第四章酶法解析
第四章酶工程酶的提取与分离纯化ppt课件
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
脂类
蛋白质(6% ~ 8%) 蛋白质
脂类(8.5% ~ 13.5%)
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
细菌细胞壁的结构
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
蛋白质溶解度与盐浓度之间的关系:
loSg loS0 g K sI
I:离子强度,I = 1/2∑MZ2;M:离子浓度(mol/L); Z:离子价数
S:离子强度为I时的蛋白质的溶解度(g/L) S0:离子强度为0时蛋白质的溶解度(g/L) Ks:盐析常数,是与蛋白质和盐种类有关的特性常数。
b. 添加固体硫酸铵
适用于:蛋白质溶液原来体积已经很大,而要 达到的盐浓度又很高时。
实际使用时,可直接查表 (各种饱和度下 需加固体硫酸铵的量)。
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
3. 化学法 应用各种化学试剂与细胞膜作用,
使细胞膜结构改变或破坏。
微生物学第四章酶的分离纯化
(二)有机溶剂沉淀法
1、作用原理 ①去水膜;②降低介电常数;③破坏氢键。
2、操作注意 低沸点,易燃易爆;低温操作,沉淀析出后要尽
快分离。
(三)等电点沉淀
1、原理
2、实际操作 与其他方法一起使用(盐析、有机溶剂沉淀、复
中空纤维超滤膜组件
借助于一定孔径的半透膜,将不同大小、不同形 状和不同特性的物质颗粒或分子进行分离的技术。
膜分离技术已被国际上公认为20世
纪末至21世纪中期最有发展前途,甚
至会导致一次工业革命的重大生产技
术,所以可以称为前沿技术,是世界
渗出液各国ຫໍສະໝຸດ 究的热点。广泛应用于生物工程、化学、制药、 饮料、电力、冶金、海水淡化、资源 再生等领域。
合沉淀)。 单独使用时,主要是用于从粗酶液中除去某些等
电点相距较大的杂蛋白 。
3、注意 加酸碱调节pH值时,防止局部酸碱过高。
(四)选择性变性沉淀法
选择一定的条件使酶液中存在的某些蛋白质等杂 质变性沉淀,而不影响所需的酶。
1、热变性法:根据目的酶与杂蛋白热稳定性差异, 可以在较高温度下,使杂蛋白变性沉淀,而酶则保持 可溶状态。
(78.3%)
凝胶电泳
(88.9%)
共六步,总收率仅为16%
staehelin等人: 硫酸铵盐析 免疫亲和层析
阳离子交换层析 仅三步,总收率达81.0%
在实践工作中选择方法时:
首先,应对被纯化的酶的理化性质有一个比较全面的 了解;
其次,判断采用的方法和条件是否得当,始终以活力 回收率和纯化倍数为指标;
常用中性盐:(NH4)2SO4
优点:①溶解度大,温度系数小; ②价廉易得; ③可保护酶。
第四章 酶法分析
优点:
不需要特殊复杂的设备和仪器 灵敏度高 重复性好 对健康无害
应用前景
食品卫生 环境污染生化 指标 临床医学
“瘦肉精”快速检测新技术 ——竞争酶标免疫法
“瘦肉精”(学名盐酸克伦特罗)为一种人工合成的 作用于β —肾上腺受体的兴奋剂,常用来防治哮喘、肺气 肿等肺部疾病,当其应用剂量达到治疗量的5—10倍时, 可使肌肉合成增加,脂肪沉积减少,因此将其俗称为“瘦 肉精”。
应用时应考虑两个问题,即工具酶的用 量与反应的平衡点。
终点法要操作中应注意:
(1)被测的底物浓度必须十分小,并控制反 应于1级反应水平。因为这样可以使反应迅速 达到平衡点防止过多的产物生成,避免逆反 应;减少工具酶的用员。 (2)其它因素应尽量处于最适水平,双底物 反应的另一底物应具有足够高的浓度。 (3)酶的用量要高,以保证反应较快地达到 终点。
底物? pH? 温度? 样品?
二、测定中应注意的问题 1.初速度
底物浓度对酶速的影响
浓度选择: a) [s]>=100Km; b) 有时不宜采用高底物浓度(有 毒性、价高、溶解度小、抑制 酶反应等)则根据具体条件,通 过实验选一适当浓度。
作用于待测酶产物的其它酶;
(如腈水合酶与酰胺酶) 其它因素。
三、酶标免疫分析法
Enzyme Immunoassay (EIA)
在70年代初,从放射免疫分析发展起 来的一种称为“酶标免疫”的分析方法, 它是将免疫学的专一性和酶的高效催化能 力有机地结合在一起,建立的一种高度特 异、灵敏的分析方法。
放射免疫分析(Radioimmunoassay,RIA)是用放射 性同位素标记抗原Ag*,该抗原与未标记抗原Ag竞 争结合抗体(Ab)结合位点时的能力相同,所以反应 生成的Ag*-Ab复合物与Ag的量呈负相关。Ag*-Ab的 生成量可通过测定其放射活性得到,然后根据已知 浓度抗原的标准曲线就可以计算出样品中抗原浓度, 这种分析方法称为放射免疫分析。
第四章 酶3 酶的作用机制及活性调节
• b. 修饰剂浓度与酶失活或降低的程度若成正比,则修饰位 于活性中心内
将修饰后的酶水解,肽键打开(但修饰剂与酶结合的共价 键不被打开)→得到带有标签的肽段→用氨基酸测序进行 鉴定
2、研究酶活性部位的方法
2、研究酶活性部位的方法
定点诱变法
• 改变编码蛋白质基因重的DNA顺序→改变氨基酸残基→确 定活性部位 • 如果被代换的氨基酸不影响酶的活性,则该位臵的氨基酸 残基不是必须基团 • 如果被代换的氨基酸使酶活性丧失或降低,则该位臵的原 有氨基酸残基是必须基团
• 1)vmax不变,Km值升高,该位臵氨基酸为结合基团
生
物
化
学
第四章 酶
§4.3 酶的作用机制和酶的调节
• 一、酶的活性部位 • 二、酶催化反应的独特性质 • 三、影响酶催化效率的有关因素
• 四、酶催化反应机制的实例
• 五、酶活性的调节控制
• 六、同工酶
一、酶的活性部位
• 只有少数的氨基酸残基参与底物结合及催化作用
• 酶的活性部位(active site/ active center )——与酶活力直 接相关的区域:分为结合部位(负责与底物的结合→决定酶 的专一性)和催化部位(负责催化底物键的断裂形成新键→ 决定酶的催化能力)
二、酶催化反应的独特性质
• 1、酶反应有两类:其一仅涉及到电子的转移(转换数约 108s-1);其二涉及到电子和质子两者或其他基团的转移 (约103s-1,大部分反应) • 2、酶催化作用是由氨基酸侧链上的功能基团(His、Lys、 Glu、Asp、Ser、Cys)和辅酶为媒介的→比只利用氨基酸 侧链来说,为催化反应提供了更多种类的功能基团 • 3、酶催化反应的最适pH范围通常是狭小的 • 4、与底物分子相比,酶分子很大而活性部位通常只比底物 稍大一些 • 5、存在一个或以上的催化基团及活性部位
Chapter 4 酶分子修饰与应用
第四章酶分子修饰与应用1 酶分子修饰(Modification of Enzyme Molecule):通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的过程。
2 酶分子修饰的意义?(1)提高酶的活力;(2)增强酶的稳定性;(3)降低或消除酶的抗原性;(4)研究和了解酶分子中主链、侧链、组成单位、金属离子和各种物理因素对酶分子空间构象的影响,进一步探讨酶分子的结构与功能之间的关系。
第一节酶分子的主链修饰1 酶分子的主链修饰:利用酶分子主链(肽链或核苷酸链)的切断和连接,使酶分子的化学结构及其空间结构发生某些改变,从而改变酶的特性和功能的方法。
2 酶分子主链修饰的意义?(1)可提高酶的活力;(2)可降低或消除酶的抗原性;(3)可预测酶活性中心在主链上的位置,从而了解主链的不同位置对酶的催化功能的贡献。
(一)主链的切断修饰①主链断裂后,引起酶活性中心的破坏,酶的催化功能丧失(用于探测酶活性中心的位置)。
②主链断裂后,酶活性中心的空间构象维持不变,酶的催化功能也可以保持不变或损失不多,但是抗原性有发生改变。
这样可以提高药用酶的使用价值。
③主链断裂有利于酶活性中心的形成,则可使酶分子显示其催化功能或使酶活力提高。
(二)主链的连接修饰将两种或者两种以上的酶通过主链连接在一起,形成一个酶分子具有两种或者多种催化活性的修饰方法称为酶的主链连接修饰。
在一个酶分子上具有两种或多种催化活性的酶称为多酶融合体。
通过基因融合技术将两种或两种以上的酶的基因融合在一起形成融合基因,再经过克隆和表达,有可能获得各种多酶融合体。
第二节酶的侧链基团修饰采用一定的方法使酶的侧链基团发生改变,从而改变酶分子的特性和功能的修饰方法称为侧链基团修饰。
酶的侧链基团的意义:(1)可以研究各种基团在酶分子中的作用,并可以用于研究酶的活性中心中的必需基团。
如果某基团修饰后不引起酶活力的显著变化,则可以认为此基团属于非必需基团;如果某基团修饰后使酶活力显著降低或丧失,则此基团很可能是酶催化的必需基团。
第四章酶法淀粉糖(双酶法液化糖化)生产技术
2. α -淀粉酶的水解反应
a-淀粉酶
直链淀粉
液 化 a-淀粉酶
麦芽糖、麦芽三糖、 低聚糖
支链淀粉
液 化
麦芽糖、葡萄糖、 糊精
3. 影响α-淀粉酶作用的因素
3.1 温度:不同来源的α-淀粉酶具有不同的热稳定性和最适 反应温度。根据对温度的适应性,可以分为:耐高温 (100℃以上)、耐热性(中温酶70~90℃)、非耐热性 (低温酶50~55℃) 3.2 pH值:稳定范围5~8,最适范围5~6 3.3 钙离子:钙离子具有保持α-淀粉酶最适构象的作用,是 维持酶最大活性与稳定性所必需。尤其是低温酶和中温酶, 在使用过程中需要添加适量的钙离子。
2.脱支酶的水解反应 脱支酶和支链淀粉酶的联合使用可以得到95% 以上的麦芽糖。
脱支酶
支链淀粉、糊精
脱 支
麦芽糖
3.影响脱支酶作用的因素 3.1 温度:最适温度50~55 ℃ 3.2 pH值:5.5~6.0 3.3 酶的来源:产气气杆菌、芽孢杆菌、假单胞菌
液化酶、糖化酶、脱支酶的作用方式
糖化酶
淀粉糖的制备原理
淀粉 水解 葡萄糖 复合 复合二糖 分解 5'-羟甲基糠醛
复合低聚糖
有机酸、有色物质等
淀粉糖的生产路线(酶法和酸法)
生物化学第四章酶
生物化学
授课教师:叶素梅 副教授
第四章 酶
问题1:
你每天吃的东西在体内是怎么消化的?
酶类药物
酶的发现
第一节 酶的概念及作用特点
一、酶(E)及相关概念 • 定义:由活体细胞分泌的, 在体内外具有催化功能的蛋白质 • 酶促反应:酶所催化的化学反应
• 底物:酶所催化的物质
S
• 产物:酶促反应的生成物
心肌炎:LDH1 ↑ 肺梗塞:LDH3 ↑ 肝炎:LDH5 ↑
生理及临床意义
在代谢调节上起着重要的作用; 用于解释发育过程中各阶段特有的代谢特征; 同工酶谱的改变有助于对疾病的诊断; 同工酶可以作为遗传标志,用于遗传分析研究。
第四节 酶促反应动力学
➢ 概念
研究各种因素对酶促反应速度的影响,并加以定量 的阐述。
磷酸基的受体)
第三节 酶的结构与催化活性 一、酶的分子组成
1.单纯酶
仅由氨基酸构成
2.结合酶
还含有非蛋白质部分
酶蛋白 + 辅助因子
(无催化活性) (无催化活性)
全酶
(有催化活性)
各部分在催化反应中的作用
酶蛋白决定反应的特异性
辅助因子决定反应的种类与性质
组成
无机金属离子
常见: K+、Na+、Mg2+、
相对专一性
作用于一类化合物或一种化学键
脂肪酶 催化脂肪水解 酯类水解
立体异构专一性
一种酶仅作用于立体异构体中的一种
L-乳酸
D-乳酸
乳酸脱氢酶(LDH)
(3)高度不稳定性 • 易受变性因素影响而失活
(4)酶活性的可调性 • 自身不断进行新陈代谢,通过改变酶合成和降解的速度调
第四章__酶工程原理及其在食品工业中的应用详解
(2)离子吸附法。通过离子效应,将酶分子固定到 含有离子交换基团的固相载体上。 常见的载体:DEAE-纤维素、 DEAE-葡聚糖凝胶、 CM-纤维素、DOWEX-50等。 优点:操作简单,处理条件温和,能得到酶活回收 率较高的固定化酶。 缺点:酶与载体的结合力较弱,当离子强度高、缓 冲液种类或pH值发生变化时,酶容易脱落。
酶工程一般工艺流程示意图
胞外酶
胞内酶 菌种→基因改造→发酵→发酵酶液→预处理→细胞分离→细 胞破壁→碎片分离→提取→精制→酶制剂及其改造 酶制剂 ↓ 原料→前处理→杀菌→酶反应器→反应液→产品提取→成品
(二)酶工程的发展历程 1.20世纪50~60年代早期的酶工程技术,主要是从 动物、植物和微生物原料中提取、分离、纯化制造各种 酶制剂,并将其应用于化工、食品和医药等工业领域。 2.20世纪70年代后期,酶的固定化技术取得了突破, 使固定化酶、固定化细胞、生物反应器与生物传感器等 酶工程技术迅速获得应用。 3.目前,各种酶工程技术已用于制造多种精细化工 产品和医药产品,并且在食品工业、化学检测和环境保 护等各个领域中得到了有效的应用。
(二)非机械破碎法 1.酶溶法 加酶法:常用的有溶菌酶、蛋白酶、糖苷酶等,它们 对细胞壁或细胞膜进行酶解,使细胞破碎。 自溶法:在微生物生长代谢过程中,控制一定条件, 诱发微生物产生少量的溶胞酶或激发自身溶胞酶的活力, 以达到细胞自溶的目的。 2.化学渗透法 用有机溶剂、变性剂、表面活性剂、抗生素或金属 螯合物等处理,使细胞壁或膜的通透性(渗透性)改变, 从而使胞内物质有选择地渗透出来。
(三)根据酶分子电荷性质的方法 1.离子交换层析 根据被分离物质与分离介质(离子交换剂)间异种电 荷的静电引力的不同来进行物质分离的。不同离子交换剂 上的可解离基团对各种离子的亲和力不同,而使不同物质 分离。 离子交换剂根据活性基团的性质分为阳离子交换剂和 阴离子交换剂。酶具有两性性质,可用阳离子交换剂,也 可用阴离子交换剂进行酶的分离纯化。
4-酶法分析
例2
胰蛋白酶效价测定 本品系自牛、羊、猪的膜中提取的蛋白水解酶。按干燥 品计算,每1mg的效价不得少于2500单位。
胰蛋白酶能专一地作用于赖氨酸、精氨酸等碱性氨基酸 的羧基组成的肽键,酰胺键及酯键。其水解速率为酯键>酰 胺键>肽键。也可水解间位经基苯甲酸酶及脂肪酸酶,以及 变性蛋白如酶蛋白、血红蛋白。 可选用酪蛋白或含有碱性氨基酸的酰胺、酶等作为底物。 目前均采用专属性较高的 N-苯甲酰酰-L精氨酸乙酯(BAEE)作为本品的底物。
利于反应。
米氏常数Km对于酶是特征性的。每一种酶对于它的一种底物只有一个 米氏常数。
米氏常数的求法 双 倒 数 方 程 和 双 倒 数 曲 线
1.0
0.8
0.6
1/v
0.4
0.2
0.0 -4 -2 0 2 4
-1
6
8
10
1/[S](1/mmol.L )
双倒数作图法
4.1.4 酶法分析注意点
酶分析法是一种以酶为分析工具(或试剂)的分析方法。分析 的对象可以是酶的底物、辅酶活化剂甚至酶的抑制剂。 酶分析法采用的条件和酶活力测定法的条件基本相同,但其所用的 酶量必须一定.被测物以外的其他反应成分均须保证处于恒定和最 适。
4.1.5 酶法分析的发展的历史
过氧化氢:过氧化物酶。140年以前,麦芽提取物为酶 源,以愈创木酚为共底物或指示剂测定。
蔗糖:转化酶。100余年以前,酶母提取液为酶源。
尿素:尿酶。1914年。 临床实验:转氨酶。1958年,诊断肝病和心脏病。 20世纪50年代以前,近60种物质能借助于酶法分析。 进展:取决于能否以合理的价格提供纯酶、底物和辅助 因子。
E + P
根据中间产物学说,在稳态时,ES的生成速度 与其分解速度相等。有以下关系式:
第四章 酶法淀粉糖(双酶法液化糖化)生产技术
第二节 液化技术
一、双酶法制备淀粉糖 1.基本原理: 酶解法制备葡萄糖可分为两步:第一步是液 化过程,利用α -淀粉酶将淀粉液化,转化为糊精 及低聚糖。第二步是糖化过程,利用糖化酶将糊 精或低聚糖进一步水解为葡萄糖。淀粉的液化和 糖化都在酶的作用下进行的,故酶解法又称为双 酶法。双酶法的优点是淀粉转化率高、条件温和、 产物葡萄糖的复合分解少。 (双酶是指用于淀粉液化和糖化作用的两个系列 的酶。)
淀粉糖生产技术概述
淀粉糖是利用淀粉水解制取的各种糖品。淀 粉水解常常有酸法,酸酶法和双酶法。 其中酸法水解淀粉工艺因为设备要求高,环 保难度大及对产品质量和下游产业不利等已经逐 渐被淘汰,而酶法则因为提高了转化率,复合、 分解反应少,条件温和等逐渐成为目前比较理想 的制糖方法。 双酶法是用专一性很强的淀粉酶和糖化酶作 为催化剂将淀粉水解成为葡萄糖的方法。
4.3 酸碱度:碱性条件更不易老化,要综合考虑料 液透光和酶的最适pH。 4.4 温度和加热方式:一般采取高速升降温,目前 运用较多的是耐高温淀粉酶,液化温度可以达到 110℃。 4.5 淀粉糊的浓度:浓度越高,越易老化,一般控 制在10~15Be
四.液化方法
酸法
催化剂 酸酶法 酶法
间歇液化法
半连续液化法 喷射液化法 高压蒸汽
五 液化工艺过程及其控制
1.液化DE值 根据生产经验,一般以DE值来衡量液化程度,在 DE值在10~15时结束液化过程比较合适,液化终点 可用碘显色来判断。达到终点后,需对液化液进行 灭酶,升温至120℃保持10min可完成。灭酶后,冷 却至糖化酶的作用温度,待糖化。
若液化程度太低,液化产物分子数少,糖化酶 与底物接触的机会也少,影响糖化的速度;且液 化程度低,液化液容易老化,糖化酶很难进入老 化产物的结晶区作用,影响糖化的程度,最终糖 化液粘度大,过滤困难。 如果液化程度过高,液化液分子较小,不利于 络合结构生成,从而影响糖化酶的催化效率,导 致糖化液的最终DE值低。
生物化学第四章酶
⽣物化学第四章酶第四章酶酶是⼀类具有⾼效率、⾼度专⼀性、活性可调节的⾼分⼦⽣物催化剂。
1957巴斯德提出酒精发酵是酵母细胞活动的结果。
1 分⼦Glc→2分⼦⼄醇+2分⼦CO2 从Glc开始,经过12种酶催化,12步反应,⽣成⼄醇。
1897 Buchner兄弟证明发酵与细胞的活动⽆关,不含细胞的酵母汁也能进⾏⼄醇发酵。
1913 Michaelis和Menten提出⽶⽒学说—酶促动⼒学原理。
1926 Sumner⾸次从⼑⾖中提出脲酶结晶,并证明具有蛋⽩质性质。
1969 化学合成核糖核酸酶。
1967-1970 从E.coli中发现第I、第II类限制性核酸内切酶。
1986 Cech发现四膜⾍细胞⼤核期间26S rRNA前体具有⾃我剪接功能。
ribozyme ,deoxyribozymeE.coRI5’——GAA TTC——3’3’——CTTAAG——5’限制作⽤修饰作⽤5’——GAATTC——3’5’——GAATTC——3’3’——CTTAAG——5’ 3’——CTTAAG——5’第⼀节酶学概论⼀、酶的⽣物学意义⼤肠杆菌⽣命周期20分钟,⽣物体内化学反应变得容易和迅速进⾏的根本原因是体内普通存在⽣物催化剂—酶。
没有酶,⽣长、发育、运动等等⽣命活动就⽆法继续。
限制性核酸内切酶(限制-修饰)⼆、酶的概念及其作⽤特点1、酶是⼀种⽣物催化剂酶是⼀类具有⾼效率、⾼度专⼀性、活性可调节的⾼分⼦⽣物催化剂。
⽣物催化剂:酶(enzyme),核(糖)酶(ribozyme),脱氧核(糖)酶(deoxyribozyme)2、酶催化反应的特点(1)、催化效率⾼酶催化反应速度是相应的⽆催化反应的108-1020倍,并且⾄少⾼出⾮酶催化反应速度⼏个数量级。
(2)、专⼀性⾼酶对反应的底物和产物都有极⾼的专⼀性,⼏乎没有副反应发⽣。
(3)、反应条件温和(4)、活性可调节根据据⽣物体的需要,许多酶的活性可受多种调节机制的灵活调节,包括:别构调节、酶的共价修饰、酶的合成、活化与降解等。
酶法解析
测酶活力就是在确定的最适反应条件下 测定酶促反应速度,
酶促反应速度取决于那些因素 ?
——速度方程
测定酶活力的基本要求:
1、要使反应系统中除待测酶浓度是影响反应速度 的唯一限制性因素(反应速度定量酶活力);
2、其余一切均应最适合于酶发挥作用(表现最大 能力);
所以,要建立一个酶活力测定方法,要针对以下 几方面做工作:
E1
A
B
E2 C
被测反应的产物是某脱氢酶的底物,即B 是脱氢酶E2的底物,测定系统中加入足量的 脱氢酶E2和NADH,使反应进行到C,然后通过 NADH的特征变化而测知。
HK
被测反应: G + ATP
G-6-P + ADP
偶联指示反
G6PDH
应: G-6-P + NADP
NADPH + 6-PGCOOH
以酶为分析对象,目的是检测食品、药物 体液等生物样品中酶的含量或活性;
如:血液中谷丙转氨酶、淀粉酶等测定;
葡萄糖氧化酶生产发酵液中葡萄糖氧化酶活 力测定等;
酶法分析(ENZYME ANALYSIS)
酶法分析是一种以酶为分析工具(分析试 剂)的分析法,分析的对象可以是底物、辅酶、 活化剂、酶抑制剂。主要用于测定与生物样品 有关的样品中酶以外其他物质的含量。
第四章 酶分析法
酶分析法:
酶活力测定(酶研究的一部分) 酶法分析(酶作为分析的工具)
前者的目的在于检知样品中某种酶的 含量或活性,后者则主要用于测定与生 物学有关的样品中酶以外其它物质的含 量。两者检测对象不同,但原理基本一 致:酶的专一性、高效性,通过酶反应 速度测定物质的变化进行定量分析。
酶分析 (Enzyme Assay)
4.3酶循环法
酶循环法定义
酶循环法(enzymatic cycling assay): 是利用底物和辅酶的循环反应,使酶促反应产物不断扩
增以利于测定的方法,提高了检测灵敏度和特异性,是酶法 分析的发展和延伸。
酶循环法分类
根据试剂酶的结合方式和辅酶的用法: n底物循环法 n辅酶循环法
根据试剂酶的催化性质: n氧化酶-脱氢酶反应法 n脱氢酶-辅酶反应法 n其他方法
底物循环法-氧化酶-脱氢酶系统
底物循环法测定甘油的原理
底物循环法-脱氢酶-辅酶循环系统
底物循环法测定胆汁酸的原理
谢 谢!
第四章 酶法分析
2.专一性不可逆抑制
此属抑制剂专一地作用于酶的活性中心或其必需 基团,进行共价结合,从而抑制酶的活性。有机 磷杀虫剂能专一作用于胆碱酯酶活性中心的丝氨酸 残基,使其磷酰化而不可逆抑制酶的活性。当胆碱 酯酶被有机磷杀虫剂抑制后,乙酰胆碱不能及时分 解成乙酸和胆碱,引起乙酰胆碱的积累,使一些以 乙酰胆碱为传导介质的神经系统处于过度兴奋状态, 引起神经中毒症状。解磷定等药物可与有机磷杀虫 剂结合,使酶和有机磷杀虫剂分离而复活。
(二)可逆性抑制(reversible inhibition)
抑制剂与酶以非共价键结合,在用透析等物 理方法除去抑制剂后,酶的活性能恢复,即抑 制剂与酶的结合是可逆的。
1.竞争性抑制(competitive inhibition)
(1)含义和反应式
抑制剂I和底物S结构相似,抑制剂I和 底物S对游离酶E的结合有竞争作用,互相 排斥,已结合底物的ES复合体,不能再结 合I。同样已结合抑制剂的EI复合体,不能 再结合S。
为解释酶被底物饱和现象,Michaelis和Menten 做了大量的定量研究,积累了足够的实验数据, 提出了酶促反应的动力学方程:
SE
S
Et ES
k1 k 1
ES
ES
k2 P E
[ES]生成速度: v1
k1 Et ESS ,[ES]分解速度: v2 k1ES k2 ES
一. 酶浓度的影响
在一定温度和pH下,酶 促反应在底物浓度大于 100 Km时,速度与酶的浓 度呈正比。 酶浓度对速度的影响机 理:酶浓度增加,[ES]也 增加,而V=k3[ES],故反 应速度增加。
二. 温度对酶促反应速度的影响
酶促反应与其它化学反应一样,随温度的增加,反应 速度加快。化学反应中温度每增加10℃反应速度增加的 倍数称为温度系数Q10。一般的化学反应的Q10为2~3,而 酶促反应的Q10为1~2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 Kat=6×107 IU
酶的比活力 指每mg酶蛋白(或每mg 蛋白氨)所含的酶活力单位数即:比活 力=活力单位数/酶蛋白(氮)mg
应用时应考虑两个问题,即工具酶的用 量与反应的平衡点。
终点法要操作中应注意:
(1)被测的底物浓度必须十分小,并控制反 应于1级反应水平。因为这样可以使反应迅速 达到平衡点防止过多的产物生成,避免逆反 应;减少工具酶的用员。 (2)其它因素应尽量处于最适水平,双底物 反应的另一底物应具有足够高的浓度。 (3)酶的用量要高,以保证反应较快地达到 终点。
(Enzyme Assay)
以酶为分析对象,目的是检测食品、药物 体液等生物样品中酶的含量或活性; 如:血液中谷丙转氨酶、淀粉酶等测定;
葡萄糖氧化酶生产发酵液中葡萄糖氧化酶活 力测定等;
酶法分析(ENZYME
A析试 剂)的分析法,分析的对象可以是底物、辅酶、 活化剂、酶抑制剂。主要用于测定与生物样品 有关的样品中酶以外其他物质的含量。 常用于食品、药物、体液等样品中成分含 量检测如血糖、胆固醇等测定。
(关键是工具酶的专一、高纯、且过量,以保证被测反应的v是总反
应系统中的限速因子,测得的指示反应速度 和E1浓度间呈线性关系)
举例:α-淀粉酶活力测定
1.标准碘液法 原理:淀粉对碘呈蓝黑色的特异性逐渐消失, 消失的速率与酶活性有关。 方法:终止法 稀盐酸 测吸光度 2.DNS法 α-淀粉酶可随机地作用于淀粉中的α-1,4-糖苷 键,生成葡萄糖、麦芽糖、麦芽三糖、糊精 等还原糖,同时使淀粉的粘度降低,因此又 称为液化酶。 方法:终止法 热变性 测吸光度
测酶活力就是在确定的最适反应条件下 测定酶促反应速度,
酶促反应速度取决于那些因素 ——速度方程
?
测定酶活力的基本要求:
1、要使反应系统中除待测酶浓度是影响反应速度 的唯一限制性因素(反应速度定量酶活力); 2、其余一切均应最适合于酶发挥作用(表现最大 能力); 所以,要建立一个酶活力测定方法,要针对以下 几方面做工作:
空白是指待测酶反应以外的其它反应(杂酶、 自发反应)引起的变化量 空白值可通过不加底物、不加酶、或两者都加 而预先使酶失效而测定 例如: GPT 测定中 —— 先不加底物;
酸性磷酸酯酶中 —— 先不加酶; 对照是指用标准酶(或纯酶)测得的结果, 与样品酶对照来定量。
三 酶活力的测定方法
(一)终止法 是使酶促反应进行一定时间后, 终止其反应,再用化学或物理方法 测定产物或底物变化的量。
表示酶制剂的纯度,比活力愈高,酶愈纯。
(二)测定方式有二:
1. 测定一定时间内的化学反应的量 通常测定在一定时间内最适于酶的条件下 酶促反应产物的生成量。 如蛋白酶的活力,可据酶催化酪蛋白水解 生成的酪氨酸与酚试剂作用蓝色反应,再用 比色法测定之。 2. 测定完成一定量反应所需的时间,测定酶 所催化的一定量底物的减少或一定量产物的 生成所需的时间,酶活力与之成反比。
第一节、酶活力的测定
一、酶活力测定(一)基本定义
二、
酶活力
(一) 酶活力 酶活力activity: 酶催化一定化学反应 的能力。用酶催化的反应速度来表示酶 活力,即用单位时间内,单位体积中底 物的减少量或产物增加量来表示。
转换频率:单位时间转化的底物分子数。
Kcat,单位1/s
(二)酶活力单位及比活力
三 酶活力的测定方法
(二)动力学法 是连续测定酶反应过程中底物、 产物或辅酶的变化量,可以直接测 定酶促反应的初速度。
三 酶活力的测定方法
(三)酶偶联法
指选择另一种酶与酶发生偶联反应, 即第一种酶E1所催化的产物作为E2的底 物,通过测定第二个酶促反应产物的量 变化来测的活力,此法适用于活力不高 或所催化产物不便测定的一些酶活力测 定。
第四章 酶分析法
酶分析法:
酶活力测定(酶研究的一部分) 酶法分析(酶作为分析的工具)
前者的目的在于检知样品中某种酶的 含量或活性,后者则主要用于测定与生 物学有关的样品中酶以外其它物质的含 量。两者检测对象不同,但原理基本一 致:酶的专一性、高效性,通过酶反应 速度测定物质的变化进行定量分析。
酶分析
(三)、酶法分析包括两个步骤:
1.酶反应 在适宜的条件下进行催化反应
2.检测 测定反应前后物质的变化情况,可以测 定底物的减少、产物的增加或辅酶的变 化
(四)酶法分析分类
1.单酶反应定量 使用单一酶与底物反应,然后测出物质 前后变化,确定底物的量。 2.偶联酶反应定量 利用两种或以上酶的联合作用,使底物通过 两步或多步反应,转化为易于检测的产物, 从而测定被测物质的量。 单酶反应的底物或产物不便用常规方法 检测时。
A
E1
B
E2
C
被测反应的产物是某脱氢酶的底物,即B 是脱氢酶E2的底物,测定系统中加入足量的 脱氢酶E2和NADH,使反应进行到C,然后通过 NADH的特征变化而测知。
HK 被测反应:
G + ATP
G6PDH
G-6-P + ADP NADPH + 6-PGCOOH
偶联指示反 应: G-6-P
+ NADP
底物? pH? 温度? 样品?
二、测定中应注意的问题 1.初速度
底物浓度对酶速的影响
浓度选择: a) [s]>=100Km; b) 有时不宜采用高底物浓度(有 毒性、价高、溶解度小、抑制 酶反应等)则根据具体条件,通 过实验选一适当浓度。
作用于待测酶产物的其它酶;
(如腈水合酶与酰胺酶) 其它因素。
第二节 酶法分析
在进行酶法分析时,先要根据分析 对象选择适它的“工具酶”,然后再通 过酶反应的测定,并借助相应的校正曲 线来检知它们的浓度或含量。在上述几 种检测对象中,除了底物可以采用总变 量分析法(终点法)外,其它都只能用 动力学分析法。
条件:
和酶活力测定的基本相同,但其所用 的酶量必须一定,除了相应的被测因素 的浓度应控制在限速水平以外,其它反 应成份均须保证处于恒定和最适。