2015年上海市中考数学二模18题整理

合集下载

2015年上海市徐汇区中考数学二模试卷及答案解析(pdf版)

2015年上海市徐汇区中考数学二模试卷及答案解析(pdf版)

•(x2+
),其中 x=

20.(10 分)(2015•徐汇区二模)解方程组:

21.(10 分)(2015•徐汇区二模)某公司市场营销部的某营销员的个人月收入与该营销员每 月的销售量成一次函数关系,其图象如图所示,根据图象提供的信息,解答下列问题: (1)求营销员的个人月收入 y 元与该营销员每月的销售量 x 万件(x≥0)之间的函数关系式; (2)若两个月内该营销员的销售量从 2 万件猛增到 5 万件,月收入两个月大幅度增长,且 连续两个月的月收入的增长率是相同的,试求这个增长率(保留到百分位).

11.(4 分)(2015•徐汇区二模)不等式组
的解是

12.(4 分)(2015•徐汇区二模)方程
的解是

13.(4 分)(2015•徐汇区二模)某商店运进 120 台空调准备销售,由于开展了促销活动,
每天比原计划多售出 4 台,结果提前 5 天完成销售任务,则原计划每天销售多少台?
若原计划每天销售 x 台,则可得方程
B、相交两圆的交点关于这两个圆的连心线所在直线对称,正确,故本选项错误; C、联结相切两圆圆心的直线必经过切点,正确,故本选项错误; D、内含的两个圆的圆心距大于零,错误,同心圆的圆心距等于 0,故本选项正确. 故选 D. 点评:本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断 命题的真假关键是要熟悉课本中的性质定理.
A. 180,160
B. 160,180
C. 160,160
D.180,180
6.(4 分)(2015•徐汇区二模)下列命题中,假命题是( ) A. 没有公共点的两圆叫两圆相离 B. 相交两圆的交点关于这两个圆的连心线所在直线对称 C. 联结相切两圆圆心的直线必经过切点 D.内含的两个圆的圆心距大于零

上海市2015各区初三数学二模考试第18题详细解析

上海市2015各区初三数学二模考试第18题详细解析

上海市2015各区初三数学二模考试第18题详细解析--------------------------------------------------------------------------作者:_____________--------------------------------------------------------------------------日期:_____________1.黄浦18.如图,点P是以r为半径的圆O外一点,点P'在线段OP上,若满足OP⋅O P'=r2,则称点P'是点P关于圆O的反演点,如图,在Rt△ABO中,∠B=90︒,AB=2,BO=4,圆O的半径为2,如果点A'、B'分别是点A、B关于圆O的反演点,那么A'B'的长是;2.奉贤18.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC 绕着点O顺时针旋转,点C落在BC边上的点C'处,点A落在点A'处,联结BA',如果点A、C、A'在同一直线上,那么∠BA'C'的度数为;3.普陀CA O(第18题图)B4.杨浦18.如图,△ABC中,∠ABC>90︒,tan∠BAC=3,4BC=4,将三角形绕着点A旋转,点C落在直线AB上的点C'处,点B落在点B'处,若C、B、B'恰好在一直线上,则AB的长为;5.松江18.如图,在△ABC中,AB=AC=5cm,ABC=6cm,BD平分∠A BC,BD交AC于点D.如果将D△ABD沿BD翻折,点A落在点A′处,△那么D A′C的面积为_______________cm2.B C6.崇明C18.如图,在∆ABC中,CA=CB,∠C=90︒,点D是BC的中点,将∆ABC沿着直线EF折叠,使点A与点D重合,F D折痕交AB于点E,交AC于点F,那么sin∠BED的值A为.7.浦东E(第18题图)B 8徐汇9.闵行18.如图,已知在Rt△ABC中,∠C=90º,AC=BC=1,点D在边BC上,将△ABC沿直线AD翻折,使点C落在点C¹处,联结AC¹,直线AC¹与边CB的延长线相交于点F.如果∠DAB=∠BAF,那么BF=▲10.静安、青浦18.如图,⊙O1的半径为1,⊙O2的半径为2,O1O2=5,⊙O分别与⊙O1外切、与⊙O2内切,那么⊙O半径r的取值范围是.11.虹口18.在中,,(如图),若将绕点顺时针方向旋转到的位置,O1O2A联结,则的长为.B A D CF12.长宁18.如图,△ABC≌△DEF(点A、B分别与点D、E对应),AB=AC=5,BC=6△,ABC固定不动,△DEF运动,并满足点E在BC边从B向C移动(点E不与B、C重合),DE始终经过点A,EF 与AC边交于点M,当△AEM是等腰三角形时,BE=.13金山18.在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处,若AE=2A M,那么EN的长等于14.嘉定、宝山18.在矩形ABCD中,AD=15,点E在边DC上,联结AE△,ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为点G,如图5,如果AD=3GD,那么DE=.AMBNA G DE图5CDCBF解析答案1.黄浦2.奉贤3.普陀4.杨浦5.松江6.崇明7.浦东8徐汇9.闵行10.静安、青浦11.虹口12.长宁13.金山14.嘉定、宝山----------THE END,THERE IS NO TXT FOLLOWING.------------。

2015年上海中考各区二模数学试题及答案汇总

2015年上海中考各区二模数学试题及答案汇总
2 2 2 2
BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)

上海市闸北区2015届中考数学二模试卷含答案解析

上海市闸北区2015届中考数学二模试卷含答案解析

上海市闸北区中考数学二模试卷一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.2.下列属于最简二次根式的是()A.B. C.D.3.下列方程中,有实数根的是()A. =﹣2 B.x2+1=0 C. =1 D.x2+x+1=04.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G 点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.85.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2=.8.用科学记数法表示:3402000=.9.化简分式: =.10.不等式组的解集是.11.方程x+=0的解是.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐.(填“减小”或“增大”)13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价万元.15.如图,在正方形ABCD中,如果AC=3, =, =,那么|﹣|=.16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?.(填“红”或“黄”)17.已知⊙O的直径是10,△ABC是⊙O的内接等腰三角形,且底边BC=6,求△ABC的面积是.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比=.三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣)0+3.20.解方程组:.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.上海市闸北区中考数学二模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故选B【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.2.下列属于最简二次根式的是()A.B. C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、,无法化简,故是最简二次根式,故本选项正确;B、,被开方数中含有分母;故本选项错误;C、,被开方数中含有分母,故本选项错误;D、所以本二次根式的被开方数中含有没开的尽方的数;故本选项错误;故选:A.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.3.下列方程中,有实数根的是()A. =﹣2 B.x2+1=0 C. =1 D.x2+x+1=0【考点】根的判别式;无理方程;分式方程的解.【专题】计算题.【分析】根据二次很式的性质可对A进行判断;根据判别式的意义对B、D进行判断;通过解分式方程对C进行判断.【解答】解:A、方程=﹣2没有实数解,所以A选项错误;B、△=0﹣4<0,方程没有实数解,所以B选项错误;C、去分母得1=x+1,解得x=0,经检验x=0是原方程的解,所以C选项正确;D、△=14<0,方程没有实数解,所以D选项错误.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了分式方程和无理方程.4.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G 点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.8【考点】三角形的重心.【专题】计算题.【分析】如图,连结AG并延长交BC于F,根据三角形重心性质得=2,再证明△ADE∽△ABC,根据相似三角形的性质得=,然后利用比例的性质计算BC的长.【解答】解:如图,连结AG并延长交BC于F,如图,∵点G为△ABC的重心,∴=2,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,∴BC=6.故选B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.5.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元【考点】众数;中位数.【分析】根据题意先计算出本周销售套餐12元和18元的份数,再根据中位数和众数的定义即可得出答案.【解答】解:12元的份数有500×20%=100(份),18元的份数有500﹣100﹣180=220(份),∵本周销售套餐共计500份,∴所购买的盒饭费用的中位数是第250和251个数的平均数,∴中位数是15元;18元出现的次数最多,则众数是18元;故选A.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75【考点】解直角三角形的应用-坡度坡角问题.【分析】先过点E作EM⊥GH于点M,根据水渠的横断面是等腰梯形,求出GM,再根据斜坡AD 的坡度为1:0.6,得出EM:GM=1:0.6,最后代入计算即可.【解答】解:如图;过点E作EM⊥GH于点M,∵水渠的横断面是等腰梯形,∴GM=×(GH﹣EF)=×(2.1﹣1.2)=0.45,∵斜坡AD的坡度为1:0.6,∴EM:GM=1:0.6,∴EM:0.45=1:0.6,∴EM=0.75,故选:D.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度、等腰三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形.二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2=.【考点】负整数指数幂.【专题】计算题.【分析】根据负整数指数幂的定义求解:a﹣p=(a≠0,p为正整数)【解答】解:2﹣2==,故答案为.【点评】本题考查了负整数指数幂的定义,解题时牢记定义是关键,此题比较简单,易于掌握.8.用科学记数法表示:3402000= 3.402×106.【考点】科学记数法—表示较大的数.【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于3402000有7位,所以可以确定n=7﹣1=6.【解答】解:3402000=3.402×106.故答案为:3.402×106.【点评】此题考查科学记数法,用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.化简分式: =.【考点】约分.【专题】计算题.【分析】先把分母因式分解,然后进行约分即可.【解答】解:原式==.故答案为.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.10.不等式组的解集是x≥3.【考点】解一元一次不等式组.【分析】根据不等式的性质求出不等式①和②的解集,根据找不等式组的解集的规律找出不等式组的解集即可.【解答】解:由①得:x>﹣2,由②得:x≥3,∴不等式组的解集是x≥3.故答案为x≥3.【点评】本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.方程x+=0的解是0.【考点】无理方程.【分析】本题含根号,计算比较不便,因此可先对方程两边平方,得到x=x2,再对方程进行因式分解即可解出本题.【解答】解:原方程变形为:x=x2即x2﹣x=0∴(x﹣1)x=0∴x=0或x=1∵x=1时不满足题意.∴x=0.故答案为:0.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐减小.(填“减小”或“增大”)【考点】反比例函数的性质.【分析】首先利用待定系数法确定反比例函数的比例系数,然后根据其符号确定其增减性即可.【解答】解:设反比例函数的解析式为y=(k≠0),∵反比例函数图象过点(﹣1,﹣3),∴把(﹣1,﹣3)代入得3=k>0,根据反比例函数图象的性质可知它在每个象限内y随x的增大而减小,故答案为:减小;【点评】考查了反比例函数的性质,解答此题的关键是要熟知反比例函数图象的性质及用待定系数法求反比例函数的解析式.反比例函数图象的性质:(1)当k>0时,反比例函数的图象位于一、三象限;(2)当k<0时,反比例函数的图象位于二、四象限.13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.【考点】概率公式.【分析】由文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,直接利用概率公式求解即可求得答案.【解答】解:∵文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,∴随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为: =.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价9.9万元.【考点】有理数的混合运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:10×(1﹣10%)×(1+10%)=9.9(万元),则现售价为9.9万元.故答案为:9.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.如图,在正方形ABCD中,如果AC=3, =, =,那么|﹣|=3.【考点】*平面向量.【分析】首先由在正方形ABCD中,如果AC=3,可求得BC的长,又由=, =,可得|﹣|=||=BC.【解答】解:∵在正方形ABCD中,AC=3,∴AB=BC=3,∵=, =,∴﹣=﹣=,∴|﹣|=||=BC=3.故答案为:3.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用.16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?黄.(填“红”或“黄”)【考点】方差.【分析】先根据方差公式S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]分别求出红颜色和黄颜色的方差,然后进行比较,即可得出答案.【解答】解:红颜色的郁金香的方差是: [(54﹣40)2+(44﹣40)2+(37﹣40)2+(36﹣40)2+(35﹣40)2+(34﹣40)2]≈49.67, 黄颜色的郁金香的方差是: [(48﹣40)2+(35﹣40)2+(38﹣40)2+(36﹣40)2+(43﹣40)2+(40﹣40)2]≈29.67,∵S 2红>S 2黄,∴黄颜色的郁金香样本长得整齐;故答案为:黄.【点评】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.已知⊙O 的直径是10,△ABC 是⊙O 的内接等腰三角形,且底边BC=6,求△ABC 的面积是 3或27 .【考点】垂径定理;等腰三角形的性质;勾股定理.【分析】从圆心在三角形内部和外部两种情况讨论,根据垂径定理和三角形的性质求出答案.【解答】解:当圆心在三角形内部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=9,S △ABC =×6×9=27,当圆心在三角形外部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=1,S △ABC =×6×1=3,故答案为:3或27.【点评】本题考查的是垂径定理、等腰三角形的性质和勾股定理,正确运用定理和性质是解题的关键,注意分情况讨论思想的运用.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比=.【考点】相似三角形的性质;翻折变换(折叠问题).【分析】根据△BED与△ABC相似和△ABC沿BD折叠,点C恰巧落在边AB上的C′处,求出∠A=∠DBA=∠DBC=30°,利用三角函数求出BD、AC的长,得到答案.【解答】解:△BED与△ABC相似,∴∠DBA=∠A,又∠DBA=∠DBC,∴∠A=∠DBA=∠DBC=30°,设BC为x,则AC=x,BD=x,=.故答案为:.【点评】本题考查的是相似三角形的性质和翻折变换的知识,掌握相似三角形的对应角相等和锐角三角函数的应用是解题的关键.三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣)0+3.【考点】二次根式的混合运算;分数指数幂;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、分数指数幂和特殊角的三角函数值得到原式=﹣|﹣1|+1+,然后分母有理化和去绝对值后合并即可.【解答】解:原式=﹣|﹣1|+1+=2﹣+﹣1+1+=2+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和分数指数幂.20.解方程组:.【考点】高次方程.【分析】把①化为x=±2y,把②化为x+y=±2,重新组成方程组,解二元一次方程组即可.【解答】解:,由①得,x=±2y,由②得,x+y=±2,则,,,解得,,,,.【点评】本题考查的是二元二次方程组的解法,把二元二次方程根据平方差公式和完全平方公式进行变形化为两个二元一次方程是解题的关键.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.【考点】勾股定理.【分析】(1)设ED=a,则EC=a,在Rt△EDC中根据勾股定理用a表示出DC的长,在Rt△ABE中,根据BE2=AB2+AE2求出a的值,故可得出ED及CD的长,由锐角三角函数的定义即可得出结论;(2)由(1)中,DE=a,CD=3a,a=2可得出DE=2,CD=6,再根据四边形ABCD是矩形,BE=AD即可得出结论.【解答】解:(1)设ED=a,则EC=a,在Rt△EDC中,∵DC===3a,∴BE=AE+ED=8+a.在Rt△ABE中,∵BE2=AB2+AE2,即(8+a)2=(3a)2+82,解得a=2,∴ED=2,CD=6,∴tan∠ECD===.(2)∵由(1)知,DE=a,CD=3a,a=2,∴DE=2,CD=6.∵四边形ABCD是矩形,BE=AD,AE=8,∴AB=CD=6,BC=AD=AE+DE=8+2=10.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式y A=2.5x;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式y B=200+0.9x;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?【考点】一次函数的应用.【分析】(1)根据表可知:当运输路程跑80公里时,收费200元,所以每公里收费为2.5元,所以y A=2.5x.(2)根据题意得:y B=200+0.9x.y B,所以选择B运输队.(3)当x=500时,y A=2.5×500=1250,y B=2000+0.9×500=2450,因为y A>【解答】解:(1)根据表可知:当运输路程跑80公里时,收费200元,∴每公里收费为2.5元,∴y A=2.5x.故答案为:y A=2.5x.(2)根据题意得:y B=200+0.9x.故答案为:y B=200+0.9x.(3)当x=500时,y A=2.5×500=1250,y B=200+0.9×500=650,∴y A>y B,∴选择B运输队.【点评】本题考查了一次函数的应用,解决本题的关键是读懂题意,列出函数解析式.23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.【考点】相似形综合题.【分析】(1)通过AAS证得△AEB≌△AFD,则其对应边相等:AB=AD,所以“邻边相等的平行四边形是菱形”;(2)欲证明AF2=AG•DF,需要通过相似三角形△GAD∽△AFD的对应边成比例得到AD=AF,则AF2=AG•DF;(3)根据菱形的性质和平行线分线段成比例得到:AH:HG=BH:HD,BH:HD=EH:AH,故AH:HG=EH:AH.把相关线段的长度代入来求AH的长度即可.【解答】(1)证明:如图1,∵四边形ABCD是平行四边形,∴∠B=∠D.∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,∴∠AEB=∠AFD.在△AEB和△AFD中,,∴△AEB≌△AFD(AAS)∴AB=AD,∴平行四边形ABCD是菱形;(2)由(1)知,△AEB≌△AFD,则∠BAE=∠DAF.如图2,∵四边形ABCD是平行四边形,∴AB∥DG,∴∠BAE=∠G,∴∠G=∠DAF.又∵∠ADF=∠GDA,∴△GAD∽△AFD,∴DA:DF=DG:DA,∴DA2=DG•DF.∵DG:DA=AG:FA,且AD=AF,∴DG=AG.又∵AD=AF,∴AF2=AG•DF;(3)如图2,在菱形ABCD中,∵AB∥DC,AD∥BC,∴AH:HG=BH:HD,BH:HD=EH:AH,∴AH:HG=EH:AH.∵HE=4,EG=12,∴AH:16=4:AH,∴AH=8.【点评】本题考查了相似综合题.此题综合性比较强,其中涉及到了菱形的性质,平行线分线段成比例,相似三角形的判定与性质,解题时,需要弄清楚相似三角形的对应边与对应角,以防弄错.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质;二次函数的应用.【分析】(1)由二次函数对称轴为直线x=2,根据A坐标确定出二次函数与x轴的另一个交点坐标,设出二次函数解析式为y=a(x+6)(x﹣2),把C坐标代入求出a的值,确定出二次函数解析式,进而确定出C与D坐标即可;(2)连接AB、BC、CD、DA,点E在线段AB上,连接DE,如图1所示,利用勾股定理求出AB,BC,CD与BD的长,根据直线CD与直线AB斜率相等,得到DC与AB平行,继而得到四边形ABCD为直角梯形,若DE平分四边形ABCD的面积,可得直角梯形面积等于三角形ADE面积的2倍,求出AE的长即可;(3)在二次函数的图象上存在点P,能够使∠PCA=∠BAC,如图2所示,直线CP与AB交于点G,可得GA=GC,根据直线AB解析式设出G坐标(x,x+6),利用两点间的距离公式求出x的值,确定出G坐标,利用待定系数法求出直线CG解析式,与二次函数解析式联立求出P坐标;由(2)得到四边形ABCD为直角梯形,即DC与AB平行,利用两直线平行内错角相等,得到P与D重合时,满足题意,确定出此时P的坐标即可.【解答】解:(1)∵二次函数经过A(﹣6,0),B(0,6),对称轴为直线x=2,∴二次函数图象经过(2,0),设二次函数解析式为y=a(x+6)(x﹣2),把B(0,6)代入得:6=﹣12a,即a=﹣,∴二次函数解析式为y=﹣(x+6)(x﹣2)=﹣x2﹣2x+6=﹣(x+2)2+8,则C(﹣2,8),D(﹣4,6);(2)如图1所示,由题意得:AB=6,BC=CD=2,BD=4,∵BD2=CD2+BC2,∴∠DCB=90°,∵直线AB的解析式为y=x+6,直线DC解析式为y=x+10,∴DC∥AB,∴四边形ABCD为直角梯形,=2S△ADE,即×2×(2+6)=2××2×AE,若S梯形ABCD解得:AE=4;(3)如图2,在二次函数的图象上存在点P,使∠PCA=∠BAC,直线CP与AB交于点G,可得GA=GC,∵A(﹣6,0),C(﹣2,8),直线AB解析式为y=x+6,设G(x,x+6),∴=,解得:x=﹣,经检验是原方程的根且符合题意,∴G(﹣,),设直线CG解析式为y=kx+b,把C与G坐标代入得:,解得:,∴直线CG解析式为y=7x+22,联立得:,解得:或(经检验不合题意,舍去),∴P坐标为(﹣16,﹣90);由(2)得到四边形ABCD为直角梯形,AB∥CD,∴∠DCA=∠BAC,此时P与D重合,即P(﹣4,6),综上,满足题意P的坐标为(﹣16,﹣90)或(﹣4,6).【点评】此题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,待定系数法确定一次函数解析式,直角梯形的判定,直线与二次函数的交点,坐标与图形性质,熟练掌握待定系数法是解本题的关键.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.【考点】圆的综合题.【分析】(1)作AH⊥BC于点H,根据直线CD与⊙B相切,得到CD⊥AB,从而得到cos∠DBC=cos∠ACH,利用余弦的定义得到BD:BC=CH:CA,从而得到BD:4=2:6,求得BD 的长即可求得圆的半径;(2)作PK⊥BC于点K,求得两圆的圆心距,然后根据两圆的半径和圆心距的大小关系得到位置关系即可;(3)设EF与PB交于点G,BG=m,在△PBE中,PE2﹣PG2=BE2﹣BG2求得m的值,然后根据EG2﹣BG2=BE2求得EG的长即可求得EF的长.【解答】解:(1)如图1,作AH⊥BC于点H,∵AB=AC=6,BC=4,∴BH=2.∵直线CD与⊙B相切,∴CD⊥AB,∵∠DBC=∠ACH,∴cos∠DBC=cos∠ACH,∴BD:BC=CH:CA,∴BD:4=2:6,∴BD=.(2)如图1,作PK⊥BC于点K,∴PK∥AH.∵AH⊥BC,AB=AC=6,BC=4,∴BH=2,∴AH=4.∵以AC为直径作⊙P,∴AP=PC,∴PK=2,CK=BC=1,∴BK=3,∴在Rt△PBK中,PB===,∴当0<x<﹣3时,⊙B与⊙P外离,当x=﹣3时,⊙B与⊙P外切,当﹣3<x≤4时,⊙B与⊙P相交;(3)如图2,点E即为BC边的中点H,∴PE=3.设EF与PB交于点G,BG=m,∴在△PBE中,PE2﹣PG2=BE2﹣BG2,∴32﹣(﹣m)2=22﹣m2,∴m=.∵EG2﹣BG2=BE2,∴EG2﹣()2=22,∴EG=,∴EF=.【点评】本题考查了圆的综合知识,题目中还涉及到了勾股定理、两圆的位置关系等知识,知识点较多,难度较大,特别是最后一题中两次运用勾股定理求得EG的长更是解决本题的关键.。

2015静安、青浦初三数学二模试卷及答案

2015静安、青浦初三数学二模试卷及答案

m1 3, m2 1 都是方程的解,但 m 1 不符合题意,
∴点 B 的坐标为(5,3) .…………………………………………………………(1 分) 22.解:设甲乙两人原来每小时各加工零件分别为 x 个、 y 个,……………………………(1 分)
30 30 1, x y ∴ ………………………………………………………………………(4 分) 24 30 1, x 2y
16. 当 x 2 时,不论 k 取任何实数,函数 y k ( x 2) 3 的值为 3,所以直线 y k ( x 2) 3 一定经过定点(2,3) ;同样,直线 y k ( x 3) x 2 一定经过的定点为 ▲ .
17. 将矩形 ABCD(如图)绕点 A 旋转后, 点 D 落在对角线 AC 上的点 D’,点 C 落到 C’,如果 AB=3,BC=4,那么 CC’的长为 ▲ .
B
14.如果梯形 ABCD 中, AD//BC ,E、 F 分别是 AB 、CD 的中点,AD=1, BC=3,那么四边形 AEFD 与四边形 EBCF 的面积比是 ▲ . A B O E C
(第 15 题图)
D
15.如图,在□ABCD 中,AC 与 BD 相交于点 O,点 E 是 OD 的 中点,如果 BA a , BC b ,那么 AE ▲ .
2 ; 2
8. ( x 3 y ) 2 ; 14. 3 : 5 ;
9.1; 15. b
10. x 2 ;
11. 2 ; 17. 10 ;
12.
2 ; 3
13. 45 ;
3 4
1 (3,5) ; a ; 16. 4
18. r 3 .
(第 18 题答 r 3 , 得 2 分) 三、 (本大题共 7 题, 第 19~22 题每题 10 分, 第 23、 24 题每题 12 分, 第 25 题 14 分, 满分 78 分)

2015闸北初三数学二模(答案)

2015闸北初三数学二模(答案)

闸北区初三数学二模考(2015年5月)答案及评分参考(考试时间:100分钟,满分:150分)二、填空题(本大题共12题,每题4分,满分48分)7、41. 8、610402.3⨯. 9、31+x . 10、x ≥3. 11、x =0. 12、减小.13、61. 14、9.9. 15、3. 16、黄. 17、3或27. 18、32.三、解答题(本大题共12题,满分78分) 19.(本题满分10分)计算:060tan 21+-|cos45°-1|+(-2015)0+213. 解:原式=31122321++--+…………………………………(4分) =31)221(32++---…………………………………(4分) =3122132+++--…………………………………(1分)=222+…………………………………(1分)20.(本题满分10分)解方程组:⎪⎩⎪⎨⎧=++=-42042222y xy x y x 解:由①得:0)2)(2(=-+y x y x ,02=+y x 或02=-y x …………(2分) 由②得:4)(2=+y x ,2=+y x 或2-=+y x ……………………(2分)可得方程组:⎩⎨⎧=+=+202y x y x ⎩⎨⎧-=+=+22y x y x ⎩⎨⎧=+=-202y x y x ⎩⎨⎧-=+=-22y x y x …………(4分) 分别解得:⎩⎨⎧-==2411y x ⎩⎨⎧=-=2422y x ⎪⎪⎩⎪⎪⎨⎧==323433y x ⎪⎪⎩⎪⎪⎨⎧-=-=323444y x …………(2分)∴原方程组的解是⎩⎨⎧-==2411y x ⎩⎨⎧=-=2422y x ⎪⎪⎩⎪⎪⎨⎧==323433y x ⎪⎪⎩⎪⎪⎨⎧-=-=323444y x① ②21.(本题满分10分)解:(1)∵四边形ABCD 是矩形,∴∠D 是直角.…………(1分)根据条件:甲的速度是乙的10倍,可设ED =x ,则EC =10x ,…………(1分) ∴在RT △EDC 中CD =22ED EC = 3x ,…………(1分)∴tan ∠ECD =CD ED =31.…………(1分)(2)∵四边形ABCD 是矩形,∴设ED =x,AB =CD =3x . ∵BE =AD ,AE =8,∴BE =AD =8+x .…………(2分) ∵在Rt △ABE 中,AE 2+AB 2=BE 2∴82+(3x )2=(8+x )2,∴x =2,…………(2分) ∴AB =3x =6,BC =AD =8+x =10.…………(2分) 22.(本题满分10分)解:(1)y =25x .……………………(3分) (2)y =109x +200.……………………(3分)(3)y A =25×500=1250,………………(1分)y B =109×500+200=650.………………(1分)∵y A >y B ,∴选择B 运输队.……………………(2分)23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)(1)证明:∵四边形ABCD 是平行四边形, ∴∠B =∠D .…………………(1分)∵∠AEC =∠AFC ,∠AEC+∠AEB =∠AFC+∠AFD=0180∴∠AEB =∠AFD .…………(1分) 在△AEB 和△AFD 中: ∠B =∠D ∠AEB =∠AFD AE =AF ∴△AEB ≌△AFD ,………………(1分) ∴AB =AD , ∴平行四边形ABCD 是菱形.………………(1分)(2)∵△AEB ≌△AFD ,∴∠BAE =∠DAF . ∵四边形ABCD 是平行四边形,∴AB ∥DG , ∴∠BAE =∠G , ∴∠G =∠DAF . 又∵∠ADF =∠GDA ,∴△GAD ∽△AFD ………………(2分)∴DA ︰DF =DG ︰DA ,∴DA 2=DG ·DF ……………(1分) ∵DG ︰DA =AG ︰FA ,且AD =AF ,∴DG =AG . 又∵AD =AF ,∴AF 2=AG ·DF .……………………(1分) (3)在菱形ABCD 中,∵AB ∥DC ,AD ∥BC , (图五)ADB CE(图五)ABDEF(图六)A CB D E F GH A C B DE F∴AH ︰HG =BH ︰HD ,………………(1分) BH ︰HD =EH ︰AH ,………………(1分) ∴AH ︰HG =EH ︰AH .………………(1分) ∵HE =4,EG =12,∴AH ︰16=4︰AH ,∴AH =8.………………(1分) 24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 解:(1)∵二次函数图像经过点A (-6,0),B (0, 6),对称轴为直线x =-2,∴二次函数图像经过点(2,0),………………(1分) 设二次函数的解析式为y =a (x -2)(x +6),∴6=a (0-2)(0+6),∴a =-21,………………(1分) ∴二次函数的解析式为y =-21(x -2)(x +6),即y =-21x 2∴点C (-2,8)、D (-4,6).………………(2分) (2)如图,AB =62,BC=CD =22,BD =4, ∴222BC CD BD +=∴∠DCB =90°.……(1分)∵直线AB 、CD 的解析式分别为y =x +6、y =x +10,∴AB ∥DC ,∴四边形ABCD 是直角梯形,………………(1分) 若S 梯形ABCD =2S △ADE ,即21×22(22+62)=2×21×22AE , ∴AE =42.………………(2分)(3)如图,由已知条件∠ACP =∠BAC ,CP 与AB 交于点G, 可得GA =GC, A (-6,0),C (-2,8)直线AB 的解析式为y =x +6,G 点坐标为(x , x+6)∴22)6()6x (+++x =22)2()2(-++x x ,解得x= 38-,经检验是原方程的根且符合题意; ∴点G (-38,310),设直线CG 解析式为:b kx y +=∵⎪⎩⎪⎨⎧+-=+-=b k bk 2838310∴⎩⎨⎧==227k b ∴直线CG 的解析式为y =7x +22,…………(2分) ∵⎪⎩⎪⎨⎧+--=+=6221227x y 2x x y ∴⎩⎨⎧-=-=9016x 11y ⎩⎨⎧=-=82x 22y (不合题意,即为点C ,故舍去) (图七)(图七)∴点P 1(-16,-90).又在第(2)小题中,四边形ABCD 是直角梯形,AB ∥DC ,∴∠DCP =∠BAC , ∴点D (-4,6)为所求的点P ,∴点P 2(-4,6). 综上所述,符合要求的点为P 1(-16,-90)、P 2(-4,6).………………(2分)25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)解:(1)作AH ⊥BC 于点H ,∵AB =AC =6,BC =4,∴BH =2. ∵直线CD 与⊙B 相切,∴CD ⊥AB ,………………(2分) ∵∠DBC =∠ACH, ∴cos ∠DBC =cos ∠ACH ∴BD ︰BC =CH ︰CA , ∴BD ︰4=2︰6,∴BD =34.………………(2分) (2)如图,作PK ⊥BC 于点K ,∴PK ∥AH . ∵AH ⊥BC ,AB =AC =6,BC =4,∴BH =2, ∴AH =42.………………(1分) ∵以AC 为直径作⊙P ,∴AP =PC ,∴PK =22,CK =41BC =1,∴BK =3,∴在Rt △PBK 中,PB =22BK +PK =223)22(+=17,…………(2分) ∴当0<x <17-3时,⊙B 与⊙P 外离,当x =17-3时,⊙B 与⊙P 外切, 当17-3<x ≤4时,⊙B 与⊙P 相交.………………(3分) (3)点E 即为BC 边的中点H ,∴PE =3. 设EF 与PB 交于点G ,BG =m ,∴在△PBE 中,PE 2-PG 2=BE 2-BG 2, ∴32-(17-m )2=22-m 2,∴m =17176.……(2分) ∵EG 2-BG 2=BE 2,∴EG 2-(17176)2=22, ∴EG =34174,∴EF =34178.………………(2分)(图八)K H CBAP ·(图九)FG ECBAP。

上海市普陀区中考数学二模试卷.pdf

上海市普陀区中考数学二模试卷.pdf

2.(4 分)下列说法中,不正确的是( )
A.10 的立方根是
B.﹣2 是 4 的一个平方根
C. 的平方根是
D.0.01 的算术平方根是 0.1
【考点】立方根;平方根;算术平方根. 菁优网版 权所有
【分析】根据立方根,平方根的定义,即可解答. 【解答】解:A.10 的立方根是 ,正确;
B.﹣2 是 4 的一个平方根,正确; C. 的平方根是± ,故错误;
菁优网版 权所有
【分析】先由平均数的公式计算出这组数据的平均值,再根据方差的公式计算. 【解答】解:由题意得:(0+1+1+3+3+4)÷6=2, 数据的方差 S2= [(0﹣2)2+2×(1﹣2)2+2×(3﹣2)2+(4﹣2)2]=2.
故选 B.
【点评】此题主要考查了方差的定义以及平均数的求法,正确记忆方差公式,是解决问题的 关键.一般地设 n 个数据,x1,x2,…xn 的平均数为 ,则方差 S2= [(x1﹣ )2+(x2﹣ )
=
.(用 和 表示).
15.(4 分)如图,在△ABC 中,点 D、E 分别在 AB、AC 上,∠ADE=∠C,如果 AE=2,
△ADE 的面积是 4,四边形 BCED 的面积是 5,那么 AB 的长是

16.(4 分)某区有 6000 名学生参加了“创建国家卫生城市”知识竞赛,为了了解本次竞赛成
绩分布情况,竞赛组委会从中随机抽取部分学生的成绩(得分都是整数)作为样本,绘制成
菁优网版 权所有
【分析】先找出一元二次方程 x2+9=0 中 a、b、c 的值,再直接代入判别式计算即可. 【解答】解:∵a=1,b=0,c=9, ∴△=b2﹣4ac=02﹣4×1×9=﹣36, 故答案为﹣36. 【点评】本题考查了根的判别式:△=b2﹣4ac 叫做一元二次方程 ax2+bx+c=0(a≠0)的根的 判别式,它是确定一元二次方程根的个数的基础,是中考的必考考点.

上海市2015各区初三数学二模考试第18题详细解析

上海市2015各区初三数学二模考试第18题详细解析

1.黄浦OP r外一点,如图,点为半径的圆是以18.2??r??OPOP OPP在线段,则点上,若满足?OPP是点的反演点,如图,在称点关于圆??O?BO?4ABO?B?90BAB?2A分,圆、,Rt△的半径为中,2,如果点,??OBBAA;别是点、关于圆的反演点,那么的长是2.奉贤18.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC ''',处,A处,点落在点联结绕着点O顺时针旋转,点C落在BC边上的点ABA CC '、在同一直线上,如果点A、C A;那么∠的度数为''CBABAO(第18题图)3.普陀4杨3?BAC tan?,,18. 如图,△中,ABC?90?ABC?4,将三角形绕着点旋转,点落在直线C A4?BC??处,若、、上的点处,点落在点CC BBBAB?恰好在一直线上,则的长为;BAB5.松江A,BC=6cmAB=AC=5cm,△18.如图,在ABC中,如果将D.交AC于点BD 平分∠BDABC,D处,A沿BD翻折,点落在点A′ABD△2.的面积为△那么D A′C_______________cm CBC6.崇明F中,18.如图,在,,点是DCBABC??CA??C?90BCD与点重合,的中点,将沿着直线EF折叠,使点ABC?DABAE ,那么的值于点折痕交于点,交BED sin?ABACFE 18题图)(第.为7.浦东徐汇8闵行9.ABC点D在边BC上,将△C=90o18. 如图,已知在Rt△ABC中,∠,AC=BC=1,CB AC 1与边处,联结AC 1,直线落在点沿直线AD翻折,使点CC 1 BF= ▲的延长线相交于点F.如果∠DAB=∠BAF,那么10.静安、青浦外切、O⊙.18如图,⊙O的半径为1,O的半径为2,O=5,⊙O分别与⊙O12121.半径内切,那么⊙O的取值范围是O与⊙r2OO 虹口11.1A2,. 18在中,,(如图)若将绕点顺时针方向旋转到的位置,.联结,则的长为D BC长宁12.ADEF如图,18.△ABC≌△(点A、、B分别与点D △,BC=6,ABC固定不动,AB=AC=5对应)E,F边从在△DEF运动,并满足点EBCB移动向C M EF DE重合)、不与(点EBC,始终经过点,A BEC是等腰三角形时,△,当MAC与边交于点AEM.BE=13金山A DM ,把矩形中,,.在矩形188AB?6ABCD?AD上的点沿直线翻折,点落在边MNABCDADEB BCN处,若,那么的长等于ENAMAE?2嘉定、宝山14.GDA上,中,,点在边18.在矩形DC15ABCD?ADE,翻折后点落到点联结,△沿直线FADEAEDAE E,如果作,垂足为点,如图5过点GAD?FGF.,那么GD3AD??DE F CB5图解析答案1.黄浦2.奉贤3.普陀4.杨浦5.松江6.崇明7.浦东徐汇89.闵行10.静安、青浦虹口11.12.长宁13.金山嘉定、宝山14.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转
(2015 二模 奉贤) 18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将
△AOC 绕着点O 顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'
A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ;
(2015 二模
静安青浦)17. 将矩形ABCD (如图)绕点A 旋转后, 点D 落在对角线AC 上的点
D ’,点C 落到C ’,如果AB =3,BC=4,那么CC ’的长为 .
(2015 二模 杨浦)18.如图,钝角△ABC 中,tan ∠BAC =
3
4
,BC =4,将三角形绕着点 A 旋转,点C 落在直线AB 上的点C ,处,点B 落在点B ,
处,若C 、
B 、B ,
恰好在一直线上,则AB 的长为 .
翻折
(2015 二模 宝山嘉定) 18.在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△
ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如图5,如果GD AD 3=,
那么=DE .
(2015 二模 崇明)18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC
的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 .
A D
B C
G E
F
图5 B
A
C F
E
D
(第18题图)
C
B
O
A
(第18题图)
(第17题图)
B D
(2015 二模 金山)18.在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻
折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于
(2015 二模 闵行)18.如图,已知在Rt △ABC 中,∠C = 90º,AC = BC = 1,点D 在边BC
上,将△ABC 沿直线AD 翻折,使点C 落在点C ′处,联结AC ′,直线AC ′与边CB 的延长线相交于点F .如果∠DAB =∠BAF ,那么BF = .
(2015 二模 浦东)18.如图,已知在Rt △ABC 中,D 是斜边AB 的中点,AC =4,BC=2,将
△ACD 沿直线CD 折叠,点A 落在点E 处,联结AE ,那么线段AE 的长度等于 .
(2015 二模 普陀)18.如图6,在矩形纸片ABCD 中,AB <BC .点M 、N 分别在边AD 、
BC 上,沿直线MN 将四边形DMNC 翻折,点C 恰好与点A 重合.如果此时在原图中
△CDM 与△MNC 的面积比是1︰3,那么MN
DM
的值等于 .
B
C
D
M N
A 第18题图
A B C (第18题图) C
A D
B
(第18题图)
D
C
B
A
图6
第18题图
(2015 二模 松江)18.如图,在△ABC 中,AB =AC =5cm ,BC =6cm ,
BD 平分∠ABC ,BD 交AC 于点D .如果将△ABD 沿BD 翻折,点A
落在点A ′处,那么△D A ′C 的面积为_______________cm 2
.
(2015 二模 徐汇)18.如图,已知扇形AOB 的半径为6,圆心角为90°,E 是半
径OA 上一点,F 是 AB 上一点.将扇形AOB 沿EF 对折, 使得折叠后的圆弧 'A F 恰好与半径OB 相切于点G ,若
OE =5,则O 到折痕EF 的距离为 .
其他
(2015 二模 黄浦)18. 如图4-1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r ⋅=,则称点'P 是点P 关于圆O 的反演点.如图4-2,在Rt △ABO 中,
90B ︒∠=,AB =2,BO =4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反
演点,那么'A '
B 的长是 .
(2015 二模 长宁)18.如图,△ABC ≌△DEF (点A 、B 分别与点D 、E 对应),AB =AC =5,BC =6,△ABC 固定不动,△DEF 运动,并满足点E 在BC 边从B 向C 移动(点E 不与B 、C 重合),DE 始终经过点A ,EF 与AC 边交于点M ,当△AEM 是等腰三角形时,BE = .
A
B
D
(第18题图)
第18题。

相关文档
最新文档