人教版六年级数学下册 数学广角—鸽巢问题同步练习题

合集下载

六年级数学下册数学广角——鸽巢问题(含答案)人教版

六年级数学下册数学广角——鸽巢问题(含答案)人教版

六年级数学下册数学广角——鸽巢问题(含答案)人教版一、填空题1.六(1)班有50个学生,他们至少有(________)人会在同一个月过生日。

2.一副扑克牌54张,至少要抽取(________)张,才能保证其中至少有两张牌点数相同。

3.盒子里有同样大小的红、黄、蓝、白四种颜色的玻璃球各12个,要想摸出的球一定有2个是同色的,至少要摸出(________)个球;要想摸出的球一定有4个是同色的,至少要摸出(________)个球。

4.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。

至少要取(______)个球,可以保证取到两个颜色相同的球;至少要取(________)个球,可以保证取到两种颜色的球。

5.有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和花筷子各25根。

在黑暗中至少应摸出(________)根筷子,才能保证摸出的筷子至少有8双(每两根花筷子或两根同色的筷子为一双)。

6.从1至36个数中,最多可以取出(________)个数,使得这些数种没有两数的差是5的倍数。

7.一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分。

至少(________)人参加这次测验,才能保证至少有3人得得分相同。

8.袋中有外形完全一样的红、黄、蓝三种颜色的小球各10个,每个小朋友只能从中摸出1个小球,至少有(________)个小朋友摸球,才能保证一定有两个人摸的球颜色一样。

9.有红、黄、蓝3种颜色的球各5个,放在同一个盒子里,至少取出(______)个,可以保证取到2个颜色相同的球。

10.10只鸽子飞回3个鸽舍,至少有(________)只鸽子要飞进同一个鸽舍里。

11.李亮练习打靶,5次共打了33环,那么至少有一次不低于(________)环。

12.把6串葡萄放在5个盘子里,总有一个盘子里至少放(________)串葡萄;如果把这6串葡萄放在4个盘子里,那么总有一个盘子里至少放(________)串葡萄。

六年级数学下册第五单元《数学广角—鸽巢问题》测试卷-人教版(含答案)

六年级数学下册第五单元《数学广角—鸽巢问题》测试卷-人教版(含答案)

六年级数学下册第五单元《数学广角—鸽巢问题》测试卷-人教版(含答案)一、单选题1.王东玩掷骰子游戏,要保证掷出的骰子点数至少有两次相同,他最少应掷()次。

A. 5B. 6C. 7D. 82.把7本书放进2个抽屉,总有一个抽屉至少放()本书。

A. 3B. 4C. 53.把红、黄、蓝三种颜色的球各5个放进一个盒子里,至少取()个球可以保证取到两个颜色相同的球.A. 4B. 5C. 6二、判断题4.有7本书放入2个抽屉,有一个抽屉至少放4本书。

()5.张叔叔参加飞镖比赛,投了4镖,总成绩是33环,且每一镖的成绩都是整数环。

张叔叔至少有一镖不低于9环。

()6.11只鸽子飞进了5个鸽笼,总有一个鸽笼至少飞进了3只鸽子。

()三、填空题7.有红、黄、蓝3种颜色的球各5个,放在同一个盒子里,至少取出________个,可以保证取到2个颜色相同的球。

8.把10颗糖果分给4个小朋友,总有一个小朋友至少分到________颗糖果。

9.盒子里有同样大小的红、蓝、黄、黑四种颜色的球各10个,要想摸出的球一定有4个是相同颜色的,至少要摸出________个球。

四、解答题10.有26位小朋友,他们当中至少有3位小朋友属同一生肖,这个观点对吗?为什么?11.六(1)班有40名同学表演节目,老师为他们准备了一些气球,至少要准备多少个气球,才能保证至少有一个同学能拿到两个或两个以上的气球为什么?12.假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?13.某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?五、应用题14.布袋里有4种不同颜色的球,每种都有10个.最少取出多少个球,才能保证其中一定有4个球的颜色一样?15.一副扑克有4种花色,每种花色13张,从中任意抽牌,至少从中抽出多少张牌,才能保证有花色相同的牌至少4张?为什么?参考答案一、单选题1.【答案】C【解析】【解答】6+1=7(次)。

人教版六年级下5 数学广角——鸽巢问题 练习

人教版六年级下5 数学广角——鸽巢问题 练习

5数学广角——鸽巢问题
一、鸽巢问题
1.把n+1(n是大于0的自然数)个物体放进n 个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。

2.把多于kn(k、n都是大于0的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。

二、鸽巢问题的使用
1.如果有n( n是大于0的自然数)个“鸽笼”,要确保有一个“鸽笼”至少放进了2个物品,那么至少需求有n+1个物品。

2.如果有n( n是大于0的自然数)个“鸽笼”,要确保有一个“鸽笼”至少放进了(k+1)( k是大于0的自然数)个物品,那么至少需求有(kn+1)个物品。

3.(分放的物体总数-1)÷(其间一个鸽笼里至少有的物体个数-1)=a……b(b<a),a便是所求的鸽笼数。

4.使用“鸽巢问题”处理问题的思路和办法:①结构“鸽巢”,树立“数学模型”;②把物体放入“鸽巢”,进行比较剖析;③阐明理由,得出结论。

例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

提示:处理“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。

人教版六年级数学下册第五单元 第1课时 数学广角(鸽巢问题)(同步练习)

人教版六年级数学下册第五单元 第1课时 数学广角(鸽巢问题)(同步练习)

人教版六年级数学下册课时作业第五单元第1课时数学广角(鸽巢问题)一、填空题1. 把9本书放入8个抽屉里,总有一个抽屉里至少放入本书。

2. 袋里有形状、大小完全相同的红、黄、白3种颜色的小球各3个,一次最少摸出个小球,才能保证至少有2个小球的颜色相同。

3. “六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择一种不同水果,那么至少要有个小朋友才能保证有两人选的水果是相同的。

4. 六(1)班有学生37人,同一个月份出生的学生至少有人。

5. 黑、白两种颜色的袜子各8只混在一起,闭上眼睛随便拿,至少要拿只,才能保证一定有一双同色袜子;至少要拿只才能保证有4只同色袜子。

6. 英才小学六(2)班有29名男同学,20名女同学,至少有名同学是同一个月过生日。

7. 2022年冬奥会中国体育代表团总人数为387人,其中运动员176人,是史上参赛规模最大的一届。

运动员中至少有人在同一个月生日。

8. 从扑克牌中取出两张王牌,在剩下的52张中至少抽出张,才能保证至少有2张是不同花色的;至少抽出张,才能保证至少有2张是相同花色的。

9. 黄老师给家人买衣服,有红、黄、白三种颜色,但结果总是至少有两个人的颜色一样,她家里至少有人。

10. 贤鲁岛是以“生态花岛+水乡人家”为主题的生态旅游度假区,学校组织50名同学参观贤鲁岛上的“万顷园艺世界”、“鲁岗村”、“贤僚村”三个景点。

行程安排每人至少参观一个景点,那么至少有人游玩的景点相同。

二、判断题11. 六(1)班有52位学生,至少有5个人在同一个月过生日。

()12. 把32个篮球分给6个小组,总有1个小组至少分到6个篮球。

( ) 13. 六个同学在一起练习投篮,共投进了21个球,那么有一人至少投进了4个球。

( ) 14. 龙一鸣玩掷骰子游戏,要保证掷出的骰子的点数至少有两次相同,他最少应掷7次。

() 15. 5只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

2022-2023学年人教版数学六年级下册第5单元数学广角——鸽巢问题单元测试题(含解析)

2022-2023学年人教版数学六年级下册第5单元数学广角——鸽巢问题单元测试题(含解析)

2022-2023学年人教版数学六年级下册第5单元数学广角——鸽巢问题单元测试题(含解析)学校:___________姓名:___________班级:_____________一、选择题1.下面说法错误的是()。

①若a比b多20%,则6a=5b;①100以内(含100)的所有偶数的和比奇数的和多1;①有一个角是60°的等腰三角形一定是正三角形;①10只鸟要飞回4个窝里,至少有4只鸟飞进同一个窝。

A.①①①B.①①①C.①①①D.①①①2.王军抛一枚硬币5次,都是反面朝上,那么王军第6次抛硬币()。

A.反面朝上B.正面朝上C.可能正面朝上,也可能反面朝上3.13个人中()有两个人生日在相同的月份。

A.一定B.可能C.不可能4.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有()孩子。

A.4B.2C.35.5只小鸟飞进两个笼子,至少有()只小鸟飞进同一个笼子。

A.1B.2C.3D.46.篮球队有13个同学,其中至少有()个同学生日在同一个月。

A.3B.2C.127.10个小朋友分32块糖,有一个小朋友分到的糖至少不低于()块。

A.4B.5C.6二、判断题8.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。

( )9.一个盒子里放有白球和黑球各6个,最少要摸出4个球才能保证有2个球是不同颜色的。

( )10.7只小鸟飞进3个笼子,至少有2只小鸟要飞进同一个笼子里。

( )11.操场上,21人站成5队,总有一队中至少有5人。

( )12.龙一鸣玩掷骰子游戏,要保证掷出的骰子的点数至少有两次相同,他最少应掷7次。

( )三、填空题13.箱子里有同样大小的红球和白球各20个,至少摸出( )个球,就能保证有2个颜色相同的球。

14.口袋里装有黑、白、红、黄四种颜色的袜子各很多只,从中最少拿出( )只袜子就能保证有两只袜子是同种颜色的。

15.有红色、蓝色、白色、灰色、紫色的手套各10只,一次至少拿出( )只才能保证有4种不同颜色的手套。

数学人教版六年级下册数学广角——鸽巢问题

数学人教版六年级下册数学广角——鸽巢问题

鸽巢问题练习题
1. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。

为什么?
2. 5个人坐4把椅子,总有一把椅子上至少坐2人。

为什么?
3. 大家玩过石头.剪刀.布的游戏吗?如果请一位同学任意划四次,肯定至少有2次划出的手势是一样的。

(想:把什么当作抽屉,把什么当作要分的物体?)
4.我校六年级男生有30人,至少有多少名男生的生日是在同一个月。

5.从电影院中任意找来15个观众,至少有几个人属相相同?
6.11个小朋友同行,其中至少有多少个小朋友性别相同?
7.六年级四个班去春游,自由活动时,有6个同学聚在一起,可以肯定,这6个同学至少有几个人是同一个班的?
8.张叔叔参加飞镖比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于9环,为什么?
9.把一些铅笔放进3个文具盒中,保证其中一个文具盒至少有4枝铅笔,原来至少有多少枝铅笔?
10.体育用品仓库里有许多足球、排球和篮球,某班50名同
学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?。

(完整版)人教版六年级下第五单元数学广角(鸽巢问题)测试卷及答案

(完整版)人教版六年级下第五单元数学广角(鸽巢问题)测试卷及答案

《数学广角──鸽巢原理》同步试题浙江省诸暨市暨阳街道新世纪小学顾巧玲(草稿)浙江省诸暨市教育局教研室汤骥(统稿)一、填空1.把一些苹果均匀放在 3 个抽屉里,总有一个抽屉起码放入几个呢?请达成下表:考察目的:简单的抽屉原理。

答案:分析:解决此类抽屉原理问题的一般思路为:放苹果最多的抽屉起码放进的个数=苹果个数除以抽屉数所得的商 +1(有余数的状况下)。

2.研究发现,在抽屉原理的问题中,“抽屉”起码放入物体数的求法是用物体数除以()数,当除得的商没有余数时,起码放入的物体数就等于();当除得的商有余数时,起码放入的物体数就等于()。

考察目的:解决简单抽屉原理问题的一般思路。

答案:抽屉;商;商+1。

分析:要点考察学生的归纳归纳能力,加深对已学知识的理解。

依据简单的抽屉原理:把多于个的物体放到个抽屉中,起码有一个抽屉里的东西的个数许多于2;把多于(乘以)个物体放到个抽屉中,起码有一个抽屉里有许多于()个物体。

3.箱子中有 5 个红球, 4 个白球,起码要取出()个才能保证两种颜色的球都有,起码要取()个才能保证有 2 个白球。

考察目的:灵巧运用抽屉原理的知识解决问题。

答案: 6; 7。

分析:把两种颜色分别看作 2 个抽屉,考虑最差状况, 5 个红球所有取出来,那么再随意取出一个都是白2球,因此起码取出 6 个才能保证两种颜色的球都有;要保证有 2 个白球,在取完所有红球的状况下再取个即可。

4.“六一”少儿节那一天,幼儿园买来了很多的苹果、桃子、桔子和香蕉,每个小朋友能够随意选择两种水果,那么起码要有()个小朋友才能保证有两人选的水果是同样的;假如每位小朋友拿的两个水果能够是同一种,那么起码要有()个小朋友才能保证两人拿的水果是同样的。

考察目的:摆列与组合的知识;抽屉原理。

答案: 7; 11。

分析:在已知的四种水果中随意选择两种,共有 6 种不一样的选择方法,那么起码要有7 个小朋友才能保证有两个人选的水果是同样的;假如每位小朋友拿的两个水果能够是同一种,那么共有10 种不一样的选择方法,起码要有11 个小朋友才能保证有两人拿的水果同样。

【提升能力】数学广角——鸽巢问题(同步练习)--六年级下册数学同步双基双练测人教版(含答案)

【提升能力】数学广角——鸽巢问题(同步练习)--六年级下册数学同步双基双练测人教版(含答案)

人教版六年级下册数学学霸全能同步双基双练测【提升能力】5数学广角——鸽巢问题(同步练习)温馨提示:学业的精深和造诣源于勤奋和刻苦,高效精练是培优最佳途径!一、单选题(共5题;共10分)1.任意30个中国人,至少有()个人的属相一样。

A. 3B. 4C. 7D. 82.把()种颜色的球各8个放在一个盒子里,至少取出4个球,可以保证取到两个颜色相同的球.A. 1B. 2C. 3D. 43.把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少有( )个苹果。

A. 7B. 8C. 9D. 104.5只小鸟飞进两个鸟窝,总有一个鸟窝至少飞进了( )只小鸟。

A. 4B. 3C. 2D. 15.希望小学绘画兴趣小组同学中,最大的12岁,最小的6岁,最少从中挑选()名学生,就一定能找到两个学生年龄相等.A. 8B. 10C. 13D. 17二、填空题(共5题;共7分)6.把50克糖放入150克水中,糖和水的比是________,糖占糖水的________ %.7.盒子里有12个红色跳棋子和3个黑色跳棋子,如果任意摸出两个,可能出现的情况有________ 种;如果任意摸出1个,摸到________色跳棋子的可能性小。

8.把17支铅笔放进4个文具盒里,至少有一个文具盒放________支.9.10只鸽子飞回4个鸽笼,至少有一个鸽笼要飞进________ 只鸽子.10.把红、黄、蓝、白四种颜色的球各8个放到一个袋子里。

至少要取________个球,才可以保证取到两个颜色相同的球。

三、判断题(共5题;共10分)11.在367名同一年出生的同学中,至少有2人是同月同日出生的.()12.把红、黄、蓝三种颜色的球各3个放在一个袋子里,要想摸出的球一定有2个同色的,至少要摸出4个球。

()13.9个人坐4把椅子,总有一把椅子上至少坐3人。

()14.把5支铅笔分给2个同学,总有一个同学至少拿到3支铅笔。

人教版六年级数学下册第五单元《数学广角(鸽巢问题)》测试卷(含答案)

人教版六年级数学下册第五单元《数学广角(鸽巢问题)》测试卷(含答案)

人教版六年级数学下册第五单元《数学广角——鸽巢问题》测试卷(全卷共4页,满分100分,50分钟完成)一、认真填一填。

(每空2分,共36分)1.把红、黄两种颜色的球各4个装在同一个盒子里。

至少摸出()个球,一定有2个是同色的;如果任意摸出5个,总有一种颜色的球至少有()个。

2.口袋中有5个白球和3个黑球,那么摸到()球的可能性大,一次至少摸出()个球,才能保证至少有1个黑球。

3.袋子中有1个红球、2个黄球和3个白球,至少摸出()个球,才能保证一定能摸到两种颜色的球。

4.六(1)班有45名同学,这个班中至少有()名同学是同一个月出生的。

从中至少任意选出()名同学才能保证一定有两名同一个月出生的同学。

5.盒子里有同样大小的5个红球,4个白球。

任意摸一个球,摸出()球的可能性大。

如果保证至少要摸出一个白球,至少要摸()个球。

6.把红黄蓝绿四种颜色的球各20个放到一个袋子里,至少取出()个球,才能保证取到两个颜色相同的球。

7.把红黄绿三种颜色的筷子各两双混在一起,如果闭上眼睛,最少拿出()根才能保证一定有一双同色筷子。

8.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种不同水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。

9.5只小鸟飞进两个笼子,至少有()只小鸟飞进同一个笼子。

10.如果把6本书放到4个抽屉里,至少有()本书要放到同一个抽屉里。

11.有4只鸽子,要飞进3个鸽巢里,至少有()只鸽子飞进同一个鸽巢里;如果有9只鸽子飞进4个鸽巢,至少有()只鸽子飞进同一个鸽巢里。

12.有16名学生要分到6个班,至少有一个班分进()名学生。

二、仔细判一判。

(对的画“√”,错的画“×”,每题2分,共10分)()1.抽屉原理最早是由德国数学家狄利克雷提出并应用于解决数论中的问题。

人教版六年级数学下册数学广角鸽巢问题 试题 含答案

人教版六年级数学下册数学广角鸽巢问题 试题 含答案

数学广角鸽巢问题单元测试卷一.填空题(共10小题)1.把16支铅笔放进5个笔筒里,总有一个笔简里至少放进了支铅笔.2.一个盒子里有3个黄球,7个红球,从盒子里任意摸出一个球,摸到球的可能性大;如果保证摸到红球,那么至少应从盒子里摸出个球.3.盒子里装有大小一样的黄、红、蓝球各10个,至少摸出个球才能保证有两个颜色一样的.4.19个玩具,最多分给个小朋友,才能保证至少有一人手上有3个玩具.5.某班要至少有5人是出生在同一个月里,这个班至少有人.6.盒子里有5个黑球,3个黄球,2个绿球,任意拿出6个球,一定有一个是.7.在六(2)班随意找13名同学,至少有名同学在同一个月过生日.8.某小区2018年共新增加了13辆电动清洁能源小客车,一定有辆或辆以上的小客车是在同一个月内购买的.9.李叔叔要给房间的四壁涂上不同的颜色,可不管怎么涂,总有两面墙壁的颜色是一致的.李叔叔的颜料最多有种颜色.10.在每个格子中任意面上符号“☆”和“△”,则至少有列的符号是完全一样的.二.选择题(共5小题)11.下面说法错误的是()A.在367个同学中一定有2个同学是同年同月同日出生的B.真分数小于1,假分数大于或等于1C.0既不是正数,又不是负数,但它是整数,还是自然数D.三角形的面积一定,底和高成反比例12.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里.从中任意取球,至少取()个,才能保证取到三种颜色的球.A.3B.5C.30D.2113.六年级三班有53人,那么这个班级中至少有()人的生日在同一个月.A.1B.3C.5D.714.14个同学中,一定有()人是在同一个月出生的.A.2B.3C.415.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果.A.1B.2C.3D.4三.判断题(共5小题)16.36只鸽子飞进5个鸽笼,总有一个笼子至少飞进了8只鸽子.(判断对错)17.有13张扑克牌(没有大小王),任意的抽取5张,至少有2张是同一个花色的.(判断对错).18.在367名同一年出生的同学中,至少有2人是同月同日出生的.(判断对错)19.从1开始的连续10个奇数中任取6个,一定有两个数的和是20.(判断对错)20.盒子里有8个黄球、5个红球,每次只摸一个球,摸出后放回,至少摸8次一定会摸到红球.(判断对错)四.应用题(共5小题)21.15个足球要分给7个班,不管怎么分,总有一个班至少要分多少个足球?22.六(1)班有45名同学,把他们分成6个学习小组.不管怎么分,总有一个学习小组至少有8人,为什么?23.遗爱湖广场有54位阿姨在跳广场舞,她们来自10个不同的小区,至少有几位阿姨在同一个小区?24.在一个不透明的袋子里有同样大小的红、黑、白、黄球各10个,至少要取出多少个球,才能保证取到4个颜色相同的球?25.一个鱼缸里有4种花色的金鱼,每种花色各有10条,从中任意捞鱼.(1)至少捞出多少条鱼,才能保证有3条花色相同的金鱼?(2)至少捞出多少条鱼,才能保证有3种花色不同的金鱼?五.操作题(共1小题)26.盒子里有同样大小的球,要想摸出的球一定是2个相同的号码,至少要摸出几个球?数学广角鸽巢问题单元测试卷参考答案与试题解析一.填空题(共10小题)1.把16支铅笔放进5个笔筒里,总有一个笔简里至少放进了4支铅笔.【解答】解:16÷5=3(支)…1(支)3+1=4(支)答:总有一个笔简里至少放进了4支铅笔;故答案为:4.2.一个盒子里有3个黄球,7个红球,从盒子里任意摸出一个球,摸到红球的可能性大;如果保证摸到红球,那么至少应从盒子里摸出4个球.【解答】解:(1)因为7>3所以红球的数量多所以摸到红球的可能性大.(2)3+1=4(个)答:从盒子里任意摸出一个球,摸到红球的可能性大;如果保证摸到红球,那么至少应从盒子里摸出4个球.故答案为:红;4.3.盒子里装有大小一样的黄、红、蓝球各10个,至少摸出4个球才能保证有两个颜色一样的.【解答】解:3+1=4(个);答:至少摸出4个球才能保证有两个颜色一样的.故答案为:4.4.19个玩具,最多分给9个小朋友,才能保证至少有一人手上有3个玩具.【解答】解:根据分析可得,(19﹣3)÷(3﹣1)+1=16÷2+1=8+1=9(个)答:19个玩具,最多分给9个小朋友,才能保证至少有一人手上有3个玩具.故答案为:9.5.某班要至少有5人是出生在同一个月里,这个班至少有49人.【解答】解:4×12+1=48+1=49(人)答:这个班至少有49人.故答案为:49.6.盒子里有5个黑球,3个黄球,2个绿球,任意拿出6个球,一定有一个是黑球.【解答】解:根据最坏原理分析:(1)先摸出5个黑球,再摸出一个求可能是黄球,也可能是绿球,一定有黑球,但不能保证有没有黄球或绿球;(2)3+2=5,先摸出的5个球是3黄球和2绿球,黄球和绿球都拿出了,再摸一个球,一定是黑球;综上所述,一定至少有一个黑球.故答案为:黑球.7.在六(2)班随意找13名同学,至少有2名同学在同一个月过生日.【解答】解:1年=12月13÷12=1(名)……1(名)1+1=2(名)余下的1名同学无论是几月出生,这个月都至少有2名同学.答:至少有2名同学在同一个月过生日.故答案为:2.8.某小区2018年共新增加了13辆电动清洁能源小客车,一定有2辆或2辆以上的小客车是在同一个月内购买的.【解答】解:13÷12=1(辆)……1(辆)11+1=2(辆)一定有2辆或2辆以上的小客车是在同一个月内购买的.故答案为:2,2.9.李叔叔要给房间的四壁涂上不同的颜色,可不管怎么涂,总有两面墙壁的颜色是一致的.李叔叔的颜料最多有3种颜色.【解答】解:4﹣1=3(种)答:李叔叔的颜料最多有3种颜色.故答案为:3.10.在每个格子中任意面上符号“☆”和“△”,则至少有3列的符号是完全一样的.【解答】解:每列的填写方法一共有下列4种情况:01、10、11、00.考虑最差的情况,9÷4=2(列)…1(列)2+1=3(列)答:至少有3列的符号是完全一样的.故答案为:3.二.选择题(共5小题)11.下面说法错误的是()A.在367个同学中一定有2个同学是同年同月同日出生的B.真分数小于1,假分数大于或等于1C.0既不是正数,又不是负数,但它是整数,还是自然数D.三角形的面积一定,底和高成反比例【解答】解:A.如果不考虑出生年份,从最不利的情况考虑:每天都有一个学生出生,一年最多有366天,即每年最多有366个,那么还剩一个学生无论在哪一天出生,总有另外的一个人和他同日生,但是出生年份不确定,所以原题说法不正确,B.根据真分数及假分数的意义,真分数都小于1,假分数都大于或等于1的说法是正确的.C.0是正负数的分界点,所以0既不是正数,也不是负数,但0是整数,也是自然数.这个说法是正确的.D.根据三角形面积公式:S=ah÷2,面积一定,则底和高的乘积一定,则底和高成反比例,说法正确.故选:A.12.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里.从中任意取球,至少取()个,才能保证取到三种颜色的球.A.3B.5C.30D.21【解答】解:10+10+1=20+1=21(个)答:至少取21个,才能保证取到三种颜色的球.故选:D.13.六年级三班有53人,那么这个班级中至少有()人的生日在同一个月.A.1B.3C.5D.7【解答】解:53÷12=4(人)…5(人)4+1=5(人)答:这个班级中至少有5人的生日在同一个月.故选:C.14.14个同学中,一定有()人是在同一个月出生的.A.2B.3C.4【解答】解:14÷12=1(个)…2(个)1+1=2(个)答:至少有2名同学同一个月出生.故选:A.15.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果.A.1B.2C.3D.4【解答】解:17÷8=2(个)…1(个),2+1=3(个)所以最多的抽屉里面有3个苹果.答:拿出苹果最多的抽屉,从它里面至少拿出3个苹果.故选:C.三.判断题(共5小题)16.36只鸽子飞进5个鸽笼,总有一个笼子至少飞进了8只鸽子.√(判断对错)【解答】解:36÷5=7(只)…1(只),7+1=8(只);总有一个笼子至少飞进了8只鸽子,原题说法正确.故答案为:√.17.有13张扑克牌(没有大小王),任意的抽取5张,至少有2张是同一个花色的.√(判断对错).【解答】解:5÷4=1 (1)1+1=2(张)即:至少有2张是同一个花色的,所以原题说法正确.故答案为:√.18.在367名同一年出生的同学中,至少有2人是同月同日出生的.√(判断对错)【解答】解:367÷366=1(人)…1(人),1+1=2(人),所以至少有2人是同月同日出生的,原题说法正确.故答案为:√.19.从1开始的连续10个奇数中任取6个,一定有两个数的和是20.√(判断对错)【解答】解:可以把这10个奇数分为5个抽屉:(1,19),(3,17),(5,15),(7,13),(9,11);从中任取6个,必定有两个数的和为20.所以原说法是正确的.故答案为:√.20.盒子里有8个黄球、5个红球,每次只摸一个球,摸出后放回,至少摸8次一定会摸到红球.×(判断对错)【解答】解:因为由于每次摸出后放回,所以有可能无论摸多少次都不会出现红球,所以原题说法错误.故答案为:×.四.应用题(共5小题)21.15个足球要分给7个班,不管怎么分,总有一个班至少要分多少个足球?【解答】解:15÷7=2(个)…1(个)2+1=3(个)答:总有一个班至少分3个足球.22.六(1)班有45名同学,把他们分成6个学习小组.不管怎么分,总有一个学习小组至少有8人,为什么?【解答】解:45÷6=7(名)…3(名)7+1=8(名)答:不管怎么分,总有一个学习小组至少有8人.23.遗爱湖广场有54位阿姨在跳广场舞,她们来自10个不同的小区,至少有几位阿姨在同一个小区?【解答】解:54÷10=5(位)…4(位)5+1=6(位)答:至少有6位阿姨在同一个小区.24.在一个不透明的袋子里有同样大小的红、黑、白、黄球各10个,至少要取出多少个球,才能保证取到4个颜色相同的球?【解答】解:4×3+1=13(个)答:至少要摸出13个才能保证有4个球的颜色相同.25.一个鱼缸里有4种花色的金鱼,每种花色各有10条,从中任意捞鱼.(1)至少捞出多少条鱼,才能保证有3条花色相同的金鱼?(2)至少捞出多少条鱼,才能保证有3种花色不同的金鱼?【解答】解:(1)2×4+1=9(条)答:至少捞出9条鱼,才能保证有3条花色相同的金鱼.(2)10+10+1=21(条)答:至少捞出21条鱼,才能保证有3种花色不同的金鱼.五.操作题(共1小题)26.盒子里有同样大小的球,要想摸出的球一定是2个相同的号码,至少要摸出几个球?【解答】解:。

人教版六年级数学下册 数学广角—鸽巢问题练习题

人教版六年级数学下册 数学广角—鸽巢问题练习题

人教版六年级数学下册数学广角—鸽巢问题练习题根据鸽巢原理,每个鸽巢最多容纳110-1=109个小球,因此一次至少要摸出109×3+1=328个小球,才能保证有5个是同一种颜色的。

4、解:为保证其中至少有4个颜色相同的球,可以先选3个球,分别代表3种颜色,然后再选第4个球,必定与其中某个颜色相同。

因此至少要摸出4个球。

为保证有4种不同颜色的球,可以先选出3个颜色,然后每种颜色选出3个球,共选出9个球,此时必定有4种不同颜色的球。

因此至少要摸出9个球。

5、解:根据抽屉原理,如果要保证摸出的球中至少有2个是同色的,那么每种颜色的球至少要摸出2+1=3个,共摸出4×3=12个球才能保证一定有2个是同色的。

B组6、解:将13个箱子分成4组,每组的箱子个数分别为3、3、3和4.假设每组箱子里装的苹果个数分别为a、b、c和d,那么根据抽屉原理,必定存在一组箱子,里面装的苹果个数相同。

假设这组箱子里面装了x个苹果,那么a+b+c=x,b+c+d=x,a+c+d=x,a+b+d=x,解得x=3a+3b+3c+4d,因此最多有3×10+4×9=42个苹果。

7、解:根据抽屉原理,如果每位老人选的两个水果都不同,那么最多只能有2×3=6位老人。

因此如果要保证必有两位或两位以上的老人所选的水果相同,至少应有7位老人。

8、解:将1到2006中的奇数分成1003组,每组的奇数之和为2007.根据抽屉原理,至少要取出1003+1=1004个奇数,才能保证其中必定存在两个数,他们的和为2008.9、解:根据抽屉原理,如果要保证其中至少有3块号码相同的木块,那么最多只能取出2×10+1=21块木块。

因此一次至少要取出22块木块。

10、解:根据抽屉原理,如果要保证没有小朋友得到4件或4件以上的玩具,那么每个小朋友最多得到3件玩具。

因此最多能分出40×3=120件玩具,小于122件,所以一定会有小朋友得到4件或4件以上的玩具。

人教版六年级下册数学 数学广角(鸽巢问题) 练习(含答案)

人教版六年级下册数学 数学广角(鸽巢问题) 练习(含答案)

5 数学广角(鸽巢问题)1.篮球队有13个同学,其中至少有( )个同学生日在同一个月。

A.3B.2C.122.一个袋子里装着红球、黄球,各3个,这些球的大小都相同,问一次摸出3只球,其中至少有()只球的颜色相同.A.1B.2C.3D.43.有5个小朋友,每人都从装有许多黑白棋子的布袋里随意摸出3枚棋子.试证明这5个小朋友中至少有两人摸出的棋子的颜色是一样的.4.一个圆形跑道400米,如果每10米树一道警示牌,共需()道警示牌。

A.4B.40C.395.把7只鸡放进3个鸡笼里,至少有()只鸡要放进同一个鸡笼里。

A.2B.3C.46.清平中心小学98班有52人,彭老师至少要拿()作业本随意发给学生,才能保证至少有1个学生拿到2本或2本以上的本子.A.53本B.52本C.104本D.106本7.5只小鸟飞进两个笼子,至少有()只小鸟在同一个笼子里.A.1B.2C.38.18个小朋友中,()小朋友在同一个月出生.A.恰好有2个B.至少有2个C.有7个D.最多有7个9.15个小朋友中至少有()个小朋友是同一个月出生的.A.2B.3C.410.26个小朋友乘5只小船至少有()人坐在同一船里。

A.4B.5C.6D.711.在493681︰︰中,4和81是比例的(____),9和36是比例的(____)。

12.如果把6本书放到4个抽屉里,至少有(______)本书要放到同一个抽屉里。

13.5只小鸟飞进两个笼子,至少有(____)只小鸟飞进同一个笼子。

14.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种不同水果,那么至少要有______个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有______个小朋友才能保证两人拿的水果是相同的。

15.把红、黑、白三种颜色的筷子各10根混在一起。

如果让你闭上眼睛,每次最少拿出(____)根才能保证一定有2根同色的筷子。

六年级数学下册第五单元《数学广角—鸽巢问题》考试卷-人教版(含答案)

六年级数学下册第五单元《数学广角—鸽巢问题》考试卷-人教版(含答案)

六年级数学下册第五单元《数学广角—鸽巢问题》考试卷-人教版(含答案)一.选择题(共9小题)1.袋子里有红、黄、蓝、绿四种颜色的球各5个,至少要摸()个球才能保证摸出的球中有两个颜色相同.A.4B.5C.8D.102.一副扑克牌,去掉大小王,从中至少抽()张,才能保证有3张同花色的.A.10B.14C.9D.43.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里.从中任意取球,至少取()个,才能保证取到三种颜色的球.A.3B.5C.30D.214.把红、黄、蓝、白、黑五种颜色的球各8个放到一个袋子里,至少取()个球,就能保证取到两个颜色相同的球.A.2B.6C.95.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中一定有两个球的颜色相同,则至少要取出()个球.A.2B.3C.4D.76.同时抛出若干枚硬币,确保至少有5枚硬币朝上的面相同,最少要拿()枚硬币去抛.A.5B.7C.9D.117.袋中有60粒大小相同的弹珠,每15粒是同一种颜色,为保证取出的弹珠中一定有2粒是同色的,至少要取出()粒才行.A.4B.5C.6D.78.李叔叔给正方体的六个面涂上不同的颜色,结果至少有两个面的颜色一致,颜料的颜色至少有()种.A.3B.4C.59.一个布袋中装有若干只手套,颜色有黑、红、蓝、白4种,至少要摸出()只手套,才能保证有3只颜色相同.A.5B.8C.9D.12二.填空题(共11小题)10.盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出个球.11.把红、黄、蓝、白四种颜色的球各8个放到一个袋子里,至少要取个球,才可以保证取到两个颜色相同的球.12.把35块蛋糕最多放到个盘子里,可以保证总有一个盘子里至少有9块蛋糕.13.一个袋子中装有红、白、蓝三种球各10个,至少拿出个球才能保证有2个球的颜色是同色.14.把同样大小的红、黑、白三种颜色的球各9个放在同一个盒子里,要想摸出的球一定有2个同色的,至少要摸出个球.15.据推测,四(1)班学生中,至少有4人生日一定是在同一个月,那么这个班的学生人数至少有人.16.奋发小学六(1)班有55个同学参加智力游戏,若任意分成四组,则必然有一组的女生多于2人,又知参与者中任何10人必有男生,则参与者中女生的人数是。

人教版六年级数学下册第5单元《数学广角-鸽巢问题》课后练习题(附答案)

人教版六年级数学下册第5单元《数学广角-鸽巢问题》课后练习题(附答案)

人教版六年级数学下册第5单元《数学广角-鸽巢问题》课后练习题(附答案)一、填空题。

1.有12张扑克牌(不同花色的J、Q、K各4张),洗一下反扣在桌子上,至少摸出( )张才能保证有两张牌的颜色(红或黑)是相同的;至少摸出( )张才能保证四种花色的牌都有;至少摸出( )张才能保证有三张是同一花色的。

2.(1)6个小朋友乘5只小船游玩,至少要有( )个小朋友坐在同一只小船里。

(2)26个小朋友乘5只小船游玩,至少要有( )个小朋友坐在同一只小船里。

3.有黑色、白色、蓝色手套各5只,至少要拿出( )只(拿的时候不许看颜色),才能使拿出的手套中一定有两只是同种颜色的。

二、选择题。

(把正确答案的序号填在括号里)1.有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两粒颜色相同,应至少摸出( )粒。

A.3B.4C.5D.62.有一副去掉大、小王的扑克牌,至少抽出( )张牌才能保证至少6张牌的花色相同。

A.21B.22C.23D.243.把25个苹果最多放进( )个抽屉中才能保证至少有一个抽屉中放进7个苹果。

A.1B.2C.3D.4三、解决问题。

1.有4个运动员练习投篮,一共投进了30个球,一定有1个运动员至少投进几个球?2.红、黄、黑、白、绿五种颜色大小相同的球各4个放到一个袋子里,若要保证取到的两个球颜色相同,至少要取多少个球?3.做一个小正方体,两个面上写1,两个面上写2,两个面上写3。

至少要抛多少次才能保证至少有3次朝上的面上的数字相同?4.六(4)班有40名学生,男、女生人数比是1∶1,随机选取,至少选多少人才能保证选出的人中男生和女生都有?5.红星小学六(1)班有45人,至少有多少人是同一个月出生的?答案:一、1.31092.(1)2(2)63.4二、1.C 2.A 3.D三、1.30÷4=7……2 7+1=8(个)2.6个3.3×2+1=7(次)4.40÷2=20(人) 20+1=21(人)5.45÷12=3……9 3+1=4(人)。

人教版六年级数学下册第五单元《数学广角—鸽巢问题》测试题(含答案)

人教版六年级数学下册第五单元《数学广角—鸽巢问题》测试题(含答案)

人教版六年级数学下册第五单元《数学广角—鸽巢问题》测试题(含答案)一、单选题1.王东玩掷骰子游戏,要保证掷出的骰子点数至少有两次相同,他最少应掷()次。

A. 5B. 6C. 7D. 82.一个袋子里有红、白、蓝三种颜色的球各10个,至少拿出()个,才能保证有3个球的颜色相同。

A. 7B. 4C. 213.任意30个中国人,至少有()个人的属相一样。

A. 3B. 4C. 7D. 84.盒子里有8个黄球,5个红球,至少摸()次一定会摸到红球.A. 8B. 5C. 9D. 65.六(2)班有61名学生,他们中至少有()个人是同一个月出生的。

A. 8B. 7C. 6二、判断题6.11只鸽子飞进了4个鸽笼,至少有一个鸽笼飞进了3只鸽子.()7.15位小朋友中至少有3位小朋友是同一个月出生的.()三、填空题8.有红、黄、蓝、绿四个不同颜色的小球,把它们放在三个盒子中,不管怎么放,至少有一个盒子中有________个小球.9.口袋里有6个红球和3个黄球,它们除颜色外完全相同。

现在从中摸出1个球,摸出________球的可能性大些。

至少摸出________个球才能保证有2个球的颜色是相同的。

10.把红、黄、蓝、白四种颜色的球各6个放到一个袋子里。

至少要取________个球,才可以保证取到两个颜色相同的球。

四、解答题11.给一个正方体木块的6个面分别涂上红、黄、蓝3种颜色。

不论怎么涂至少有两个面涂的颜色相同。

为什么?12.黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子。

问至少要取多少根才能保证达到要求?13.幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?五、应用题14.把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什么?参考答案一、单选题1.【答案】C【解析】【解答】6+1=7(次)。

人教版数学六年级下册《5 数学广角——鸽巢问题》练习题含答案

人教版数学六年级下册《5  数学广角——鸽巢问题》练习题含答案

第五单元数学广角——鸽巢问题【例1】红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的?球看作元素,从最不利情况考虑,每个抽屉先放1个球,共需要3个,再取出1个不论是什么颜色,总有一个抽屉里的球和它同色,所以至少要取出:3+1=4(个)。

解答:3+1=4(个)答:一次至少摸出4个,才能保证有两个是同色的。

【例2】在一次春游活动中,三年级1班有31人带了面包,38人带了饮料,36人带了水果,34人带了巧克力,全班有45人。

可以肯定的是有()人这4种都带了。

解析:可能没带面包的:45 - 31 = 14 、可能没带饮料的:45 - 38 = 7 、可能没带水果的:45 - 36 = 9 、可能没带巧克力的:45 - 34 = 11 、可能只带四样中其中一样的:14 + 7 + 9 + 11 = 41 ,所以可以肯定四样都带了的至少有:45 - 41 = 4 (人)。

解答:可以肯定至少有4人这四样都带了。

【例3】一个袋里有红珠子6粒,黄珠子8粒,蓝珠子10粒。

最少要抽出多少粒珠子才可保证有3粒是同一颜色?一共摸出6粒:同时摸出红色、蓝色、黄色各2颗;此时再任意摸出一个,就一定有3粒珠子颜色相同。

解答:3×2+1=7(粒)答:最少要抽出7粒珠子才可保证有3粒是同一颜色。

【例4】笔筒里有3支红笔和2支黑笔,如果蒙上眼睛摸一次,至少拿出几支笔才能保证有1支红笔?解析:把红笔和黑笔看做是两个抽屉,5只笔看做是5个元素,根据抽屉原理考虑最差情况:摸出2支全是黑笔,那么再任意摸出一支就是红笔。

2+1=3(支)答:一次必须摸出3支铅笔才能保证至少有一支红笔。

【例5】一个兴趣小组有16名同学,他们都订阅了甲乙两种杂志中的一种或两种,那么至少有()名同学都订阅的杂志种类相同。

A 5B 4C 6解析:可以订阅杂志的情况有甲、乙或甲和乙一共三种可能,也就是说有3个抽屉,根据抽屉原理,从最不利的情况考虑:16÷3=5(人)…1(人),所以至少有5+1=6(名)同学订阅的杂志种类相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学广角—鸽巢问题》同步作业2 ◆填空题
1.把一些苹果平均放在3个抽屉里,总有一个抽屉至少放入几个呢?请完成下表:
2.研究发现,在抽屉原理的问题中,“抽屉”至少放入物体数的求法是用物体数除以
()数,当除得的商没有余数时,至少放入的物体数就等于();当除得的商有余数时,至少放入的物体数就等于()。

3.箱子中有5个红球,4个白球,至少要取出()个才能保证两种颜色的球都有,至少要取()个才能保证有2个白球。

4.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。

5.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出()顶帽子;要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出()顶。

◆选择题
1.把25枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。

A.6
B.7
C.8
D.9
2.某班有男生25人,女生18人,下面说法正确的是()。

A.至少有2名男生是在同一个月出生的
B.至少有2名女生是在同一个月出生的
C.全班至少有5个人是在同一个月出生的
D.以上选项都有误
3.某班48名同学投票选一名班长(每人只许投一票),候选人是小华、小红和小明三人,计票一段时间后的统计结果如下:
规定得票最多的人当选,那么后面的计票中小华至少还要得()票才能当选?
A.6
B.7
C.8
D.9
4.学校有若干个足球、篮球和排球,体育老师让二(2)班52名同学到体育器材室拿球,每人最多拿2个(可以一个都不拿),那么至少有()名同学拿球的情况完全相同。

A.8
B.6
C.4
D.2
5.如图,在小方格里最多放入一个“☆”,要想使得同一行、同一列或对角线上的三个小方格都不同时出现三个“☆”,那么在这九个小方格里最多能放入()个“☆”。

A.4
B.5
C.6
D.7
◆应用题
1.某班同学为地震灾区小朋友捐献图书,所捐图书共分为故事书、科技树和教辅资料书三类,捐书的情况是:有捐一本的,有捐两本的,还有捐三本的。

问至少要有几位同学来捐书才能保证一定有两位同学所捐书的类型相同?(每种类型的书最多捐一本)
2.在如下图的盒子中,小华蒙着眼睛往外摸球,至少要摸出多少个,才能保证摸出的球至少有3种不同的颜色?
3.扑克牌里学数学:一副扑克牌(取出两张王牌)。

(1)在剩下的52张牌中任意抽出9张,至少有多少张是同花色的?
(2)扑克牌一共有4种花色,每种花色都有13张牌,问至少要抽出几张牌才能保证有一张是红桃?
(3)至少要抽出多少张才能保证有5张牌是同一花色的?
4.在下面的方格中,将每一个方格涂上红色或黄色,不论怎么涂,至少有几列的颜色是完全相同的?
5、10只鸽子飞回3个鸽舍,至少有几只鸽子要飞进同一个鸽舍里?
6、我校四年级共有735名学生,总有至少多少名学生在同一天过生日?
7、有红、黄、蓝三种颜色的小球各110个,混放在一个布袋里,一次至少摸出多少个球,才能保证有5个是同一种颜色的?
8、一个布袋里有红、白、蓝、绿四种球各10个,它们的大小和质量都一样,至少要摸出多少个,才能保证其中至少有4个颜色相同的球?至少要摸出多少个,才能保证有4种不同颜色的球?
9、盒子里有大小相同的红、黄、蓝、白四种颜色的球各12个,要想摸出的球一定有2个是同色的,至少要摸出几个球?
10、有13个箱子,现在往里面装苹果,要求每个箱子里装的苹果都是奇数个,无论这些苹果怎么放,总能找到4个箱子的苹果个数是一样的,问:最多有多少个苹果?
11、重阳节那天,敬老院买来了3种水果,每位老人任选两个,那么至少应有多少位老人才能保证必有两位或两位以上的老人所选的水果相同?
12、从1到2006中,至少要取出多少个奇数,才能保证其中必定存在两个数,他们的和为2008?
13、一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。

问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?
14、某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?
《数学广角—鸽巢问题》同步作业2答案
◆填空题
1.
2.抽屉;商;商+1。

3.6;7。

4.7;11。

5.6;11;4。

◆选择题
1.B
2.B
3.C
4.B
5.C
◆应用题
1.7+1=8(位)
答:至少要8位同学来捐书,才能保证一定有两位同学所捐书的类型相同。

2.5+4+1=10(个)
答:至少要摸出10个球,才能保证有3种不同的颜色。

3.(1)9÷4=2……12+1=3(张)
答:至少有3张是同花色的。

(2)13×3+1=40(张)
答:至少要抽出40张牌才能保证有一张是红桃。

(3)4×4+1=17(张)
答:至少要抽出17张才能保证有5张牌是同一花色的。

4.9÷4=2……12+1=3(列)
5、解:根据10只鸽子飞回3个鸽舍,10÷3=3余1,即平均每个鸽舍飞进3只鸽子后,剩下的一只鸽子无论怎么飞至少3+1=4(只)鸽子要飞进同一个鸽舍里。

所以至少有4只鸽子要飞进同一个鸽舍里。

6、解:一年最多有366天,735÷366=2余3人,最坏的情况是,每天都有两名学生过生日,还余3名学生,所以总有至少2+1=3名学生在同一天过生日。

答:至少3名学生在同一天过生日。

7、解:建立鸽巢:把红黄蓝三种颜色分别看做3个鸽巢。

考虑最差情况:摸出12个小球,每个鸽巢都有4个小球,此时再任意摸出1个小球,无论放到哪个鸽巢都会出现5个颜色相同的小球,所以12+1=13(个)。

答:一次至少摸出13个球,才能保证有5个是同一种颜色的。

8、解析:把10种不同颜色看作10个抽屉,把40种不同颜色的球看作40个元素,从最不利情况考虑:(1)每个抽屉放3个需要3×4=12个,再取出1个不论是什么颜色,总有一个抽屉里的球和它同色,所以至少要取出12+1=13(个)。

(2)先把其中的3种球取尽,共需要3×10=30个,再取出1个(剩下的球),就能保证有4种不同颜色的球,所以至少要取出:30+1=31(个)。

答:至少要摸出13个,才能保证其中至少有4个颜色相同的球;至少要摸出31个,才能保证有4种不同颜色的球。

9、解:盒子里有同样大小的红、黄、蓝、白四种颜色的球,最坏的情况是,当摸出4个球的时候,红、黄、蓝、白四种颜色的各一个,此时只要再任意摸出一个球,摸出的球一定有2个同色的,即至少要摸出4+1=5个。

答:至少要摸出5个球,摸出的球一定有2个同色的。

10、解:把箱子分成3组,每组4个,共12个,另外还剩下一个单独的箱子,每组4个箱子里分别放入1、3、5、7个苹果,为使苹果数最多,则第13个箱子里也放入7个苹果,所以最多共有(1+3+5+7)×3+7=55个苹果。

11、三种水果,假设是苹果、橘子、梨;每位老人任意选两个,共有3×2=6种可能(苹果苹果,橘子橘子,梨梨,苹果橘子,苹果梨,橘子梨),最差情况是6位老人拿的不同,所以应有6+1=7位老人,才能保证有两个或两个以上的老人拿的一样。

答:至少应有7位老人才能保证必有两位或两位以上的老人所选的水果相同。

12、从1到2006中总共有2006÷2=1003个奇数,3+2005=2008,5+2003=2008到1003+1005=2008,和为2008的奇数对有1003÷2=501对余1个.最坏的情况是一直取不到符合条件的奇数对,一直到不成对的全部取完,即每对只取一个;因此,第
501+1+1=503个奇数一定能在之前取到的奇数中找到与其之和为2008的对应奇数。

答:至少要取出503个奇数才能保证其中必定存在两个数,他们的和为2008。

13、解:将1,2,3,4四种号码看成4个抽屉。

要保证有一个抽屉中至少有3件物品,至少要有4×2+1=9(件)物品。

所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。

14、解:将40名小朋友看成40个抽屉。

今有玩具122件,122=3×40+2。

立即知道:至少有一个抽屉中放有4件或4件以上的玩具。

也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

相关文档
最新文档