揭阳市2020版中考数学试卷(II)卷
广东省揭阳市2019-2020学年中考数学二模试卷含解析
广东省揭阳市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.2.下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线不能相等D.正方形的对角线相等且互相垂直3.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°4.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩5.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差6.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()A.45o B.60o C.120o D.135o7.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.8.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为UIR=,当电压为定值时,I关于R的函数图象是()A.B. C.D.9.-10-4的结果是()A.-7 B.7 C.-14 D.1310.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x311.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A.B.C.D.12.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.88152.5x x+=B.8184 2.5x x+=C.88152.5x x=+D.8812.54x x=+二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是___________.14.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.﹣OA 2=__.16.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______17.使x 2-有意义的x 的取值范围是______.18.边长为3的正方形网格中,⊙O 的圆心在格点上,半径为3,则tan ∠AED=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查了 名学生,扇形统计图中“1部”所在扇形的圆心角为 度,并补全条形统计图;(2)此中学共有1600名学生,通过计算预估其中4部都读完了的学生人数;(3)没有读过四大古典名著的两名学生准备从四大固定名著中各自随机选择一部来阅读,求他们选中同一名著的概率.20.(6分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型. (1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.21.(6分)解分式方程:28124x x x -=-- 22.(8分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩x (次/分),按成绩分成(155)A x <,(155160)B x <…,(160165)C x <…,D(165170)x <…,E(170)x …五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题: 该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在________等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是C 等级的人数.23.(8分)解不等式组:2(2)3{3122x xx +>-≥-,并将它的解集在数轴上表示出来. 24.(10分)如图,AB 、AC 分别是⊙O 的直径和弦,OD ⊥AC 于点D .过点A 作⊙O 的切线与OD 的延长线交于点P ,PC 、AB 的延长线交于点F .(1)求证:PC 是⊙O 的切线;(2)若∠ABC =60°,AB =10,求线段CF 的长.25.(10分)如图,菱形ABCD 中,,E F 分别是,BC CD 边的中点.求证:AE AF .26.(12分)一艘观光游船从港口A 以北偏东60°的方向出港观光,航行80海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C 处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)27.(12分)解方程:(1)x 2﹣7x ﹣18=0(2)3x (x ﹣1)=2﹣2x参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.D【解析】【分析】根据菱形,平行四边形,正方形的性质定理判断即可.【详解】A.菱形的对角线不一定相等,A 错误;B.平行四边形不是轴对称图形,是中心对称图形,B 错误;C. 正方形的对角线相等,C错误;D.正方形的对角线相等且互相垂直,D 正确;故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.D【解析】【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理. 4.D【解析】【分析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【详解】由解集在数轴上的表示可知,该不等式组为23 xx≤⎧⎨-⎩f,故选D.【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.5.D【解析】【分析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.A【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,设此多边形为n 边形,根据题意得:180(n-2)=1080,解得:n=8,∴这个正多边形的每一个外角等于:360°÷8=45°.故选A .【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.7.C【解析】看到的棱用实线体现.故选C.8.C【解析】【分析】根据反比例函数的图像性质进行判断.【详解】 解:∵U I R=,电压为定值, ∴I 关于R 的函数是反比例函数,且图象在第一象限,故选C .【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键.9.C【解析】解:-10-4=-1.故选C .10.B【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案. 详解:A 、不是同类项,无法计算,故此选项错误;B 、235x x x ⋅=, 正确;C 、()326x x -=-,故此选项错误; D 、624x x x ÷=, 故此选项错误;点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.11.C【解析】【分析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C .【点睛】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.12.D【解析】分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.详解:设乘公交车平均每小时走x 千米,根据题意可列方程为:8812.54x x =+. 故选D .点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2?m >且3m ≠.【解析】【分析】方程两边同乘以x-1,化为整数方程,求得x ,再列不等式得出m 的取值范围.【详解】方程两边同乘以x-1,得,m-1=x-1,解得x=m-2, ∵分式方程3111m x x+=--的解为正数, ∴x=m-2>0且x-1≠0,故答案为m >2且m≠1.14.2933cm π⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】【详解】解:如图,作OH ⊥DK 于H ,连接OK ,∵以AD 为直径的半圆,正好与对边BC 相切,∴AD=2CD . ∴根据折叠对称的性质,A'D=2CD .∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°. ∴∠DOK=120°. ∴扇形ODK 的面积为()2212033cm 360ππ⨯⨯=. ∵∠ODH=∠OKH=30°,OD=3cm ,∴333OH cm,DH cm 22==.∴DK 3cm =. ∴△ODK 的面积为()2139333cm 224⨯=. ∴半圆还露在外面的部分(阴影部分)的面积是:2933cm π⎛ ⎝⎭. 故答案为:2933cm π⎛- ⎝⎭.15.1【解析】解:∵直线y=x+b 与双曲线8y x =(x>0)交于点P ,设P 点的坐标(x ,y ), ∴x ﹣y=﹣b ,xy=8,而直线y=x+b 与x 轴交于A 点,∴OA=b .故答案为1.16.①②③⑤【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由图象可知:抛物线开口方向向下,则a 0<,对称轴直线位于y 轴右侧,则a 、b 异号,即b 0>,抛物线与y 轴交于正半轴,则c 0>,abc 0<,故①正确;②对称轴为b x 12a=-=,b 2a =-,故②正确; ③由抛物线的对称性知,抛物线与x 轴的另一个交点坐标为()1,0-,所以当x 1=-时,y a b c 0=-+=,即a b c 0-+=,故③正确;④抛物线与x 轴有两个不同的交点,则2b 4ac 0->,所以24ac b 0-<,故④错误;⑤当x 2=时,y 4a 2b c 0=++>,故⑤正确.故答案为①②③⑤.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.17.x 2≥【解析】二次根式有意义的条件.x 20x 2-≥⇒≥.18.12【解析】【分析】根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan ∠AED 的值就是tanB 的值.【详解】解: ∵∠AED=∠ABD (同弧所对的圆周角相等),∴tan∠AED=tanB=12 ADAB.故答案为:1 2 .【点睛】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)40、126(2)240人(3)1 4【解析】【分析】(1)用2部的人数10除以2部人数所占的百分比25%即可求出本次调查的学生数,根据扇形圆心角的度数=部分占总体的百分比×360°,即可得到“1部”所在扇形的圆心角;(2)用1600乘以4部所占的百分比即可;(3)根据树状图所得的结果,判断他们选中同一名著的概率.【详解】(1)调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,则扇形统计图中“1部”所在扇形的圆心角为:1440×360°=126°;故答案为40、126;(2)预估其中4部都读完了的学生有1600×640=240人;(3)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)=416=14.【点睛】本题考查了扇形统计图和条形统计图的综合,用样本估计总体,列表法或树状图法求概率.解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.20.(1)14;(2)14【解析】【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,∴甲投放了一袋是餐厨垃圾的概率是14,故答案为:14;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为416=14.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.无解【解析】【分析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.【详解】解:两边同乘以(x+2)(x -2)得:x (x+2)-(x+2)(x -2)=8去括号,得:2x +2x -2x +4=8移项、合并同类项得:2x=4解得:x=2经检验,x=2是方程的增根∴方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验.22.(1)C;(2)100【解析】【分析】(1)根据中位数的定义即可作出判断;(2)先算出样本中C 等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C 等级,故本次调查中,男生的跳绳成绩的中位数在C 等级;故答案为C.(2)400⨯1040=100(人) 答:估计该校九年级男生跳绳成绩是C 等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.23.-1≤x<4,在数轴上表示见解析.【解析】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.试题解析:()223{3x 122x x +>-≥-①②, 由①得,x<4;由②得,x⩾−1.故不等式组的解集为:−1⩽x<4. 在数轴上表示为:24.(1)证明见解析(2)13【解析】【分析】(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.【详解】(1)连接OC.∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵OA OCPA PCOP OP=⎧⎪=⎨⎪=⎩,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切线,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC•tan∠3【点睛】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.25.证明见解析.【解析】【分析】根据菱形的性质,先证明△ABE≌△ADF,即可得解. 【详解】在菱形ABCD中,AB=BC=CD=AD,∠B=∠D. ∵点E,F分别是BC,CD边的中点,∴BE=12BC,DF=12CD,∴BE=DF.∴△ABE≌△ADF,∴AE=AF.26.54小时【解析】【分析】过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.【详解】解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).考点:解直角三角形的应用-方向角问题27.(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣23.【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.。
2020年广东省揭阳市产业园中考数学二模试卷 (解析版)
2020年揭阳市产业园中考数学二模试卷一、选择题1.在﹣4、﹣、0、4这四个数中,最小的数是()A.4B.0C.﹣D.﹣42.人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣53.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.4.据了解,某定点医院收治的7名新型冠状肺炎患者的新冠病毒潜伏期分别为2天,3天,3天,4天,4天,4天,7天,则这7名患者新冠病毒潜伏期的众数和中位数分别为()A.4天,4天B.3天,4天C.4天,3天D.3天,7天5.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.6.不等式﹣x+2≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≥2D.x≤27.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12B.14C.24D.218.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF 等于()A.75°B.90°C.105°D.115°9.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣110.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.二、填空题(每小题4分,共28分)11.因式分解:1﹣x2=.12.如图,正五边形ABCDE内接于⊙O,则∠CAD=度.13.要切一块面积为0.81m2的正方形钢板,它的边长是m.14.若+(3m﹣n)2=0,则n﹣m=.15.如图,▱ABCD的周长是22,△ABC的周长是17,则AC的长为.16.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为.17.如图,正比例函数y=kx与反比例函数的图象相交于点A、B,过B作x轴的垂线交x轴于点C,连接AC,则△ABC的面积是.三、解答题(每小题6分,共18分)18.计算:(﹣1)2019+×sin60°﹣(﹣3).19.先化简,再求值:•﹣(+1),其中x=﹣6.20.如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.四、解答题(每小题8分,共24分)21.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?22.某学校为了丰富学生课余生活,开展了“第二课堂“活动,推出了以下五种选修课程:A.绘画;B.唱歌;C.跳舞;D.演讲;E.书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息解决下列问题:(1)这次抽查的学生人数是多少人?(2)将条形统计图补充完整.(3)求扇形统计图中课程E所对应扇形的圆心角的度数.(4)如果该校共有1200名学生,请你估计该校选择课程D的学生约有多少人.23.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.五、解答题(每小题10分,共20分)24.如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC 相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.25.已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.参考答案一、选择题(每小题3分,共30分)1.在﹣4、﹣、0、4这四个数中,最小的数是()A.4B.0C.﹣D.﹣4【分析】根据有理数大小比较的法则求解.解:﹣4<﹣<0<4,∴在﹣4、﹣、0、4这四个数中,最小的数是﹣4.故选:D.2.人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5【分析】由科学记数法可知0.000052=5.2×10﹣5;解:0.000052=5.2×10﹣5;故选:B.3.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.解:从左面看可得到从左到右分别是3,1个正方形.故选:C.4.据了解,某定点医院收治的7名新型冠状肺炎患者的新冠病毒潜伏期分别为2天,3天,3天,4天,4天,4天,7天,则这7名患者新冠病毒潜伏期的众数和中位数分别为()A.4天,4天B.3天,4天C.4天,3天D.3天,7天【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.解:从小到大排列此数据为:2天,3天,3天,4天,4天,4天,7天,数据4天出现了三次最多为众数;4天处在第4位为中位数.故选:A.5.下列艺术字中,可以看作是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A、不是轴对称图形,故A错误;B、不是轴对称图形,故B错误;C、是轴对称图形,故C正确;D、不是轴对称图形,故D错误;故选:C.6.不等式﹣x+2≥0的解集为()A.x≥﹣2B.x≤﹣2C.x≥2D.x≤2【分析】直接进行移项,系数化为1,即可得出x的取值.解:移项得:﹣x≥﹣2系数化为1得:x≤2.故选:D.7.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12B.14C.24D.21【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=BC,EF=GH=AD,然后代入数据进行计算即可得解解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=BC,EF=GH=AD,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=7,∴四边形EFGH的周长=7+5=12.故选:A.8.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF 等于()A.75°B.90°C.105°D.115°【分析】依据AB∥EF,即可得∠FCA=∠A=30°,由∠F=∠E=45°,利用三角形外角性质,即可得到∠AOF=∠FCA+∠F=30°+45°=75°.解:∵BA∥EF,∠A=30°,∴∠FCA=∠A=30°.∵∠F=∠E=45°,∴∠AOF=∠FCA+∠F=30°+45°=75°.故选:A.9.关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2B.1C.0D.﹣1【分析】根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选:C.10.如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【分析】分点Q在AC上和BC上两种情况进行讨论即可.解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=x tan30°=,∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选:B.二、填空题(每小题4分,共28分)11.因式分解:1﹣x2=(1﹣x)(1+x).【分析】根据平方差公式可以将题目中的式子进行因式分解.解:∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).12.如图,正五边形ABCDE内接于⊙O,则∠CAD=36度.【分析】圆内接正五边形ABCDE的顶点把圆五等分,即可求得五条弧的度数,根据圆周角的度数等于所对的弧的度数的一半即可求解.解:∵五边形ABCDE是正五边形,∴=====72°,∴∠CAD=×72°=36°.故答案为36.13.要切一块面积为0.81m2的正方形钢板,它的边长是0.9m.【分析】根据正方形的面积公式知道正方形钢板的边长就是求0.81的算术平方根即可.解:∵0.9的平方是0.81,∴边长为0.9m.故答案为:0.9.14.若+(3m﹣n)2=0,则n﹣m=4.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.解:由题意得:m﹣2=0,3m﹣n=0,∴m=2,n=6,∴n﹣m=6﹣2=4,故答案为:4.15.如图,▱ABCD的周长是22,△ABC的周长是17,则AC的长为6.【分析】根据平行四边形的性质解答即可.解:∵,▱ABCD的周长是22,∴AD+DC=11,∵△ABC的周长是17,∴AC=17﹣11=6,故答案为:616.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长==2π,故答案为:2π.17.如图,正比例函数y=kx与反比例函数的图象相交于点A、B,过B作x轴的垂线交x轴于点C,连接AC,则△ABC的面积是3.【分析】由反比例函数、正比例函数的对称性可得,S△BOC=S△AOC,而S△BOC=可以通过反比例函数的关系式求得,于是S△ABC=2S△BOC求出结果.解:由反比例函数、正比例函数的对称性可得,S△BOC=S△AOC,S△BOC=|k|=,∴S△ABC=2S△BOC=3.故答案为:3.三、解答题(每小题6分,共18分)18.计算:(﹣1)2019+×sin60°﹣(﹣3).【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:(﹣1)2019+×sin60°﹣(﹣3)=﹣1+2×+3=﹣1+3+3=519.先化简,再求值:•﹣(+1),其中x=﹣6.【分析】根据分式的加减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:•﹣(+1)===,当x=﹣6时,原式==.20.如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.【分析】(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;(2)利用垂直平分线证得△DEO≌△BFO即可证得EO=FO,进而利用菱形的判定方法得出结论.【解答】(1)解:如图所示:EF即为所求;(2)证明:如图所示:∵四边形ABCD为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分线段BD,∴BO=DO,在△DEO和三角形BFO中,∵,∴△DEO≌△BFO(ASA),∴EO=FO,∴四边形DEBF是平行四边形,又∵EF⊥BD,∴四边形DEBF是菱形.四、解答题(每小题8分,共24分)21.国庆70华诞期间,各超市购物市民络绎不绝,呈现浓浓节日气氛.“百姓超市”用320元购进一批葡萄,上市后很快脱销,该超市又用680元购进第二批葡萄,所购数量是第一批购进数量的2倍,但进价每市斤多了0.2元.(1)该超市第一批购进这种葡萄多少市斤?(2)如果这两次购进的葡萄售价相同,且全部售完后总利润不低于20%,那么每市斤葡萄的售价应该至少定为多少元?【分析】(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,根据单价=总价÷数量结合第二批的进价比第一批的进价每市斤多了0.2元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每市斤葡萄的售价应该定为y元,根据利润=销售收入﹣进货成本结合全部售完后总利润不低于20%,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.解:(1)设该超市第一批购进这种葡萄x市斤,则第二批购进这种葡萄2x市斤,依题意,得:﹣=0.2,解得:x=100,经检验,x=100是原分式方程的解,且符合题意.答:该超市第一批购进这种葡萄100市斤.(2)设每市斤葡萄的售价应该定为y元,依题意,得:(100+100×2)y﹣320﹣680≥(320+680)×20%,解得:y≥4.答:每市斤葡萄的售价应该至少定为4元.22.某学校为了丰富学生课余生活,开展了“第二课堂“活动,推出了以下五种选修课程:A.绘画;B.唱歌;C.跳舞;D.演讲;E.书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息解决下列问题:(1)这次抽查的学生人数是多少人?(2)将条形统计图补充完整.(3)求扇形统计图中课程E所对应扇形的圆心角的度数.(4)如果该校共有1200名学生,请你估计该校选择课程D的学生约有多少人.【分析】(1)由D课程的人数及其所占百分比可得总人数;(2)根据各课程人数之和等于总人数求出C课程的人数,从而补全图形;(3)用360°乘以课程E人数所占比例即可得;(4)用总人数乘以样本中课程D人数所占比例即可得.解:(1)这次抽查的学生人数是25÷25%=100(人);(2)C课程人数为100﹣(10+25+25+20)=20(人),补全图形如下:(3)扇形统计图中课程E所对应扇形的圆心角的度数为360°×=72°;(4)估计该校选择课程D的学生约有1200×25%=300(人).23.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.【分析】(1)把A与O坐标代入抛物线解析式求出a与c的值,即可求出解析式;(2)根据题意表示出P与C的纵坐标,进而表示出线段PC的长,确定出最大值即可.解:(1)把O(0,0),A(3,3)代入得:,解得:,则抛物线解析式为y=﹣x2+4x;(2)设直线OA解析式为y=kx,把A(3,3)代入得:k=1,即直线OA解析式为y=x,∵PB⊥x轴,∴P,C,B三点纵坐标相等,∵B(m,0),∴把x=m代入y=x中得:y=m,即C(m,m),把x=m代入y=﹣x2+4x中得:y=﹣m2+4m,即P(m,﹣m2+4m),∵P在直线OA上方,∴PC=﹣m2+4m﹣m=﹣m2+3m(0<m<3),当m=﹣=时,PC取得最大值,最大值为=.五、解答题(每小题10分,共20分)24.如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC 相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF.(1)求证:①AO=AG.②BF是⊙O的切线.(2)若BD=6,求图形中阴影部分的面积.【分析】(1)①先利用切线的性质判断出∠ACB=∠OEB,再用平行线结合弧相等判断出∠AOG=∠AGO,即可得出结论;②先判断出△AOG是等边三角形,进而得出∠BOF=∠AOG=60°,进而判断出∠EOB =60°,得出△OFB≌△OEB,得出∠OFB=90°,即可得出结论;(2)先判断出∠ABC=30°,进而得出OB=2BE,建立方程6+r=2r,继而求出AG=6,AB=18,AC=9,CG=3,再判断出△OGE是等边三角形,得出GE=OE=6,进而利用根据勾股定理求出CE=3,即可得出结论.解:(1)证明:①如图1,连接OE,∵⊙O与BC相切于点E,∴∠OEB=90°,∵∠ACB=90°,∴∠ACB=∠OEB,∴AC∥OE,∴∠GOE=∠AGO,∵,∴∠AOG=∠GOE,∴∠AOG=∠AGO,∴AO=AG;②由①知,AO=AG,∵AO=OG,∴∠AO=OG=AG,∴△AOG是等边三角形,∴∠AGO=∠AOG=∠A=60°,∴∠BOF=∠AOG=60°,由①知,∠GOE=∠AOG=60°,∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,∴∠FOB=∠EOB,∵OF=OE,OB=OB,∴△OFB≌△OEB(SAS),∴∠OFB=∠OEB=90°,∴OF⊥BF,∵OF是⊙O的半径,∴BF是⊙O的切线;(2)如图2,连接GE,∵∠A=60°,∴∠ABC=90°﹣∠A=30°,∴OB=2BE,设⊙O的半径为r,∵OB=OD+BD,∴6+r=2r,∴r=6,∴AG=OA=6,AB=2r+BD=18,∴AC=AB=9,∴CG=AC﹣AG=3,由(1)知,∠EOB=60°,∵OG=OE,∴△OGE是等边三角形,∴GE=OE=6,根据勾股定理得,CE===3,∴S阴影=S梯形GCEO﹣S扇形OGE=(6+3)×﹣=.25.已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.【分析】(1)根据平行四边形的性质得到AD∥BC,得到∠ADE=∠BFE,∠A=∠FBE,利用AAS定理证明即可;(2)作BN∥HC交EF于N,根据全等三角形的性质、三角形中位线定理证明;(3)作GM∥DF交HC于M,分别证明△CMG∽△CHF、△AHD∽△GHF、△AHK ∽△HGM,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BEN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,∴n=4.培根知识像烛光,能照亮一个人,也能照亮无数的人。
广东省揭阳市2020版中考数学试卷(I)卷
广东省揭阳市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分) (2019七上·下陆月考) 的相反数的绝对值是________.2. (1分)分解因式:a3﹣a=________ .3. (1分)(2020七下·青岛期中) 把一块含30°角的直角三角板放在两平行直线上,如图,则∠1+∠2=________°;4. (1分) (2020九下·茂名月考) 若代数式有意义,则实数的取值范围是________.5. (1分) (2020九上·定州期末) 如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是________.6. (1分) (2017八下·广州期中) 如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2 ,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3 ,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是________.二、选择题 (共8题;共16分)7. (2分)(2020·扶沟模拟) 如图,是一个由5个大小相同的小正方体组成的立体图形,它的左视图是()A .B .C .D .8. (2分)(2020·惠山模拟) 某区新教师招聘中,九位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是()A . 方差B . 众数C . 中位数D . 平均数9. (2分) (2020七下·嘉兴期中) 估算的值在()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间10. (2分) (2015七下·双峰期中) 下列计算正确的是()A . x2•x3=x3B . (mn)2=mn2C . (﹣x5)4=x20D . (a2)3=a511. (2分)不等式组的解集为()A .B .C .D .12. (2分)(2020·连山模拟) 今年月,某种口罩单价,上涨元,同样花费元买这种口罩,涨价前可以比涨价后多买个,设涨价后每个口罩元,可列出的正确的方程是().A .B .C .D .13. (2分)将抛物线y=2x2-12x+16绕它的顶点旋转180°,所得抛物线的解析式是().A . y=-2x2-12x+16B . y=-2x2+12x-16C . y=-2x2+12x-19D . y=-2x2+12x-2014. (2分) (2019九上·长兴期末) 如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A . (6,5)B . (6,0)C . (6,4)D . (4,2)三、解答题 (共9题;共82分)15. (5分)(2017·七里河模拟) 计算: +| ﹣3|﹣2sin60°﹣()2+20160 .16. (5分) (2020八上·西湖期末) 如图,中,,分别是边上的高线.求证: .17. (11分) (2019九上·舟山期中) 为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=________,b=________,样本成绩的中位数落在________范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有850名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?18. (10分)(2018·灌南模拟) 一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表).19. (10分)(2019·常德) 如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C .(1)求反比例函数的解析式;(2)若点P在x轴上,且的面积为5,求点P的坐标.20. (10分)(2020·陕西模拟) 如图,在△ABC中,D为AB边上一点,求作⊙O,使得⊙O经过D,C两点,且与直线AB相切于点D。
广东省揭阳市2019-2020学年第二次中考模拟考试数学试卷含解析
广东省揭阳市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°2.﹣2的绝对值是()A.2 B.12C.12-D.2-3.在△ABC中,AB=AC=13,BC=24,则tanB等于()A.513B.512C.1213D.1254.一组数据:6,3,4,5,7的平均数和中位数分别是( )A.5,5 B.5,6 C.6,5 D.6,65.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm6.某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,…,1.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.如果令1,,0,ii ja ji j第号同学同意第号同学当选第号同学不同意第号同学当选⎧=⎨⎩其中i=1,2,…,1;j=1,2,…,1.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是()A.同意第1号或者第2号同学当选的人数B.同时同意第1号和第2号同学当选的人数C.不同意第1号或者第2号同学当选的人数D.不同意第1号和第2号同学当选的人数7.下列运算正确的是()A.a•a2=a2B.(ab)2=ab C.3﹣1=13D.5510+=8.下列运算结果正确的是()A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a2 9.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC 交AD于点E,则DE的长是()A.5 B.32C.74D.15410.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为()A.12×103B.1.2×104C.1.2×105D.0.12×10511.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-212.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x …–2 –1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分式方程2154x=-的解是_____.14.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.15.把多项式a3-2a2+a分解因式的结果是16.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.17.小青在八年级上学期的数学成绩如下表所示.平时测验期中考试期末考试成绩86 90 81如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_____分.18.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.在平面直角坐标系xOy中,⊙O的半径为1.(1)如图2,已知M(22,22),N(22,﹣22),在A(1,0),B(1,1),C2,0)三点中,是线段MN关于点O的关联点的是;(2)如图3,M(0,1),N(32,﹣12),点D是线段MN关于点O的关联点.①∠MDN的大小为;②在第一象限内有一点E3,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;③点F在直线y=﹣33x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.20.(6分)下表给出A、B、C三种上宽带网的收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A 30 25 0.05B 50 50 0.05C 120 不限时设上网时间为t小时.(I)根据题意,填写下表:月费/元上网时间/h 超时费/(元)总费用/(元)方式A 30 40方式B 50 100(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?21.(6分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题: (1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.22.(8分)计算:20112(1)6tan 303π-︒⎛⎫+--+- ⎪⎝⎭解方程:544101236x x x x -++=-- 23.(8分)如图,点B 在线段AD 上,BC DE P ,AB ED =,BC DB =.求证:A E ∠=∠.24.(10分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB 段为监测区,C 、D 为监测点(如图).已知C 、D 、B 在同一条直线上,且AC BC ⊥,CD=400米,tan 2ADC ∠=,35ABC ∠=︒.求道路AB 段的长;(精确到1米)如果AB 段限速为60千米/时,一辆车通过AB 段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin350.57358︒≈,cos350.8195︒≈,tan350.7︒≈)25.(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF ,BE 是△ABC 的中线,AF ⊥BE ,垂足为P ,像△ABC 这样的三角形均为“中垂三角形”.设BC =a ,AC =b ,AB =c . 特例探索。
广东省揭阳市2019-2020学年中考中招适应性测试卷数学试题(2)含解析
广东省揭阳市2019-2020学年中考中招适应性测试卷数学试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在3,0,-2,-四个数中,最小的数是( ) A .3 B .0 C .-2 D .-2. “车辆随机到达一个路口,遇到红灯”这个事件是( )A .不可能事件B .不确定事件C .确定事件D .必然事件3.下列计算正确的是( )A .2x+3x=5xB .2x•3x=6xC .(x 3)2=5D .x 3﹣x 2=x4.下列运算正确的是( )A .(a ﹣3)2=a 2﹣9B .(12)﹣1=2C .x+y=xyD .x 6÷x 2=x 3 5.已知e →为单位向量,a r =-3e →,那么下列结论中错误..的是( ) A .a r ∥e → B .3a =r C .a r 与e →方向相同 D .a r 与e →方向相反 6.已知点A(1,y 1)、B(2,y 2)、C(﹣3,y 3)都在反比例函数y =6x 的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 2<y 1<y 3 D .y 3<y 1<y 27.计算﹣8+3的结果是( )A .﹣11B .﹣5C .5D .118.下列四个图形中,是中心对称图形的是( )A .B .C .D .9.下列关于统计与概率的知识说法正确的是( )A .武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B .检测100只灯泡的质量情况适宜采用抽样调查C .了解北京市人均月收入的大致情况,适宜采用全面普查D .甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数 10. “a 是实数,20a ≥”这一事件是( )A .不可能事件B .不确定事件C .随机事件D .必然事件11.如图,菱形ABCD 的边长为2,∠B=30°.动点P 从点B 出发,沿 B-C-D 的路线向点D 运动.设△ABP 的面积为y(B 、P 两点重合时,△ABP 的面积可以看作0),点P 运动的路程为x ,则y 与x 之间函数关系的图像大致为( )A .B .C .D .12.不等式组73357x x x -+<+⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.14.化简:18=_____. 15.分解因式:21a -=________.16.方程6x x -=+的解是_________.17.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 ______ 度.18.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,则水的最大深度CD 是______mm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.20.(6分)已知:如图,在平面直角坐标系中,O为坐标原点,△OAB的顶点A、B的坐标分别是A(0,5),B(3,1),过点B画BC⊥AB交直线于点C,连结AC,以点A为圆心,AC为半径画弧交x轴负半轴于点D,连结AD、CD.(1)求证:△ABC≌△AOD.(2)设△ACD的面积为,求关于的函数关系式.(3)若四边形ABCD恰有一组对边平行,求的值.21.(6分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.22.(8分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求△BCE的面积最大值.23.(8分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.24.(10分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.25.(10分)如图,在Rt ΔABC 中,C 90∠=o ,AD 平分BAC ∠,交BC 于点D ,点O在AB 上,O e 经过A,D 两点,交AB 于点E ,交AC 于点F . 求证:BC 是O e 的切线;若O e 的半径是2cm ,F 是弧AD 的中点,求阴影部分的面积(结果保留π和根号).26.(12分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离” (1)求抛物线y =x 2﹣2x+3与x 轴的“亲近距离”; (2)在探究问题:求抛物线y =x 2﹣2x+3与直线y =x ﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x 轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y =x 2﹣2x+3与抛物线y =214x +c 的“亲近距离”为23,求c 的值. 27.(12分)如图,AB 为⊙O 的直径,点C 在⊙O 上,AD ⊥CD 于点D ,且AC 平分∠DAB ,求证:(1)直线DC 是⊙O 的切线;(2)AC 2=2AD•AO .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.2.B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.A【解析】【分析】依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可.【详解】A 、2x +3x =5x ,故A 正确;B 、2x•3x =6x 2,故B 错误;C 、(x 3)2=x 6,故C 错误;D 、x 3与x 2不是同类项,不能合并,故D 错误.故选A .【点睛】本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键.4.B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A. (a ﹣3)2=a 2﹣6a+9,故该选项错误;B. (12)﹣1=2,故该选项正确; C.x 与y 不是同类项,不能合并,故该选项错误;D. x 6÷x 2=x 6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.5.C【解析】【分析】由向量的方向直接判断即可.【详解】解:e r 为单位向量,a v =3e r ,所以a v 与e r方向相反,所以C 错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.6.B【解析】【分析】分别把各点代入反比例函数的解析式,求出y 1,y 2,y 3的值,再比较出其大小即可.【详解】∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=6x的图象上,∴y1=61=6,y2=62=3,y3=63=-2,∵﹣2<3<6,∴y3<y2<y1,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.7.B【解析】【分析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【详解】解:−8+3=−2.故选B.【点睛】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.8.D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.考点:中心对称图形.9.B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B 符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.10.D【解析】a是实数,|a|一定大于等于0,是必然事件,故选D.11.C【解析】【分析】先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.【详解】由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,y=12x,当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C.故选C.12.C【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x >2,解不等式3x ﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5750【解析】【分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元, ∴72-b b=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x)元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩ , ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m+40n+xn ,∴W =60m+40n+20n ﹣250=60(m+n)﹣250,∵m+n≤100,∴W≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;。
广东省揭阳市2019-2020学年中考第二次大联考数学试卷含解析
广东省揭阳市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( ) A .485×105 B .48.5×106 C .4.85×107 D .0.485×1082.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .454.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且,则的值为A .B .C .D .5.如图,在,//ABC DE BC ∆中,,D E 分别在边,AB AC 边上,已知13AD DB =,则DEBC 的值为( )A .13B .14C .15D .256.如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )A .3.5B .4C .7D .147.小明解方程121x x x--=的过程如下,他的解答过程中从第( )步开始出现错误. 解:去分母,得1﹣(x ﹣2)=1①去括号,得1﹣x+2=1② 合并同类项,得﹣x+3=1③ 移项,得﹣x =﹣2④ 系数化为1,得x =2⑤ A .①B .②C .③D .④8.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下. 成绩 人数(频数) 百分比(频率) 0 5 0.2 10 5 15 0.4 2050.1根据表中已有的信息,下列结论正确的是( ) A .共有40名同学参加知识竞赛B .抽到的同学参加知识竞赛的平均成绩为10分C .已知该校共有800名学生,若都参加竞赛,得0分的估计有100人D .抽到同学参加知识竞赛成绩的中位数为15分 9.若分式12x -有意义...,则x 的取值范围是( ) A .2x =;B .2x ≠;C .2x >;D .2x <.10.已知实数a <0,则下列事件中是必然事件的是( ) A .a+3<0B .a ﹣3<0C .3a >0D .a 3>011.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B=40°,∠C=36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°12.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为( )A .30°B .40°C .50°D .60°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:(2a+b )2﹣(a+2b )2= . 14.如果不等式组213(1)x x x m ->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____15.方程3x(x-1)=2(x-1)的根是 16.比较大小:.(填“>”,“<”或“=”)17.圆锥的底面半径为2,母线长为6,则它的侧面积为_____. 18.函数2y x +=﹣的图象不经过第__________象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x ,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表: 摸球总次数 1020306090120180240330450“和为8”出现的频数 210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是13,那么x 的值可以为7吗?为什么?20.(6分)如图,矩形ABCD 中,对角线AC 、BD 交于点O ,以AD 、OD 为邻边作平行四边形ADOE ,连接BE求证:四边形AOBE 是菱形若180EAO DCO ∠+∠=︒,2DC =,求四边形ADOE 的面积21.(6分)如图,已知∠AOB=45°,AB ⊥OB ,OB=1.(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长.22.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(10分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.25.(10分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.(1)如图1,当旋转角为90°时,求BB′的长;(2)如图2,当旋转角为120°时,求点O′的坐标;(3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)26.(12分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?27.(12分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE =45°,BE=4,DE=10, 求直角梯形ABCD的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】依据科学记数法的含义即可判断.【详解】解:48511111=4.85×117,故本题选择C.【点睛】把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.2.B【解析】【分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.3.B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.4.C【解析】∵,∠A=∠A,∴△ABC∽△AED。
2020年广东省揭阳市中考数学试卷-含详细解析
2020年广东省揭阳市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m 2b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。
广东省揭阳市2019-2020学年中考数学二模考试卷含解析
广东省揭阳市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是A.B.C.D.2.下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a53.在代数式3mm中,m的取值范围是()A.m≤3B.m≠0C.m≥3D.m≤3且m≠04.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.145.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.6.如图,l1∥l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=()A.5:2 B.4:3 C.2:1 D.3:27.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为330cm ,则这块圆形纸片的直径为( )A .12cmB .20cmC .24cmD .28cm8.将抛物线y =2x 2向左平移3个单位得到的抛物线的解析式是( )A .y =2x 2+3B .y =2x 2﹣3C .y =2(x+3)2D .y =2(x ﹣3)29.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定10.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .7 11.﹣18的相反数是( ) A .8 B .﹣8 C .18 D .﹣1812.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其 浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.14.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.15.二次函数()2y ax bx c a 0=++≠中的自变量x 与函数值y 的部分对应值如下表:x (32)- 1- 12- 0 12 1 32 … y … 54- 2- 94- 2- 54- 0 74 …则2ax bx c 0++=的解为________.16.分解因式39a a -=________,221218x x -+=__________.17.如图,AG ∥BC ,如果AF :FB =3:5,BC :CD =3:2,那么AE :EC =_____.18.101201842-⎛⎫+- ⎪⎝⎭=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标xOy 中,正比例函数y =kx 的图象与反比例函数y =m x的图象都经过点A (2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA 向上平移3个单位长度后与y 轴交于点B ,与反比例函数图象在第四象限内的交点为C ,连接AB ,AC ,求点C 的坐标及△ABC 的面积.20.(6分)已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.21.(6分) (1)解方程: +=4(2)解不等式组并把解集表示在数轴上:.22.(8分)在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.23.(8分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=23.(1)求∠A的度数.(2)求图中阴影部分的面积.24.(10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距离分别为40cm、8cm.为使板凳两腿底端A、D之间的距离为50cm,那么横梁EF应为多长?(材质及其厚度等暂忽略不计).25.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.26.(12分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.∠的平分线与边AB相交于点E.27.(12分)如图,在平行四边形ABCD中,ADC+=;(1)求证BE BC CD(2)若点E与点B重合,请直接写出四边形ABCD是哪种特殊的平行四边形.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.2.B【解析】。
广东省揭阳市九年级数学中考二模试卷
广东省揭阳市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七下·龙岗期末) 新型冠状病毒主要通过呼吸道传播,传播方式为飞沫传播、飞沫核传播及尘埃传播,新冠病毒平均直径为100纳米,即0.0000001米,那么0.0000001可用科学记数法表示为()A .B .C .D .2. (2分)下列函数中自变量取值范围选取错误的是()A . y= 中x≠0B . y=x2中x取全体实数C . y= 中x≠﹣1D . y= 中x≥13. (2分)下列计算正确的是()A . a2+a3=a5B . (a﹣b)2=a2﹣b2C . a5÷a3=a2D . (a2)3=a54. (2分)(2020·北京模拟) 图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下列说法中错误的一项()A . 图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量.B . 图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半.C . 图2显示意大利当前的治愈率高于西班牙.D . 图3显示大约从3月16日开始海外的病死率开始高于中国的病死率5. (2分)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A . 3B . 4C . 5D . 66. (2分)(2018·滨州模拟) 如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A . 12B . 20C . 24D . 327. (2分)(2017·河北模拟) 小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A . 600﹣250 米B . 600 ﹣250米C . 350+350 米D . 500 米8. (2分)(2018·襄阳) 如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC 的长为()A . 4B . 2C .D . 2二、填空题 (共6题;共6分)9. (1分)绝对值不大于4.5的整数有________.10. (1分)(2016·深圳模拟) 分解因式:ax2﹣4ax+4a=________11. (1分) (2016八上·阜康期中) 一个多边形的外角和是内角和的,则这个多边形的边数为________.12. (1分)如图,在Rt△ABC中,∠C=90°,∠B=70°,△ABC的内切圆⊙O与边AB、BC、CA分别相切于点D、E、F,则∠DEF的度数为________.13. (1分) (2019九上·西安开学考) 如果关于的方程,的两个实数根分别为,,那么的值为________.14. (1分)(2020·黑龙江) 如图,在平面直角坐标系中,矩形ABCD的边AB在y轴上,点C坐标为(2,﹣2),并且AO:BO=1:2,点D在函数y=(x>0)的图象上,则k的值为________.三、解答题 (共8题;共79分)15. (11分)(2019·上饶模拟)(1)已知x满足x2-4x-2=0,求(2x-3)2-(x+y)(x-y)-y2的值;(2)如图,在等边△ABC中,点D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DC=CF.16. (5分)己知:正方形ABCD.(1)如图1,点E、点F分别在边AB和AD上,且AE=AF.此时,线段BE、DF的数量关系和位置关系分别是什么?请直接写出结论.(2)如图2,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.(3)如图3,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当a=90°时,连接BE、DF,猜想沟AE与AD满足什么数量关系时,直线DF垂直平分BE.请直接写出结论.(4)如图4,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.17. (7分)(2018·济宁) 某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总入数,并补全条形统计图.(2)求D(泗水)所在扇形的圆心角度数;(3)该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.18. (10分) (2017八上·金堂期末) 甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计).(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?19. (10分) (2019八下·白水期末) 如图,在四边形ABCD中,,,连接AC,点P、E 分别在AB、CD上,连接PE,PE与AC交于点F,连接PC,, .(1)判断四边形PBCE的形状,并说明理由;(2)求证:;(3)当P为AB的中点时,四边形APCE是什么特殊四边形?请说明理由.20. (15分)如图,在平面直角坐标系xOy中,抛物线y=x2+ 与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是________;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.21. (10分)(2018·溧水模拟) 如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:△ADG≌△CDG.(2)若=,EG=4,求AG的长.22. (11分)(2019·沈阳) 如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2 ,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共8题;共79分)15-1、15-2、16-1、17-1、17-2、17-3、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、。
广东省揭阳市2020版中考数学试卷(I)卷(新版)
广东省揭阳市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共12小题,满分36分) (共12题;共36分)1. (3分)绝对值相等的两个数在数轴上对应的两个点之间的距离是8 ,则这两个数分别是()A . +8和-8B . 0和-8C . 0和8D . 4和-42. (3分)(2019·抚顺模拟) 下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3. (3分)“十二·五”期间,钦州市把“建大港,兴产业,造新城”作为科学发展的三大引擎,其中到2015年港品吞吐能力争取达到120 000 000吨,120 000 000用科学记数法表示为()A . 1.2×107B . 12×107C . 1.2×108D . 1.2×10-84. (3分)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A .B .C .D .5. (3分)本卷第17~25题的9道题中,每道题所赋分数(注:分值依次为6,7,7,8,8,8,9,9,10)的众数和中位数分别是()A . 7,7B . 8,8C . 8,9D . 8,76. (3分)计算(a2)3的结果是()A . a5B . a6C . a8D . 3a27. (3分) (2017七下·港南期末) 下列说法正确的是()A . 相等的两个角是对顶角B . 同位角相等C . 图形平移后的大小可以发生改变D . 两条直线相交所成的四个角都相等,则这两条直线互相垂直8. (3分)(2017·路北模拟) 如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A . 两人皆正确B . 两人皆错误C . 甲正确,乙错误D . 甲错误,乙正确9. (3分) (2017九上·澄海期末) 在二次函数y=x2﹣2x+3的图象中,若y随x的增大而增大,则x的取值范围是()A . x<﹣1B . x>﹣1C . x<1D . x>110. (3分)(2019·深圳) 下面命题正确的是()A . 矩形对角线互相垂直B . 方程x2=14x的解为x=14C . 六边形内角和为540°D . 一条斜边和一条直角边分别相等的两个直角三角形全等11. (3分)若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则的值为()A .B . 99!C . 9900D . 2!12. (3分) (2019九上·台儿庄期中) 如图,在平面直角坐标系中,四边形为菱形,,,,则对角线交点的坐标为()A .B .C .D .二、填空题(每小题3分,共4小题,满分12分) (共4题;共12分)13. (3分)(2019·长沙) 分解因式:am2﹣9a=________.14. (3分) (2018九上·建平期末) 在一个不透明的口袋内放入红球8个,黑球4个,黄球n个,这些球除颜色外无任何差别,摇匀后随机摸出一个恰好是黄球的概率为,则放入口袋中的黄球个数是________.15. (3分) (2020七上·高淳期末) 把一张长方形纸条ABCD沿EF折叠,若∠AEG=62 ,则∠DEF=________ .16. (3分)如图,在所给的平面直角坐标系中描出下列各点:①点A在x轴上方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度;②点B在x轴下方,y轴右侧,距离x、y轴都是3个单位长度;③点C在y 轴上,位于原点下方,距离原点2个单位长度;④点D在x轴上,位于原点右侧,距离原点4个单位长度.填空:点A的坐标为________;点B的坐标为________;点B位于第________象限内;点C的坐标为________;点D的坐标为________;线段CD的长度为________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8 (共7题;共52分)17. (5分)(2019·巴彦模拟) 先化简,再求代数式÷(x﹣3﹣)的值,其中x=3tan45°+2cos30°.18. (6分)(2020·鞍山模拟) 先化简,再求值:÷(﹣x+1),并从﹣tan60°≤x≤2cos30°取出一个合适的整数,求出式子的值.19. (7.0分) (2018九上·桐梓月考) 今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:(1)本次调查活动的样本容量是________;(2)调查中属于“基本了解”的市民有________人;(3)补全条形统计图;(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?20. (8分)(2019·岳阳模拟) 如图,长沙九龙仓国际金融中心主楼高达,是目前湖南省第一高楼,和它处于同一水平面上的第二高楼高,为了测量高楼上发射塔的高度,在楼底端点测得的仰角为α,,在顶端E测得A的仰角为,求发射塔的高度.21. (8分)(2019·封开模拟) 为美化校园,某学校将要购进A、B两个品种的树苗,已知一株A品种树苗比一株B品种树苗多20元,若买一株A品种树苗和2株B品种树苗共需110元.(1)问A、B两种树苗每株分别是多少元?(2)学校若花费不超过4000元购入A、B两种树苗,已知A品种树苗数量是B品种树苗数量的一半,问此次至多购买B品种树苗多少株?22. (9分) (2019九上·潮南期末) 如图,已知抛物线的图象与轴交于,两点(点在点的右侧),与轴交于点.(1)求直线的解析式;(2)点是直线下方抛物线上的一点,当的面积最大时,在抛物线的对称轴上找一点,使得的周长最小,请求出点的坐标和点的坐标;(3)在(2)的条件下,是否存在这样的点,使得为等腰三角形?如果有,请直接写出点的坐标;如果没有,请说明理由.23. (9.0分)(2018·深圳) 已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于 AD长为半径做弧,交于点B,AB∥CD.(1)求证:四边形ACDB为△CFE的亲密菱形;(2)求四边形ACDB的面积.参考答案一、选择题(每小题3分,共12小题,满分36分) (共12题;共36分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(每小题3分,共4小题,满分12分) (共4题;共12分)13-1、14-1、15-1、16-1、三、解答题(第17题5分,第18题6分,第19题7分,第20题8 (共7题;共52分)17-1、18-1、19-1、19-2、19-3、19-4、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。
广东省揭阳市中考数学考试试卷
广东省揭阳市中考数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分)1. (3分)实数a、b、c在数轴上的位置如图所示,化简:|a-b|-|c-a|+|b-c|-|a|的结果是()A . abB . -aC . aD . 2b-a2. (3分)我国网上购物持续高速发展,2011年我国有2.12亿用户至少有一次网购经历,网购金额达到了80 90亿元,比2010年增长72.9%,占到了我国社会商品零售总额的4.4%.8090亿用科学记数法表示为()A . 8.09×1012B . 8.09×1011C . 8.09×1010D . 8.09×1033. (3分)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A . 主视图改变,俯视图改变B . 主视图不变,俯视图不变C . 主视图不变,俯视图改变D . 主视图改变,俯视图不变4. (3分)已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是()①m是无理数;②m是方程m2﹣12=0的解;③m满足不等式组;④m是12的算术平方根A . ①②B . ①③C . ③D . ①②④5. (3分)某校七年级一班有x人,分y小组进行课外兴趣活动,若每组6人,则余4人,若每组7人,则不足5人,则全班的人数为()A . 60人B . 58人C . 62人D . 59人6. (3分)如图,一块三角形空地上种草皮绿化,已知AB=20米,AC=30米,∠A=150°,草皮的售价为a元/米2 ,则购买草皮至少需要()A . 450a元B . 225a元C . 150a元D . 300a元7. (3分)如图,△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF (E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数是()A . 100°B . 108°C . 120°D . 126°8. (3分)已知反比例函数,下列结论中不正确的是()A . 图象经过点(-1,-1)B . 图象在第一、三象限C . 当x>1时,0<y<1D . 当x<0时,y随着x的增大而增大二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)9. (3分)(2017·长春模拟) 计算: =________.10. (3分)利用解一元二次方程的方法,在实数范围内分解因式x2﹣2x﹣1=________.11. (3分)(2019·镇江) 已知关于的方程有两个相等的实数根,则的值是________..12. (3分) (2017七下·无锡期中) 探照灯、锅形天线、汽车灯以及其它很多灯具都可以反射光线.如图所示是一探照灯灯碗,侧面看上去,从位于O点的灯泡发出的两束光线OB,OC经灯碗反射以后平行射出.如果图中∠ABO=α,∠DCO=β,则∠BOC的度数为________.13. (3分) (2018九上·松江期中) 如图,线段BD与线段CE相交于点A,ED∥BC,已知2BC=3ED,AC=8,则AE=________.14. (3分) (2018九上·大石桥期末) 已知二次函数y=-x2-2x+3的图象上有两点A(-8,y1),B(-5,y2),则y1________y2 .(填“>”“<”或“=”)三、解答题(本大题共10小题,共78分) (共10题;共75分)15. (6分) (2020七下·西安月考) 先化简,再求值:,其中.16. (6分) (2018九上·东台月考) 小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字。
2020年揭阳市数学中考试题含答案
2020年揭阳市数学中考试题含答案一、选择题1.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <32.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .3.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =-B .24y x =+C .22y x =+D .22y x =-4.-2的相反数是( ) A .2B .12C .-12D .不存在5.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )A .①②B .②③C .①②③D .①③ 6.下列运算正确的是( ) A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=7.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .58.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.59.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <10.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°11.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃12.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内OB 上一点,∠BMO=120°,则⊙C 的半径长为( )A.6 B.5 C.3 D.32二、填空题13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.14.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.18.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3=,那么tan∠DCF的值是____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)20.分解因式:2x2﹣18=_____.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 名市民,扇形统计图中,C 组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解. 22.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .23.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++24.问题:探究函数y =x + 的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x 的取值范围是:____;(2)如表是y 与x 的几组对应值,请将表格补充完整: x… ﹣3﹣2﹣﹣11 2 3 …y … ﹣3 ﹣3 ﹣3 ﹣443 …(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:个数x150≤x<170170≤x<185185≤x<190x≥190男生5852女生38a3两组数据的极差、平均数、中位数、众数如表所示:极差平均数中位数众数男生55178b c女生43181184186(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.2.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.4.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.5.D解析:D【解析】如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选D.6.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.7.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k 的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.8.B解析:B 【解析】 【分析】 【详解】解:∵∠ACB =90°,∠ABC =60°, ∴∠A =30°, ∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD , ∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B .9.A解析:A 【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:a b =,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误,故选A . 【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.10.B解析:B 【解析】 【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案. 【详解】 ∵AB ∥CD , ∴∠BAC+∠C=180°, ∵∠C=70°,∴∠CAB=180°-70°=110°, 又∵AE 平分∠BAC , ∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°, 故选B. 【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.11.B解析:B 【解析】 【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩解得35x ≤≤. 故选:B . 【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.12.C解析:C【解析】【分析】先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.【详解】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵∠AOB=90°,∴AB是⊙C的直径,∴∠ABO=90°-∠BAO=90°-60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长=3,故选:C【点睛】本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.二、填空题13.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-30°=60°∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上∴AC=A′C∴△A′AC是等边三角形∴∠ACA解析:60°【解析】试题解析:∵∠ACB=90°,∠ABC=30°,∴∠A=90°-30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故答案为60°.14.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.15.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.16.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.17.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x -=-. 【解析】【分析】 设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x ﹣40)千米/时, 根据题意得:13201320304060x x -=-. 故答案为:13201320304060x x -=-. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系. 18.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF=BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点解析:2. 【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF =CD 2x 2=.【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a 次a 次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.试题解析:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.22.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DF A =∠F AB .在Rt △BCF 中,由勾股定理,得BC =,∴AD =BC =DF =5,∴∠DAF =∠DF A ,∴∠DAF =∠F AB ,即AF 平分∠DAB .【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF =∠DF A 是解题关键. 23.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-, ()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.24.(1)x ≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x 的取值范围即可;(2)将x =1,x =2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.25.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
揭阳市2020年中考数学一模考试试卷(II)卷
揭阳市2020年中考数学一模考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) -6的倒数是A . 6B .C .D .2. (2分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示(结果保留2个有效数字)应为()A .B .C .D .3. (2分)(2017·邵阳模拟) 如图所示,是由5个相同的小正方体组合而成的几何体,它的左视图是()A .B .C .D .4. (2分)如图,已知数轴上的点A,B,C,D分别表示数﹣2、1、2、3,则表示数的点P应落在线段()C . BC上D . CD上5. (2分)(2017·孝感) 如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A .B .C .D .6. (2分) (2019八下·天河期末) 下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:甲乙丙丁平均数(cm)175173175174方差S2(cm2) 3.5 3.512.515根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A . 甲7. (2分) (2016八上·宁海月考) 下列四个图案,其中轴对称图形有()A . 0个B . 1个C . 2个D . 3个8. (2分) (2019八上·盘龙镇月考) 若xa=4,xb=5,则 x3a﹣2b的值为()A .B .C . 2D . 529. (2分)已知一个多边形的外角和等于它的内角和,则这多边形是()A . 三角形B . 四边形C . 五边形D . 六边形10. (2分) (2017八下·宝安期中) 如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CD翻折,使点A落在AB上的点E处;再将边BC沿CF翻折,使点B落在CE的延长线上的点B′处,两条折痕与斜边AB分别交于点D,F,则线段B′F的长为()A .C .D .二、填空题 (共6题;共6分)11. (1分) (2017八下·姜堰期末) 若代数式有意义,那么x的取值范围是________.12. (1分)(2017·玉林) 分解因式:a3﹣ab2=________.13. (1分)已知直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,则这个直角三角形的斜边长是________14. (1分) (2018九上·浦东期中) 在中,,,,________.15. (1分) (2017八下·江都期中) 如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是.(只填写一个条件,不另外添加字母和线段)16. (1分)观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________三、解答题 (共9题;共82分)17. (5分)(2018·衢州) 计算:18. (5分)先化简,再求值:÷(a﹣),其中a=2+, b=2﹣.19. (10分) (2017七下·温州期中) 如图,直线AB,CD被直线EF所截,AB∥CD,FG平分∠EFD .(1)若∠1=54° ,求∠2的度数(完成填空).解:(1)∵AB∥CD(已知)∴∠ ________= 180 ° -∠1(________)∵ FG平分∠EFD,∠1=54°(已知)∴∠GFD= ∠EFD = ________°∴∠2 = ________-∠GFD = ________° (两直线平行,同旁内角互补)(2)作∠FGB 的角平分线GH交CD于点H. 若GH∥EF 时,求∠1的度数.20. (10分) (2016九上·简阳期末) 某工程队修建一条总长为1860米的公路,在使用旧设备施工17天后,为尽快完成任务,工程队引进了新设备,从而将工作效率提高了50%,结果比原计划提前15天完成任务.(1)工程队在使用新设备后每天能修路多少米?(2)在使用旧设备和新设备工作效率不变的情况下,工程队计划使用旧设备m天,使用新设备n(16≤n≤26)天修建一条总长为1500米的公路,使用旧设备一天需花费16000元,使用新设备一天需花费25000元,当m、n分别为何值时,修建这条公路的总费用最少,并求出最少费用.21. (6分) (2018九上·杭州期末) 某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑某中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案利用树状图或列表方法表示;(2)如果(1)中各种选购方案被选中的可能性相同,求A型号电脑被选中的概率.22. (10分) (2016八上·萧山期中) 如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BP=BQ,连结CQ.(1)观察并猜想AP与CQ之间的大小关系,并说明理由.(2)若PA=3,PB=4,PC=5,连结PQ,判断△PQC的形状并说明理由.23. (15分) (2018九上·杭州期中) 如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径和CE的长.24. (15分)(2017·资中模拟) 如图,已知ABCD是菱形,△EFP的顶点E,F,P分别在线段AB,AD,AC上,且EP=FP.(1)证明:∠EPF+∠BAD=180°;(2)若∠BAD=120°,证明:AE+AF=AP;(3)若∠BAD=θ,AP=a,求AE+AF.25. (6分) (2017八下·海珠期末) 如图,正方形ABCD的边长是2,点E是射线AB上一动点(点E与点A、B不重合),过点E作FG⊥DE交射线CB于点F、交DA的延长线于点G.(1)求证:DE=GF.(2)连结DF,设AE=x,△DFG的面积为y,求y与x之间的函数解析式.(3)当Rt△AEG有一个角为30°时,求线段AE的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共82分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
广东省揭阳市2019-2020学年中考第二次质量检测数学试题含解析
广东省揭阳市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,最小的数是( )A .3-B .()2--C .0D .14- 2. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )月用水量(吨)4 5 6 9 户数(户) 3 4 2 1 A .中位数是5吨 B .众数是5吨 C .极差是3吨 D .平均数是5.3吨3.如图所示,在矩形ABCD 中,AB=6,BC=8,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则DE 的长是( )A .5B .32C .74D .1544.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 5.要使式子2a +有意义,a 的取值范围是( ) A .0a ≠ B .且0a ≠ C .2a >-. 或0a ≠ D .2a ≥- 且0a ≠6.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )A .B .C .D .7.如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,且AB=10,BC=15,MN=3,则AC 的长是( )A .12B .14C .16D .188.在平面直角坐标系中,点,则点P 不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .10.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )11.下列选项中,能使关于x 的一元二次方程ax 2﹣4x+c=0一定有实数根的是( )A .a >0B .a=0C .c >0D .c=012.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:32a ab -=___.14.若一个棱柱有7个面,则它是______棱柱.15.如图,在ABC ∆中,AB AC =,点D 、E 分别在边BC 、AB 上,且ADE B ∠=∠,如果:2:5DE AD =,3BD =,那么AC =________.16.当03x ≤≤时,直线y a =与抛物线2(1)3y x =﹣﹣有交点,则a 的取值范围是_______.17.若二次函数y =-x 2-4x +k 的最大值是9,则k =______.18.如图,在平面直角坐标系中,点P(﹣1,a)在直线y =2x+2与直线y =2x+4之间,则a 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图所示,抛物线y=﹣x 2+bx+c 与x 轴的两个交点分别为A (1,0),B (3,0)(1)求抛物线的表达式;(2)设点P 在该抛物线上滑动,且满足条件S △PAB =1的点P 有几个?并求出所有点P 的坐标.20.(6分)如图,抛物线y=﹣12x 2﹣x+4与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C . (1)求点A ,点B 的坐标; (2)P 为第二象限抛物线上的一个动点,求△ACP 面积的最大值.21.(6分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.22.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度.若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?23.(8分)已知关于x 的一元二次方程x 2﹣(2m+3)x+m 2+2=1.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足x 12+x 22=31+|x 1x 2|,求实数m 的值.24.(10分)已知关于x 的一元二次方程 2(1)(4)30m x m x -+--=(m 为实数且1m ≠).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数...m 的值.25.(10分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x()件. (1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m 件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w 与m 之间的关系式;利用w 与m 之间的关系式说明怎样购买最实惠.26.(12分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时(x为正整数),月销售利润为y元.求y与x的函数关系式并直接写出自变量x的取值范围.每件玩具的售价定为多少元时,月销售利润恰为2520元?每件玩具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?27.(12分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为,图①中的m的值为;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A.【点睛】此题考负数的大小比较,应理解数字大的负数反而小.根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.【详解】解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为9﹣4=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.故选:C.【点睛】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.3.C【解析】【分析】先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=12AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴AE AO AC AD=,即5 108 AE=,解得,AE=254,∴DE=8﹣254=74,故选:C.【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键. 5.D【解析】【分析】根据二次根式和分式有意义的条件计算即可.【详解】解:∵a有意义, ∴a+2≥0且a≠0,解得a≥-2且a≠0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.6.A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.考点:概率.7.C【解析】延长线段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN与△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90∘,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的边BC的中点,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故选C.8.B【解析】【分析】根据坐标平面内点的坐标特征逐项分析即可.【详解】A. 若点在第一象限,则有:,解之得m>1,∴点P可能在第一象限;B. 若点在第二象限,则有:,解之得不等式组无解,∴点P不可能在第二象限;C. 若点在第三象限,则有:,解之得m<1,∴点P可能在第三象限;D. 若点在第四象限,则有:,解之得0<m<1,∴点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y轴上的点横坐标为0.9.A【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.故选A.考点:三视图视频10.C【解析】【分析】试题分析:A、B无法进行因式分解;C正确;D、原式=(1+2x)(1-2x)故选C,考点:因式分解【详解】请在此输入详解!11.D【解析】试题分析:根据题意得a≠1且△=2440ac -≥,解得4ac ≤且a≠1.观察四个答案,只有c =1一定满足条件,故选D .考点:根的判别式;一元二次方程的定义.12.B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确; ∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 2x 2==.∴使得M=2的x 值是1或2+综上所述,正确的有②③2个.故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.()()a a b a b +-【解析】【分析】先提取公因式a ,再利用平方差公式分解因式即可.【详解】 ()()()3222a ab a a b a a b a b -=-=+-故答案为:()()a a b a b +-.【点睛】本题考查了分解因式,熟练掌握因式法、公式法、十字相乘法、分组分解法的区别,根据题目选择合适的方法是解题的关键.14.5【解析】分析:根据n 棱柱的特点,由n 个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.15.152【解析】【分析】根据ADE B ∠=∠,EAD DAB ∠=∠,得出AED ABD ∆∆∽,利用相似三角形的性质解答即可.【详解】∵ADE B ∠=∠,EAD DAB ∠=∠,∴AED ABD ∆∆∽, ∴DE BD AD AB =,即325AB =, ∴152AB =, ∵AB AC =, ∴152AC =, 故答案为:152 【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解. 16.31a -≤≤【解析】【分析】直线y a =与抛物线213y x =(﹣)﹣有交点,则可化为一元二次方程组利用根的判别式进行计算. 【详解】解:法一:y a =与抛物线213y x =(﹣)﹣有交点 则有213a x =(﹣)﹣,整理得2220x x a ﹣﹣﹣=244420b ac a ∴∆++≥=﹣=()解得3a ≥﹣,03x ≤≤Q ,对称轴1x =23131y ∴=(﹣)﹣=1a ∴≤法二:由题意可知,∵抛物线的 顶点为13(,﹣),而03x ≤≤∴抛物线y 的取值为31y ≤≤﹣ y a Q =,则直线y 与x 轴平行,∴要使直线y a =与抛物线213y x =(﹣)﹣有交点,∴抛物线y 的取值为31y ≤≤﹣,即为a 的取值范围, ∴31a ≤≤﹣故答案为:31a -≤≤【点睛】考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.17.5【解析】y=−(x−2)2+4+k ,∵二次函数y=−x2−4x+k 的最大值是9,∴4+k=9,解得:k=5,故答案为:5.18.0a 2<<【解析】【分析】计算出当P 在直线y 2x 2=+上时a 的值,再计算出当P 在直线y 2x 4=+上时a 的值,即可得答案.【详解】解:当P 在直线y 2x 2=+上时,()a 212220=⨯-+=-+=,当P 在直线y 2x 4=+上时,()a 214242=⨯-+=-+=,则0a 2<<.故答案为0a 2<<【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)y=﹣x 2+4x ﹣3;(2)满足条件的P 点坐标有3个,它们是(2,1)或(,﹣1)或(2,﹣1).【解析】【分析】(1)由于已知抛物线与x 轴的交点坐标,则可利用交点式求出抛物线解析式;(2)根据二次函数图象上点的坐标特征,可设P(t,-t2+4t-3),根据三角形面积公式得到12•2•|-t2+4t-3|=1,然后去绝对值得到两个一元二次方程,再解方程求出t即可得到P点坐标. 【详解】解:(1)抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)设P(t,﹣t2+4t﹣3),因为S△PAB=1,AB=3﹣1=2,所以12•2•|﹣t2+4t﹣3|=1,当﹣t2+4t﹣3=1时,t1=t2=2,此时P点坐标为(2,1);当﹣t2+4t﹣3=﹣1时,t1,t2=2,此时P点坐标为(,﹣1)或(2,﹣1),所以满足条件的P点坐标有3个,它们是(2,1)或(,﹣1)或(2,﹣1).【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.20.(1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.【解析】【分析】(1)令y=0,得到关于x 的一元二次方程﹣12x2﹣x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣12t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=12PD×OA=12PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.【详解】(1)解:设y=0,则0=﹣12x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D设AC解析式y=kx+b∴404bk b=⎧⎨=-+⎩解得:14 kb=⎧⎨=⎩∴AC解析式为y=x+4.设P(t,﹣12t2﹣t+4)则D(t,t+4)∴PD=(﹣12t2﹣t+4)﹣(t+4)=﹣12t2﹣2t=﹣12(t+2)2+2∴S△ACP=12PD×4=﹣(t+2)2+4∴当t=﹣2时,△ACP最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.21.(1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.【解析】【分析】(1)根据题意得方程求解即可;(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;(3)由题意得不等式,即可得到结论.【详解】解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3,x2=2.又∵31-2x≤3,即x≥6,∴x=2(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-152)2+2252(6≤x≤4).①当x=152时,S有最大值,S最大=2252;②当x=4时,S有最小值,S最小=4×(31-22)=5.(3)令x(31-2x)=41,得x2-15x+51=1.解得x1=5,x2=1∴x的取值范围是5≤x≤4.22.(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)m≥﹣112;(2)m=2.【解析】【分析】(1)利用判别式的意义得到(2m+3)2﹣4(m 2+2)≥1,然后解不等式即可;(2)根据题意x 1+x 2=2m+3,x 1x 2=m 2+2,由条件得x 12+x 22=31+x 1x 2,再利用完全平方公式得(x 1+x 2)2﹣3x 1x 2﹣31=1,所以2m+3)2﹣3(m 2+2)﹣31=1,然后解关于m 的方程,最后利用m 的范围确定满足条件的m 的值.【详解】(1)根据题意得(2m+3)2﹣4(m 2+2)≥1,解得m≥﹣112; (2)根据题意x 1+x 2=2m+3,x 1x 2=m 2+2,因为x 1x 2=m 2+2>1,所以x 12+x 22=31+x 1x 2,即(x 1+x 2)2﹣3x 1x 2﹣31=1,所以(2m+3)2﹣3(m 2+2)﹣31=1,整理得m 2+12m ﹣28=1,解得m 1=﹣14,m 2=2,而m≥﹣112; 所以m =2.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c =1(a≠1)的两根时,1212,b c x x x x a a+=-=.灵活应用整体代入的方法计算. 24. (1)证明见解析;(2)2m =或4m =.【解析】【分析】(1)求出△的值,再判断出其符号即可;(2)先求出x 的值,再由方程的两个实数根都是整数,且m 是正整数求出m 的值即可.【详解】(1)依题意,得()()()24413m m =---⨯-V 28161212m m m =-++-,244m m =++,()22m =+.∵()220m +≥,∴方程总有两个实数根.(2)∵()()1130x m x ⎡⎤+--=⎣⎦,∴11x =-,231x m =-. ∵方程的两个实数根都是整数,且m 是正整数,∴11m -=或13m -=.∴2m =或4m =.【点睛】本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 的关系是解答此题的关键.25.(1)y 1=80x+4400;y 2=64x+4800;(2)当m=20时,w 取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w 与m 之间的关系式,再根据一次函数的增减性即可得出答案.解:(1)得:;得:; (2),因为w 是m 的一次函数,k=-4<0,所以w 随的增加而减小,m 当m=20时,w 取得最小值.即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.26.(1)y =﹣10x 2+130x+2300,0<x≤10且x 为正整数;(2)每件玩具的售价定为32元时,月销售利润恰为2520元;(3)每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【解析】【分析】(1)根据题意知一件玩具的利润为(30+x-20)元,月销售量为(230-10x ),然后根据月销售利润=一件玩具的利润×月销售量即可求出函数关系式.(2)把y=2520时代入y=-10x 2+130x+2300中,求出x 的值即可.(3)把y=-10x 2+130x+2300化成顶点式,求得当x=6.5时,y 有最大值,再根据0<x≤10且x 为正整数,分别计算出当x=6和x=7时y 的值即可.【详解】(1)根据题意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;(2)当y=2520时,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合题意,舍去)当x=2时,30+x=32(元)答:每件玩具的售价定为32元时,月销售利润恰为2520元.(3)根据题意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴当x=6.5时,y有最大值为2722.5,∵0<x≤10且x为正整数,∴当x=6时,30+x=36,y=2720(元),当x=7时,30+x=37,y=2720(元),答:每件玩具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.【点睛】本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.27.(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人【解析】【分析】(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;(II)根据众数、中位数和平均数的定义计算可得;(III)用总人数乘以样本中5天、6天的百分比之和可得.【详解】解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案为150、14;(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为4+42=4天,平均数为118+221+363+334+275+156150⨯⨯⨯⨯⨯⨯=3.5天;(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.。
广东省揭阳市2020年(春秋版)中考数学一模考试试卷(II)卷
广东省揭阳市2020年(春秋版)中考数学一模考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019九上·路北期中) 下面的函数是二次函数的是()A . y=3x+1B .C . y=x2+2xD .2. (2分) (2016九上·乐至期末) 如图,在△ABC中,∠C=90°,AB=3,BC=2,则cosB的值是()A .B .C .D .3. (2分)将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A . y=(x+2)2+1B . y=(x+2)2﹣1C . y=(x﹣2)2+1D . y=(x﹣2)2﹣14. (2分) (2019九上·崇明期末) 已知向量和都是单位向量,则下列等式成立的是()A . ;B . ;C . ;D . .5. (2分)已知⊙O和直线L相交,圆心到直线L的距离为10cm,则⊙O的半径可能为()A . 10cmB . 6cmC . 12cmD . 以上都不对6. (2分)(2017·永康模拟) 如图,在△ABC中,点D,E分别在AB,AC上,且,则:()A . 1:2B . 1:4C . 1:8D . 1:9二、填空题 (共12题;共12分)7. (1分)(2020·青浦模拟) 已知向量与单位向量方向相反,且,那么 =________(用向量的式子表示)8. (1分) (2019九上·宜兴期末) 如果且,则 ________.9. (1分)如图,若点P是AB的黄金分割点,则线段AP,PB,AB满足关系式________,即AP是________与________的比例中项.10. (1分)(2019·株洲) 若二次函数的图象开口向下,则 ________0(填“=”或“>”或“<”).11. (1分) (2018九上·北京月考) 函数y=﹣3(x+2)2的开口________,对称轴是________,顶点坐标为________.12. (1分)已知点P(-1,m)在二次函数的图象上,则m的值为________;13. (1分)(2018·青羊模拟) 如图,已知斜坡 AB 的坡度为 1:3.若坡长 AB=10m,则坡高 BC=________m.14. (1分)如图,△ABC中,点D、E分別在AB、AC上,DE∥BC,AD:DB=1:2,则△ADE与△ABC的面积的比为________.15. (1分)(2018·嘉定模拟) 在Rt△ABC中,∠C=90°,如果cos∠A= ,那么cot∠A=________.16. (1分)(2020·长宁模拟) 已知相交两圆的半径长分别为8与15,圆心距为17,则这两圆的公共弦长为________.17. (1分) (2019九上·越城月考) 如图,P是△ABC的重心,过点P作PE∥AB交BC于点E,PF∥AC交BC于点F,若△PEF的周长是6,则△ABC的周长为________.18. (1分)(2020·郑州模拟) 如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为________.三、解答题 (共7题;共66分)19. (5分)(2017·广陵模拟) 计算:(1);(2).(1)tan60°﹣|﹣2|+(2)(1+ )÷ .20. (6分)(2019·太原模拟) 综合与实践数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC进行以下操作:第一步:折叠三角形纸片ABC使点C与点A重合,然后展开铺平,得到折痕DE;第二步:将△ABC沿折痕DE展开,然后将△DEC绕点D逆时针方向旋转得到△DFG,点E,C的对应点分别是点F,G,射线GF与边AC交于点M(点M不与点A重合),与边AB交于点N,线段DG与边AC交于点P.数学思考:(1)求DC的长;(2)在△DEC绕点D旋转的过程中,试判断MF与ME的数量关系,并证明你的结论;问题解决:(3)在△DEC绕点D旋转的过程中,探究下列问题:①如图2,当GF∥BC时,求AM的长;②如图3,当GF经过点B时,AM的长为③当△DEC绕点D旋转至DE平分∠FDG的位置时,试在图4中作出此时的△DFG和射线GF,并直接写出AM的长(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)21. (10分) (2019九上·孝南月考) 如图在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为坐标原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,只借助直尺确定该圆弧所在圆的圆心D,并连接AD、CD.(保留作图痕迹,不写作法)(2)请在(1)的基础上,完成下列填空与计算:①写出点的坐标:C________、D________;②⊙D的半径=________;(结果保留根号)③求扇形ADC的面积.(结果保留π)________22. (5分)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=3米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)23. (10分)(2019·乐清模拟) 如图,在Rt△ABC中,∠ACB=90°,AB=5,过点B作BD⊥AB,点C,D都在AB上方,AD交△BCD的外接圆⊙O于点E.(1)求证:∠CAB=∠AEC.(2)若BC=3.①EC∥BD,求AE的长.②若△BDC为直角三角形,求所有满足条件的BD的长.(3)若BC=EC=,则=________.(直接写出结果即可)24. (15分)如图1,在平面直角坐标系中,抛物线y=x2+x+交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE′,FF′分别垂直于x轴,交抛物线于点E′,F′,交BC于点M,N,当ME′+NF′的值最大时,在y轴上找一点R,使|RF′﹣RE′|的值最大,请求出R点的坐标及|RF′﹣RE′|的最大值;(3)如图2,已知x轴上一点P(,0),现以P为顶点,为边长在x轴上方作等边三角形QPG,使GP⊥x轴,现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止,记平移后的△QPG为△Q′P′G′.设△Q′P′G′与△ADC的重叠部分面积为s.当Q′到x轴的距离与点Q′到直线AW的距离相等时,求s的值.25. (15分)如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).(1)求抛物线的解析式;(2)求点O到直线AB的距离;(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M 的坐标.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共12分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共66分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-3、24-1、24-2、25-1、25-2、25-3、。
广东省揭阳市2020年数学中考模拟试卷(II)卷
广东省揭阳市2020年数学中考模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·泸县模拟) 如果a与﹣3互为倒数,那么a是()A . ﹣3B .C . 3D .2. (2分)(2016·黄石模拟) 下列运算正确的是()A . a2•a3=a6B . a8÷a4=a2C . a3+a3=2a6D . (a3)2=a63. (2分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A .B .C .D .4. (2分)(2018·济宁模拟) 一次数学检测中,有5名学生的成绩分别是86,89,78,93,90.则这5名学生成绩的平均分和中位数分别是()A . 87.2,89B . 89,89C . 87.2,78D . 90,935. (2分)等腰三角形是轴对称轴图形,它的对称轴是()A . 过顶点的直线B . 底边上的高C . 顶角的平分线所在的直线D . 腰上的高所在的直线6. (2分) (2017八上·揭西期中) 一个直角三角形的两条边分别是6和8,则第三边是()A . 10B . 12C . 12或D . 10或7. (2分)(2019·贺州) 如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE =4,则BC等于()A . 5B . 6C . 7D . 88. (2分)(2017·陕西模拟) 如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD 与折痕的夹角是60°,则点B到C′的距离是()A . 4B .C .D . 3二、填空题 (共8题;共8分)9. (1分)若Z=,分解因式:x3y2﹣ax=________ .10. (1分)(2017·南通) 若在实数范围内有意义,则x的取值范围为________.11. (1分)(2017·泰安模拟) 分式方程的解为________.12. (1分) (2019九上·香坊期末) 小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是________.13. (1分)(2017·江阴模拟) 如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是________.14. (1分)如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=3,则菱形ABCD的边长是________.15. (1分) (2019九上·灌云月考) 将抛物线先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式是________.16. (1分)(2011·绵阳) 观察下面的图形,它们是按一定规律排列的,依照此规律,第________个图形共有 120个★.三、解答题 (共11题;共110分)17. (10分) (2019八下·青铜峡月考) 解下列不等式,并把它们的解集分别表示在数轴上.(1);(2) <18. (5分)(2017·丹东模拟) 先化简,再求值:(﹣)÷ ,其中x=()﹣1﹣(π﹣1)0+ .19. (5分) (2018八下·龙岩期中) 已知在四边形ABCD中,AD=BC,∠D=∠DCE.求证:四边形ABCD是平行四边形.20. (5分)袋子中装有3个带号码的球,球号分别是2,3,5,这些球除号码不同外其他均相同.(1)从袋中随机摸出一个球,求恰好是3号球的概率;(2)从袋中随机摸出一个球,再从剩下的球中随机摸出一个球,用树形图列出所有可能出现的结果,并求两次摸出球的号码之和为5的概率.21. (10分)(2013·绍兴) 某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?22. (10分)(2018·赣州模拟) 如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1cm)23. (10分) (2017九上·临沭期末) 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC= .(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.24. (10分)(2016·安徽模拟) 如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点)(1)请画出△ABC向右平移2单位再向下平移3个单位的格点△A1B1C1(2)画出△ABC绕点O逆时针方向旋转90°得到的△A2B2C2并求出旋转过程中点B到B2所经过的路径长.25. (15分) (2018九上·如皋期中) 某商店将每件进价为80元的某种商店按每件110元出售,每天可售出100件.该商店想通过降低售价、增加销售量的方法来提高利润.经市场调查,发现这种商品每件每降价5元,每天的销售量可增加50件.设商品降价x元,每天销售该商品获得的利润为y元.(1)求y(元)关于x(元)的函数关系式,并写出x的取值范围.(2)求当x取何值时y最大?并求出y的最大值.(3)若要是每天销售利润为3750元,且尽可能最大的向顾客让利,应将该商品降价多少元?26. (15分) (2019九上·射阳期末) 已知:如图1,直线与x轴、y轴分别交于点A、C两点,点B的横坐标为2.(1)求A、C两点的坐标和抛物线的函数关系式;(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且S△PCD=2S△PAD ,求点P的坐标;(3)如图2,另有一条直线y=-x与直线AC交于点M,N为线段OA上一点,∠AMN=∠AOM.点Q为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q的坐标.27. (15分) (2018八上·裕安期中) 已知直线y=kx+b经过点B(1,4),且与直线y=﹣x﹣11平行.(1)求直线AB的解析式并求出点C的坐标;(2)根据图象,写出关于x的不等式0<2x﹣4<kx+b的解集;(3)现有一点P在直线AB上,过点P作PQ∥y轴交直线y=2x﹣4于点Q,若线段PQ的长为3,求P点坐标.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共110分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、。
揭阳市2020年中考数学二模试卷(II)卷
揭阳市2020年中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七上·灌南月考) 如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A与点D表示的数分别是()A . —2,2B . —4 , 1C . —5 , 1D . —6 , 22. (2分)(2019·福田模拟) 下列图形中,既是轴对称又是中心对称图形的是()A .B .C .D .3. (2分)若⊙O的直径为20cm,点O到直线l的距离为10cm,则直线l与⊙O的位置关系是()A . 相交B . 相切C . 相离D . 无法确定4. (2分) (2016九上·衢江月考) H7N9禽流感病毒颗粒有多种形状,其中球形直径约为0.0000001m.将0.0000001用科学记数法表示为()A . 0.1×10﹣7B . 1×10﹣7C . 0.1×10﹣6D . 1×10﹣65. (2分)(2019·无锡) 已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是()A . 66,62B . 66,66C . 67,62D . 67,666. (2分) (2018七上·故城期末) 如图,阴影部分的面积是()A . ab﹣π() 2B . ab﹣C . ab﹣ 2D . ab﹣() 27. (2分)已知一次函数y=ax+c与二次函数y=ax2+bx+c,它们在同一坐标系内的大致图象是()A .B .C .D .8. (2分) (2019九上·宁波月考) 如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=11,若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)9. (1分)计算:(﹣3)0+3﹣1= ________ .10. (1分)某射击运动员在相同条件下的射击160次,其成绩记录如下:射击次数20406080100120140160射中9环以上的次数153348637997111130射中9环以上的频率0.750.830.800.790.790.810.790.81根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率________(精确到0.1).11. (1分)(2017·罗山模拟) 如图所示,在△ABC中,AC=BC=4,∠C=90°,O是AB的中点,⊙O与AC、BC 分别相切于点D、E,点F是⊙O与AB的一个交点,连接DF并延长交CB的延长线于点G,则BG的长是________.12. (1分)如图所示,将一个矩形ABCD纸片,剪去两个完全相同的矩形后,剩余的阴影部分纸片面积大小为24,且AB=8,则被剪掉的矩形的长为________13. (1分)已知点P(﹣2,3)关于原点的对称点为M(a,b),则a+b=________ .14. (1分) (2017七下·盐都开学考) 如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、作图题 (共1题;共5分)15. (5分)(2017·市北区模拟) 用圆规、直尺作图,不写作法,但到保留作图痕迹.已知:线段a,求作:正方形ABCD,使其对角线AC=a.四、解答题 (共9题;共107分)16. (5分)(2017·七里河模拟) 解方程:3x2+2x+1=0.17. (17分)(2017·河南模拟) 某校为了解全校2000名学生每周去图书馆时间的情况,随机调查了其中的100名学生,对这100名学生每周去图书馆的时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周去图书馆的时间在6≤x<8小时的学生人数占20%.根据以上信息及统计图解答下列问题:(1)本次调查属于________调查,样本容量是________;(2)请补全频数分布直方图中空缺的部分;(3)若从这100名学生中随机抽取1名学生,求抽取的这个学生每周去图书馆的时间恰好在8﹣10小时的概率;(4)估计全校学生每周去图书馆的时间不少于6小时的人数.18. (15分) (2019九上·余杭期中) 一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?19. (10分) (2020九下·郑州月考) 如图是小米洗漱时的侧面示意图.洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小米身高160cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小米头部E点与地面DK相距多少?(2)若小米的头部E恰好在洗漱盆AB的中点O的正上方,她应向前或向后移动多少厘米?(sin80°≈0.98,cos80°≈0.18,≈1.41,结果精确到0.1)20. (10分) (2019九上·尚志期末) 服装店10月份以每套500元的进价购进一批羽绒服,当月以标价销售,销售额14000元,进入11月份搞促销活动,每件降价50元,这样销售额比10月份增加了5500元,售出的件数是10月份的1.5倍.(1)求每件羽绒服的标价是多少元;(2)进入12月份,该服装店决定把剩余的羽绒服按10月份标价的八折销售,结果全部卖掉,而且这批羽绒服总获利不少于12700元,问这批羽绒服至少购进多少件?21. (15分) (2017八下·定州期中) 如图,平行四边形ABCD中,AB⊥AC,AB=1,BC= ,对角线AC,BD 相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当∠AOF=90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,AF与CE总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时∠AOF 度数.22. (10分) (2017八下·官渡期末) 已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.水银柱的长度x(cm) 4.0…8.09.6体温计的度数y(℃)35.0…40.042.0(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.23. (15分) (2016九上·岳池期末) 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.如果一条直线与果圆只有一个交点,则这条直线叫做果圆的切线.已知A、B、C、D四点为果圆与坐标轴的交点,E为半圆的圆心,抛物线的解析式为y=x2﹣2x﹣3,AC为半圆的直径.(1)分别求出A、B、C、D四点的坐标;(2)求经过点D的果圆的切线DF的解析式;(3)若经过点B的果圆的切线与x轴交于点M,求△OBM的面积.24. (10分) (2020九上·诸暨期末) 定义:已知点是三角形边上的一点(顶点除外),若它到三角形一条边的距离等于它到三角形的一个顶点的距离,则我们把点叫做该三角形的等距点.(1)如图1:中,,,,在斜边上,且点是的等距点,试求的长;(2)如图2,中,,点在边上,,为中点,且 .①求证:的外接圆圆心是的等距点;②求的值.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共6分)9-1、10-1、11-1、12-1、13-1、14-1、三、作图题 (共1题;共5分)15-1、四、解答题 (共9题;共107分)16-1、17-1、17-2、17-3、17-4、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
揭阳市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2018·中山模拟) 据2017年1月24日《中山日报》报道,三乡镇2016年财政收入突破180亿元,在中山各乡镇中排名第二.将180亿用科学记数法表示为()A . 1.8×10B . 1.8×108C . 1.8×109D . 1.8×10102. (2分) (2016七上·昌平期中) 一个数的绝对值是3,则这个数可以是()A . 3B . ﹣3C . 3或﹣3D .3. (2分) (2019八下·兰州期末) 如图,在四边形ABCD中, AD//BC,且AD>BC,BC= 6cm, AD=9cm, P、Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,多少s时直线将四边形ABCD 截出一个平行四边形()A . 1B . 2C . 3D . 2或34. (2分) (2017九上·重庆开学考) 下列各命题中,属于假命题的是()A . 若a-b=0,则a=b=0B . 若a-b>0,则a>bC . 若a-b<0,则a<bD . 若a-b≠0,则a≠b5. (2分)有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A .B .C .D .6. (2分)(2017·黄冈模拟) 由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A . 3B . 4C . 5D . 67. (2分) (2019八下·靖远期中) 下列图形既是轴对称图形又是中心对称图形的图形是()A . 等腰三角形B . 等边三角形C . 长方形D . 梯形8. (2分)下列句子中,不是命题的是()A . 三角形的内角和等于180度B . 对顶角相等C . 过一点作已知直线的垂线D . 两点确定一条直线.9. (2分) (2017八下·射阳期末) 如图,若双曲线与它的一条对称轴交于A、B两点,则线段AB称为双曲线的“对径”.若双曲线的对径长是,则 k的值为()A . 2B . 4C . 6D .10. (2分) (2017八下·丰台期末) 关于x的一元二次方程有两个实数根,那么实数k的取值范围是()A .B . 且C . 且D .二、填空题 (共8题;共8分)11. (1分) (2016八上·平阳期末) 函数y= 中,自变量x的取值范围是________.12. (1分) (2019七下·洪江期末) 计算: ________.13. (1分)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65.84,乙跳远成绩的方差为S乙2=285.21,则成绩比较稳定的是________.(填“甲”或“乙”)14. (1分)(2017·徐州模拟) 如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE.连接BG并延长与AC 交于点F,若AD=9,CE=12,则GF为________.15. (1分)如图是有规律的一组图案,它们是由边长相同的正方形和正三角形镶嵌而成的.第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……按此规律,第n个图案有________个三角形(用含n的代数式表示).16. (1分) (2019八下·辽阳月考) 如图,在直角中,已知,边的垂直平分线交于点,交于点,且,,则的长是________.17. (1分)(2017·江西模拟) 如图,将矩形纸片ABCD裁剪出扇形ABE和⊙O,其中⊙O与,BC,CD都相切.若扇形ABE与⊙O恰好制作成一个圆锥,已知AB=8cm,则AD的长为________.18. (1分) (2019九上·无锡月考) 已知关于x的方程,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③ .则正确结论的序号是________.(填上你认为正确结论的所有序号)三、解答题 (共10题;共121分)19. (10分)计算(1)计算:|﹣3|+ ×3﹣1;(2)解方程:+ =1.20. (5分) (2017七上·闵行期末) 分解因式:9a2(x﹣y)+(y﹣x)21. (10分)(2017·呼和浩特) 已知关于x的不等式> x﹣1.(1)当m=1时,求该不等式的解集;(2) m取何值时,该不等式有解,并求出解集.22. (5分) (2018八上·海淀期末) 列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.23. (11分) (2019·无锡) 《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格,某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示。
各等级学生平均分统计表等级优秀良好及格不及格平均分92.185.069.241.3各等级学生人数分布扇形统计图(1)扇形统计图中“不及格”所占的百分比是________;(2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级。
24. (15分) (2020九上·新昌期末) 如图,AB是⊙O的直径,D是⊙O上一点,DE⊥AB于点E,且∠ADE=60°,C是上一点,连结AC,CD.(1)求∠ACD的度数;(2)证明:AD2=AB•AE;(3)如果AB=8,∠ADC=45°,请你编制一个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)25. (15分)(2017·潮南模拟) 如图,直线y=2x与反比例函数y= (k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα= .(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.26. (15分)(2020·温州模拟) 温州某一企业原先一次性口罩和防雾霾口罩生产信息如下表:出厂价产量(一人一天)口罩类型材料成本(不含人工)一次性口罩0.1元/个0.2元/个2000个防雾霾口罩 2.5元/个4元/个200个已知该企业有12名工人,工资每人每天150元。
该企业原来每天产量共15000个口罩。
(1)求原先企业安排生产一次性口罩和防雾霾口罩各有多少人。
(2)经一段时间运行,企业发现每天销售的防雾霾口罩,最多只能卖900个。
而一次性口罩可以全部销售,市场缺口较大。
怎么安排生产口罩的人数可以使该企业每一天获得利润最大。
最大利润是多少?(注:没有销售的口罩,作为库存暂时当做不赚不亏)。
(3)在疫情期间,为了配合政府防疫工作,该厂改为全部生产一次性口罩。
因为原材料价格暴涨,口罩的材料成本和出厂价分别变为0.6元/个和1元/个。
一部分员工因为滞留在外,无法及时回来工作。
所以该厂提高了剩余老员工的工资,也招募了几个新员工过来且老员工人数多于新员工。
信息如下表:员工类型每日工资一次性口罩产量(一人一天)老员工300元/天2000个新员工200元/天1000个要是该厂的利润达到4000元/天。
求该厂留下来的老员工和招募的新员工人数。
27. (20分)(2020·三门模拟) 如图,直线l1⊥l2于点M,以l1上的点O为圆心画圆,交l1于点A,B,交l2于点C,D,OM=4,CD=6,点E为上的动点,CE交AB于点F,AG⊥CE于点G,连接DG,AC,AD.(1)求⊙O的半径长;(2)若DG∥AB,求DG的长;(3)连接DE,是否存在常数k,使成立?若存在,请求出k的值;若不存在,请说明理由;(4)当点G在AD的右侧时,请直接写出△ADG面积的最大值.28. (15分) (2017九上·武汉期中) 已知在平面直角坐标系中,直线y=kx+5与x轴交于点A,与抛物线y=ax2+bx交于B,C两点,且点B的坐标为(1,7),点C的横坐标为5.(1)直接写出k的值和点C的坐标;(2)将此抛物线沿对称轴向下平移n个单位,当抛物线与直线AB只有一个公共点时,求n的值;(3)在抛物线上有点P,满足直线AB,AP关于x轴对称,求点P的坐标..参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共121分)19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、27-4、28-1、28-2、28-3、。