分式方程应用题课件

合集下载

八年级数学分式方程列分式方程解应用题(PPT)5-2

八年级数学分式方程列分式方程解应用题(PPT)5-2

1 x 1 2 x2 2x
解:方程两边同时乘以x-2,得 1-x=-1-2(x-2) 解这个方程,得 x=2
检验:将x=2代入原方程,知
分母为0,所以x=2为原方程 的增根,所以原方程无解
分式方程的定义?
解分式方程一般需 要几个步骤啊?
封建时代多指官职,现代多指价值):~黜|~值|他曾被朝廷~到边远地区做官。②指出缺点,给予不好的评价(跟“褒”相对):他被~得一无是处。 【贬称】①动用含有贬义的言辞来称呼:过去民间把彗星~为“灾星”。②名含有贬义的称呼。 【贬斥】动①〈书〉降低官职。②贬低并排斥或斥责。 【贬 黜】〈书〉动贬斥?;黜退。 【贬词】名; SEO优化服务 SEO优化服务 ;贬义词。 【贬低】ī动故意降低对人或事物的评价:~人格|对 这部电影任意~或拔高都是不客观的。 【贬官】①动降低官职:因失职而被~。②名被降职的官吏。 【贬损】动贬低:不能~别人,抬高自己。 【贬义】 名字句里含有的不赞成的意思或坏的意思:~词|这句话没有~。 【贬义词】名含有贬义的词,如“阴谋”、“叫嚣”、“顽固”等。也叫贬词。 【贬抑】 动贬低并压抑:人格受到~。 【贬责】动指出过失,加以批评;责备:横加~|不待~而深刻自省。 【贬谪】动封建时代指官吏降职,被派到远离京城的地 方。 【贬值】动①货币购买力下降。②降低本国单位货币的含金量或降低本国货币对外币的比价,叫做贬值。③泛指价值降低:商品~。 【贬职】〈书〉动 降职。 【窆】〈书〉埋葬。 【扁】①形图形或字体上下的距离比左右的距离小;物体的厚度比长度、宽度小:~圆|~体字|~盒子|馒头压~了◇别把人 看~了(不要小看人)。②()名姓。 【扁柏】名常绿乔木,叶子像鳞片,果实呈球形。木材可做建筑材料和器物。 【扁担】?ɑ名放在肩上挑东西或抬东西 的工具,用竹子或木头制成,扁而长。 【扁担星】?ɑī名牛郎星和它附近两颗小星的俗称。民间传说小星是牛郎的两个孩子,牛郎挑着他们去见他们的母亲织 女。 【扁豆】(萹豆、稨豆、藊豆)名①一年生草本植物。茎蔓生,小叶披针形,花白色或紫色,荚果长椭圆形,扁平,微弯。种子白色或紫黑色。嫩荚是 常见蔬菜,种子可入。②这种植物的荚果或种子。 【扁骨】名扁平的骨头,如胸骨、颅骨中的顶骨等。 【扁率】ǜ名扁球体的半长轴ɑ和半短轴之差与半长 轴ɑ的比值(a-)/a,用来表示扁球体扁平的程度。 【扁平足】名指足弓减低或塌陷,脚心逐渐变成扁平的脚,也指这样的脚病。也叫平足。 【扁食】? 〈方〉名饺子或馄饨。 【扁桃】名①落叶乔木,树皮灰色,叶披针形,花粉红色,果实卵圆形,光滑,易破裂。果仁可以吃,扁桃体】名分布在上呼吸道内的一些类似淋巴结的组织。通常指咽腭部的扁桃体,左右各一,形状像扁桃。

人教版八年级数学上册课件:15.3 分式方程(第二课时)

人教版八年级数学上册课件:15.3 分式方程(第二课时)
设,注意单位要统一,选择一个未知量用未知数表示, 并用含未知数的代数式表示相关量. (3)列:即列方程,根据等量关系列出分式方程. (4)解:即解所列的分式方程,求出未知数的值. (5)验:即验根,要检验所求的未知数的值是否适合分式 方程,还要检验此解是否符合实际意义. (6)答:即写出答案,注意单位和答案完整.
3.(2019新疆)两个小组同时从甲地出发,匀速步行到乙 地,甲乙两地相距7500米,第一组的步行速度是第二 组的1.2倍,并且比第二组早15分钟到达乙地.设第 二组的步行速度为x千米/小时,根据题意可列方程是 (D)
4.某学校食堂需采购部分餐桌,现有A、B两个商家,A
商家每张餐桌的售价比B商家的优惠13元.若该校花 费2万元采购款在B商家购买餐桌的张数等于花费1.8 万元采购款在A商家购买餐桌的张数,则A商家每张餐
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬 衫售完后的总利润不低于1950元,则第二批衬衫每件 至少要售多少元? (2)设第二批衬衫每件售价y元.根据题意,得 30×(200-150)+15(y-140)≥1950, 解得y≥170. 答:第二批衬衫每件至少要售170元.
桌的售价为( A )
A.117元
B.118元
C.119元
D.120元
5.某园林队计划由6名工人对180平方米的区域进行绿 化,由于施工时增加了2名工人,结果比计划提前3小 时完成任务,若每人每小时绿化面积相同,求每人每 小时的绿化面积.设每人每小时的绿化面积为x平方
米,请列出满足题意的方程是

6.某校学生捐款支援地震灾区,第一次捐款总额为 6600元,第二次捐款的总额为7260元,第二次捐款的 总人数比第一次多30人,而且两次人均捐款额恰好相 等,则第一次捐款的总人数为 300 人.

《分式方程的应用》PPT课件

《分式方程的应用》PPT课件

售额为10 000元; 若按八五折销售,则每月多卖出
20件,且月销售额还增加1 900元. 每件服装的原
价为多少元?
分析:本题中的主要等量关系为:按八五折销售这种服
装的数量一按原价销售这种服装的数量=20件.
解:设每件服装原价为x元.根据题意,得
10 000 1 900 10 000 20.
85%x
第十二章 分式和分式方程
分式方程的应用
-.
1 课堂讲解 建立分式方程的模型
列分式方程解应用题的步骤 列分式方程解应用题的常见类型
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
小红和小丽分别将9 000字和7 500字的两篇文稿 录入计算机,所用时间相同. 已知两人每分钟录入计 算机字数的和是220字.两人每分钟各录入多少字?
(来自《点拨》)
知3-练
2 【中考·安顺】“母亲节”前夕,某商店根据市场 调查,用3 000元购进第一批盒装花,上市后很 快售完,接着又用5 000元购进第二批这种盒装 花.已知第二批所购花的盒数是第一批所购花 盒数的2倍,且每盒花的进价比第一批的进价少 5元.求第一批盒装花每盒的进价是多少元?
(来自《典中点》)
2.补充: 请完成《典中点》剩余部分习题
(1)利润问题:利润=售价-进价,利润率=
利润 进价
×100%;
(2)工程问题:工作量=工作效率×工作时间;
(3)行程问题:路程=速度×时间.
注意:列分式方程解应用题,往往与实数的运算或不等
式联合应用.
易错警示:列分式方程时易出现单位不统一的错误.
(来自《点拨》)
知3-讲
例3 某服装店销售一种服装.若按原价销售,则每月销

分式方程应用题课件利润问题

分式方程应用题课件利润问题

谢谢!
分配问题:
例1、在“5.12大地震”灾民安臵工作中,某企业接 到一批生产甲种板材240020m 和乙种材120020m 的任 务。已知该企业安排140人生产这两种板材,每人每 天能生产板材302 m .问:应分别安排多少人生产甲种 板材和乙种板材,才能确保他们用相同的时间完成 各自的生产任务?
解方程①得x=2000. 经检验x=2000是原方程①的根,且符合题意。 将x=2000代入方程②得y=90260. 故这笔生意赢利90260元.
[说明]解本例这类市场经济问题,应弄清售价、 进价,再分析其利润、数量之间的关系,特别要 将“打折”、“降价”弄清楚,为了方便起见,要像本 例解答这样,采用“列表”,这一点对正确解答比较 复杂的应用题有很大益处.可借鉴.
利润率=_______利__润__/成本
分式方程的应用
利润(成本、产量、价格、合格)问题
解本类问题,其关键是在市场经济中,要注意以下几个公式: (1)总利润=数量(售价-进价); (2)利润 利 进 率 1 润 价 % 0 0售 进 进 价 价 1 价 0 % 0
(3)进 价 售 价 1 利 润 率
每小时各骑多少千米?
90 60 x x6
3、甲、乙两种商品,已知甲的价格每件比乙多6元,用90元
买甲的件数和用60元买乙件的件数相等,求甲、乙每件商品的价
格各多少元?
90 60 x x6
这3道题有什么区别和联系?
区别:
1是工程问题,2是行程问题,3是利润问题
联系:
数量关系和所列方程相同 即:两个量的积等于第三个量
温故1:某商品的进价为250元,按标价的9折销售时,利润率为
15.2%,商品的标价是多少?
[例1]某商店销售一批服装,每件售价150元,可获利25%,

分式方程应用题ppt课件

分式方程应用题ppt课件
问乙队单独完成这项工程需要多少天?
解:设乙队单独完成这项工程需要x天
1 20+( 1 + 1 ) 24=1
60
60 x
解得:x 90
经检验:x 90是原方程的解
x+3 原计划
由题意可得:
1800 1.51800 1x8003
实际上
x3
x
18x00
x
1800 1800
18
同步练习
2.某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯 净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍, 结果比原计划提前3天完成了生产任务.
2.求原计划每天生产多少吨纯净水?
分式方程的应用
宜宾市高县胜天中学
李诗富
1
教学目标:
1、了解用分式方程的数学模型反映现 实情境中的实际问题.
2、能用分式方程来解决现实情境中的 问题
重点:理解“实际问题”——分式方程模 型的过程。
难点:实际问题中的等量关系的建立。
关键:分析实际问题中的量与量之间的关
系,正确列出分式方程。
2
回顾与思考
解:设原计划每天铺设管道x米, 则实际上每天铺设( 1+10%)x米
550 5 550
x
(1 10%) x
24
例4.工作总量看成单位 1 的类型
预备知识
1.一项工程,甲工程队单独完成需要10天,则每天完成多少?
每天完成整个工程的 1 ,即甲队的工效为 1
10
10
2.一项工程,甲工程队单独完成需要a天,则每天完成多少?
分析:设骑车同学速度为v千米/时
(提示:20分= 1 小时) 3

华师版八年级数学下册课件 第16章 分式 可化为一元一次方程的分式方程 第2课时 列分式方程解应用题

华师版八年级数学下册课件 第16章 分式 可化为一元一次方程的分式方程 第2课时 列分式方程解应用题
10.(新疆中考)某商店第一次用 600 元购进 2B 铅笔若干支, 第二次又用 600 元购进该款铅笔,但这次每支的进价是第一次进价的54 倍, 购进数量比第一次少了 30 支, 则该商店第一次购进的铅笔每支的进价是_4__元.
11.(12 分)某自动化车间计划生产 480 个零件,当生产任务完成一半时, 停止生产并进行自动化程序软件升级,用时 20 分钟,
7.(10分)(威海中考)小明和小刚约定周末到某体育公园打羽毛球. 他们两家到体育公园的距离分别是1 200米,3 000米, 小刚骑自行车的速度是小明步行速度的3倍,若两人同时到达, 则小明需提前4分钟出发,求小明和小刚两人的速度.
解:设小明的速度是 x 米/分钟,则小刚骑自行车的速度是 3x 米/分钟, 根据题意,得
恢复生产后工作效率比原来提高了13 , 结果完成任务时比原计划提前了 40 分钟, 求软件升级后每小时生产多少个零件?
解:设软件升级前每小时生产 x 个零件,
则软件升级后每小时生产(1+13 )x 个零件,根据题意,得
480 x
-[24x 0
+(12+4013)x
+2600
]=4600
,解得 x=60,
1 200 x
-4=3
000 3x
,解得 x=50,经检验得
x=50 是原方程的解,
且符合题意,故 3x=150, 答:小明的速度是 50 米/分钟,小刚骑自行车的速度是 150 米/分钟
8.(易错题)市开发区在一项工程招标时,接到甲、乙两个工程队的投标书, 工程领导小组根据甲、乙两队的投标书测算,共有三种施工方案: ①甲队单独完成这项工程,刚好如期完工; ②乙队单独完成此项工程要比规定工期多用 5 天; ③ ,剩下的工程由乙队单独做,也正好如期完工.

第十二课时分式方程的应用题

第十二课时分式方程的应用题

∴ x=7是原分式方程的解。
答:小明百米跑的平均速度是7米/秒.
甲、乙两人骑自行车各行28千米, 甲比乙快
为8:7,求两人的速度。
解:设一份为 x 甲的速度8x千米/时, 乙的速度是7x千米/时。
1 小时,已知甲与乙速度比 4
v

s
28 28
t
28 8x
8x 7x

28 28 1 甲比乙快, 7 x 8 x 4 即甲用的时间少
到达终点时,小亮距离终点还有5米, 如果小明比小亮每秒多跑0.35米,你知
道小明百米跑的平均速度是多少吗?
解:设小明百米跑的平均速度为x米/秒, 小亮百米跑的平均速度是(x-0.35)米/秒 根据题意得:
100 100 5 x x 0.35
x7
检验: x 7 时,x(x-0.35)≠0
由题意得:
15 x
15 2 – = 3x 3
八年级学生去距学校10千米的博物 馆参观,一部分学生骑自行车先走,过
了20分钟后,剩余的学生乘汽车出发,
结果他们同时到达。若汽车的速度是自
行车速度的2倍,求:骑车学生的速度
是多少千米/小时。
10 10 20 x 2 x 60
x 15
两个小组同时开始攀登一座450米的
工作量 工作时间 原计划 工作效率
1 x 1 x 1
1
1
x
x-1
改进后
增长率公式: 现有量=(1+增长率)×原有量
改进后
工作 效率 提高 了20% 原计划
1 x 1
1 x
解:设这个工程队原计划用 x 个月建成 这所希望小学 由题意得:
1 1 1 20% x x 1

分式方程应用课件

分式方程应用课件
由题意得:
15 15 2 x 3x 3
小结:列分式方程解应用题的方法与步骤为:
1审(审题,找出相等的关系)
2设(一般求什么设什么---这是直接设,也可间接设) 3列(根据等量关系列出分式方程) 4解(解这个分式方程) 5验(既要验是否为所列分式方程的根,
又要验是否符合实际情况) 6答(完整地写出答案,注意单位)
分析:这是一个工作量的问题:
工作时量间= =工工作效作率量 /×工工作作效时率间
等量关系:
甲做45个零件的时间 = 乙做30个零件的时间
工作量(个)
45
工作效率(个/时)
X
工作时间(时) 45

X
30

X–3
30
X 3
问题1:甲、乙两人做某种零件,已知甲每小时 比乙多做3个,甲做45个零件的时间与乙做30个 零件的时间相同问甲、乙每小时各做多少个?
由题意得方程:
30 24 48 1.5X X 60
三、练习:(只设未知数列出方程) 二(7)班的学生到距学校15千米的地方
春游,一部分同学骑自行车先走,40 分钟 后,其余同学乘汽车去,结果同时到达, 已知汽车的速度是自行车的三倍, 求两种车的速度。
解:设自行车的速度为每小时x千米, 则汽车的为每小时3x千米
好的学习态度是成功的秘决,希望同学们
端正学习态度养成良好的学习习惯。
分式方程的应用
一、复习:1、解分式方程
45 30 x x 3 解分式方程的步骤有哪些?
解:去分母得:45(x-3) = 30x 解这个方程得 x = 9 经检验9是原方程的解 去分母、解整式方程、检验
问题1:甲、乙两人做某种零件,已知甲每小时比乙 多做3个,甲做45个零件的时间与乙做30个零件的时 间相同,问甲、乙每小时各做多少个?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由x=18得x-6=12
答:甲每小时做18个,乙每小时12个
试一试
甲、乙两种商品,已知甲的价格每件比乙多6 元,买甲90件所用的钱和买乙60件所用钱相等, 求甲、乙每件商品的价格各多少元?
试一试
1、 甲、乙两人练习骑自行车,已知甲每小时 比乙多走6千米,甲骑90千米所用的时间和乙起 骑60千米所用时间相等,求甲、乙每小时各骑多 少千米?
90 60 x x6
2、甲、乙两种商品,已知甲的价格每件比乙 多6元,买甲90件所用的钱和买乙60件所用钱相 等,求甲、乙每件商品的价格各多少元?
90 60 x x6
1. 甲、乙两人做某种机器零件,已知甲每小时比乙多做 6个,甲做90个零件所用的时间和乙做60个零件所用时 间相等,求甲、乙每小时各做多少个零件?
2. 甲、乙两人练习骑自行车,已知甲每小时比乙 多走6千米,甲骑90千米所用的时间和乙起骑60 千米所用时间相等,求甲、乙每小时各骑多少千 米? 3.甲、乙两种商品,已知甲的价格每件比乙多6 元,买甲90件所用的钱和买乙60件所用钱相等, 求甲、乙每件商品的价格各多少元?
有什么区别和联系?
区别
一是工作问题,二是行程问题, 三是价格问题
3、解题过程注意画图或列表帮助分析题 意找等量关系。
4、注意不要漏检验和写答案。
谢谢!
解:设甲每小时做x个零件则乙每小时做( x -6)个零件,
依题意得: 等量关系:甲用时间=乙用时间
请审题分析题意
90 60
设元
x x6
90x 6 60x
90x 60x 540
30x 540
x 18
我们所列的是一 个分式方程,这 是分式方程的应

经检验X=18是原方程的根,且符合题意。
• 关键:找出相等关系
• 甲队施工1个月的工作量+甲乙共施工半 个月的工作量=总工作量
解:设乙队如果单独施工1个月能完成总工
程的
1 x

由题意得:
1 3
+
1 6
+1 2x
=1
2x+x+3=6x
x=1
经检验:x=1是原分式方程的解,且符合题意。 ∵ 1﹥ 1
3
∴ 乙队施工速度快。
问题:请分析列分式方程解应用题与以前学习的 列方程解应用题有什么区别?
16.3.2 分式方程 与实际问题
解分式方程的思路是:
分式 方程
去分母
整式 方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去.
区别:解方程后要检验。
总结:列分式方程解应用题的方法和步骤如下: 1:审清题意,并设未知数 2:找出相等关系,并列出方程; 3:解这个分式方程, 4:验根(包括两方面 :1、是否是分式方
程的根;2、是否符合题意) 5:写答案
例2. 甲、乙两人做某种机器零件,已知甲每小时比 乙多做6个,甲做90个零件所用的时间和乙做60个零件 所用时间相等,求甲、乙每小时各做多少个零件?
4、写出原方程的根.
一化二解三检验
解方程
x x
1 1
4 x2 1
1
解:方程两边都乘以 (x+1) ( x – 1 ) , 得
( x + 1 )2-4 = x2-1
解得
x=1
检验: x = 1 时(x+1)(x-1)=0,x=1不 是原分式方程的解.
∴原方程无解.
分式方程的运用: •例1: 两个工程队共同参与一项筑路工程, 甲队单独完成施工1个月完成总工程的三分
之一,这时增加了乙队,两队又共同工作
了半个月,总工程全部完成,哪个队的施 工速度快?
• 分析:甲队1个月完成总工程的1∕3,设乙队如
果单独完成施工1个月能完成总工程的1∕x,那么
甲队半个月完成总工程的
1∕6 ,乙队半个
月完成总工程的
1∕2,x 两队半个
月完成总工程的
1﹢ 1
6
2x 。
列方程的关键是什么?问题中的那个等 量关系可以用来列方程?
工作效率比计划提高50%
每天比计划多挖50%
解:设原计划每天挖x米,则实际每天挖 x_(___1_+__5_0_%_)_ 米。
960 960 4 x 1.5x
小结:
1、列分式方程解应用题,应该注意解题 的五个步骤。 2、列方程的关键是要准确设元(可直接设, 也可间接设)的前提下找出等量关系。
联系
数量关系和所列方程相同 即:两个量的积等于第三个量
练习2:甲、乙二人同时ຫໍສະໝຸດ 张庄出发,步 行15千米到李庄。甲比乙每小时多走1千 米,结果比乙早到半小时。二人每小时 各走多少千米?
解:设甲速度为x千米/时,则乙速度为 _(__x_-_1_)__千米/时
15 15 0.5 x 1 x
练习1:某农场开挖一条长960米的渠道,开工后工作 效率比计划提高50%,结果提前4天完成任务。原计划 每天挖多少米?
相关文档
最新文档