轴对称画图练习题
画轴对称图形练习题
画轴对称图形练习题轴对称图形是指在平面上存在一个轴,当图形沿该轴作对称变换时,图形与自身重合。
画轴对称图形是培养儿童对称思维和审美能力的重要训练内容。
今天,我们来练习一些画轴对称图形的练习题。
1. 画出以下几个字母的轴对称图形:A、B、C、D、E、F、G。
2. 画出以下几个数字的轴对称图形:0、1、2、3、4、5、6、7、8、9。
3. 画出以下几个几何形状的轴对称图形:正方形、长方形、圆形、三角形、椭圆、五边形。
4. 根据给定的轴对称图形,完成图形的绘制:a) 给定一个正方形,画出它的轴对称图形。
b) 给定一个三角形,画出它的轴对称图形。
c) 给定一个长方形,画出它的轴对称图形。
d) 给定一个圆形,画出它的轴对称图形。
5. 设计一个轴对称的图案,使用你喜欢的颜色和形状进行绘制。
可以尝试使用不同的几何形状和线条来创造出独特的图案。
通过以上的练习题,我们可以巩固轴对称图形的绘制技巧和观察力。
画轴对称图形不仅能够培养我们的审美能力,还有助于提升我们的创造力和想象力。
在绘制过程中,我们需要注意以下几点:首先,要明确轴对称图形的基本特征,即从一个点为中心,沿轴线进行对称变换后图像不变。
其次,要注意绘制对称轴,可以使用直尺或绘图工具来帮助我们找到中心轴线。
然后,要对称地绘制图形的各个部分,确保每个部分都与其对称位置保持一致。
最后,要仔细观察和检查绘制结果,确保图形的各部分符合对称关系,并且整体上看起来完美对称。
在进行绘制时,可以使用纸和铅笔进行草图,并使用彩色铅笔或绘图软件进行上色。
可以尝试不同的颜色和图案来增加绘图的趣味性和创造力。
通过不断的练习和探索,我们可以提高自己的轴对称图形绘制能力,在欣赏美丽图形的同时,也培养了自己的审美能力和想象力。
所以,在日常生活中,多多练习画轴对称图形,让我们的大脑得到锻炼,同时也提高我们的艺术水平和绘画技巧。
希望以上的练习题能够帮助大家提升对轴对称图形的理解和绘制能力。
不要忘记享受绘画的过程,并在每次创作中发挥自己的想象力!。
轴对称作图折叠剪纸专项练习30题(有答案)ok
轴对称作图折叠剪纸专项练习30题(有答案)1.如图,在正方形网格上有一个△DEF.(1)作△DEF关于直线HG的轴对称图形;(2)作△DEF的EF边上的高;(3)若网格上的最小正方形边长为1,求△DEF的面积.2.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.注:考察学生通过对几何图形做不同变换,作出几何对象的大小,位置,特征的变化情况,理解图形的对称,掌握数形结合思想.3.如图,△ABC中,A(﹣2,3),B(﹣3,1),C(﹣1,2).(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(4)在△A1B1C1,△A2B2C2,△A3B3C3中,△_________与△_________成轴对称,对称轴是_________;△_________与△_________成中心对称,对称中心的坐标是_________.4.已知:如图,△ABC、直线m、点M在网格中如图所示的位置,请按以下要求作图:(1)将△ABC向上平移6个单位得△A1B1C1;(2)作出△ABC关于直线m的轴对称图形△A2B2C2;(3)作出△A2B2C2绕点M顺时针旋转90°的图形△A3B3C3.5.△ABC在平面直角坐标系中如图所示,(1)作出△ABC关于x轴对称的图形△A1B1C1;若P(a,b)是△ABC内一点,请用a,b表示出点P关于x轴对称的点P1的坐标;(2)作出△ABC关于原点对称的图形△A2B2C2,写出点C2的坐标.(3)△A2B2C2能否由△A1B1C1通过某种变换而得到?若能,请指出是何种变换.6.在平面直角系中,已知△ABC和△DEF的顶点分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).按下列要求画图:(1)画出△ABC以点O为位似中心,在y轴异侧放大2倍后得到的△A1B1C1,并写出点C1的坐标;(2)画出△A1B1C1关于x轴的对称图形△A2B2C2.并写出点C2的坐标;(3)指出△A2B2C2经过哪些变换,可以与△DEF拼成一个正方形.7.作图题(1)如图1,作出△ABC关于直线l的对称图形;(2)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图2),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.8.(1)如图,作出△ABC关于直线l的对称图形;(2)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.9.如图,C、D、E、F是一个长方形台球桌的4个顶点,A、B是桌面上的两个球,怎样击打A球,才能使A球撞击桌面边缘CF后反弹能够撞击B球?请画出A球经过的路线,并写出作法.10.如图,直线m是一个轴对称图形的对称轴,画出这个轴对称图形的另一半;若它是一个正五角星,那么它一共有几条对称轴?它的五个星角(最外围5个角)度数之和是多少度?11.把一张正方形纸片按如图①、图②对折两次后,得到图③,并在其中挖去一个三角形小孔,请你画出展开后的图形(折痕用虚线画出).12.小明把一张长方形纸片对折两次,画上一个四边形,再剪去这个图形(镂空),展开长方形纸,得到如下的图案,设折痕为l1、l2、l3,观察图并填空:(1)图中有_________条对称轴;(2)四边形①与四边形②关于_________成轴对称,折痕l2既是_________与_________的对称轴,又是_________与_________的对称轴,整体上看也是_________与_________的对称轴;(3)若小明把纸片对折三次,展开后,得到的四边形有几个,有几条对称轴?13.如图所示,将三角形纸片ABC的一个角折叠,折痕为EF,若∠A=80°;∠B=68°;∠CFE=78°,求∠CEF的度数.14.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC 交于点F.(1)填空:∠AFC=_________度;(2)求∠EDF的度数.15.如图,在△ABC中,AD是BC边上的高,将△ABD沿AD折叠得到△AED,点E落在CD上,∠B=50°,∠C=30°.(1)填空:∠BAD=_________度;(2)求∠CAE的度数.16.如图,矩形ABCD,AB>AD,E在AD上,将△ABE沿BE折叠后,A点正好落在CD上的点F.(1)用尺规作出E、F;(2)若AE=5,DE=3,求DF的长.17.如图所示,将矩形ABCD沿着直线BD折叠,使点C落在点C′,BC′交AD于点E,AD=8,AB=4.(1)求证:△BED是等腰三角形;(2)求△BED的面积.18.如图所示,在矩形ABCD中,已知BC=2AB,E是CD上一点,连接BE,将矩形沿直线BE折叠,使点C落在AD的F点上,连接CF,求∠DCF的度数.19.如图,请你用三种方法把左边的小正方形分别平移到右边三个图形中,使它成为轴对称图形.20.长方形具有四个内角均为直角,并且两组对边分别相等的特征.如图,把一张长方形纸片ABCD折叠,使点C 与点A重合,折痕为EF.(1)如果∠DEF=123°,求∠BAF的度数;(2)判断△ABF和△AGE是否全等吗?请说明理由.21.将矩形纸片ABCD沿着对角线AC折叠,使点B落在点E处.(1)EF和DF的大小关系如何?请说明理由.(2)若∠ACB=20,求∠EAF的度数.22.如图,将长方形纸片的两角分别折叠,使顶点B落在B′处,顶点A落在A′处,EC为折痕,点E、A′、B′在同一条直线上.(1)猜想折痕EC和ED的位置关系,并说明理由.(2)ED的反向延长线交CA交于F,若∠BED=35°,求∠AEF和∠A′EC的度数.23.如图,将一张长方形纸片ABCD先以FG为折痕斜折过去,使角的顶点A落在A′处,再把BF折过去,折痕为EF.若∠AFG=25°,则∠BFE的度数是多少?24.(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H 重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.25.如图,在Rt△ABC中,∠ACB=90゜,∠A=50゜,将其折叠,使点A落在边CB上A′处,折痕为CD.求∠A′DB 的度数.26.如图,把正方形ABCD对折,折痕为MN.把顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,请回答下列问题:(1)线段PC、PB与正方形的边长有什么关系?(2)∠CPB的度数是多少?(3)还能知道哪些角的度数?请指出来.27.如图,△AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗?请说明理由.28.如图,折叠长方形ABCD的一边AD,点D落在BC边的D′处,AE是折痕,已知AB=8cm,CD′=4cm,求AD的长.29.如图,已知△ABC中,∠BAC=140°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,求∠DAE的度数.30.如图所示,已知O是∠APB内的一点,点M、N分别是O点关于PA、PB的对称点,MN与PA、PB分别相交于点E、F,已知MN=5cm,求△OEF的周长.参考答案:1.解:(1)如图所示,△D′E′F′即为所求作的△DEF关于直线HG的轴对称图形;(2)如图所示,DH为EF边上的高线;(3)△DEF的面积=×3×2=32.解:(1)各点坐标为:A1(0,4),B1(2,2),C1(1,1)(2)各点坐标为:A2(6,4),B2(4,2),C2(5,1)(3)△A1B1C1与△A2B2C2关于直线x=3轴对称3.解:(1)(2)(3)如图所示;(4)由图可知:△A2B2C2与△A3B3C3呈轴对称,且对称轴为y轴;△A1B1C1与△A3B3C3呈中心对称,且对称中心为(2,0).故答案为:A2B2C2 ,A3B3C3,y轴;A1B1C1,A3B3C3,(2,0).4.解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求;(3)如图所示:△A3B3C3即为所求.5.解:(1)△A1B1C1如图所示,点P1的坐标为(a,﹣b);(2)△A2B2C2如图所示,点C2的坐标(2,0);(3)△A2B2C2能由△A1B1C1通过变换得到,是关于y轴对称.6.解:(1)如图所示,△A1B1C1即为所求作的三角形,C1(﹣4,﹣2);(2)如图所示,△A2B2C2即为所求作的三角形,C2(﹣4,2);(3)如图,利用△A2B2C2关于x轴的对称图形△A1B1C1,向下平移1个单位,再绕点Q顺时针旋转90°,使B2A2与DF重合,可以与△DEF拼成一个正方形7.解:(1)如图1所示:(2)如图2所示,8.解:(1)如图所示:(2)如图所示:有两个P点.9.解:作点A关于直线CF对称的点G,连接BG交CF于点P,则点P即为A球撞击桌面边缘CF的位置10.解:所画图形如右所示:这个图形是一个五角星,它有5条对称轴;∵∠1+∠2=∠6,3+∠4=∠5,∠1+∠5+∠6=180°,∴∠1+∠2+∠3+∠4+∠7=180°,故它的五个星角(最外围5个角)度数之和是180度11.解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边12.解:(1)3;(2)l1,②与③,①与④,①②与③④;(3)若小明把纸片对折三次,展开后得到的四边形有八个,有7条对称轴13.解:∵△ABC中,∠A=80°,∠B=68°,∴∠C=180°﹣80°﹣68°=32°,∵△AEF中,∠C=32°,∠CFE=78°,∴∠CEF=180°﹣32°﹣78°=70°14.解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°15.解:(1)∵AD是BC边上的高,∠B=50°,∴∠BAD=180°﹣90°﹣50°=40°.故答案为:40;(2)解法一:∵△AED是由△ABD折叠得到,∴∠AED=∠B=50°,∵∠AED是△ACE的外角,∴∠AED=∠CAE+∠C,∴∠CAE=∠AED﹣∠C=50°﹣30°=20°.解法二:∵△AED是由△ABD折叠得到,∴∠EAD=∠BAD=40°,∴∠BAE=80°,∴∠CAE=180°﹣∠B﹣∠C﹣∠BAE=180°﹣50°﹣30°﹣80°=20°16.解:(1)作法:①作BF=BA交CD于F,②连BF作∠ABF的平分线,则点E、F为所求;(2)连接EF,由条件知:Rt△ABE≌Rt△FBE,∴EF=AE,又∵AE=5,DE=3,∠D=90°,∴DF===417.(1)证明:根据翻折的性质可得:∠2=∠3,又AD∥BC,∴∠1=∠3,∴∠1=∠2,△BED是等腰三角形,得证.(2)解:设ED=x,则AE=8﹣x,BE=ED=x,在Rt△ABE中,根据勾股定理有AB2+AE2=BE2,代入得:42+(8﹣x)2=x2,解得:x=5,S△BED=ED•AB==1018.解:∵将矩形沿直线BE折叠,使点C落在AD的F点上,∴BF=BC,EF=EC,∠EFB=∠BCD=90°,在Rt△ABF中,BF=BC,而BC=2AB,∴BF=2AB,∴∠AFB=30°,∴∠DFE=90°﹣30°=60°,∴∠DEF=30°,∵EF=EC,∴∠ECF=∠EFC,∴∠ECF=∠DEF=15°19.解:设计图案如下:20.解:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠DAB=90°,AD∥BC.∴∠AEF=∠CFE.∵∠DEF+∠AEF=180°,且∠DEF=123°,∴∠AEF=57°,∴∠CFE=57°.∵四边形CDEF与四边形AGEF关于EF对称,∴四边形CDEF≌四边形AGEF∴∠G=∠C=∠D=∠GAF=90°.AG=CD,∠AFE=∠CFE.∴∠AFE=57°.∵∠BFA+∠AFE+∠CFE=180°,∴∠BFA=66°.∵∠BFA+∠BAF=90°,∴∠BAF=24°.答:∠BAF的度数为24°;(2)△ABF≌△AGE.∵AG=CD∴AB=AG.∵∠BAE=90°,∠GAF=90°,∴∠BAE=∠GAF,∴∠BAE﹣∠EAF=∠GAF﹣∠EAF,∴∠BAF=∠GAE.在△ABF和△AGE中,∴△ABF≌△AGE(ASA)21.解:(1)EF=DF,理由为:由折叠的性质得到△ABC≌△AEC,再由矩形的性质得到△ABC≌△ADC,∴△AEC≌△ADC,∠E=∠D=90°,∴∠DAC=∠ECA,∴AF=CF,在△AEF和△CDF中,,∴△AEF≌△CDF(AAS),则EF=DF;(2)∵AD∥BC,∴∠DAC=∠ACB=20°,∵在Rt△ABC中,∠B=90°,∠ACB=20°,∴∠BAC=∠EAC=60°,则∠EAF=∠EAC﹣∠DAC=40°22.解:(1)折痕EC和ED是垂直关系.∵EC和ED是折痕,理由:∴∠1=∠2,∠3=∠4,又∵∠1+∠2+∠3+∠4=180°,∴2(∠2+∠3)=180°,∴∠2+∠3=90°,即CE⊥ED,∴折痕EC和ED是垂直关系.(2)由(1)知CE⊥ED,∴∠2+∠3=90°,又∵∠2=∠1=35°,∴∠3=90°﹣∠1=90°﹣35°=55°,即∠A′EC=55°;∵ED的反向延长线交CA交于F,∴∠AEF=∠1=35°.23.解:∵△A′GF由△AGF翻折而成,四边形B′C′EF由四边形BCEF翻折而成,∴∠AFG=∠A′FG=25°,∠BFE=∠B′FE,∴∠BFE+∠B′FE=180°﹣(∠AFG+∠A′FG)=180°﹣50°=130°,∴∠BFE==65°.答:∠BFE的度数是65°24.解:(1)∠1+∠2=2∠A;(2)由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°∵IB平分∠ABC,IC平分∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,∴∠BIC=180°﹣(∠IBC+∠ICB),=180°﹣(90°﹣∠A)=90°+×65°=122.5°;(3)∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,∠FHG+∠A=180°,∴∠BHC=∠FHG=180°﹣∠A,由(1)知∠1+∠2=2∠A,∴∠A=(∠1+∠2),∴∠BHC=180°﹣(∠1+∠2)25.解:∵将△ACD折叠,使点A落在边CB上A′处,折痕为CD,∠ACB=90°,∴∠DCA=∠BCD=45°,∠CDA=∠CDA′,∴∠CDA=180°﹣∠DCA﹣∠A=180°﹣45°﹣50°=85°,∴∠CDA′=85°,∵∠BDC=∠A+∠DCA=50°+45°=95°,∴∠A′DB=∠BDC﹣∠A′DC=95°﹣85°=10°.26.解:(1)通过翻折变换的特点可知线段PC、PB与正方形的边长相等;(2)∵PC=PB=BC,∴∠CPB=60°;(3)由(2)可知:∠DCP=∠ABP=∠PEF=∠PFE=30°,∠PED=∠AFP=150°.27.解:O′D与AC平行.理由如下:∵O′C∥BD,∴∠2=∠4.∵∠2=∠1,∠3=∠4,∴∠3=∠1.∴O′D∥AC28.解:∵折叠长方形ABCD的一边AD,点D落在BC边的D′处,∴AD=AD′,设AD=xcm,则BD′=(x﹣4)cm,在Rt△ABD′中,AD′2=AB2+D′B2,即x2=82+(x﹣4)2,解得x=10,即AD的长为:10cm29.解:在△ABC中,∠BAC=140°,∴∠B+∠C=180°﹣140°=40°,根据翻折的性质,∠BAD=∠B,∠CAE=∠C,∴∠BAD+∠CAE=∠B+∠C=40°,∴∠DAE=∠BAC﹣∠DAC﹣∠CAE=140°﹣40°=100°30.解:根据轴对称的性质得:OE=EM,OF=FN△OEF的=OE+OF+EF=ME+EF+FN=MN=5cm∴△OEF的周长为5cm.。
轴对称练习题(含答案)
轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。
轴对称练习题(含答案)
轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。
轴对称图形习题及详细解答
轴对称图形习题及详细解答一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):,这条性质可用符号表示为:;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.28.(2016春•安岳县期末)等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边和腰长.29.(2016春•西藏校级期末)如图,在△ABC 中,AB=AC,点D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F.(1)求证:点O在AB的垂直平分线上;(2)若∠CAD=20°,求∠BOF的度数.30.(2016春•鄄城县期末)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.参考答案与试题解析一.解答题(共30小题)1.(2016•宁夏)在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【分析】先证明△DEC是等边三角形,再在RT △DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.2.(2016•江西)(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt △ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;(2)∵将Rt△ABC向下翻折,使点A与点C 重合,折痕为DE.∴∠AED=∠CED=90°,∴∠AED=∠ACB=90°,∴DE∥BC.【点评】本题考查的是图形的翻折变换,涉及到平行线的判定,熟知折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.3.(2016•十堰)如图,将矩形纸片ABCD(AD >AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D 的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.【分析】(1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四边形CEGF 为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;(2)如图1,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图2,当F 与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,∵图形翻折后点G与点C重合,EF为折线,∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE,∵图形翻折后BC与GE完全重合,∴BE=EC,∴GF=EC,∴四边形CEGF为平行四边形,∴四边形CEGF为菱形;(2)由(1)得四边形CEGD是菱形,∴CE=CD=AB=3;如图2,当G与A重合时,CE取最大值,由折叠的性质得AE=CE,∵∠B=90°,∴AE2=AB2+BE2,即CE2=32+(9﹣CE)2,∴CE=5,∴线段CE的取值范围3≤CE≤5.【点评】本题考查了翻折变换﹣折叠问题,菱形的判定,线段的最值问题,矩形的性质,勾股定理,正确的作出图形是解题的关键.4.(2016•海淀区校级模拟)如图,已知∠BAC=90°,AD⊥BC于点D,∠1=∠2,EF∥BC交AC于点F.试说明AE=CF.【分析】作EH⊥AB于H,作FG⊥BC于G,根据角平分线的性质可得EH=ED,再证ED=FG,则EH=FG,通过证明△AEH≌△CFG 即可.【解答】解:作EH⊥AB于H,作FG⊥BC于G,∵∠1=∠2,AD⊥BC,∴EH=ED(角平分线的性质)∵EF∥BC,AD⊥BC,FG⊥BC,∴四边形EFGD是矩形,∴ED=FG,∴EH=FG,∵∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,又∵∠AHE=∠FGC=90°,∴△AEH≌△CFG(AAS)∴AE=CF.【点评】本题考查了角平分线的性质;综合利用了角平分线的性质、同角的余角相等、全等三角形的判定等知识点.5.(2016•漳州模拟)数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.【分析】结合已知条件,根据全等三角形的判定定理,推出△POD≌△POE即可.【解答】证明:∵OC是∠AOB的平分线,∴∠POD=∠POE,∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△POD与△POE中,,∴△POD≌△POE,∴PD=PE.【点评】本题主要考查了全等三角形的判定和性质、角平分线的性质,解题的关键在于找到对应角相等、公共边.6.(2016•历下区一模)如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE 垂直平分AB于D,求证:BE+DE=AC.【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可.【解答】证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.【点评】本题考查了角平分线性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.7.(2016•萧山区二模)已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC的中垂线.【分析】由AD是△ABC的角平分线,DE⊥AB,DF⊥AC,根据角平分线的性质,可得DE=DF,∠BED=∠CFD=90°,继而证得Rt△BED≌Rt △CFD,则可得∠B=∠C,证得AB=AC,然后由三线合一,证得AD是BC的中垂线.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴∠B=∠C,∴AB=AC,∵AD是△ABC的角平分线,∴AD是BC的中垂线.【点评】此题考查了等腰三角形的性质与判定以及全等三角形的判定与性质.注意掌握三线合一性质的应用.8.(2016•怀柔区一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.【分析】根据线段垂直平分线的性质得出AE=BE,再由直角三角形的性质即可得出结论.【解答】证明:∵DE是线段AB的垂直平分线,∴AE=BE,∠ADE=90°,∴∠EAB=∠B.在Rt△ABC中,∵∠C=90°,∴∠CAB+∠B=90°.在Rt△ADE中,∵∠ADE=90°,∴∠AED+∠EAB=90°,∴∠CAB=∠AED.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.9.(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分线,求∠BDC 的度数.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C的度数.10.(2016•东城区一模)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.【点评】此题考查了等腰三角形的性质、平行线的性质以及角平分线的定义.注意等边对等角定理的应用.11.(2016•怀柔区二模)如图,在△ABC中,AB=AC,AD是△ABC点的中线,E是AC的中点,连接AC,DF⊥AB于F.求证:∠BDF=∠ADE.CAD,∠ADB=∠ADC=90°,根据等腰三角形的判定定理得到∠CAD=∠ADE.根据余角的性质得到∠BAD=∠BDF,等量代换即可得到结论.【解答】证明:∵AB=AC,AD是△ABC点的中线,∴∠BAD=∠CAD,∠ADB=∠ADC=90°,∵E是AC的中点,∴DE=AE=EC,∴∠CAD=∠ADE.在Rt△ABD中,∠ADB=90°,∴∠B+∠BAD=90°.∵DF⊥AB,∴∠B+∠BDF=90°,∴∠BAD=∠BDF,∴∠BDF=∠CAD,∴∠BDF=∠ADE,【点评】本题考查了等腰直角三角形的性质,余角的性质,熟练掌握等腰三角形的性质是解题的关键.12.(2016•西城区一模)如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【分析】根据等腰三角形的性质得到BD=BC,AD⊥BC根据角平分线的判定定理即可得到结论..【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.【点评】本题考查了等腰三角形的性质,角平分线的性质,熟练掌握等腰三角形的性质是解题的关键.13.(2016•门头沟区一模)如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.【分析】根据等边三角形的性质得到∠ABC=∠ACB=60°,∠DBC=30°,再根据角之间的关系求得∠DBC=∠CED,根据等角对等边即可得到DB=DE.【解答】证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边).【点评】此题主要考查学生对等边三角形的性质及三角形外角的性质的理解及运用;利用三角形外角的性质得到∠CDE=30°是正确解答本题的关键.14.(2016•吉林校级二模)如图,等边三角形ABC的边长是2,D、E分别为AB、AC的中点,点F在BC延长线上,且CF=,求四边形DEFB 的面积.【分析】由三角形的中位线定理得到DE=CF,DE∥CF,证得四边形DEFC是平行四边形,即可证得S△ECF=S△DEC=S△ADE,即可证得S四边形DEFB=S△ABC,求得△ABC的面积即可.【解答】解:∵点D、E分别是AB、AC的中点,∴DE=BC,DE∥BF,∵CF=,∴DE=CF,DE∥CF,∴四边形DEFC是平行四边形,∴S△ECF=S△DEC=S△ADE,∵△ABC是等边三角形,D是AB的中点,∴CD⊥AB,AD=BD=1,BC=2,∴DC==∴S 四边形DEFB=S△ABC=×2×=.【点评】本题考查了三角形中位线定理,平行四边形的判定和性质,勾股定理的应用,证得S△ECF=S△DEC=S△ADE是本题的关键.15.(2016•门头沟区二模)如图,在△ABC中,∠BAC=90°,∠C=30°,AE为BC边上的中线.求证:△ABE是等边三角形.【分析】根据直角三角形的性质得出AE=BE=CE=AB,即可得出答案.【解答】证明:∵∠BAC=90°,∠C=30°,∴AB=BC,∵AE为BC边上的中线,∴AE=BE=CE,∴AB=AE=BE,∴△ABE是等边三角形.【点评】本题考查了等边三角形的性质,掌握等边三角形的判定:三边都相等的三角形是等边三角形.16.(2016•泗水县一模)如图,把矩形纸片ABCD 沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处.(1)求证:B′E=BF;(2)若AE=3,AB=4,求BF的长.【分析】(1)根据折叠的性质以及平行线的性质可以证明∠B'FE=∠B'EF,根据等角对等边证明B'E=B'F,然后根据折叠的性质可证得;(2)直角△A'B'E中利用勾股定理求得B'E的长,然后根据(1)的结论即可求解.【解答】(1)证明:∵矩形ABCD中,AD∥BC,∴∠B'EF=∠EFB,又∵∠B'FE=∠EFB,∴∠B'FE=∠B'EF,∴B'E=B'F,又∵BF=B'F,∴B'E=BF;(2)解:∵直角△A'B'E中,A'B'=AB=4,∴B'E===5,∴BF=N'E=5.【点评】本题考查了折叠的性质以及勾股定理,在折叠的过程中认识到相等的角和相等的边是关键.17.(2016•北京一模)如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):对角线互相垂直,这条性质可用符号表示为:已知四边形ABCD是筝形,则AC⊥BD.;(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.【分析】(1)根据筝形的定义可以证明△BAC ≌△DAC,依据全等三角形的性质即可证得边和对角线的关系;(2)利用△BAC≌△DAC,根据边、角、对角线的性质证得.【解答】解:(1)筝形的性质:两组邻边分别相等;对角线互相垂直,即已知四边形ABCD是筝形,则AC⊥BD;有一条对角线被另一条平分;有一条对角线平分对角;是轴对称图形.(写出一条即可);故答案是:对角线互相垂直;已知四边形ABCD 是筝形,则AC⊥BD;(2)筝形的判定方法:有一条对角线平分一组对角的四边形是筝形.已知:四边形ABCD中,AC是一条对角线,∠BAC=∠DAC,∠BCA=∠DCA.求证:四边形ABCD是筝形.证明:在△BAC和△DAC中,,∴△BAC≌△DAC,∴AB=AD,BC=CD,即四边形ABCD是筝形.其他正确的判定方法:有一条对角线垂直平分令一条对角线的四边形是筝形;有一组邻边相等且互相垂直的四边形是筝形.【点评】本题考查了图形的对称以及全等三角形的判定,正确证明△BAC≌△DAC是解决本题的关键.18.(2016•拱墅区二模)如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC 于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A 正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.【分析】(1)利用尺规作出∠ABC的平分线BD 即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A 1DC的面积=•A1C•A1D计算即可.【解答】解:(1)∠ABC的平分线BD,交AC 于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A 1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴=.【点评】本题考查尺规作图、翻折变换、勾股定理、三角形面积等知识,熟练掌握基本尺规作图是解题的关键,属于基础题,中考常考题型.19.(2016春•吉州区期末)如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC 和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,(2)整体思想的利用是解题的关键.20.(2016春•金堂县期末)如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.(1)求证:AE∥CF;(2)若AM平分∠FAE,求证:FE垂直平分AC.【分析】(1)先根据AB∥CD得出∠BAC=∠DCA,再由∠BAE=∠DCF可知∠EAM=∠FCM,故可得出结论;(2)先由AM平分∠FAE得出∠FAM=∠EAM,再根据∠EAM=∠FAM可知∠FAM=∠FCM,故△FAC是等腰三角形,由等腰三角形三线合一的性质即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA,又∵∠BAE=∠DCF,∴∠EAM=∠FCM,∴AE∥CF;(2)证明:∵AM平分∠FAE,∴∠FAM=∠EAM,又∵∠EAM=∠FCM,∴∠FAM=∠FCM,∴△FAC是等腰三角形,又∵AM=CM,∴FM⊥AC,即EF垂直平分AC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.21.(2016春•滕州市期末)如图,在△ABC中,AB的垂直平分线MN交AB于点D,交AC于点E,且AC=15cm,△BCE的周长等于25cm.(1)求BC的长;(2)若∠A=36°,并且AB=AC.求证:BC=BE.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出△BCE的周长=AC+BC,再求解即可;(2)根据等腰三角形两底角相等求出∠C=72°,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,根据等边对等角可得∠ABE=∠A,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BEC=72°,从而得到∠BEC=∠C,然后根据等角对等边求解.【解答】(1)解:∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC,∵AC=15cm,∴BC=25﹣15=10cm;(2)证明:∵∠A=36°,AB=AC,∴∠C=(180°﹣∠A)=(180°﹣36°)=72°,∵AB的垂直平分线MN交AB于点D,∴AE=BE,∴∠ABE=∠A,由三角形的外角性质得,∠BEC=∠A+∠ABE=36°+36°=72°,∴∠BEC=∠C,∴BC=BE.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,综合题难度不大,熟记各性质并准确识图是解题的关键.22.(2016春•淅川县期末)如图,已知:在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.【分析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC﹣60°=∠C﹣60°,最后根据三角形内角和定理得出关系式∠C﹣60°+∠C=90°解出即可.【解答】解:∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC则∠EBC=∠ABC﹣60°=∠C﹣60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C﹣60°+∠C=90°解得∠C=75°.【点评】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.23.(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?【分析】根据已知条件“上午8时,一条船从A 处出发以30海里/时的速度向正北航行,12时到达B处”可以求得AB=120海里,然后根据三角形的内角和定理求得∠C=32°,所以△ABC是等腰三角形;最后由等腰三角形的两腰相等的性质来求从B处到灯塔C的距离.【解答】解:根据题意,得AB=30×4=120(海里);在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°﹣∠NAC﹣∠ABC=32°,∴∠C=∠NAC,∴BC=AB=120(海里),即从B处到灯塔C的距离是120海里.【点评】本题考查了等腰三角形的性质、方向角.解答该题时充分利用了三角形的内角和定理.24.(2016春•埇桥区期末)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【分析】(1)由在△ABC中,AB=AC,∠A=40°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(2)由在△ABC中,AB=AC,∠A=70°,根据等腰三角形的性质,可求得∠ABC的度数,又由AB的垂直平分线交AB于点N,交BC的延长线于点M,即可求得答案;(3)由在△ABC中,AB=AC,根据等腰三角形的性质,即可用∠A表示出∠ABC,又由AB点M,即可求得答案.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.25.(2016春•高平市期末)已知a、b满足方程组(1)求a,b的值;(2)若a、b是一个等腰三角形的两边长,求这个等腰三角形的周长.【分析】(1)直接利用加减消元法,即可求得a,b的值;(2)分别从若7为腰长,2为底边长与若2为腰长,7为底边长,去分析求解即可求得答案.【解答】解:(1),①+3②得:10a=70,解得:a=7,把a=7代入2a+b=16,得:b=2,∴;(2)①若7为腰长,2为底边长,则周长为:7×2+2=16;②若2为腰长,7为底边长,∵2+2<7,∴不能组成三角形,舍去;∴这个等腰三角形的周长为16.【点评】此题考查了等腰三角形的性质以及二元一次方程组的解法.注意掌握分类讨论思想的应用是解此题的关键.26.(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a 的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y 的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.27.(2016春•吉林期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E是边AB的中点,连接DE,若AD=12,BC=10,求DE的长.【分析】先根据勾股定理求得AC的长,根据条件可知DE是△ABC的中位线,所以利用中位线定理可知DE的长.【解答】解:∵AB=AC,AD⊥BC,∴BD=CD,∴CD=BC=5,∵AD=12,∴在Rt△ADC中,AC==13,。
四年级数学-图形的运动-轴对称习题(有答案)
图形的运动第1节轴对称测试题一、画图题(在方格纸上画出对称图形的另一半)二、找出下面的轴对称图形,并画出对称轴。
三、判断题。
1、正方形有四条对称轴。
()2、平行四边形是轴对称图形。
()3、长方形有4条对称轴。
()4、五角星是轴对称图形。
()5、轴对称图形沿着对称轴折叠后能够完全重合。
()四、选择题。
1、圆有()条对称轴。
A、1条B、10条C、100条D、无数条2、正18边形有()条对称轴。
A、1条B、18条C、100条D、无数条3、下列图形中对称轴最多的是()A、正方形B、平行四边形C、等腰梯形D、正六边形4、下列图形是轴对称图形的是哪一种()5、下列图形中有三条对称轴的是()6、下列关于轴对称的说法正确的是( ) A 一个轴对称图形只能有一条对称轴。
B 轴对称图形可以有多条对称轴。
C 所有的三角形都是轴对称图形。
D 所有四边形都是轴对称图形。
7、下列汉字那个不是轴对称图形( )A天 B大A甲 D 龙8、下列图标不是轴对称图形的是( )A BC D9、下列有关轴对称的说法正确的是( ) A 所有三角形都是轴对称图形 B 轴对称图形一定有一条对称轴 C 等腰梯形是轴对称图形 D 直角梯形是轴对称图形10、下列有关轴对称图形的说法正确的是( ) A 轴对称图形折叠后可以重合 B 轴对称图形一定只有一条对称轴 C 轴对称图形的对称轴一定经过该图形 D 英文字母中有20个英文字母 五、简答题。
1、想一想你学过的那些声母的大写字母是轴对称图形?2、1到20这些阿拉伯数字中,那些数字式轴对称图形?【参考答案】一、画图题。
二、找出下面的轴对称图形,并画出对称轴。
是轴对称图形,有8条对称轴不是轴对称图形是轴对称图形,有1条对称轴。
是轴对称图形,有4条对称轴。
是轴对称图形,有1条对称轴。
是轴对称图形,有1条对称轴。
三、判断题1、√2、×3、×4、√5、√四、选择题。
1、D;2、B;3、D;4、A;5、C;6、B;7、D;8、C;9、C;10、C1、答:ABCDEHIKMOTUVWXY2、答:1;3;8;11;13;18。
画轴对称图形练习题
画轴对称图形练习题一、选择题1. 下列哪个图形是轴对称图形?A. 圆形B. 正方形C. 三角形D. 五边形2. 轴对称图形的对称轴是什么?A. 直线B. 曲线C. 点D. 面3. 如果一个图形沿着一条直线对折,两侧的图形完全重合,这条直线叫做什么?A. 对称线B. 折线C. 直线D. 平行线二、填空题4. 轴对称图形的特点是,当图形沿对称轴对折时,图形的两侧能够________。
5. 一个轴对称图形可以有一条或多条________。
三、判断题6. 所有的圆形都是轴对称图形。
()7. 一个轴对称图形只能有一个对称轴。
()四、简答题8. 描述如何判断一个图形是否是轴对称图形。
9. 解释轴对称图形的对称轴可以是图形内部的线段吗?五、操作题10. 给出一个轴对称图形的一半,画出另一半以完成整个图形。
11. 画出一个具有两条对称轴的图形,并说明这两条对称轴的位置。
六、应用题12. 在一张纸上画一个轴对称图形,然后沿着对称轴对折,说明为什么两侧的图形能够完全重合。
13. 如果你想设计一个轴对称的徽章,你会考虑哪些因素来确定对称轴的位置?七、拓展题14. 研究并解释为什么自然界中的许多物体和生物体都是轴对称的。
15. 举例说明在艺术和建筑设计中,轴对称图形是如何被应用的。
八、创新题16. 设计一个自己的轴对称图形,并解释其设计思路和可能的应用场景。
九、综合题17. 给定一个复杂的轴对称图形,分析其对称轴的数量和位置,并讨论其在实际生活中的应用。
18. 描述如何使用计算机软件来创建和编辑轴对称图形,并给出一个具体的操作步骤。
通过这些练习题,学生可以更好地理解和掌握轴对称图形的概念、特性以及在不同领域的应用。
这些题目旨在提高学生的观察能力、空间想象能力和创新思维能力。
三年级下册轴对称、平移练习(图题30题)
三年级下册轴对称、平移图形练习(图题30题)1、画出下面每个图形的另一半,使它成为轴对称图形。
2、填一填:(1)图中三角形向()平移了()格;(2)正方形向()平移了()格;(3)把长方形向下平移4格。
3、画出下面每个图形的另一半,使它成为一个轴对称图形,再把左边的图形向上平移5格。
4、画一画,填一填:(1)图1向()平移了()格。
(2)画出图2向右平移6格后的图形。
5、画一画,填一填:(1)画出小船图向左平移8格的图形。
(2)画出图1和图2的另一半,使它成为一个轴对称图形。
(3)图3向()移动了()格。
6、画一画,填一填:(1)图3向()平移了()格。
(2)请画出图2向左平移10格后的图形。
(3)请画出图1的另一半,使它成为一个轴对称图形。
7、画一画,填一填:(1)把方格纸上左边的三角形向右平移6格。
8、填一填,画一画:(1)小船向()平移了()格。
(2)画出把小树图向右平移6格的图形。
9、填一填,画一画:(1)在下图中,火箭向()平移了()格。
(2)画出图中三角形向右平移4格后的图形。
10、画出下列每个图形的另一半,使它成为一个轴对称图形。
三角形向()平移了()格。
11、看图填一填:(1)金鱼图向()平移了()格;(2)“十”字向()平移了()格;(3)盒子图向()平移了()格;(4)箭头图向()平移了()格。
12、看图填一填:(1)小房子向()平移了()格;(2)直角三角形向()平移了()格;(3)三角形向()平移了()格。
13、按要求画一画:(1)将图①向右平移8格;(2)将图②先向左平移3格,再向上平移6格。
14、按要求画一画:(1)将图①向右平移6格;(2)将图②向左平移7格;15、看图画一画:(1)将图①向右平移6格;(2)将图②先向左平移2格,再向上平移4格。
16、按要求画一画:(1)将图①向右平移6格;(2)将图②先向下平移3格,再向左平移7格。
17、看一看,填一填;(1)三角形向()平移了()格;(2)菱形向()平移了()格;(3)“十”向()平移了()格。
轴对称图形练习题及答案
轴对称图形练习题及答案轴对称图形练习题及答案图形是我们生活中不可或缺的一部分,而轴对称图形更是我们常常会遇到的一种特殊图形。
轴对称图形是指通过一个轴线将图形分成两个完全相同的部分,这个轴线称为对称轴。
今天,我们就来练习一些轴对称图形,并给出相应的答案。
练习题一:请你画出以下图形的对称轴,并判断图形是否有轴对称性。
1. 正方形2. 矩形3. 圆形4. 五角星5. 心形答案:1. 正方形:对称轴可以是任意一条连接正方形两个对角线中点的线段。
正方形具有轴对称性。
2. 矩形:对称轴可以是连接矩形两个对边中点的线段。
矩形具有轴对称性。
3. 圆形:对称轴可以是任意一条经过圆心的直径线。
圆形具有无限个轴对称。
4. 五角星:对称轴可以是连接五角星两个对边中点的线段。
五角星具有轴对称性。
5. 心形:对称轴可以是连接心形两个对称部分的线段。
心形具有轴对称性。
练习题二:请你找出以下图形的对称中心,并判断图形是否有轴对称性。
1. 三角形2. 椭圆3. 马蹄形4. 蝴蝶形5. 鱼形答案:1. 三角形:对称中心可以是三角形的重心,即三条中线的交点。
三角形具有轴对称性。
2. 椭圆:椭圆没有对称中心,因此没有轴对称性。
3. 马蹄形:对称中心可以是马蹄形的中心点。
马蹄形具有轴对称性。
4. 蝴蝶形:对称中心可以是蝴蝶形的中心点。
蝴蝶形具有轴对称性。
5. 鱼形:对称中心可以是鱼形的中心点。
鱼形具有轴对称性。
练习题三:请你找出以下图形的对称轴,并判断图形是否有轴对称性。
1. 梯形2. 菱形3. 五边形4. 月亮形5. 雪花形答案:1. 梯形:梯形没有对称轴,因此没有轴对称性。
2. 菱形:对称轴可以是连接菱形两个对角线中点的线段。
菱形具有轴对称性。
3. 五边形:五边形没有对称轴,因此没有轴对称性。
4. 月亮形:对称轴可以是连接月亮形两个对称部分的弧线。
月亮形具有轴对称性。
5. 雪花形:对称轴可以是连接雪花形两个对称部分的线段。
雪花形具有轴对称性。
轴对称图形专题练习含答案
轴对称图形专题练习练习一一、填空题1、如果一个图形沿着一条直线折叠,直线两旁的部分(),这个图形就叫做(),这条直线就是它的()2、把一个图形沿着某一条直线折叠,如果它能够与()重合,那么就说这两个图形关于这条直线对称,这条直线叫做()3、经过线段中点并且()这条线段的直线,叫做这条线段的()二、选择题1、下面所示的交通标志,是轴对称图形的是()A、B、C、D、2、正方形,长方形,三角形,梯形,平行四边形中,一定是轴对称图形的有()A、5个B、4个C、3个D、2个3、下列说法中,不正确的是()A、等边三角形是轴对称图形B、若两个图形的对应点的连线都被同一条直线垂直平分,则这两个图形关于这条直线对称C、直线MN是线段AB的垂直平分线,若点P使PA=PB,则点P在MN上,若PA≠PB,则P不在MN上D、等腰三角形的对称轴是它的中线三、解决问题如图,BD垂直平分线段AC,AE⊥BC,垂足为E,AE交BD于P,PE=3cm,求点P 到AB的距离练习二一、选择题1、下列说法错误的是()A、关于某直线对称的两个图形一定能完全重合B、全等的两个三角形一定关于某直线对称C、轴对称图形的对称轴至少有一条D、线段是轴对称图形2、轴对称图形的对称轴是()A、直线B、线段C、射线D、以上都有可能3、下面各组点关于y轴对称的是()A、(0,10)与(0,-10)B、(-3,-2)与(3,-2)C、(-3,-2)与(3,2)D、(-3,-2)与(-3,2)二、作图题1、如图所示,作出△ABC关于直线l的对称△A'B'C'。
2、如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等AMN参考答案练习一一、填空题1、能够互相重合,轴对称图形,对称轴2、另一个图形,对称轴3、垂直于,垂直平分线二、选择题1、D2、D3、D三、解决问题∵BD垂直平分线段AC∴BD为AC的中垂线∴AB=AC过点P做PF⊥AB,垂足为F。
轴对称图形经典练习题
轴对称图形练习题一、选择题1.下列图形中,只有两条对称轴的是( )A .正六边形B .矩形C .等腰梯形D .圆2.如下左1图Rt 90ABC C BAC ∠∠在△中,=,的角平分线AD 交BC 于点D ,2CD =,则点D 到AB 的距离是( )A .1B .2C .3D .43.如下左2图是屋架设计图的一部分,其中∠A=30°,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,AB=16m ,则DE 的长为( ).A.8 mB.4 mC.2 mD.6 m4.如下左3图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ). A.90° B. 75° C.70° D. 60°5.把一张长方形的纸沿对角线折叠,则重合部分是( ). A.直角三角形 B.长方形 C.等边三角形 D.等腰三角形 6.已知等腰三角形的两条边长分别为2和5,则它的周长为( ). A . 9 B . 12 C . 9或12 D . 57.如下左1图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ).A.4B.5C.6D.78.如下左2图,∠BAC=110°若MP 和NQ 分别垂直平分AB 和AC,则∠PAQ 的度数是( ) . A .20° B . 40° C .50° D . 60°9.如下左3图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ). A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠10.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ).B MN P 1AP 2OP M ANCQPBNM D CH EBAFEDCBAA .①②③B .①②④C .①③D .①②③④ 二.填空题11.等腰三角形是轴对称图形,其对称轴是_______________________________. 12.已知点A (x , -4)与点B (3,y )关于x 轴对称,那么x +y 的值为____________.13. (2014•呼和浩特)等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为 .14.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 __ .15. (2014•新疆)如下左1图,在△ABC 中,AB =AC ,∠A =40°,点D 在AC 上,BD =BC ,则∠ABD 的度数是 .16.(2014年云南省)如下左2图,在等腰△ABC 中,AB =AC ,∠A =36°,BD ⊥AC 于点D ,则∠CBD = .17.如下左3图,在△ABC 中, AB=AC, D 为BC 上一点,且,AB=BD,AD=DC,则∠C= ____ 度.. 18.如下左4图,在等边ABC △中,D E ,分别是AB AC ,上的点,且AD CE =,则BCD CBE ∠+∠=度.19.如下左5图:在△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是∠BAD 的角平分线,DF ∥AB 交AE 的延长线于点F ,则DF 的长为 ;20.在直角坐标系内,已知A.B 两点的坐标分别为A (-1,1).B (3,3),若M 为x 轴上一点,且MA +MB 最小,则M 的坐标是___________.三.解答题21.如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等, •且到∠AOB 的两边的距离相等.22.(1)请画出ABC △关于y 轴对称的A B C '''△(其中A B C ''',,分别是A B C ,,的对应点,不写画法);(2)直接写出A B C ''',,三点的坐标:AyABMNBCE DABFE DCAADCB DC E A (_____)(_____)(_____)A B C ''',,.(3)求△ABC 的面积是多少?23.在△ABC 中,AB =AC ,AD ⊥BC ,∠BAD =40°,AD =AE .求∠CDE 的度数.24.如图,在△ABC 中,AB =AC ,D 是BC 边上的一点,DE ⊥AB ,DF ⊥AC ,垂足分别为E .、F ,添加一个条件_____________,使DE = DF ,并说明理由.25.如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE 。
轴对称图形练习题
轴对称图形练习题(一)1、如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.2、在一些缩写符号SOS,CCTV,BBC,WWW,TNT中,成轴对称图形的是______3、将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.等.(2)用三角尺作图在如图的方格纸中,①作△ABC关于直线l1对称的△A1B1C1;再作△A1B1C1关于直线l2对称的△A2B2C2;再作△A2B2C2关于直线l3对称的△A3B3C3.②△ABC与△A3B3C3成轴对称吗?如果成,请画出对称轴;如果不成,把△A3B3C3怎样平移可以与△ABC成轴对称?5、下列四个图案中,不是轴对称图形的是()A.B.C.D.6、在字母A、B、C、D、E、F、G、H、I、J中不是轴对称图形的是______7、将写有字“E”的纸条正对镜面,则镜中出现的会是()A.E B.ヨC.ΜD.Ш8、如图,直线l是四边形ABCD的对称轴,若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC.其中正确的结论有______.9、线段是轴对称图形,它有______条对称轴,正三角形的对称轴有______条.10、如图,已知△ABC和直线l.(1)请你作出与△ABC关于直线l对称的△A′B′C′.(保留作图痕迹,不写作法)(2)请你在直线l上找到一点P,使得AP+BP最短.11、下列命题说法中:(1)等腰三角形一定是锐角三角形(2)等腰三角形有一个外角等于120°,这一个三角形一定是等边三角形(3)等腰三角形中有一个外角为140°,那么它的底角为70°(4)等腰三角形是轴对称图形,它有A.4个B.3个C.2个D.1个12、一牧童在A处牧马,牧童的家在B处,A、B处距河岸的距离分别是AC=500m,BD=700m,且C、D两地间距离也为500m,天黑前牧童从A点将马牵到河边去饮水,再赶回家,为了使所走的路程最短.(1)牧童应将马赶到河边的什么地点?请你在图中画出来.(2)请你求出他至少要走______路程.13、如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,D是AB边上的动点,E是AC边上的动点,则BE+ED的最小值为______..14、如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个15、已知不平行的两条线段AB、A′B′关于直线L对称,AB和A′B′所在直线交于点P,下列结论:①AB∥A′B′;②点P在直线L上;③若点A′、A是对称点,则直线L垂直平分线段AA′;④若B、B′是对称点,则PB=PB′.其中正确的结论有()A.1个B.2个C.3个D.4个16、如图,这是由三个正方形构成的图形.请你在这个图形中再添加一个正方形,使得添加完之后的图形是一个轴对称图形.参考下图:17、观察如图所示的图案,轴对称图形的个数有()A.1个B.2个C.3个D.4个。
一年级轴对称练习题
一年级轴对称练习题
轴对称是小学数学中的一个重要概念,它涉及到对称性。
下面是一
些适合一年级学生的轴对称练习题:
1. 请将下图中的形状绕着中间的红线折叠,看看是否能够完全重合。
如果能够重合,请写“能”,如果不能,请写“不能”。
[图1]
2. 请在下图中用直线将形状分成两部分,使得每部分都对称。
你需
要画出两条直线。
[图2]
3. 小明和小红正在玩一个游戏。
小明在一张纸的左边画了一个形状,小红需要用红色的蜡笔将这个形状的镜像画在右边的纸上。
请帮助小
红完成这个任务。
[图3]
4. 请发现下面的每一组形状中,哪个形状是关于中间的虚线对称的。
请在每组中圈出该对称形状。
[图4]
5. 请从下面的图片中选择一个对称的形状,并用红色将它画出来。
[图5]
6. 小狗的脸是轴对称的,这意味着如果你将小狗的脸沿着中间的轴对折,两边的脸部看起来是一样的。
请画出小狗的脸,并将它沿着中间的轴对折。
[图6]
以上是一些适合一年级学生的轴对称练习题。
这些题目可以培养学生观察和分析的能力,同时巩固他们对轴对称的理解。
希望对您有帮助!。
画轴对称图形练习题(超经典含答案)
1.已知点P关于y轴的对称点1P的坐标是(2,3),则点P坐标是A.(-3,-2)B.(-2,3)C.(2,-3)D.(3,-2)2.点M关于y轴对称点M1的坐标为(2,-4),则M关于x轴对称点M2的坐标为A.(-2,4)B.(-2,-4)C.(2,4)D.(2,-4)3.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有A.2种B.3种C.4种D.5种4.△ABC的三个顶点的横坐标都乘以-1,纵坐标不变,则所得三角形与原三角形的位置关系是A.关于x轴对称B.关于y轴对称C.关于原点对称D.将△ABC向右平移了1个单位长度5.已知xy≠0,则坐标平面内四个点A(x,y),B(x,-y),C(-x,y),D(-x,-y)中关于y轴对称的是A.A与C,B与D B.A与B,C与DC.A与D,B与C D.A与B,B与C6.如图,点A的坐标(-1,2),点A关于y轴的对称点的坐标为A .(1,2)B .(-1,-2)C .(1,-2)D .(2,-1)7.若点A (1+m ,1-n )与点B (-3,2)关于y 轴对称,则m +n 的值是 A .-5B .-3C .3D .18.点A (-5,-6)与点B (5,-6)关于__________对称.9.如图,在方格纸上建立的平面直角坐标系中,Rt △ABC 关于y 轴对称的图形为Rt △DEF ,则点A 的对应点D 的坐标是__________.10.把如图中所示的某两个空白小方格涂上阴影,使整个图形是以虚线为对称轴的轴对称图形.11.已知(2)A a ,,(4)B b ,,分别根据下列条件求a b ,的值. (1)A B ,关于y 轴对称; (2)A B ,关于x 轴对称.12.如图,按要求完成下列问题:作出这个小红旗图案关于y轴对称的轴对称图形,写出所得到图形相应各点的坐标.13.下列关于A、B两点的说法中,正确的个数是(1)如果点A与点B关于y轴对称,则它们的纵坐标相同;(2)如果点A与点B的纵坐标相同,则它们关于y轴对称;(3)如果点A与点B的横坐标相同,则它们关于x轴对称;(4)如果点A与点B关于x轴对称,则它们的横坐标相同.A.1个B.2个C.3个D.4个14.如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴对称的图形△A2B2C2,则顶点A2的坐标是A.(-3,2)B.(2,-3)C.(1,-2)D.(3,-l)15.如图所示,是用笔尖扎重叠的纸得到成轴对称的图案,请根据图形写出:(1)两组对应点__________和__________;(2)两组对应线段__________和__________;(3)两组对应角__________和__________.16.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出A1,B1,C1的坐标(直接写出答案);(3)△A1B1C1的面积为__________.17.下面两个轴对称图形分别只画出一半,请画出它的另一半(直线l为对称轴).18.如图,已知四边形ABCD的顶点坐标分别为A(1,1),B(5,1),C(5,4),D(2,4),分别写出四边形ABCD关于x轴、y轴对称的四边形A1B1C1D1和A2B2C2D2的顶点坐标.19.(2018·四川甘孜州)在平面直角坐标系中,点A(2,3)与点B关于y轴对称,则点B 的坐标为A.(-2,3)B.(-2,-3)C.(2,-3)D.(-3,-2)20.(2018·辽宁沈阳)在平面直角坐标系中,点B的坐标是(4,-1),点A与点B关于x轴对称,则点A的坐标是A.(4,1)B.(-1,4)C.(-4,-1)D.(-1,-4)21.(2018·吉林长春)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.3.【答案】A【解析】如图,.有2种方法.故选A.4.【答案】B【解析】关于y轴对称点的坐标特点:纵坐标不变,横坐标互为相反数.横坐标都乘以−1,即横坐标变为相反数,纵坐标不变,符合关于y轴对称,故选B.5.【答案】A【解析】关于y轴对称点的坐标特点:纵坐标不变,横坐标互为相反数.故点A与C,B与D关于y轴对称.故选A.6.【答案】A【解析】点A的坐标(-1,2),点A关于y轴的对称点的坐标为:(1,2).故选A.10.【解析】所作图形如图:11.【解析】(1)若点A,B关于y轴对称,则a=4,−b=−2,b=2.(2)若点A,B关于x轴对称,则a=−4,−b=2,b=−2.12.【解析】小红旗关于y轴的轴对称图形如图所示:A'B'C',,,,,.(89)(85)(25)13.【答案】B【解析】正确的是:①如果点A与点B关于y轴对称,则它们的纵坐标相同;④如果点A与点B关于x轴对称,则它们的横坐标相同.故正确的有两个.故选B.16.【答案】(1)图见解析;(2)A 1(-1,2);B 1(-3,1);C 1(2,1);(3)4.5.【解析】(1)如图所示:(2)A 1(-1,2),B 1(-3,1),C 1(2,-1). (3)△A 1B 1C 1的面积=5×3-1×2÷2-5×2÷2-3×3÷2=4.5. 17.【解析】所作图形如下:18.【解析】画出的图形如下所示,其中1111(11)(51)(54)(24)A B C D ----,,,,,,,.2222(11)(51)(54)(24)A B C D ----,,,,,,,.19.【答案】A【解析】∵点A(2,3)与点B关于y轴对称,∴点B的坐标为(-2,3),故选A.20.【答案】A【解析】∵点B的坐标是(4,-1),点A与点B关于x轴对称,∴点A的坐标是:(4,1),故选A.21.【解析】如图所示:。
二年级轴对称图形练习
二年级轴对称图形练习1、在对称图形下面画√”3、画一画。
(画出下面对称图形的对称轴)(2)、红领巾有()条对称轴A、1B、2C、无数(3)、正方形有()条对称轴班级__________________ 姓名___________________ 座号成绩2、展开后像什么?连(1)、A,F列图形中,不对称的是()。
B.A、1B、2C、4D、无数(4)、圆的对称轴有()条。
A、3B、5C、4D、无数你能按对称轴画出另一半吗?二、判断下面哪些图形是轴对称图形,是的在括号里画“√”二年级上册轴对称图形练习班别:______ 姓名_______ 学号:________ 成绩:_________2、画出下面图形的对称轴。
牛棉⅛烧3、长方形有几条对称轴?正方形呢?圆呢?请你画一画,填一填。
前8个图形:画出对称轴的另一边;后2个图形:自由想象画出2个对称图形。
4、F面的图形各是从哪张纸上剪下来的?连一• <⅜ φ •连。
)条1、圆是()图形,它有()对称轴。
2、正方形有()条对称轴,长方形有()条对称轴,等腰三角形有()条对称轴,等边三角形有()条对称轴。
3、一个圆的周长是同圆直径的( )倍34、一个圆的半径是 8厘米,这个圆面积是 〔是()平方厘米?二、选择题1、如图,这些图案是轴对称图形的是( )虧 ◎ αA. 4个B . 3个C . 2个 D . 1个三、判断题(对的打“/,错的打“X”)1、梯形可以画岀一条对称轴。
( )2、 对称轴两侧相对的点到对称轴的距离相等。
() 3、 圆只有一条对称轴。
()四、画出下面各图形的对称轴,能画几条?五、应用题1、一种压路机的前轮直径是1.5米,每分转8圈,压路机每分前进多少米? 2、一个圆形养鱼池,直径是 4米,这个养鱼池的周长是多少米?占地面积是多少平方米?3、一辆自行车的车轮半径是 40厘米,车轮每分钟转100圈,要通过2512米的桥,大约需要几分钟?4、一个圆形水池的周长是 12.56厘米,它的面积是多少?答案:、填空题1、轴对称,无数条2、4 条,2 条,1 条,3条3、π4、150.72 平方厘米二、选择题1、C三、判断题1、X 2 ∖√3、X四、画出下面各图形的对称轴,能画几条?无数条, 5 条五、应用题1、37.68 米2、12.56 米,1 2.56 平方米3、10分 4 、12.56 平方厘米。
轴对称练习题含答案
轴对称练习题13.1.1 轴对称下列图形中,是轴对称图形的是( )3 .如图,△ ABC和4A'B。
关于直线I对称,下列结论中正确的有()①^ABC/△ A'B'C;②/BAC =Z B'A'C;③直线l垂直平分C C;④直线BC和B'C 的交点不一定在直线l上.A. 4个B. 3个C 2个D. 1个第3题图第4题图4 .如图,△ ABC与^A'B。
关于直线l对称,且N A = 105°, Z C = 30°,则N B的度数为()A.25°B.45°C.30°D.20°5 .如图,A ABC关于直线MN对称的三角形的顶点分别为A', B’, C,其中Z A = 90°, A =8cm, A'B=6cm.(1)求AB, A'C的长;(2)求4 A‘B。
的面积.2下列轴对称图形中,对称轴条数是四条的图形是()13.1.2 线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在八^。
中,AB的垂直平分线交AC于点P, PA = 5,则线段PB的长度为()A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD, BC=BD,则有()A. AB与CD互相垂直平分B. CD垂直平分ABC AB垂直平分CD D. CD平分/ACB3.如图,在A ABC中,D为BC上一点,且BC=BD+AD,则点D在线段的垂直平分线上.第3题图第4题图4.如图,在Rt A ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且N CBD =Z ABD,则N A =°.5.如图,在^ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm, △ ADC的周长为11cm,求BC的长.第2课时线段垂直平分线的有关作图1.如图,已知线段/'分别以点A,点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点。
初二数学轴对称图形练习题
初二数学轴对称图形练习题数学练习题1. 试题一一张方格纸上有一个图形,通过折叠图形,使得折叠之后的图形沿折叠线对称。
请你画出折叠之后的图形。
如图所示:(图略)2. 试题二对称图形(1)找出下列图形的轴对称线,并将其画出。
(a)长方形(b)正方形(c)圆形(d)等腰三角形(e)矩形(2)如果我们知道一个图形的轴对称线,能否唯一确定这个图形?请说明理由。
3. 试题三轴对称性质(1)如果一个图形经过某一条直线的折叠后可以重合在原来的位置,请问这条直线是否为轴对称线?为什么?(2)如果一个图形的某一部分和整个图形关于某个点对称,请问这个点是否为轴对称线?为什么?(3)如果一个图形经过某一条直线的折叠后,不与原来的图形重合,请问这条直线是否为轴对称线?为什么?4. 试题四图形的轴对称性质与图形的特点以下是几个常见的图形,请你判断它们是否具有轴对称性质,并说明理由。
(1)矩形(2)长方形(3)正方形(4)等腰三角形(5)直角三角形(6)直线(7)正多边形(8)菱形(9)椭圆5. 试题五通过题目给出的信息,判断是否有轴对称线。
如果有,请将轴对称线画出来。
(1)一个图形的两个边相等并平行。
(2)一个图形的两个角相等,并且它的两个对边平行。
(3)一个图形的两个对边平行,并且它的两个对角线相等。
6. 试题六解决问题请你找出一个轴对称图形,并通过折叠纸张的方式验证它的轴对称性质。
注意:为保护环境,请使用废弃的纸张进行练习。
六年级数学轴对称图形练习题
一、填表:
二、画出每个图的所有对称轴:
三、画出分别有1、2、3、4条对称轴的图形各一个。
四、解决问题:
1、一个圆的半径是2厘米,求它的周长和面积。
2、用一块边长8分米的正方形纸剪一个最大的圆,圆的周长和面积各是多少?
3、一根6.28米的绳子,用它围成的正方形面积大,还是围成圆的面积大?大多少?
4、一个环形花坛的外直径200米,内直径100米。
环形花坛的面积多少平方米?
如果一个图形(),这个图形就是轴对称图形,折痕所在的这条直线叫做()。
二、判断是否:
1、等腰三角形、梯形和圆都是轴对称图形。
………………………………()
2、所有的直径都是圆的对称轴。
……………………………………………()
3、平行四边形也可能是轴对称图形。
………………………………………()
4、圆的直径是半径的2倍。
…………………………………………………()
三、画出下列是轴对称图形的所有对称轴:
四、解决问题:
1、一根62.8米的绳子,用它围成的正方形面积大,还是围成圆的面积大?大多少?
2、用64米长的篱笆围成一个圆形苗圃,篱笆接头处用去1.2米。
苗圃的面积多少?
3、一个环形花坛的外半径100米,内直径160米。
环形花坛的面积多少平方米?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称画图练习题Revised on November 25, 2020
《轴对称》画图题训练
1、画出线段AB的中垂线。
2、画出∠AOB的角平分线。
3、在AB上找一点P,使P到
4、在直线MN上找一点P 点,使P
M、N两点的距离相等。
到射线OA和OB的距离相等。
5、如图,A、B、C三点表示三个
工厂,要建一个供水站,使它到这三个工厂的距离相等。
6、如图,l1、l2交于A点,P、Q的位置如图所
点,使它到
l1、l2的距离相示,试确定M
等,且到P、Q两点的距离也相等。
7 8、画出以下图形的轴对称图形。
9A和B,要在铁路边建一货场C,使A、B两厂到货场C的距离和最小,试在图上作出C。
A B
B
O
A
A
B
M N
B
O
A
N
M
A
B C
作图思
作图思
作图思
A
B
l
l
8、如图所示,E 、F 分别是△ABC 的边AB 、AC 的两定点,在BC
上求一点M ,使△MEF 的周长最短。
10、△ABC 的边OD 上, 11、直线l ,A ,B 两点在l 的
两侧, B 、C 在∠EOD 内部,分别以OE 、OD 在l 上找一点C ,使C 到A ,B 为对称轴作关于△ABC 的对称图形。
的距离之差最大。
12.如图,已知∠AOB 内有一点P ,试分别在边OA 和OB 上各找一点E 、F ,使
得△PEF 的周长最小。
试画出图形,并说明理由。
如图,村庄A 、B 位于一条小河的两侧,若河岸a 、b 彼此平行,现在要建设一座与河岸垂直的桥CD ,问桥址应如何选择,才能使A 村到B 近. A a B
C B O A
D
E C A l B。