2020考研数学复习:极限求法大汇总.doc
求极限的12种方法总结及例题
求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
(完整word版)高等数学求极限的常用方法(附例题和详解)
高等数学求极限的14 种方法一、极限的定义1. 极限的保号性很重要:设limf (x)A ,x x 0( i )若 A 0 ,则有0 ,使适当 0 | x x 0 |时, f (x) 0 ; ( ii )如有0, 使适当 0 | x x 0 |时, f (x)0,则A0 。
2. 极限分为函数极限、数列极限,此中函数极限又分为限能否存在在:x时函数的极限和 xx 0 的极限。
要特别注意判断极( i )数列 x n 收敛于 a 的充要条件 是它的全部子数列均收敛于 a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”( ii )limf (x)Alimf ( x)limAxxx(iii)lim f ( x)AlimlimAx xx x 0x x 0(iv) 单一有界准则 ( v )两边夹挤准则(夹逼定理 / 夹逼原理) ( vi ) 柯 西 收 敛 准 则 ( 不 需 要 掌 握 )。
极 限 limf ( x) 存 在 的 充 分 必 要 条 件 是 :x x 00,0, 使适当 x 1、 x 2U o ( x 0 )时,恒有 | f ( x 1 ) f ( x 2 ) |二.解决极限的方法以下:1. 等价无量小代换。
只好在乘除 时候使用。
例题略。
..2. 洛必达( L ’ho spital )法例(大题目有时会有示意要你使用这个方法)它的使用有严格的使用前提。
第一一定是X 趋近,而不是 N 趋近,因此面对数列极限时候先要转变为求 x 趋近状况下的极限,数列极限的n 自然是趋近于正无量的,不行能是负无量。
其次 , 一定是函数的导数要存在,假如告诉 f (x )、g (x ), 没告诉能否可导, 不行直接用洛必达法例。
此外,一定是 “0 比 0”或“无量大比无量大” ,而且注意导数分母不可以为 0。
洛必达法例分为 3 种状况:(i )“ 0”“”时候直接用(ii) “0? ”“”,应为无量大和无量小成倒数的关系,因此无量多数写成了无量小的倒数形式了。
高等数学极限求法总结
高等数学极限求法总结高等数学极限求法总结函数极限的求法函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明题中。
掌握这类证明对初学者深刻理解运用极限定义大有裨益。
限为例,f(x)在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A 就叫做函数f(x)当x→x。
时的极限。
1.利用极限的四则运算法则:极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。
方能利用极限四则运算法则进行求之。
不满足条件者,不能直接利用极限四则运算法则求之。
但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。
而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。
例1求lim(x23x+5).x→2解:lim(x23x+5)=limx2lim3x+lim5=(limx)23limx+lim5=2232+5=3.x→2x→2x→2x→2x→2x→2x→22.利用洛必达法则洛必达(L'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。
一般用在求导后为零比零或无穷比无穷的类型。
利用洛必达求极限应注意以下几点:设函数f(x)和F(x)满足下列条件:(1)x→a时,limf(x)=0,limF(x)=0;(2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0;(3)x→a时,lim(f'(x)/F'(x))存在或为无穷大则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x))例1:1-cosx=1-{1-2[sin(x/2)]^2}=2[sin(x/2)]^2xsinx=2xsin(x/2)cos(x/2)原式=lim2[sin(x/2)]^2/[2xsin(x/2)cos(x/2)]=tgx/x对分子分母同时求导(洛必达法则)(tgx)'=1/(cosx)^2(x)'=1原式=lim1/(cosx)^2当x-->0时,cosx--->1原式=13.利用两个重要极限:应用第一重要极限时,必须同时满足两个条件:①分子、分母为无穷小,即极限为0;②分子上取正弦的角必须与分母一样。
2020考研数学:这十招帮你搞定数学极限!.doc
2020考研数学:这十招帮你搞定数学极限!
考研中数学也是一大难题,公式一定要熟记才不会费劲,下面由小编为你精心准备了“2020考研数学:这十招帮你搞定数学极限!”,持续关注本站将可以持续获取更多的考试资讯!
2020考研数学:这十招帮你搞定数学极限!
1、利用定义求极限。
2、利用柯西准则来求。
柯西准则:要使{xn}有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于
任意的自然数m有|xn-xm|<ε.<>
3、利用极限的运算性质及已知的极限来求。
如:lim(x+x .5).5/(x+1).5
=lim(x .5)(1+1/x =1.
4、利用不等式即:夹挤定理。
5、利用变量替换求极限。
例如lim
(x /m-1)/(x /n-1)
可令x=y
得:=n/m.
6、利用两个重要极限来求极限。
(1)lim
sinx/x=1
x->0
(2)lim
(1+1/n)
n->∞
7、利用单调有界必有极限来求。
8、利用函数连续得性质求极限。
9、用洛必达法则求,这是用得最多的。
10、用泰勒公式来求,这个也经常用。
考研数列极限计算汇总
数列极限及其计算(习题部分)数列极限存在性的证明以及数列极限的计算,是考研数学的重难点,有时会命制成压轴题。
在考研范围内,数列极限计算常用的方法主要有单调有界准则、夹逼准则、初等变形、定积分定义、归结原理、级数收敛的必要条件、转化为幂级数求和等。
本章部分题目涉及到后续章节的知识(如利用定积分定义求极限),自学本讲义的同学可暂时跳过。
题型一、递推数列的极限(一)单调有界准则例题1收敛并求极限值注:利用单调有界准则证明递推数列的收敛性,是常考题型。
在具体证明单调性和有界性时,常用到一些经典的不等式放缩,如均值不等式,柯西不等式等等;有时也可用数学归纳法证明。
(在进行含有自然数的命题的证明时,我们常常可以考虑数学归纳法,这是一个很好用也很流氓的一个方法。
)类题1 ,证明收敛并求极限值类题2 ,证明收敛并求极限值,问此时是否收敛,该如何证明?若将,又该如何证明?类题3 ,证明收敛并求极限值[注]:此题对于极限值的取舍才是关键点,这是很多辅导书都没有讲清楚的地方,希望大家好好思考。
类题4 设数列,证明收敛并求极限类题5设可导,且,对于数列收敛,且极限值满足方程类题6 收敛并求极限值类题7 (2018年数学二压轴题)设,证明收敛并求极限注:这题是我当年考研时的原题,当时考完以后,很多人就在吹这个题多么的不常规,是考研史上最难的数列极限题。
也正常,弱者总喜欢找各种理由。
例题2设收敛注:①.该题说明,某些不是递推型的数列,也可以用单调有界准则来证明②.是一个非常重要的极限,我们将这个极限值定义为欧拉常数,和是等价无穷是发散的。
() 例题3问数列的单调性和函数的单调性之间有无必然联系?请猜想并证明你的判断。
例题4 (2013年数学二压轴题)设函数(1) 求的最小值(2)设数列收敛并求极限注:本题的解法值得借鉴。
该题说明,即使某些数列的递推关系由不等式给出,也能使用单调有界准则。
类题1 收敛并求极限类题2 ,证明收敛并求极限(二)非单调的迭代数列例题1收敛并求极限值注:对付这种不单调的数列,我们可以采取“先斩后奏”的办法——即先把极限值找出来,然后再用递推放缩的方法,证明这个数字就是该数列的极限。
考研数学:求极限的16种方法1500字
考研数学:求极限的16种方法1500字极限是数学中的重要概念,是解析数学中很多问题的基础。
求极限的方法有很多种,下面就介绍一下求极限的16种常用方法。
1. 直接代入法:对于某个函数在某个点的极限,如果可以直接将极限点代入函数中计算出极限值,则可以使用直接代入法。
2. 连续性法则:如果一个函数在某个点处连续,那么该点的极限值就是函数在该点的函数值。
3. 无穷小量的性质:利用无穷小量的性质对极限进行求解,例如利用已知的极限,对函数进行分子分母的化简、展开等操作。
4. 夹逼法:当一个函数夹在两个函数之间时,利用两个函数的极限值可以求出该函数的极限值。
5. 单调有界原理:对于单调有界的函数,可以通过证明上下确界得到极限值。
6. 极限的四则运算法则:对于两个函数的极限,可以利用四则运算法则求出其和、差、积、商的极限。
7. 换元法:通过对函数进行变量替换,将原来的极限问题转化为更简单的问题求解。
8. 泰勒级数展开法:对于某些函数,可以利用泰勒级数展开的性质,将函数进行级数展开,然后求出极限值。
9. 符号常用极限法:对于一些特殊的函数,例如正弦函数、指数函数等,可以通过符号常用极限值来求出其极限。
10. 隐函数极限法:对于隐函数的极限问题,需要通过隐函数求导的方式来求出极限值。
11. 单调列法:对于一个递增(递减)且有上(下)界的序列,可以通过极限的单调列法求出极限。
12. Stolz定理:当一个数列为无穷大与无穷小的极限的商时,可以利用Stolz定理求出极限。
13. 递推法:对于递归定义的数列,可以通过递推的方式求出极限。
14. 分部积分法:对于一些函数的积分,可以通过分部积分法转化为极限问题求解。
15. L'Hospital法则:对于一些不定型的极限问题,可以通过L'Hospital法则来求出其极限。
16. 堪培拉法则:对于一些含有多个变量的函数,可以利用堪培拉法则求出其极限。
以上是求解极限的16种常用方法,掌握这些方法可以更好地应对极限求解问题。
2023考研数学高数备考冲刺:16种求极限的方法
2023考研数学高数备考冲刺:16种求极限的方法2023考研数学高数备考冲刺:16种求极限的方法1、极限分为一般极限,还有个数列极限〔区别在于数列极限是发散的,是一般极限的一种〕。
2、解决极限的方法如下1〕等价无穷小的转化,〔只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限仍然存在〕e的X次方-1或者〔1+x〕的a次方-1等价于Ax等等。
全部熟记。
〔x趋近无穷的时候复原成无穷小〕2〕洛必达法那么〔大题目有时候会有暗示要你使用这个方法〕首先他的使用有严格的使用前提。
必须是X趋近而不是N 趋近。
〔所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。
还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!〕必须是函数的导数要存在!〔假设告诉你g〔x〕,没告诉你是否可导,直接用无疑是死路一条〕必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
洛必达法那么分为三种情况1〕0比0无穷比无穷时候直接用2〕0乘以无穷,无穷减去无穷〔应为无穷大于无穷小成倒数的关系〕所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3〕0的0次方,1的无穷次方,无穷的0次方对于〔指数幂数〕方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,〔这就是为什么只有3种形式的原因,ln〔x〕两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln〔x〕趋近于0〕3、泰勒公式〔含有ex的时候,尤其是含有正余旋的加减的时候要特变注意!〕ex展开,sinx展开,cos展开,ln〔1+x〕展开对题目简化有很好帮助4、面对无穷大比上无穷大形式的解决方法取大头原那么最大项除分子分母!看上去复杂处理很简单。
5、无穷小与有界函数的处理方法面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
求极限的21个方法总结
求极限的21个方法总结1. 直接代入法:将变量的值代入极限表达式中,计算极限的值。
2. 分子分母同除以最高次项的方法:可以使得分子和分母的最高次项的系数为1,简化计算。
3. 消去法:利用性质将某些项消去,使得表达式更容易计算。
4. 因式分解法:将极限表达式中的因式进行分解,简化计算。
5. 分数分解法:将极限表达式中的分数进行分解,简化计算。
6. 奇偶性性质:利用函数的奇偶性质,简化计算。
7. 倍角、半角、和差公式:利用三角函数的相关公式,简化计算。
8. 幂函数性质:利用幂函数的性质,简化计算。
9. 对数函数性质:利用对数函数的性质,简化计算。
10. 指数函数性质:利用指数函数的性质,简化计算。
11. 三角函数性质:利用三角函数的性质,简化计算。
12. 极坐标法:将极限表达式转化为极坐标形式,简化计算。
13. 无穷小代换法:将极限表达式中的变量代换为无穷小量,简化计算。
14. 夹逼定理:利用夹逼定理确定极限的值。
15. L'Hopital法则:当计算的极限为0/0或者∞/∞形式时,可以利用L'Hopital 法则进行计算。
16. 泰勒展开法:将极限表达式进行泰勒展开,取较低阶项进行计算。
17. 递推法:将极限表达式中的各项逐步推导出来,从而得到极限的值。
18. 积分法:将极限表达式转化为积分形式,利用积分的性质计算极限的值。
19. 微分法:将极限表达式转化为微分形式,利用微分的性质计算极限的值。
20. 反函数法:将极限表达式中的函数进行反函数变换,简化计算。
21. 几何法:利用几何图形的性质计算极限的值。
考研:求数列极限的十五种解法
求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111n a a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞.解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎥⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!nn n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112()122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n =)极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim nn x l →∞=存在,对①式两边取极限得:l解得:l =l (舍负);∴lim n n x →∞.4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim nn c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++; ∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++. 注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用.5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()b aJ f x dx =⎰.例7.求:()()11lim !2!n n n n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n =112lim (1)(1)(1)n n n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦ 11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12lim lim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sin sinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫ ⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()1110n nxx n n e e e e n n=→∞→∞--'===-.例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭.解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1)n n n n n n n n n n n n n -------+-=+≥+; 由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1)lim(1)lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n -----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim n n nxl y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim n n nxl y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈.解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p pp n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nkn k n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n ++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1limlim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >.解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<,∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵10011()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()()1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n n x f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x S l +→∞→∞=+=(存在); 对式子:12(1)2n n n x x x ++=+,两边同时取极限:2(1)2l l l+=+,∴l =l =lim n n x →∞.例15.证明:111lim(1ln )23n n n →∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数).证:设1111ln 23n a n n=++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n ---;对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim n n a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用. 例17.求:2lim (arctanarctan )1n a a n n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, ]1a an n+上应用拉格朗日中值定理, 得:21()()(), [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明, 若lim n n x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nn ααα++⋅⋅⋅+也为无穷小数列. 推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim n n x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12limn n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略. 例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211limn n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211limn n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim1()x f x g x →=,且当n →∞时, 0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n →∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数).解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n →∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==; ∴2231lim (1)nn i i a n →∞=+=∏21exp()3a .注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,]2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, ]22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim n n x c →∞=,则c 是222a x x =+在1[0, ]2a+的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =[0, )x ∈+∞且在[0, )+∞上有:()1f x '=≤<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==解得:lim n n x →∞. 本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞. (2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-,从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n n n ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn nn a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫= ⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()111111011111111120101n n n A P P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭ ()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-.因为11α-<,所以lim(1)0n n α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ=,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn n n n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-,由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim lim n n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。
考研数学:求极限的16个方法总结
考研数学:求极限的16个方法总结极限的保号性很重要就是说在一定区间内函数的正负与极限一致。
1、极限分为一般极限,还有个数列极限(区别在于数列极限时发散的,是一般极限的一种)。
2、解决极限的方法如下1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记。
(x趋近无穷的时候还原成无穷小)2)洛必达法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提。
必须是X趋近而不是N趋近。
(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。
还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况1)0比0无穷比无穷时候直接用2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3)0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)3、泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!)e 的x展开sina展开cos展开ln1+x展开对题目简化有很好帮助4、面对无穷大比上无穷大形式的解决办法。
取大头原则最大项除分子分母!看上去复杂处理很简单。
5、无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
考研数学:求极限的16种方法
考研数学:求极限的16种方法1500字求极限是数学中一个重要的概念和技巧,经常会在高等数学、微积分、函数分析等课程中出现。
在考研数学中,求极限也是一个比较常见的题型,有时候会要求借助不同的方法来求解极限。
以下是16种常见的求极限的方法:方法1:代入法代入法是求极限中最基本的方法之一,特别适用于极限问题中有指定点的情况。
代入的点可以是有限点或无限点,通过将极限值代入原函数中,来求得极限。
方法2:夹逼定理夹逼定理也是一种常用的方法,适用于需要用两个已知函数夹住待求函数的情况。
通过取两个已知函数逐渐逼近待求函数,来求得极限。
方法3:集中取值法集中取值法是一种常用的方法,适用于需要对待求函数的取值进行讨论的情况。
通过将待求函数的取值限制在一个区间内,来求得极限。
方法4:变量代换法变量代换法是一种常用的方法,适用于需要通过变换变量来求得极限的情况。
通过进行恰当的变换变量,将原极限转化为另一个更容易求解的极限。
方法5:公共因子法公共因子法是一种常用的方法,适用于需要将待求函数的表达式进行分解的情况。
通过进行恰当的分解,将待求函数表达式中的公共因子提取出来,来求得极限。
方法6:三角函数极限法三角函数极限法是一种常用的方法,适用于需要进行三角函数的极限转化的情况。
通过使用三角函数的性质和公式,将原极限转化为更容易求解的三角函数极限。
方法7:幂函数极限法幂函数极限法是一种常用的方法,适用于需要进行幂函数的极限转化的情况。
通过使用幂函数的性质和公式,将原极限转化为更容易求解的幂函数极限。
方法8:自然对数极限法自然对数极限法是一种常用的方法,适用于需要进行自然对数的极限转化的情况。
通过使用自然对数的性质和公式,将原极限转化为更容易求解的自然对数极限。
方法9:常数e极限法常数e极限法是一种常用的方法,适用于需要进行常数e的极限转化的情况。
通过使用常数e的性质和公式,将原极限转化为更容易求解的常数e极限。
方法10:斜率法斜率法是一种常用的方法,适用于需要进行斜率的极限转化的情况。
极限求法总结
极限的求法1、利用极限的定义求极限2、直接代入法求极限3、利用函数的连续性求极限4、利用单调有界原理求极限5、利用极限的四则运算性质求极限 6. 利用无穷小的性质求极限 7、无穷小量分出法求极限 8、消去零因子法求极限 9、 利用拆项法技巧求极限 10、换元法求极限11、利用夹逼准则求极限[3] 12、利用中值定理求极限 13、 利用罗必塔法则求极限 14、利用定积分求和式的极限 15、利用泰勒展开式求极限 16、分段函数的极限1、利用极限的定义求极限用定义法证明极限,必须有一先决条件,即事先得知道极限的猜测值A ,这种情况一般较困难推测出,只能对一些比较简单的数列或函数推测分析出极限值,然后再去用定义法去证明,在这个过程中,放缩法和含绝对值的不等式总是密切相连的。
例:()0lim x x f x A →=的ε-δ 定义是指:∀ε>0, ∃δ=δ(0x ,ε)>0,0<|x-0x |<δ⇒|f(x)-A|<ε 为了求δ 可先对0x 的邻域半径适当限制, 如然后适当放大|f(x)-A |≤φ(x) (必然保证φ(x)为无穷小),此时往往要用含绝对值的不等式:|x+a |=|(x-0x )+(0x +a)|≤|x-0x |+|0x +a|<|0x +a |+δ1 域|x+a|=|(x-0x )+(0x +a)|≥|0x +a|-|x-0x |>|0x +a|-δ1 从φ(x)<δ2,求出δ2后,取δ=min(δ1,δ2),当0<|x-0x |<δ 时,就有|f(x)-A|<ε.例:设lim n n x a →∞=则有12 (i)nn x x x a n→∞++=.证明:因为lim n n x a →∞=,对110()N N εε∀>∃=,,当1n N >时,-2n x a ε∣∣<于是当1n N >时,1212......n n x x x x x x na a n n+++∣+++-∣∣-∣=0ε<<1其中112N A x a x a x =∣-∣+∣-∣+∣-α∣是一个定数,再由2A n ε<,解得2An ε>,故取12max ,A N N ε⎧⎫⎡⎤=⎨⎬⎢⎥⎣⎦⎩⎭12...+=22n x x x n N n εεε+++>-α<当时,。
(完整版)极限的解法与技巧_汇总
极限的求法与技巧极限是解决数学问题的一种有效的工具。
以下列举种方法,并附有例题。
1.运用极限的定义 例:用极限定义证明:1223lim 22=-+-→x x x x 证: 由244122322-+-=--+-x x x x x x ()2222-=--=x x x0>∀ε 取εδ= 则当δ<-<20x 时,就有ε<--+-12232x x x由函数极限δε-定义有:1223lim 22=-+-→x x x x 2.利用单调有界准则求极限预备知识:若数列{}n a 收敛,则{}n a 为有界数列,即存在正数M ,使得对一切正整数n ,有 M a n ≤.此方法的解题程序为:1、直接对通项进行分析或用数学归纳验证数列{}n a 单调有界;2、设{}n a 的极限存在,记为A a n n =∞→lim 代入给定的表达式中,则该式变为A 的代数方程,解之即得该数列的极限。
例:若序列{}n a 的项满足)0(1>>a a a 且),2,1(,211Λ=⎪⎪⎭⎫⎝⎛+=+n a a a a n n n ,试证{}n a 有极限并求此极限。
解 由 a a >1a a aa a a a a a a a =>⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=12112111222121 用数学归纳法证明 a a k > 需注意a a a a a a a a a a a k k k kk k k =>⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=2222121. 又 022121>-=⎪⎪⎭⎫ ⎝⎛-=--n nn n n n a a a a a a a a ∴ {}n a 为单调减函数且有下界。
令其极限为A 由 ⎪⎪⎭⎫⎝⎛+=+n n n a a a a 211有: ⎪⎪⎭⎫⎝⎛+=+∞→n n n n a a a a 21lim 1即 ⎪⎭⎫⎝⎛+=A a A A 21∴ a A =2∴ a A = )0(>A从而 a a n n =∞→lim. 3.利用等价无穷小替换 常用的等价无穷小关系:,~arctan ~arcsin ,~tan ,~sin ,0x x xx x x x x x → ,~1x e x -,ln ~1a x a x -,ln ~)1(log a x x a+,1~11x nx n-+等价无穷小代换法设'',,,ββαα 都是同一极限过程中的无穷小量,且有: ''~,~ββαα,''lim βα 存在, 则 βαlim 也存在,且有βαlim = ''lim βα例:求极限2220sin cos 1lim x x x x -→ 解: ,~sin 22x x 2)(~cos 1222x x -∴ 2220sin cos 1lim x x x x -→=212)(2222=x x x 注: 在利用等价无穷小做代换时,一般只在以乘积形式出现时可以互换,若以和、差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数” 4.利用极限的四则运算法则 极限的四则运算法则叙述如下:若 A x f x x =→)(lim 0B x g xx =→)(lim 0(I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g xx ±=→)(lim 0(II)[]B A x g x f x g x f xx x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0(III)若 B≠0 则:BAx g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000 ,~)1ln(x x +,21~11x x -+,~1)1(x x αα-+(IV )cA x f c x f c xx x x =⋅=⋅→→)(lim )(lim 0(c 为常数)上述性质对于时也同样成立-∞→+∞→∞→x x x ,,总的说来,就是函数的和、差、积、商的极限等于函数极限的和、差、积、商。
求极限的方法总结
极限是数学分析中的重要概念,也是微积分的基础。
求极限的方法有很多种,下面将对常用的几种方法进行总结和解析。
1. 直接代入法直接代入法是最基本的求极限方法,适用于函数单调、连续,且直接代入可知极限值的情况。
具体步骤如下:(1)将极限表达式中的变量替换为具体的数值。
(2)根据函数的定义和性质,计算替换后的表达式。
(3)得出极限值。
2. 因式分解法因式分解法适用于有理函数的极限求解,通过分解函数,消除分子、分母中的共同因子,简化极限表达式。
具体步骤如下:(1)对有理函数进行因式分解。
(2)对分解后的表达式进行约分,消除共同因子。
(3)根据约分后的表达式求极限。
3. 泰勒公式法泰勒公式法是利用泰勒公式将函数展开,近似表示函数在某一点附近的值,从而求解极限。
具体步骤如下:(1)确定函数在某一点附近的泰勒展开式。
(2)根据泰勒展开式求极限。
4. 洛必达法则洛必达法则(L’Hôpital’s Rule)适用于求解“0/0”或“∞/∞”形式的极限。
该法则通过对分子、分母同时求导,将极限问题转化为导数的极限问题。
具体步骤如下:(1)判断极限形式是否为“0/0”或“∞/∞”。
(2)对分子、分母分别求导。
(3)将求导后的表达式代入原极限表达式。
(4)求解新的极限表达式。
5. 夹逼定理夹逼定理(Squeeze Theorem)适用于求解形如“f(x) = (g(x))/(h(x))”,且当x趋向于某一点时,g(x)和h(x)分别趋向于a和b(a ≠ b)的极限。
具体步骤如下:(1)找到两个函数p(x)和q(x),使得p(x) ≤ f(x) ≤ q(x)。
(2)证明当x趋向于某一点时,p(x)和q(x)分别趋向于a和b。
(3)根据夹逼定理,得出f(x)趋向于a。
6. 有界函数法有界函数法适用于求解形如“f(x) = g(x)/h(x)”,且当x趋向于某一点时,g(x)趋向于0,h(x)趋向于无穷大的极限。
具体步骤如下:(1)证明g(x)在x趋向于某一点时趋向于0。
16种求极限的方法
16种求极限的方法 <网上找的仅供参考>首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面首先对极限的总结如下极限的保号性很重要就是说在一定区间内函数的正负与极限一致1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2落笔他法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0落笔他法则分为3中情况1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了3 0的0次方 1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开 sina 展开 cos 展开 ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
求极限的方法总结
求极限的方法总结在数学中,求极限是一个非常重要的概念,它在微积分、数学分析等领域都有着广泛的应用。
求极限的方法有很多种,下面我将对一些常用的方法进行总结和介绍。
首先,我们来看一下最基本的求极限方法——代入法。
当我们求一个函数在某一点的极限时,最简单直接的方法就是将这一点的值代入函数中,看看函数在这一点附近的取值情况。
如果函数在这一点附近的取值趋近于某个确定的值,那么这个确定的值就是这个函数在这一点的极限。
代入法适用于一些简单的函数,但对于一些复杂的函数,代入法可能不太适用,这时候我们就需要使用其他的方法来求极限了。
其次,夹逼定理是另一个常用的求极限方法。
夹逼定理的核心思想是通过夹逼的方式确定函数在某一点的极限值。
具体来说,如果我们能找到两个函数,一个比原函数小,一个比原函数大,并且这两个函数在这一点的极限都等于同一个值,那么原函数在这一点的极限也等于这个值。
夹逼定理在求一些复杂函数的极限时非常有用,它可以帮助我们通过简单的函数来确定复杂函数的极限值。
另外,还有一种常用的求极限方法是洛必达法则。
洛必达法则适用于求不定型的极限,即当我们将一个函数在某一点代入后得到0/0或者∞/∞这样的不定型时,我们就可以使用洛必达法则来求极限。
具体来说,洛必达法则的核心思想是对函数的分子和分母同时求导,然后再求极限,这样可以帮助我们求出原函数在这一点的极限值。
最后,还有一种常用的求极限方法是泰勒展开。
泰勒展开的核心思想是将一个函数在某一点附近用多项式来逼近,从而求出这一点的极限值。
泰勒展开适用于一些复杂的函数,通过将函数进行泰勒展开,我们可以将原函数转化为多项式函数,从而更容易求出其极限值。
综上所述,求极限的方法有很多种,每一种方法都有其适用的范围和特点。
在实际应用中,我们可以根据具体的问题和函数特点来选择合适的方法来求极限,从而更准确地求出函数在某一点的极限值。
希望以上总结的方法可以对大家有所帮助。
求极限的方法及例题总结
1.定义:说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5)13(lim 2=-→x x(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
利用导数的定义求极限这种方法要求熟练的掌握导数的定义。
2.极限运算法则定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ⋅=⋅)()(lim (3))0(,)()(lim成立此时需≠=B B Ax g x f说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
. 利用极限的四则运算法求极限这种方法主要应用于求一些简单函数的和、乘、积、商的极限。
通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。
8.用初等方法变形后,再利用极限运算法则求极限例11213lim1--+→x x x解:原式=43)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。
注:本题也可以用洛比达法则。
例2)12(lim --+∞→n n n n解:原式=2311213lim12)]1()2[(lim=-++=-++--+∞→∞→nn n n n n n n nn 分子分母同除以。
例3 nn n n n 323)1(lim ++-∞→解:原式11)32(1)31(lim 3=++-=∞→nn n n上下同除以。
3.两个重要极限(1)1sin lim0=→x xx(2)ex xx =+→1)1(lim ;ex x x =+∞→)11(lim说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,例如:133sin lim0=→x xx ,e x xx =--→21)21(lim ,e x xx =+∞→3)31(lim ;等等。
求极限的方法总结
求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。
二、 分子分母同除求极限求极限limx→∞x3-x23x3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13三、 分子(母)有理化求极限例:求极限limx→∞(x3+3-x2+1)分子或分母有理化求极限,是通过有理化化去无理式。
()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x 0132lim 22=+++=+∞→x x x例:求极限limx→01+tanx -1+sinxx330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。
四、 应用两个重要极限求极限(2)limx→∞(1+1x)x=limx→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
例:求极限limx→∞(x+1x-1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。
limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。
这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020考研数学复习:极限求法大汇总
考研备考时间已然快要过半,还在为了备考方法焦灼?不用担心!老司机带你上车,下面由我为你精心准备了“2020考研数学复习:极限求法大汇总”,持续关注本站将可以持续获取更多的考试资讯!
2020考研数学复习:极限求法大汇总
假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。
为此,我整理了这篇文章,希望对大家有所帮助。
1、极限分为一般极限,还有个数列极限
(区别在于数列极限是发散的,是一般极限的一种)。
2、解决极限的方法如下
1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记。
(x趋近无穷的时候还原成无穷小)
2)洛必达法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提。
必须是X趋近而不是N趋近。
(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x 趋近的一种情况而已,是必要条件。
还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为三种情况
1)0比0无穷比无穷时候直接用
2)0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了
3)0的0次方,1的无穷次方,无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,ln(x)两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln(x)趋近于0)
3、泰勒公式
(含有e^x的时候,尤其是含有正余旋的加减的时候要特变注意!)e^x 展开,sinx展开,cos展开,ln(1+x)展开对题目简化有很好帮助
4、面对无穷大比上无穷大形式的解决办法
取大头原则最大项除分子分母!看上去复杂处理很简单。
5、无穷小与有界函数的处理办法
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!
6、夹逼定理
(主要对付的是数列极限)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7、等比等差数列公式应用
(对付数列极限)(q绝对值符号要小于1)
8、各项的拆分相加
(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。
9、求左右求极限的方式
(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,Xn的极限与Xn+1的极限是一样的,应为极限去掉有限项目极限值不变化。
10、两个重要极限的应用
这两个很重要!对第一个而言是x趋近0时候的sinx与x比值。
第2个就如果x趋近无穷大无穷小都有对有对应的形式(第二个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用第二个重要极限)
11、还有个方法,非常方便的方法
就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。
x的x次方快于x!,快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)。
当x趋近无穷的时候他们的比值的极限一眼就能看出来了
12、换元法
是一种技巧,不会对某一道题目而言就只需要换元,但是换元会夹杂其中
13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。
14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。
一般是从0到1的形式。
15、单调有界的性质
对付递推数列时候使用证明单调性。
16、直接使用求导数的定义来求极限
(一般都是x趋近于0时候,在分子上f(x)加减某个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你F(0)=0时,f(0)的导数=0的时候就是暗示你一定要用导数定义!)。