠CAE,AB=AC∴△ABD≌△CAE ∴AD=CE BD=AE 又∵AE=AD+DE=CE+DE BD=EC+ED【考点】三角形全等的证明和应用33.若x+y=﹣3,则﹣3x﹣3y= .【答案】【解析】先变形,再代入,即可求出答案.∵x+y=﹣3,∴﹣3x﹣3y=﹣3(x+y)=﹣3×(﹣3)=.故答案为:.【考点】代数式求值.34.已知a,b是有理数,若求a和b的值。
初二数学定义与命题试题答案及解析
初二数学定义与命题试题答案及解析1.将命题“有一个角和夹这个角的两条边对应相等的两个三角形全等”改写成“如果…那么…”的形式为.【答案】如果两个三角形有一角和夹这个角的两条边对应相等,那么这两个三角形全等.【解析】“如果”后面是题设,“那么”后面是结论.解:“有一个角和夹这个角的两条边对应相等的两个三角形全等”改写成“如果…那么…”的形式为:如果两个三角形有一角和夹这个角的两条边对应相等,那么这两个三角形全等.故答案为:如果两个三角形有一角和夹这个角的两条边对应相等,那么这两个三角形全等.点评:本题考查了命题与定理,命题是有题设和结论构成.命题都能写成“如果…,那么…”的形式,“如果”后面是题设,“那么”后面是结论.2.“若xy<0,则P(x,y)是第二象限内的点”是假命题,我们可以举出反例:.【答案】当x=1,y=﹣2时,则P(1,﹣2)是第四象限内的点【解析】利用两数之积小于0得到两数异号,可以举出x为正数,y为负数的情况均可.解:∵xy<0,∴x、y异号,∴当x=1,y=﹣2时,则P(x,y)是第四象限内的点,故答案为:当x=1,y=﹣2时,则P(1,﹣2)是第四象限内的点.点评:本题考查了命题与定理的知识,判断一个命题是假命题,可以举出反例.3.写出命题“角平分线上的点到这个角两边的距离相等”的逆命题是.【答案】到角的两边距离相等的点在角平分线上【解析】把一个命题的条件和结论互换就得到它的逆命题.解:命题“角平分线上的点到这个角两边的距离相等”的逆命题是“到角的两边距离相等的点在角平分线上”.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.4.“若m2=4,则m=2”是命题(填“真”或“假”).【答案】假【解析】据此反例即可判断该命题是假命题.解:若m2=4,则m=±2,故原命题是假命题,故答案为:假.点评:本题考查了命题与定理,判断一个命题是假命题时可以举出反例.5.命题“等腰三角形底边中线上任意一点到两腰的距离相等”是命题(填“真”、“假”).【答案】真【解析】根据等腰三角形的性质得到底边上的中线也是顶角的平分线即可得到答案.解:根据等腰三角形的三线合一的性质可得:等腰三角形底边上的中线与顶角的平分线互相重合,∵角平分线上的点到角的两边的距离相等,∴“等腰三角形底边中线上任意一点到两腰的距离相等”是真命题,故答案为:真.点评:本题考查了命题与定理的知识,解题的关键是知道如何判断一个命题的真假,是假命题时找到反例即可.6.在下列空格内填上正确或错误:(1)在同一平面内,到三角形三边距离相等的点只有一个.(2)在同一平面内,到三角形三边所在直线距离相等的点只有一个.(3)三角形三条角平分线交于一点.(4)等腰三角形底边中点到两腰的距离相等.(5)三角形是以它的角平分线为对称轴的轴对称图形.【答案】正确;错误;正确;正确;错误【解析】在同一平面内,到三角形三边距离相等的点是三角形三条角平分线的交点,三条角平分线交于一点,故到三角形三边距离相等的点只有一个;三角形的外角平分线也交于一点,故这一点到三角形三边所在直线的距离也相等;等腰三角形三线合一,中点在角平分线上,故中点到两边的距离相等;三角形不一定是轴对称图形,等腰三角形是以它的角平分线所在的直线为对称轴的轴对称图形.解:三角形三条角平分线交于一点,这一点到三角形三边距离相等的点只有一个,故(1)(3)正确,在同一平面内,到三角形三边所在直线距离相等的点除了内角平分线的交点还有外角平分线的点,故(2)错误,等腰三角形三线合一,中点在角平分线上,故中点到两边的距离相等,故(4)正确,三角形不一定是轴对称图形,等腰三角形是以它的角平分线所在的直线为对称轴的轴对称图形.故(5)错误.故答案为:正确;错误;正确;正确;错误.点评:本题考查同一平面内角平分线的交点,外角平分线的交点以及等腰三角形的性质和三角形的对称情况.7.举反例说明下列命题是假命题.(1)如果a+b>0,那么a>0,b>0;(2)无限小数是无理数;(3)两直线被第三条直线所截,同位角相等.【答案】见解析【解析】根据命题举出使得命题不成立的命题即可.解:(1)当a=3,b=﹣1时,满足a+b>0,但a>0,b>0不成立;(2)如为无限循环小数,但分数是有理数;(3)两条平行线被第三条直线所截,同位角才相等.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理、论证得到的真命题称为定理.8.小明三天没来上学了,明天他肯定还不会来,这种判断是否合理?【答案】见解析【解析】必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解:小明三天没来上学了,明天他可能会来,也可能不会来,属于不确定事件;故这种说法不合理.点评:此题应根据事件的确定性和不确定性进行解答,难度较小.9.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.(1)等角的余角相等;(2)平行线的同旁内角的平分线互相垂直;(3)和为180°的两个角叫做邻补角.【答案】见解析【解析】先根据有关性质与定理,对命题的真假进行判断,如果是假命题,再举出反例即可.解:(1)等角的余角相等,正确,是真命题;(2)平行线的同旁内角的平分线互相垂直,正确,是真命题;(3)和为180°的两个角叫做邻补角,错误,是假命题,如两个不同书本上的两个和为180°的角.点评:此题考查了命题与定理,关键是掌握有关性质与定理,对命题的真假进行判断,正确的命题叫真命题,错误的命题叫做假命题.10.用语言叙述这个命题:如图AB∥CD,EF交AB于点G,交CD于点H,GM平分∠BGH,HM平分∠GHD,则GM⊥HM.【答案】见解析【解析】根据题目提供的几何语言用文字语言将该命题表示出来即可;解:根据AB∥CD,EF交AB于点G,交CD于点H可得两条平行线北第三条直线所截;根据GM平分∠BGH,HM平分∠GHD,则GM⊥HM可得同旁内角的平分线互相垂直.故答案为:两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.点评:本题考查了文字语言与数学语言的相互转化,解题的关键是熟悉用几何语言表示文字语言.11.下列定理没有逆定理的是()A.线段垂直平分线上的点到线段两端点的距离相等B.相似三角形的三边对应成比例C.同角的余角相等D.直角三角形斜边上的中线等于斜边的一半【答案】C【解析】没有逆定理就是逆命题不正确的选项.解:A、逆命题是到线段两端点距离相等的点在线段的垂直平分线上;B、逆命题是三边对应成比例的两三角形相似;C、没有逆命题;D、一边上的中线等于这边的一半的三角形是直角三角形.故选C.点评:本题考查了命题与定理的知识,解题的关键是了解这些命题的逆命题,然后判断其真假.12.下列各命题中,属于假命题的是()A.若m﹣n=0,则m=n=0B.若m﹣n>0,则m>nC.若m﹣n<0,则m<nD.若m﹣n≠0,则m≠n【答案】A【解析】利用不等式的性质逐项进行判断后即可得到答案,也可举出反例.解:A、m﹣n=0,则m=n,但不一定都为0,故错误,是假命题;B、C、D移项即可得到答案,故正确,是真命题.故选A.点评:本题考查了命题与定理的知识,判断一个命题的真假时可以举出反例.13.下列命题:①方程x2=x的解是x=1;②是最简二次根式;③三角形的外心到三角形三条边的距离相等;④顺次连接任意四边形各边中点所得的四边形一定是平行四边形;⑤相等的圆周角所对的弧相等;⑥方程x2+4x﹣1=0的两个实数根的和为4,其中真命题有()A.4个B.3个C.2个D.1个【答案】C【解析】利用有关的性质、定义及定理进行判断后即可得到正确的选项.解::①方程x2=x的解是x=1和x=0,故错误;②是最简二次根式,正确;③三角形的外心到三角形三顶点的距离相等,故错误;④顺次连接任意四边形各边中点所得的四边形一定是平行四边形,正确;⑤同圆或等圆中,相等的圆周角所对的弧相等,故错误;⑥方程x2+4x﹣1=0的两个实数根的和为﹣4,故错误,故真命题有2个,选C.点评:本题考查了命题与定理的知识,判断一个命题的真假关键在于熟练掌握这些知识.14.(2013•河西区一模)下列命题中真命题是()A.任意两个等边三角形必相似B.对角线相等的四边形是矩形C.以40°角为内角的两个等腰三角形必相似D.一组对边平行,另一组对边相等的四边形是平行四边形【答案】A【解析】根据相似三角形的判定、矩形和平行四边形的判定即可作出判断.解:A,正确;B,错误,等腰梯形的对角线相等,但不是矩形;C,错误,没有说明这个40度角是顶角还是底角;D,错误,等腰梯形也满足此条件,但不是平行四边形.故选A.点评:本题考查了特殊四边形的判定和全等三角形的判定和性质.15.(2013•福田区一模)下列命题中错误的是()A.两组对边分别相等的四边形是平行四边形B.平行四边形的对边相等C.对角线相等的四边形是矩形D.矩形的对角线相等【答案】C【解析】根据平行四边形及矩形的性质进行逐一判断即可.解:A、正确,符合平行四边形的判定定理;B、正确,符合平行四边形的性质;C、错误,例如等腰梯形;D、正确,符合矩形的性质.故选C.点评:本题考查了特殊四边形的判定和性质.16.(2012•太原二模)下列四个命题中真命题是()A.矩形的对角线平分对角B.菱形的对角线互相垂直平分C.梯形的对角线互相垂直D.平行四边形的对角线相等【答案】B【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:矩形的对角线不能平分对角,A错误;根据菱形的性质,菱形的对角线互相垂直平分,B正确;梯形的对角线不互相垂直,C错误;平行四边形的对角线平分,但不一定相等,D错误.故选B.点评:要根据矩形、菱形、梯形和平行四边形对角线的特点做出判断.17.(2009•潮阳区模拟)下列命题中,正确命题是()A.直角三角形三个内角中一定有两个锐角B.经过三点一定能确定一个圆C.等腰梯形四个底角都相等D.两条对角线相等的四边形是矩形【答案】A【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解:A、根据三角形的内角和定理知直角三角形三个内角中一定有两个锐角,正确;B、如果三点共线,则不能确定圆,错误;C、等腰梯形的内角和为360°,四个底角不相等,错误;D、两条对角线相等的四边形是有可能是平行四边形,错误.故选A.点评:此题综合考查三角形的内角和、经过不在同一直线上三点一定能确定一个圆等知识,要准确把握.18.在下列命题中,是真命题的有()A.有两边相等的四边形是平行四边形B.两条对角线互相垂直且相等的四边形是菱形C.有两个角是直角的四边形是矩形D.有一个角是直角的菱形是正方形【答案】D【解析】具体分析各个选项可知:A、有两组对边平行且相等的四边形是平行四边形;B、两条对角线互相垂直的平行四边形是菱形;C、有两个角是直角的平行四边形是矩形;D有一个角是直角的菱形是正方形.故只有D正确.解:A、假命题;有两组对边平行且相等的四边形是平行四边形;B、假命题;两条对角线互相垂直的平行四边形是菱形;C、假命题;有两个角是直角的平行四边形是矩形;D、真命题.故选D.点评:本题考查菱形、矩形和等腰梯形的判定与命题的真假区别.19.下列命题中,是真命题的是()A.三点确定一个圆B.平分弦的直径平分弦C.圆周角等于圆心角的一半D.在同圆或等圆中等弧所对的圆周角相等【答案】D【解析】根据圆的有关性质即可作出判断.解:A、三个不同在一条直线的点确定一个圆,不正确;B、平分弦的直径不能平分弦,不正确;C、在同圆或等圆中,同弧或等弧所对的圆周角等于所对圆心角的一半,不正确;D、正确.故选D.点评:要注意不在同一直线的三点确定一个圆;在同圆或等圆中是圆周角等于圆心角的一半成立的前提条件.20.用一个2倍的放大镜照一个△ABC,下列命题中正确的是()A.△ABC放大后角是原来的2倍B.△ABC放大后周长是原来的2倍C.△ABC放大后面积是原来的2倍D.以上的命题都不对【答案】B【解析】根据放大镜的性质解答.解:A、错误,△ABC放大后角不变;B、正确,△ABC放大后周长是原来的2倍;C、错误,△ABC放大后面积是相似比的平方;D、错误.故选B.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.。
初二数学圆试题答案及解析
初二数学圆试题答案及解析1.下列命题中,正确的是()A.经过两点只能作一个圆B.垂直于弦的直径平分弦所对的两条弧C.圆是轴对称图形,任意一条直径是它的对称轴D.平分弦的直径必平分弦所对的两条弧【答案】B.【解析】A、经过两点只能作无数个圆,故本选项错误;B、垂直于弦的直径平分弦所对的两条弧,故本选项正确;C、圆是轴对称图形,任意一条直径所在的直线是它的对称轴,故本选项错误;D、平分弦(非直径)的直径垂直于弦,并且平分所对的弧,本选项错误.故选B.【考点】1.垂径定理2.命题与定理.2.AB是⊙O的一条弦,它的中点为M,过点M作一条非直径的弦CD,过点C和D作⊙O的两条切线,分别与直线AB相交于P、Q两点.求证:PA=QB【答案】通过证明∠OPM=∠OCM=∠ODM=∠OQM.故OP= OQ.从而,MP="MQ." 又MA=MB,所以,PA=QB.【解析】如图,联结OM、OP 、OQ、OC、OD.因为PC,为0 D的切线(已知),M为弦AB的中点,所以OM⊥AB,垂足为点M。
则∠PCO=∠PMO=90°。
根据四点共圆判定:共圆的四个点所连成同侧共底的两个三角形的顶角相等,所以,P、C、M、O四点共圆.则同理圆内接四边形的对角互补,易知∠OMB=∠ODQ=90°,所以它们对角互补。
则Q、D、O、M四点共圆.所以则有∠OPM=∠OCM=∠ODM=∠OQM.易知OP=OQ.所以,MP="MQ." 又因为MA=MB,所以,PA=QB.【考点】四点共圆的判定与性质点评:本题难度较低,主要考查学生对圆的切线性质及四点共圆的判定与性质等知识点的掌握。
3.如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是 cm.【答案】4【解析】先根据弧长公式求得底面圆的周长,再根据圆的周长公式求解即可.由题意得圆锥底面半径.【考点】弧长公式,圆的周长公式点评:解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位.4.如图,AB、CD是⊙O的两条弦,连接、,,则的度数为()A. B. C. D.【答案】C【解析】圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都相等,均等于所对圆心角的一半.∵∴=故选C.【考点】圆周角定理点评:本题属于基础应用题,只需学生熟练掌握圆周角定理,即可完成.5.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是【答案】15cm【解析】将圆柱的侧面展开,得到一个长方体,再然后利用两点之间线段最短解答.如图所示:由于圆柱体的底面周长为24cm,则AD=24× =12cm.又因为CD=AB=9cm,所以AC=15cm.故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是15cm.故答案为:15.【考点】平面展开图—最短路径点评:本题考查了平面展开-最短路径问题,将圆柱的侧面展开,构造出直角三角形是解题的关键6.如下图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O′,点O′的坐标是【答案】【解析】当O从原点滚动到A点后,这时点A到原点的距离就是圆的周长,也就是【考点】圆的直径点评:本题属于对圆的基本知识和圆的直径和半径的运算规律的考查和分析7.如图,阴影部分是一个半圆,则阴影部分的面积为.(不取近似值)【答案】【解析】先根据勾股定理求得半圆的直径,再根据圆的面积公式求解即可.由题意得半圆的直径则阴影部分的面积【考点】勾股定理,圆的面积公式点评:本题属于基础应用题,只需学生熟练掌握勾股定理及圆的面积公式,即可完成.8.下列命题中,正确的是()①平分弦的直径垂直于弦;②圆内接平行四边形必为矩形;③90°的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤相等的圆周角所对的弧相等.A.①②③B.②③④C.②③④⑤D.①②③④⑤【答案】B【解析】解:①平分弦的直径垂直于弦,错误;②圆内接平行四边形必为矩形,正确;③90°的圆周角所对的弦是直径,正确;④不在同一条直线上的三个点确定一个圆,正确;⑤相等的圆周角所对的弧相等,错误.故选B。
初二数学定义与命题试题
初二数学定义与命题试题1.同旁内角互补是(填“真”或“假”)命题.【答案】假【解析】利用平行线的性质定理进行判断即可.解:只有两条平行线形成的同旁内角才互补,故这个命题是假命题.故答案为:假.点评:本题考查了命题与定理的知识,解题的关键是了解平行线的性质.2.有六个命题:①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最长的弦;⑥半圆所对的弦是直径.其中真命题有个.【答案】3【解析】能举出反例的就是错误的,不能举出反例的就是正确的,分析后做出判断即可.解:①能够完全重合的两条弧是等弧,故①错误;②直径将圆分成两条相等的弧,故②错误;③长度相等的两条弧不一定能完全重合,故③错误;④只要半径相等的两圆一定是等圆,故④正确;⑤直径是圆内最长的弦,故⑤正确;⑥圆的直径将圆分成两个半圆,所以半圆所对的弦是直径,故⑥正确,∴真命题有④⑤⑥三个,故答案为:3;点评:本题考查了圆中的有关概念,考查的形式大都以选择题的形式出现,属于较容易的题目.3.命题“平行四边形的两组对边相等.”的逆命题是.【答案】两组对边分别相等的四边形是平行四边形【解析】把一个命题的条件和结论互换就得到它的逆命题.解:命题“平行四边形的两组对边相等”的逆命题是“两组对边分别相等的四边形是平行四边形”,故答案为:两组对边分别相等的四边形是平行四边形.点评:本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.4.举一个可以用来证明命题“若a•b>0,则a>0,b>0”是假命题的反例是a= ,b= .【答案】﹣1,﹣2【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.解:用来证明命题“若a•b>0,则a>0,b>0”是假命题的反例是a=﹣1,b=﹣2,故答案为﹣1,﹣2.点评:此题主要考查了利用举例法证明一个命题错误,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.5.在下列空格内填上正确或错误:(1)在同一平面内,到三角形三边距离相等的点只有一个.(2)在同一平面内,到三角形三边所在直线距离相等的点只有一个.(3)三角形三条角平分线交于一点.(4)等腰三角形底边中点到两腰的距离相等.(5)三角形是以它的角平分线为对称轴的轴对称图形.【答案】正确;错误;正确;正确;错误【解析】在同一平面内,到三角形三边距离相等的点是三角形三条角平分线的交点,三条角平分线交于一点,故到三角形三边距离相等的点只有一个;三角形的外角平分线也交于一点,故这一点到三角形三边所在直线的距离也相等;等腰三角形三线合一,中点在角平分线上,故中点到两边的距离相等;三角形不一定是轴对称图形,等腰三角形是以它的角平分线所在的直线为对称轴的轴对称图形.解:三角形三条角平分线交于一点,这一点到三角形三边距离相等的点只有一个,故(1)(3)正确,在同一平面内,到三角形三边所在直线距离相等的点除了内角平分线的交点还有外角平分线的点,故(2)错误,等腰三角形三线合一,中点在角平分线上,故中点到两边的距离相等,故(4)正确,三角形不一定是轴对称图形,等腰三角形是以它的角平分线所在的直线为对称轴的轴对称图形.故(5)错误.故答案为:正确;错误;正确;正确;错误.点评:本题考查同一平面内角平分线的交点,外角平分线的交点以及等腰三角形的性质和三角形的对称情况.6.下列命题是假命题的是()A.互补的两个角不能都是锐角B.两直线平行,同位角相等C.若a∥b,a∥c,则b∥c D.同一平面内,若a⊥b,a⊥c,则b⊥c【答案】D【解析】利用互补的定义、平行线的性质及垂线的性质分别进行判断后即可得到正确的选项.解:A、互补的两个角不能是锐角,正确,是真命题;B、两直线平行,同位角相等,正确,是真命题;C、根据平行线的传递性可以判断该命题为真命题;D、同一平面内,若a⊥b,a⊥c,则b∥c,故原命题为假命题,故选D.点评:本题考查了互补的定义、平行线的性质及垂线的性质,难度不大,属于基础题,解题的关键是牢记有关的定义及性质.7.下列句子中不是命题的是()A.负数都小于零B.所有的素数都是奇数C.过直线l外一点作l的垂线D.直角都相等【答案】C【解析】分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解:C不是可以判断真假的陈述句,不是命题;A、B、D均是用语言表达的、可以判断真假的陈述句,都是命题.故选C.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.8.(2013•河西区一模)下列命题中真命题是()A.任意两个等边三角形必相似B.对角线相等的四边形是矩形C.以40°角为内角的两个等腰三角形必相似D.一组对边平行,另一组对边相等的四边形是平行四边形【答案】A【解析】根据相似三角形的判定、矩形和平行四边形的判定即可作出判断.解:A,正确;B,错误,等腰梯形的对角线相等,但不是矩形;C,错误,没有说明这个40度角是顶角还是底角;D,错误,等腰梯形也满足此条件,但不是平行四边形.故选A.点评:本题考查了特殊四边形的判定和全等三角形的判定和性质.9.下列命题中,是真命题的是()A.三点确定一个圆B.平分弦的直径平分弦C.圆周角等于圆心角的一半D.在同圆或等圆中等弧所对的圆周角相等【答案】D【解析】根据圆的有关性质即可作出判断.解:A、三个不同在一条直线的点确定一个圆,不正确;B、平分弦的直径不能平分弦,不正确;C、在同圆或等圆中,同弧或等弧所对的圆周角等于所对圆心角的一半,不正确;D、正确.故选D.点评:要注意不在同一直线的三点确定一个圆;在同圆或等圆中是圆周角等于圆心角的一半成立的前提条件.10.用一个2倍的放大镜照一个△ABC,下列命题中正确的是()A.△ABC放大后角是原来的2倍B.△ABC放大后周长是原来的2倍C.△ABC放大后面积是原来的2倍D.以上的命题都不对【答案】B【解析】根据放大镜的性质解答.解:A、错误,△ABC放大后角不变;B、正确,△ABC放大后周长是原来的2倍;C、错误,△ABC放大后面积是相似比的平方;D、错误.故选B.点评:主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.。
最新初中数学命题与证明的基础测试题及解析(2)
最新初中数学命题与证明的基础测试题及解析(2)一、选择题1.下列命题中正确的有()个①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.【详解】①平分弦(非直径)的直径垂直于弦,错误;②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④平面内不共线的三点确定一个圆,错误;⑤三角形的外心到三角形的各个顶点的距离相等,正确;故正确的命题有2个故答案为:B.【点睛】本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.2.下列定理中,逆命题是假命题的是()A.在一个三角形中,等角对等边B.全等三角形对应角相等C.有一个角是60度的等腰三角形是等边三角形D.等腰三角形两个底角相等【答案】B【解析】【分析】先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.【详解】解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;D、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.3.下列命题中逆命题是假命题的是()A.如果两个三角形的三条边都对应相等,那么这两个三角形全等B.如果a2=9,那么a=3C.对顶角相等D.线段垂直平分线上的任意一点到这条线段两个端点的距离相等【答案】C【解析】【分析】首先写出各命题的逆命题(将每个命题的题设与结论调换),然后再证明各命题的正误.因为相等的角不只是对顶角,所以此答案是假命题,继而得到正确答案.【详解】解:A、逆命题为:如果两个三角形全等,那么这两个三角形的三条边都对应相等.是真命题;B、逆命题为:如果a=3,那么a2=9.是真命题;C、逆命题为:相等的角是对顶角.是假命题;D、逆命题为:到线段两个端点的距离相等的点在这条线段垂直平分线上.是真命题.故选C.【点睛】此题考查了命题与逆命题的关系.解题的关键是找到各命题的逆命题,再证明正误即可.4.下列命题中真命题是()A2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形【答案】C【解析】【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【详解】A)2,当a<0时不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图不一定是等边三角形,假命题,【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.5.下列命题中是假命题的是( )A .一个锐角的补角大于这个角B .凡能被2整除的数,末位数字必是偶数C .两条直线被第三条直线所截,同旁内角互补D .相反数等于它本身的数是0【答案】C【解析】试题分析:利用锐角的性质、偶数的定义、平行线的性质及相反数的定义分别判断后即可确定正确的选项.A 、一个锐角的补角大于这个角,正确,是真命题,不符合题意;B 、凡能被2整除的数,末尾数字必是偶数,正确,是真命题,不符合题意;C 、两条平行直线被第三条直线所截,同旁内角才互补,故错误,是假命题,符合题意;D 、相反数等于他本身的数是0,正确,是真命题,不符合题意考点:命题与定理.6.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等【答案】C【解析】试题分析:首先写出各个命题的逆命题,再进一步判断真假.解:A 、逆命题是三个角对应相等的两个三角形全等,错误;B 、绝对值相等的两个数相等,错误;C 、同位角相等,两条直线平行,正确;D 、相等的两个角都是45°,错误.故选C .7.下列命题中是真命题的是( )A .两个锐角的和是锐角B .两条直线被第三条直线所截,同位角相等C .点(3,2)-到x 轴的距离是2D .若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.8.下列命题中真命题是( )A .若a 2=b 2,则a=bB .4的平方根是±2C .两个锐角之和一定是钝角D .相等的两个角是对顶角【答案】B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A 、若a 2=b 2,则a=±b ,错误,是假命题;B 、4的平方根是±2,正确,是真命题;C 、两个锐角的和不一定是钝角,故错误,是假命题;D 、相等的两个角不一定是对顶角,故错误,是假命题.故选B .【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.9.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合; ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是( )A .2B .3C .4D .5【答案】A【解析】【分析】利用轴对称的性质、等腰三角形的性质、等边三角形的判定等知识分别判断后即可确定正确的选项.解:①等腰三角形底边的中点到两腰的距离相等;正确;②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确: ③若ABC V 与'''A B C V 成轴对称,则ABC V 一定与'''A B C V 全等;正确; ④有一个角是60度的等腰三角形是等边三角形;不正确;⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.正确命题为:2①③,个;故选:A【点睛】本题考查了命题与定理的知识,解题的关键是了解轴对称的性质、等腰三角形的性质、等边三角形的判定等知识,属于基础知识,难度不大.10.下列命题为真命题的是()A .三角形的一个外角大于任何一个和它不相邻的内角B .两直线被第三条直线所截,同位角相等C .垂直于同一直线的两直线互相垂直D .三角形的外角和为180o【答案】A【解析】【分析】根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.【详解】三角形的一个外角大于任何一个和它不相邻的内角,A 是真命题;两条平行线被第三条直线所截,同位角相等,B 是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C 是假命题;三角形的外角和为360°,D 是假命题;故选A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设( )A .AB ∠=∠B .AB BC = C .B C ∠=∠D .A C ∠=∠【答案】C【解析】【分析】反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.【详解】已知:在ABC V 中,AB AC ≠,求证:.B C ∠≠∠若用反证法来证明这个结论,可以假设B C ∠=∠,由“等角对等边”可得AB=AC,这与已知矛盾,所以.B C ∠≠∠故选C【点睛】本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.12.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是( )A .1B .2C .3D .4【答案】A【解析】【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【详解】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A .【点睛】考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.13.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是( )A .①②③④B .①③④C .①③D .①【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题; ②对顶角相等,其逆命题:相等的角是对顶角,是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题;故选C.【点睛】本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.14.下列命题中,是真命题的是()A.同位角相等B.若两直线被第三条直线所截,同旁内角互补C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行【答案】D【解析】【分析】根据平行线的判定、平行线的性质判断即可.【详解】A、两直线平行,同位角相等,是假命题;B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;C、同旁内角互补,两直线平行,是假命题;D、平行于同一直线的两条直线互相平行,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.15.下列命题中,假命题是()A.平行四边形的对角线互相垂直平分B.矩形的对角线相等C.菱形的面积等于两条对角线乘积的一半D.对角线相等的菱形是正方形【答案】A【解析】【分析】不正确的命题是假命题,根据定义依次判断即可.【详解】A. 平行四边形的对角线互相平分,故是假命题;B. 矩形的对角线相等,故是真命题;C. 菱形的面积等于两条对角线乘积的一半,故是真命题;D. 对角线相等的菱形是正方形,故是真命题,故选:A.【点睛】此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.16.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设( )A.四边形中至多有一个内角是钝角或直角B.四边形中所有内角都是锐角C.四边形的每一个内角都是钝角或直角D.四边形中所有内角都是直角【答案】B【解析】【分析】先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.【详解】假设命题中的结论不成立,即命题“四边形中至少有一个角是钝角或直角”不成立,即“四边形中的四个角都不是钝角或直角”,即“四边形中的四个角都是锐角”故选B.【点睛】本题考查反证法,要注意命题“至少有一个是”不成立,对应的命题应为“都不是”.17.下列命题是真命题的是()A.同旁内角相等,两直线平行B.对角线互相平分的四边形是平行四边形C.相等的两个角是对顶角D.圆内接四边形对角相等【答案】B【解析】【分析】由平行线的判定方法得出A是假命题;由平行四边形的判定定理得出B是真命题;由对顶角的定义得出C是假命题;由圆内接四边形的性质得出D是假命题;综上,即可得出答案.【详解】A.同旁内角相等,两直线平行;假命题;B.对角线互相平分的四边形是平行四边形;真命题;C.相等的两个角是对顶角;假命题;D.圆内接四边形对角相等;假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定、平行四边形的判定、对顶角的定义、圆内接四边形的性质;熟练掌握相关性质和定理、定义是解题关键.18.下列命题是真命题的是()A.一组对边平行且有一组对角相等的四边形是平行四边形B.对角线相等的四边形是矩形C.一组对边平行且另一组对边相等的四边形是平行四边形D.对角线互相垂直且相等的四边形是正方形【答案】A【解析】【分析】根据平行四边形的判定定理以及矩形、正方形的判定即可逐一判断.【详解】解:如下图,若四边形ABCD,AD∥BC,∠A=∠C,∵AD∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故A正确;B、对角线相等的四边形也可能为等腰梯形,故B错误;C、一组对边平行且另一组对边相等的四边形也可能为等腰梯形,故C错误;D、对角线互相垂直平分且相等的四边形是正方形,故D错误.故选:A.【点睛】本题考查了平行四边形、矩形、正方形的判定定理,是基础知识要熟练掌握.19.下列命题的逆命题不正确...的是()A.相等的角是对顶角B.两直线平行,同旁内角互补C.矩形的对角线相等D.平行四边形的对角线互相平分【答案】C【解析】【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:对顶角相等.正确;B、逆命题是:同旁内角互补,两直线平行,正确;C、逆命题是:对角线相等的四边形是矩形,错误;D、逆命题是:对角线互相平分的四边形是平行四边形,正确.故选:C.【点睛】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.20.下列说法正确的是()A.若a>b,则a2>b2B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形C.两直线平行,同旁内角相等D.三角形的外角和为360°【答案】D【解析】【分析】利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.【详解】A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误;B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本选项错误;C、两直线平行,同旁内角互补,故本选项错误;D、三角形的外角和为360°,故本选项正确;故选:D【点睛】本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.。
八年级数学《判断真假命题》专项练习及答案
C.线段垂直平分线上的点到线段的距离相等
D.同角(或等角)的余角互补
6.下列命题中是真命题的选项是( )
A.一组对边平行,一组对边相等的四边形是平行四边形 B.对角线互相垂直且相等的四边形是正方形
C.对角线相等的平行四边形是矩形
D.三条边都相等的四边形是菱形
7.下列命题中,真命题是( )
A.对角线相等的四边形是矩形
A.③④
B.①②③
C.②③④
D.②③
30.已知下列命题
⑴等边三角形的三个内角都相等;
⑵平行四边形相邻的两个角都相等;
⑶线段垂直平分线上的点到这条线段两个端点距离相等; ⑷底角相等的两个等腰三角形全等.
其中原命题和逆命题均为真命题的有( )
A.1 个
B.2 个
C.3 个
D.4 个
4
1.【答案】D 2.【答案】D 3.【答案】C 4.【答案】C 5.【答案】B 6.【答案】C 7.【答案】C 8.【答案】B 9.【答案】D 10.【答案】D 11.【答案】D 12.【答案】C 13.【答案】B 14.【答案】B 15.【答案】D 16.【答案】D 17.【答案】B 18.【答案】D 19.【答案】B 20.【答案】C 21.【答案】D 22.【答案】C 23.【答案】D 24.【答案】A 25.【答案】C 26.【答案】A 27.【答案】D 28.【答案】B 29.【答案】A 30.【答案】B
D.三角形三条角平分线交于一点,并且这一点到三条边的距离相等
20.下列命题不正确的是( )
A.一个锐角和一条边分别相等的两个直角三角形全等
B.两边分别相等的两个直角三角形全等
C.三角形经过旋转,对应线段平行且相等.
D.中心对称图形上每一对对应点所连成的线段都被对称中心平分.
初二数学命题与证明练习题
初二数学命题与证明练习题在初二的数学学习中,我们将深入探讨命题与证明,这对我们理解数学的逻辑思维和解题能力非常重要。
下面是一些初二数学的命题与证明练习题,希望能帮助同学们更好地理解和掌握这一知识点。
1. 命题:若两个正整数互质,则它们的最小公倍数等于它们的乘积。
证明:设两个正整数为a和b,不妨假设它们的最大公约数为d,则a和b分别可以表示为a=d*m,b=d*n(m、n为正整数且互质)。
根据最大公约数的性质可知,m和n互质。
最小公倍数等于两个数之积除以最大公约数,即lcm(a,b)=a*b/d。
将a和b代入,得到lcm(a,b)=d*m*d*n/d=m*n=a*b。
因此,命题成立。
2. 命题:若直角三角形的两条直角边分别为a和b,斜边为c,则有c²=a²+b²。
证明:设直角三角形的两条直角边为a和b,斜边为c。
根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和,即c²=a²+b²。
因此,命题成立。
3. 命题:如果一个自然数能同时被2和3整除,则它一定能被6整除。
证明:设自然数为n,根据整除的定义,能被2整除意味着n可以表示为2的倍数,能被3整除意味着n可以表示为3的倍数。
由于2和3都是素数,它们的最小公倍数为6。
即n一定可以表示为6的倍数,即能被6整除。
4. 命题:一个正整数如果同时能被4和6整除,那么它一定能被12整除。
证明:设正整数为n,根据整除的定义,能被4整除意味着n可以表示为4的倍数,能被6整除意味着n可以表示为6的倍数。
由于4和6的最小公倍数为12,即n一定可以表示为12的倍数,即能被12整除。
5. 命题:一个正整数如果同时是3和5的倍数,那么它一定能被15整除。
证明:设正整数为n,根据整除的定义,能被3整除意味着n可以表示为3的倍数,能被5整除意味着n可以表示为5的倍数。
由于3和5的最小公倍数为15,即n一定可以表示为15的倍数,即能被15整除。
初中数学——命题与证明练习试卷2
初中数学——命题与证明练习试卷2一、选择题(共10小题;共50分)1. “两条直线相交,有且只有一个交点”的题设是A. 两条直线B. 交点C. 两条直线相交D. 只有一个交点2. 下列命题的逆命题是真命题的是A. 全等三角形的周长相等B. 全等三角形的对应角相等C. 如果,那么D. 有三个角是直角的四边形是长方形3. 下列命题是假命题的是A. 等角的补角相等B. 对顶角相等C. 面积相等的两个三角形全等D. 内错角相等,两直线平行4. 如图,,,,,下列结论错误的是A. B.C. D.5. 下列语句中,是命题的①直角大于锐角;②是钝角吗?③同号两数相乘,积为正;④负数与负数的和仍为负数.A. ①②③B. ①②④C. ①③④D. ②③④6. 考察下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等.其中错误的命题是A. ①B. ②C. ③D. ④7. 下列语句不是命题的是A. 等角的余角相等B. 是无理数C. 延长线段D. 直角三角形的两个锐角互余8. 下列叙述,错误的是A. 对角线互相垂直且相等的平行四边形是正方形B. 对角线互相垂直平分的四边形是菱形C. 对角线互相平分的四边形是平行四边形D. 对角线相等的四边形是矩形9. 已知点,,在上,则下列命题为真命题的是A. 若半径平分弦,则四边形是平行四边形B. 若四边形是平行四边形,则C. 若,则弦平分半径D. 若弦平分半径,则半径平分弦10. 下列命题错误的是A. 经过三个点一定可以作圆B. 同圆或等圆中,相等的圆心角所对的弧相等C. 三角形的外心到三角形各顶点的距离相等D. 经过切点且垂直于切线的直线必经过圆心二、填空题(共6小题;共30分)11. 把“对顶角相等”改成“如果,那么”的形式:.12. 命题“等角的补角相等”的题设是,结论是.13. 命题“对顶角相等”的题设是,结论是.14. 把命题“同角的补角相等”改写成“如果,那么”的形式.15. 命题“,,是直线,若,,则”是.(填写“真命题”或“假命题”)16. 阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段..小芸的作法如下:如图,(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点;(2)作直线.老师说:“小芸的作法正确.”请回答:小芸的作图依据是.三、解答题(共6小题;共78分)17. 原命题:等腰三角形的顶角的外角平分线平行于底边.它的逆命题是:;并证明逆命题是真命题.18. 已知命题:如果是不等于的数,那么一定大于.(1)分析这个命题,你有怎样的发现?(2)仿照题中命题,写一个关于与大小关系的真命题.19. 先化简,再求值:,其中.20. 如图,在中,,是边上的两点,,求的度数.21. 如图,平行四边形的两条对角线相交于点,点是的中点,点是的中点,连接,,,.试说明与的关系,并说明理由.22. 阅读下面材料:小明遇到这样一个问题;在中,有两个内角相等.若,求的度数;若,求的度数.小明通过探究发现,的度数不同,的度数的个数也可能不同,因此为同学们提供了如下解题的想法:对于问题,根据三角形内角和定理,因为,;对于问题,根据三角形内角和定理,因为,所以或或,所以的度数可求.请回答:(1)问题中的度数为;(2)参考小明解决问题的思路,解决下面问题:在中,有两个内角相等.设,当有三个不同的度数时,求的度数(用含的代数式表示)以及的取值范围.答案第一部分1. C2. D3. C4. C5. C【解析】①直角大于锐角,故①是命题;②是钝角吗?是疑问句,故②不是命题;③同号两数相乘,积为正,故③是命题;④负数与负数的和仍为负数,故④是命题,是命题的有①③④.6. D7. C8. D 【解析】A.根据对角线互相垂直的平行四边形可判定为菱形,再有对角线且相等可判定为正方形,故此选项正确,不符合题意;B.根据菱形的判定方法可得对角线互相垂直平分的四边形是菱形正确,故此选项正确,不符合题意;C.对角线互相平分的四边形是平行四边形是判断平行四边形的重要方法之一,故此选项正确,不符合题意;D.根据矩形的判定方法:对角线互相平分且相等的四边形是矩形,因此只有对角线相等的四边形不能判定是矩形,故此选项错误,符合题意.9. B10. A【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解析】.经过不在同一直线上的三个点一定可以作圆,故本选项错误;.同圆或等圆中,相等的圆心角所对的弧相等,正确;.三角形的外心到三角形各顶点的距离相等,正确;.经过切点且垂直于切线的直线必经过圆心,正确;故选:.【点评】此题主要考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.第二部分11. 如果两个角是对顶角,那么这两个角相等【解析】题设为:对顶角,结论为:相等,故写成“如果,那么”的形式是:如果两个角是对顶角,那么它们相等.12. 两个角分别是相等的两个角的补角;这两个角相等13. 两角为对顶角,它们的大小相等14. 如果两个角是同角的补角,那么这两个角相等【解析】将命题中的条件写在如果的后面,结论写在那么的后面.本命题的条件为:两个角是同角的补角,结论为:这两个角相等.15. 假命题【解析】,,是直线,若,,则,所以原命题是假命题.16. 到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线第三部分17. 过等腰三角形的顶角的顶点与底边平行的直线平分顶角的外角.证明略.18. (1)这是一个假命题;(2)若是负数,则一定大于.19. .20. .21. ,.理由如下:四边形是平行四边形,,,点是的中点,点是的中点,,,,四边形是平行四边形(对角线互相平分的四边形是平行四边形),,.22. (1)或或(2),的取值范围是且.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学命题练习题及解析
数学命题同步练习题及【答案】如下文
第1题. 以下命题中,真命题是( )
A.有两边相等的平行四边形是菱形
B.有一个角是直角的四边形是矩形
C.四个角相等的菱形是正方形
D.两条对角线互相垂直且相等的四边形是正方形
【答案】:C.
第2题. 以下命题中,假命题是( )
A.两条直角边对应相等的两个直角三角形全等
B.等腰三角形顶角的平分线把它分成两个全等三角形
C.有一个角是60的等腰三角形是等边三角形
D.顶角相等的两个等腰三角形全等
【答案】:D.
第3题. 以下判断正确的选项是( )
A. 是与的公分母
B. 是与的公分母
C.两个分式的和还是分式
D.两个分式的差可能是整式
【答案】:D.
第4题. 指出以下语句中,①直角大于锐角;②AOB是钝角?③,那么1与2互为余角;④两条平行线不相交.是命题的是( ) A.①②③ B.①②④ C.①③④ D.②③④
【答案】:C.
第5题. 命题三角形的一个外角等于和它不相邻的两个内角的和的条件是________________,结论是________________.
【答案】:一个角是三角形的外角;等于和它不相邻的两个内角的和.
第6题. △ABC中,A,B,C的对边分别为a,b,c,以下命题中的假命题是( )
A.假设C-B,那么C=90
B.假设C=90,那么
C.假设A=30,B=60,那么AB=2BC
D.假设,那么C=9
【答案】:D.
第7题. 以下命题中,假命题是( )
A.两条直角边对应相等的两个直角三角形全等
B.等腰三角形顶角的平分线把它分成两个全等三角形
C.有一个角是60的等腰三角形是等边三角形
D.顶角相等的两个等腰三角形全等
【答案】:D.
第8题. 四个命题:(1)如果一个数的相反数等于它本身,那么这个数是0;(2)一个数的倒数等于它本身,那么这个数是1;(3)一个数的算术平方根等于它本身,那么这个数是1或0;
(4)如果一个数的绝对值等于它本身,那么这个数是正数.其中真命题有
A.1个
B.2个
C.3个
D.4个
【答案】:B
上文即是数学命题同步练习题及【答案】。