人教版六年级下册数学广角

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版六年级下册数学广角《抽屉原理》教学设计

上传: 丁朋朋更新时间:2013-3-14 11:25:32

【设计理念】

本课通过创设情境、直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考问题的意识。

【教学目标】

1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教学准备】多媒体课件、凳子、每组准备烟盒子和小棒。

【教学课时】一课时

【教学过程】

一.抢凳子游戏,引入新课。

参加游戏的同学听到“开始”后,必须坐到凳子上。然后让学生仔细观察:你发现了什么?从而引导学生初步获知“不管怎么坐始终有一个凳子上坐了两位同学”

二.创设平台,合作探究。

一).探索比抽屉数多1的至少数。

出示例一:

1.把3根小棒放入2个盒子里,有几种放法?

学生拿起自己手中的学具做实验,小组讨论后发言,其他同学可以补充。

如果每个盒子里最少放一枚,要使所有小棒都放进盒子里,不管怎么放,总有一个盒子里至少有几根小棒?

2.师:把4根小棒都放进3个盒子里,有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

师:谁来展示一下你摆放的情况?这种分法,实际就是先怎么分的?为什么要先平均分?(组织学生讨论)小结:用最不利原则设想,如果我们先让每个笔筒里放1根小棒,最多放3枚。剩下的1枚还要放进其中的一个笔筒。所以不管怎么放,总有一个笔筒里至少放进2根小棒。

二).探索比抽屉数多几的至少数。

师:那么把13根小棒放进3个盒子里呢?

(可以结合操作说一说)

师:把13根小棒放进5个盒子里呢?

(留给学生思考的空间,师巡视了解各种情况)

师:这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,得到这个结论呢?请同学们观察板书,小组研究、讨论。找一找其中的规律。

小结:至少数等于数的本数除以抽屉数,再用所得的商加1。

(板书:至少数=商+1)

三).解析原理,加深认识

师:同学们的这一发现,称为“抽屉原理”。抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称作“鸽巢原理”。

出示:7只鸽子飞回5个鸽舍,至少有两只鸽子飞进同一个鸽舍?学生回答后观看演示。

三.应用原理,解决问题。

(一).巩固应用一——扑克牌游戏

16世纪的海盗们哪能摸得清什么抽屉原理呢?一听原理二字便昏头涨脑,不知什么时候早在下面玩起了扑克牌。这时,鲁宾逊灵机一动,将大家正玩的扑克牌中的大小王拿掉,说:每人抽五张牌,不管怎么抽取,至少有两张是同一花色的牌,你们相信吗?说着,给坐在旁边的海盗甲海盗乙每人任意抽取了5张牌。“如果有一个人手里的牌都不是同一花色,任由船长处置;如果每个人手里最少有2张花色相同的牌,请船长允许我回故乡赫尔去吧。”船长眼珠一转,同意了鲁宾逊的要求。

那么,事实是不是这样呢?同学们相信鲁宾逊的话吗?

教师发扑克牌,学生回答。

(二).巩固应用4——摸球游戏

他们用一个盒子,里面装有同样大小数量相同的红、黄、蓝球各若干个,两人各自摸到自己的盘子里,想一想,最少要摸几次,才能保证一定有2个是同色的?

让学生讲讲思路,老师再对学生的思路进行梳理。

四.拓展延伸

今天先讲到这里,通过今天的学习你有什么收获?

五.布置作业

每人编2道抽屉类问题作为今天的作业,让自己的同桌来证明或解答。

人教版小学数学六年级下册教案第五单元数学广角集体备课教学目标:

1.使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

2.能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

3.进一步体会到数学与日常生活密切相关。

4. 使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

5.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:分配问题。抽取问题。

教学难点:正确说明分配的结果。理解抽取问题的基本原理。

教学时间;两课时

第一课时

教学过程:

一.创设情境生成问题

出示例1

把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

(1)学生思考各种放法。

(2)与同学交流思维的过程和结果。

(3)汇报交流情况。

学生口答说明,教师利用实物木棒或课件演示。

第一种放法:第二种放法:

第三种放法:第四种放法:

二、探索交流解决问题

1.提出问题。

不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么?

经过简单交流,学生不难描述其中的原理:如果每个文具盒只放1枝铅笔,最多放3枝,剩下1枝

还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。

2.做一做。

7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(1)说出想法。

如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

相关文档
最新文档