7章-原核基因表达调控
分子生物学第七章原核生物基因表达调控
![分子生物学第七章原核生物基因表达调控](https://img.taocdn.com/s3/m/5a677301c950ad02de80d4d8d15abe23492f0340.png)
原核生物基因表达调控的特点
01
原核生物基因表达调控通常由特 定的转录因子、RNA聚合酶以及 其他调控蛋白介导,通过与DNA 的结合或解离来调节基因转录。
02
原核生物基因表达调控具有快速 响应环境变化的特点,能够在短 时间内调整基因表达模式,以适 应外界刺激和压力。
翻译后加工的调控
翻译后加工的调控
在翻译后加工阶段,新合成的蛋白质经过一系列修饰和加工,最终成为具有生物学活性的蛋白质。原 核生物通过控制翻译后加工酶的合成和活性来调控翻译后加工过程。此外,原核生物还可以通过控制 蛋白质的稳定性来影响其功能和表达水平。
总结
翻译后加工是基因表达调控的重要环节,原核生物通过控制翻译后加工酶的合成和活性,以及蛋白质 的稳定性来精细调控基因表达。
翻译延伸的调控
翻译延伸的调控
在翻译延伸阶段,核糖体沿着mRNA移动,将氨基酸组装成蛋白质。原核生物通过控制翻译延伸因子的合成和活 性,以及核糖体的合成和组装来调控翻译延伸。此外,原核生物还可以通过控制mRNA的结构和稳定性来影响翻 译延伸。
总结
翻译延伸是基因表达调控的重要环节,原核生物通过控制翻译延伸因子的合成和活性,以及核糖体的合成和组装, 以及mRNA的结构和稳定性来精细调控基因表达。
翻译起始的调控
原核生物通过控制翻译起始来调控基因表达。在翻译起始阶段, mRNA与核糖体结合,招募翻译所需的起始因子和其他成分。原 核生物通过控制起始因子的合成和活性,以及mRNA与核糖体的 结合来调控翻译起始。
总结
翻译起始是基因表达调控的重要环节,原核生物通过控制翻译起 始因子的合成和活性,以及mRNA与核糖体的结合来精细调控基 因表达。
第七章原核生物的基因调控
![第七章原核生物的基因调控](https://img.taocdn.com/s3/m/4e2252ee5122aaea998fcc22bcd126fff7055d95.png)
第七讲原核生物的基因调控科学家把这个从DNA到蛋白质的过程称为基因表达(gene expression),对这个过程的调节就称为基因表达调控(gene regulation或gene control)。
要了解动、植物发展发育的规律、形态布局特征和生物学功能,就必需弄清楚基因表达调控的时间和空间概念,掌握了基因表达调控的奥秘,我们手中就有了一把揭示生物学微妙的金钥匙。
基因表达调控主要暗示在以下几个方面:①转录程度上的调控(transcriptional regulation);②mRNA加工成熟程度上的调控(differential processing of RNAtranscript);③翻译程度上的调控(differential translation of mRNA).原核生物中,营养状况(nutritionalstatus)和环境因素(environmental factor)对基因表达起着举足轻重的影响。
在真核生物尤其是高等真核生物中,激素程度(hormone level)和发育阶段(developmental stage)是基因表达调控的最主要手段,营养和环境因素的影响力大为下降。
二、基因表达调控的底子道理〔一〕基因表达的多级调控基因的布局活化、转录起始、转录后加工及转运、mRNA降解、翻译及翻译后加工及蛋白质降解等均为基因表达调控的控制点。
可见,基因表达调控是在多级程度长进行的复杂事件。
此中转录起始是基因表达的底子控制点。
四个底子的调控点:〔1〕基因布局的活化。
DNA表露碱基后RNA聚合酶才能有效结合。
活化状态的基因暗示为:1.对核酸酶敏感;2.结合有非组蛋白及修饰的组蛋白;3.低甲基化。
〔2〕转录起始。
最有效的调节环节,通过DNA元件与调控蛋白彼此作用来调控基因表达。
〔3〕转录后加工及转运。
RNA编纂、剪接、转运。
〔4〕翻译及翻译后加工。
翻译程度可通过特异的蛋白因子阻断mRNA 翻译翻译后对蛋白的加工、修饰也是底子调控环节。
分子生物学 ch7原核生物基因表达调控
![分子生物学 ch7原核生物基因表达调控](https://img.taocdn.com/s3/m/3a8051dc5022aaea998f0f35.png)
调节蛋白
由调节基因lacI编码,单顺反子,有自身弱启 动子,能独立地组成型表达 阻遏蛋白一个结合位点是诱导物结合位点, 可被小分子诱导物结合,改变其构型,从而 影响与操纵基因结合的活性 阻遏蛋白一个结合位点是操纵基因结合位点, 分 调节蛋白以四聚体形式与操纵基因Olac结合, 子 阻遏结构基因的表达 生
物 学
CAP(降解物活化蛋白)或CRP(环腺苷酸受体 蛋白)是分子量为22.5kd的二聚体,CRP单体具有 DNA结合区和转录激活区,二聚体被单个cAMP活化, cAMP-CAP复合物与启动子结合,促进基因表达
葡萄糖分解代谢降低cAMP水平,使得其他分解代
谢受阻
CAP
RNA聚合酶结合
-35 cAMP
——阻遏蛋白(repressor)的结合操纵序列 当操纵序列结合有阻遏蛋白时,会阻碍
RNA聚合酶与启动序列的结合,或是RNA聚合酶
不能沿DNA向前移动 ,阻碍转录。
pol 启动序列 操纵序列 编码序列 阻遏蛋白
激活蛋白(activator)可结合启动序列邻近的
DNA序列,促进RNA聚合酶与启动序列的结合,增
无效应物(辅阻遏物)——基因表达
操纵子分类
四类: 可诱导的正调控型:(ara O): 可阻遏的正调控型 可诱导的负调控型(lac O)、 可阻遏的负调控型(trp O)
有 效 应 物 * 基 因 表 达 无 效 应 物 * 基 因 表 达
调节蛋白结合-阻遏基因表达 (阻遏蛋白)
负调控
调节蛋白结合-基因表达 (激活蛋白)
酶和转乙酰酶,结构基因由位于上游的一个lac启动子(lacP)起始
转录;lac操纵基因(lacO)位于lacP启和lacZ之间,并且和lacP有 部分重叠,其上可结合位于上游具有独立转录单位的lac调节基因
第7章原核细胞基因工程
![第7章原核细胞基因工程](https://img.taocdn.com/s3/m/75bfb88e88eb172ded630b1c59eef8c75fbf958e.png)
农药降解酶基因工程菌构建
分离和克隆农药降解酶基因
01
从自然界中筛选能够降解农药的微生物,并分离和克
隆其降解酶基因。
构建基因工程菌
02 将农药降解酶基因导入合适的原核细胞表达系统中,
构建能够高效表达降解酶的基因工程菌。
培育多抗品种
将多个抗逆性相关基因进行组合,培育具有多种 抗逆性状的农作物品种,以适应复杂多变的自然 环境。
2023
PART 06
原核细胞基因工程在环保 领域应用
REPORTING
污水处理中微生物强化技术
微生物菌剂强化
通过投加具有特定功能的基因工程菌,提高污 水处理系统的处理效率。
微生物群落调控
利用基因工程技术调控微生物群落结构,优化 污水处理系统的运行。
诊断试剂开发与应用
01
基因工程抗体
通过原核细胞基因工程技术,制 备特异性强的基因工程抗体,用 于疾病的诊断和治疗。
诊断试剂盒
02
03
个性化诊断
利用基因工程抗体,开发快速、 灵敏、特异的诊断试剂盒,为疾 病的早期诊断提供有力工具。
根据患者的基因信息,利用原核 细胞基因工程技术制备个性化诊 断试剂,实现精准医疗。
进入21世纪,随着合成生物学、代谢工程等学科的兴起,原核细胞基因工程的研究和应用领域不断拓展 ,为生物医药、生物制造、生物能源等领域的发展提供了有力支持。
原核细胞基因工程应用领域
生物医药领域
利用原核细胞基因工程生产 重组蛋白质药物、抗体药物 、疫苗等,以及用于基因诊 断和基因治疗等。
生物制造领域
利用原核细胞基因工程生产 工业酶、生物塑料、生物燃 料等,以及用于生物催化、 生物转化等过程。
分子生物学复习总结题-第七章-基因表达调控
![分子生物学复习总结题-第七章-基因表达调控](https://img.taocdn.com/s3/m/80592bb33186bceb18e8bb07.png)
第七章基因表达调控一、选择单选:1. 关于“基因表达”的概念叙述错误的是A. 其过程总是经历基因转录及翻译的过程B. 某些基因表达产物是蛋白质分子C. 某些基因表达经历基因转录及翻译等过程D. 某些基因表达产物是RNA分子E. 某些基因表达产物不是蛋白质分子2. 关于管家基因叙述错误的是A. 在生物个体的几乎各生长阶段持续表达B. 在生物个体的几乎所有细胞中持续表达C. 在生物个体全生命过程的几乎所有细胞中表达D. 在生物个体的某一生长阶段持续表达E. 在一个物种的几乎所有个体中持续表达3. 目前认为基因表达调控的主要环节是A. 翻译后加工B. 转录起始C. 翻译起始D. 转录后加工E. 基因活化4. 顺式作用元件是指A. 基因的5’、3’侧翼序列B. 具有转录调节功能的特异DNA序列C. 基因的5’侧翼序列D. 基因5’、3’侧翼序列以外的序列E. 基因的3’侧翼序列5. 一个操纵子(元)通常含有A. 数个启动序列和一个编码基因B. 一个启动序列和数个编码基因C. 一个启动序列和一个编码基因D. 两个启动序列和数个编码基因E. 数个启动序列和数个编码基因6. 反式作用因子是指A. 对自身基因具有激活功能的调节蛋白B. 对另一基因具有激活功能的调节蛋白C. 具有激活功能的调节蛋白D. 具有抑制功能的调节蛋白E. 对另一基因具有功能的调节蛋白7. 乳糖操纵子(元)的直接诱导剂是A. 葡萄糖B. 乳糖酶C. β一半乳糖苷酶D. 透酶E. 别乳糖8. Lac阻遏蛋白结合乳糖操纵子(元)的A. CAP结合位点B. O序列C. P序列D. Z基因E. I某因9. cAMP与CAP结合、CAP介导正性调节发生在A. 葡萄糖及cAMP浓度极高时B. 没有葡萄糖及cAMP较低时C. 没有葡萄糖及cAMP较高时D. 有葡萄糖及cAMP较低时E. 有葡萄糖及CAMP较高时10. Lac阻遏蛋白由A. Z基因编码B. Y基因编码C. A基因编码D. I互基因编码E. 以上都不是11. 色氨酸操纵子(元)调节过程涉及A. 转录水平调节B. 转录延长调节C. 转录激活调节D. 翻译水平调节E. 转录/翻译调节12.基因表达的产物不包括A.蛋白质B. mRNAC. rRNAD. SnRNAE. tRNA13.真核基因调控中最重要的环节是A. 基因重排B. 基因转录C. DNA的甲基化与去甲基化D. mRNA的衰减E. 翻译速度14.RNA聚合酶结合于操纵子的A. 结构基因起始区B. 阻遏物基因C. 诱导物D. 阻遏物E. 启动子15. cAMP对转录的调控作用是通过A. cAMP转变为CAPB. CAP转变为CampC. 形成cAMP-CAP复合物D. 葡萄糖分解活跃,使cAMP增加,促进乳糖利用来扩充能源E. cAMP是激素作用的第二信使,与转录无关16. 原核生物与DNA结合并阻止转录进行的蛋白质称为A. 正调控蛋白B. 阻遏物C. 诱导物D. 反式作用因子E. 分解代谢基因激活蛋白17.增强子A. 是特异性高的转录调控因子B. 是真核生物细胞内的组蛋白C. 原核生物的启动子在真核生物中就称为增强子D. 是增强启动子转录活性的DNA序列E. 是在结构基因的5'-端的DNA序列18.关于色氨酸操纵子的错误叙述是:A.trpR参与阻抑调控B.色氨酸阻抑结构基因转录C.前导序列参与色氨酸操纵子的衰减调控D.色氨酰tRNA参与色氨酸操纵子的衰减调控E.前导序列的序列3和序列4形成衰减子结构多选:1、基因表达调控环节包括A.DNA复制B.转录起始C.转录后加工D. mRNA降解E.翻译2、关于原核生物基因表达A.每个原核细胞的一切代谢活动都是为了适应环境而更好地生存和繁殖B.操纵子是原核生物绝大多数基因的表达单位C.原核生物基因表达的特异性由 因子决定D.原核生物基因表达既存在正调控,又存在负调控E.转录起始是原核生物基因表达主要的调控环节3、原核生物基因的调控序列包括A.启动子B.终止子C.操纵基因D.增强子E.衰减子4、原核生物基因的调控蛋白包括A.特异因子B.起始因子C.延长因子D.激活蛋白E.阻抑蛋白5、乳糖操纵子包含以下哪些结构?cZB. lacAC. lacOD. lacPE. lacI6、关于乳糖操纵子的错误叙述是:A.乳糖操纵子编码催化乳糖代谢的3种酶cI促进乳糖操纵子转录C.别乳糖促进乳糖操纵子转录D.CAP促进乳糖操纵子转录E.cAMP抑制CAP的激活效应7、色氨酸操纵子的结构A.含trpYB.含trpAC.含trpOD.含trpPE.含前导序列8、与RNA聚合酶活性调控有关的成分有A.tRNAB.核糖体C.严谨因子D.鸟苷五磷酸E.鸟苷四磷酸9、以下关于cAMP对原核基因转录的调控作用的叙述,正确的A. 葡萄糖与乳糖并存时,细菌优先利用乳糖B. cAMP-CAP复合物结合于启动子上游C. 葡萄糖充足时,cAMP水平不高D. cAMP可与CAP结合成复合物E. 葡萄糖和乳糖并存时,细菌优先利用葡萄糖10、原核生物基因表达在翻译水平上的调控与那些因素有关?A.mRNA前体后加工B. mRNA稳定性C. SD序列D.翻译阻抑E.反义RNA11、以下哪些环节存在真核生物的基因表达调控A.DNA和染色质水平B.转录水平C. 转录后加工水平D. 翻译水平E. 翻译后加工水平12、与原核生物相比,真核生物的基因表达调控的特点是A.转录的激活与转录区染色质结构的变化有关B.转录和翻译分隔进行,具有时空差别C.转录后加工更复杂D.既有瞬时调控又有发育调控E.转录调控以正调控为主13、在真核生物基因表达调控过程中,DNA水平的调控包括哪些内容A.染色质结构改变B. DNA甲基化C. 基因重排D. 基因扩增E.染色质丢失14、关于真核生物基因表达转录水平的调控A.转录水平的调控实际上是对RNA聚合酶活性的调控B.RNA聚合酶Ⅱ是转录调控的核心C.转录水平的调控主要通过RNA聚合酶、调控序列和调控蛋白的相互作用来实现D.真核生物的调控序列又称顺式作用元件E.真核生物基因表达的调控蛋白即转录因子,又称为反式作用因子15、真核生物的调控序列有哪些?A.启动子B.终止子C.增强子D.沉默子E.衰减子16、哪些属于真核生物基因表达的调控蛋白A.转录因子B.反式作用因子C.通用转录因子D. 反式激活因子E.共激活因子17、哪些是真核生物调控蛋白所含的DNA结合域A.螺旋-转角-螺旋B.锌指C.富含脯氨酸域D.亮氨酸拉链E.螺旋-环-螺旋。
原核生物基因表达调控
![原核生物基因表达调控](https://img.taocdn.com/s3/m/0e755b7369dc5022abea0057.png)
Repressor
cAMP
CAP
葡萄糖不存在,乳糖存在,阻遏蛋白失活,cAMP+CAP与CAP位点结合结合,促进基因转录
The Lac Operon: III. 葡萄糖和乳糖都存在
Repressor
RNA Pol.
CAP Bindin
g
Promoter
Operator X
LacZ
Repressor负调节与正调节协调合作
• 阻遏蛋白封闭转录时,CAP不发挥作用 • 如没有CAP加强转录,即使阻遏蛋白从操作基因上解聚仍无转录活性
3)正调控和负调控
正调控(positive control)
在没有调节蛋白质存在时基因是关闭的,加入某种调节蛋白后基因活性就被开启,这样的调控为正转录 调控。
调节基因
操纵基因
结构基因
调节蛋白
mRNA 酶蛋白
负调控(negative control)
在没有调节蛋白质存在时基因是表达的,加入这种调节蛋白质后基因表达活性便被关闭,这样的调 控负转录调控。
2)结构基因和调节基因
➢ 组成基因/管家基因(constitutive gene, housekeeping gene)是指不大受环境变动而持 续表达的一类基因。如DNA聚合酶,RNA聚合酶等代谢过程中十分必需的酶或蛋白质的基因 。 ➢调节基因(regulated gene)指环境的变化容易使其表达水平变动的一类基因。如:不同生 长发育时期表达的一些基因。
• 别乳糖是lac操纵子转录的活性诱导物 • 异丙基硫代半乳糖苷(isopropyl thiogalactoside:IPTG)结构上类似于别乳糖,是乳糖操纵
子非常有效的诱导物。可诱导lac操纵子表达,但不能被β-半乳糖苷酶水解。 • 这种能诱导酶合成,但不能被酶分解的分子称为安慰诱导物(gratuitous inducer)。安慰诱导
分子生物学复习7-9
![分子生物学复习7-9](https://img.taocdn.com/s3/m/73a2bbe4cc22bcd126ff0cb6.png)
第七章基因的表达与调控(上)——原核基因表达调控模式(一)基本概念1.基因表达:细胞在生命过程中,把蕴藏在DNA中的遗传信息经过转录和翻译,转变成为蛋白质或功能RNA分子的过程称为基因表达。
2.基因表达调控:围绕基因表达过程中发生的各种各样的调节方式都统称为基因表达调控。
rRNA或tRNA的基因经转录和转录后加工产生成熟的rRNA或tRNA,也是rRNA或tRNA 的基因表达,因为rRNA或tRNA就具有在蛋白质翻译方面的功能。
3.组成型表达:指不大受环境变动而变化的一类基因表达。
如DNA聚合酶,RNA聚合酶等代谢过程中十分必需的酶或蛋白质的表达。
管家基因:某些基因在一个个体的几乎所有细胞中持续表达,通常被称为管家基因。
管家基因无论表达水平高低,较少受到环境因素的影响。
在基因表达研究中,常作为对照基因适应型表达:指环境的变化容易使其表达水平变动的一类基因表达。
应环境条件变化基因表达水平增高或从无到有的现象称为诱导,这类基因被称为可诱导的基因;相反,随环境条件变化而基因表达水平降低或变为不表达的现象称为阻遏,相应的基因被称为可阻遏的基因。
4.结构基因:编码蛋白质或功能性RNA的任何基因。
所编码的蛋白质主要是组成细胞和组织基本成分的结构蛋白、具有催化活性的酶和调节蛋白等。
原核生物的结构基因一般成簇排列,真核生物独立存在。
结构基因簇由单一启动子共同调控。
调节基因:参与其他基因表达调控的RNA或蛋白质的编码基因。
①调节基因编码的调节物质通过与DNA上的特定位点结合控制转录是调控的关键。
②调节物与DNA特定位点的相互作用能以正调控的方式(启动或增强基因表达活性调节靶基因,也能以负调控的方式(关闭或降低基因表达活性)调节靶基因。
操纵子:由操纵基因以及相邻的若干结构基因所组成的功能单位,其中结构基因的转录受操纵基因的控制。
(二)原核基因调控的分类和主要特点一、原核生物的基因调控特点:(1)基因调控主要发生在转录水平上,形式主要是操纵子调控.(2)有时也从DNA水平对基因表达进行调控,实质是基因重排。
第7章 基因表达调控-原核
![第7章 基因表达调控-原核](https://img.taocdn.com/s3/m/36833848fe4733687e21aaa1.png)
7原核生物基因表达调控7.1基因表达的调控7.2转录水平的调控7.3翻译水平的调控7.1基因表达的调控基因表达包括:①基因经转录、翻译产生有生物活性的蛋白质的过程。
②rRNA 或tRNA 的基因经转录和加工产生成熟的rRNA 或tRNA 的过程。
生物的遗传信息是以基因的形式储藏在细胞内的DNA (或RNA )分子中的。
随着个体的发育,DNA 有序地将遗传信息,通过转录和翻译的过程转变成蛋白质,执行各种生理生化功能,完成生命的全过程。
从DNA 到蛋白质或RNA 的过程,叫做基因表达(gene expression),对这个过程的调节就称为基因表达调控(gene regulation 或gene control)。
原核生物基因表达调控的层次DNA水平的调控:通过DNA重排等机制来调节基因表达。
转录水平的调控:调控DNA模板上转录特异mRNA的速度,这是生物在进化过程中选择的最经济的调控方式。
翻译水平的调控:mRNA合成后,通过控制多肽链的形成速度调控。
原核中,操纵子是调控表达的基本单位,调控主要在转录水平。
7.1.1基因表达适应环境的变化生物只有适应环境才能生存,当环境条件变化时,生物体就要改变自身基因表达状况,以调整体内执行相应功能蛋白质的种类和数量,从而改变自身的代谢、活动等以适应环境。
细胞中有些蛋白质的数量几乎不受环境变化影响,称为组成性蛋白,如糖酵解中的酶。
随环境变化而变化的蛋白为适应性蛋白,这是由基因表达调控的。
①组成性表达(constitutive expression) 指不随环境变化而变化的基因表达。
组成性表达的产物为组成性蛋白,是细胞或生物体整个生命过程中必不可少的,这类基因可称为看家基因(housekeeping gene)。
基因表达几乎不受环境影响的原因可能是由于操纵子或调节基因突变造成的:即形成的有活性的阻遏蛋白不能与操纵子结合,或不能形成有活性的阻遏蛋白。
这类基因中大多数是在生物个体其它组织细胞、甚至在同一物种的细胞中都是持续表达的,是细胞基本的基因表达,这是生物在进化过程中形成的遗传特性。
第7章原核生物基因表达的调控
![第7章原核生物基因表达的调控](https://img.taocdn.com/s3/m/39985575ac02de80d4d8d15abe23482fb4da02a6.png)
Z编码β-半乳糖苷酶:将乳糖水解成葡萄糖和半乳糖。
Y编码β-半乳糖苷透过酶:使外界的β-半乳糖苷(如乳糖)能透过大肠杆
菌细胞壁和原生质膜进入细胞内。
A编码β-半乳糖苷乙酰基转移酶:乙酰辅酶A上的乙酰基转到β-半乳糖苷
上,形成乙酰半乳糖。
gene
正调控
调控蛋白
负调控
结构基因表达
▪ 负调控:抑制基因表达的调控方式 ▪ 正调控:促进基因表达的调控方式
B、特殊代谢物的调控
诱导(induction)
阻遏(repression)
inducer
gene
repressor
gene
特殊代谢物
诱导 阻遏
结构基因表达
诱导物、可诱导基因 阻遏物、可阻遏基因
无葡萄糖、 有乳糖-----cAMP水平高 (2)cAMP与CRP结合形成有活性的
CRP- cAMP 复合物 (3)CRP-cAMP 与Plac结合 (4)增强了RNA聚合酶与启动子的结合
(5)lacZ, lacY 、 lacA高表达
105
40
105
41
乳糖、G存在与否及与操纵子正、负控因素、 基因开放与关闭情况如下:
CRP
Binding
RNA
Promoter
Operator
CRP
Pol. Repressor
cAMP
LacZ
LacY
LacA
Repressor mRNA
STOP
Right there
CRP
Polymerase
cAMP
Repressor
cAMP
CRP
最新7原核生物基因表达调控汇总
![最新7原核生物基因表达调控汇总](https://img.taocdn.com/s3/m/f5a9a35b16fc700abb68fce8.png)
2020/8/13
6
指挥基因调控的信号
– 原核生物:营养状况、环境因素 – 真核生物:激素水平、发育阶段
2020/8/13
7
基因表达调控的时间性和空间性
2020/8/13
8
7.1.1 原核基因调控分类
原核生物的基因调控主要是转录调控,包 括负转录调控和正转录调控。
• 正调控(positive control): 在操纵子中,结构基因本 来不表达,可当调节蛋白(无辅基诱导蛋白)出现时,使 该结构基因进行表达。这样的调控叫正调控。
• 调节蛋白(regulatory protein):调节基因的表达产物, 叫调节蛋白。包括正调节蛋白,又叫激活蛋白 (activator);负调节蛋白,又叫阻遏蛋白(repressor)。
• 由于调节蛋白(RNA)能够自由地与其相应的结合位点 结 合 , 故 又 称 为 反 式 作 用 因 子 ( trans-acting element)。
7原核生物基因表达调控
7.1 原核基因表达调控总论
• 基因表达(gene expression) :指基因经过转 录、翻译,产生具有特异生物学功能的蛋白质分 子或RNA产物的过程。
• 对 这 个 过 程 的 调 节 称 为 基 因 表 达 调 控 ( gene regulation 或 gene control)
2020/8/13
3
调控型基因(regulated genes)
• 又称奢侈基因(luxury genes) 在不同组织 细胞中选择表达的基因。根据细胞生长、 发育的需要或环境因素的改变,其活性受 到调控。
2020/8/13
4
2020/8/13
5
基因表达调控主要表现在以下两个方面: • 转 录 水 平 上 的 调 控 (transcriptional
原核生物基因表达调控
![原核生物基因表达调控](https://img.taocdn.com/s3/m/844a7784ac51f01dc281e53a580216fc700a53d8.png)
20
同位素示踪实验
把大肠杆菌细胞放在加有放射性35S标记的氨基酸,但没 有半乳糖诱导物的培养基中繁殖几代然后再将这些带有 放射活性的细菌转移到不含35S、无放射性的培养基中 随着培养基中诱导物的加入, β-半乳糖苷酶便开始合成。 分离β-半乳糖苷酶, 发现这种酶无35S标记说明酶的合 成不是由前体转化而来的, 而是加入诱导物后新合成的。
• Jacob和Monod认为诱导酶(他们当时称为适应酶)
现象是个基因调控问题, 可以用实验方法进行研究, 因此
选为突破口, 终于通过大量实验及分析, 于1961年建立
了该操纵子的控制模型。
-
21
酶的诱导
-
22
• 酶的诱导现象是生物进化过程中出现的一种合理、 经济地利用有限资源的本能。
• 酶诱导已证明是低等生物的普遍现象。
倒位片段
鼠伤寒沙门菌鞭毛素基- 因的调节
H1鞭毛素
10
鼠伤寒沙门氏菌(S.typhimrium)的相转变(phase variation)
-
11
2.σ 因子对原核生物转录起始的调控
σ因子:原核生物RNA聚合酶的一个亚基,是转录起 始所必需的因子,主要影响RNA聚合酶对转录起始 位点的正确识别,这种σ因子称σ70,此外还有分子量 不同,功能不同的其他σ因子 。
PO
操纵子可视为原核生物的转录单位,它可以逐个
地从原核生物基因组中分离出来,对其结构功
能加以研究。
-
15
3.乳糖操纵子
1) 乳糖操纵子的结构
启动子 操纵基因
调节蛋白
(阻遏蛋白)
-
结构基因
16
3个编码的结构基因
• Z编码β-半乳糖苷酶: 将乳糖水解成葡萄糖和半乳糖,还能 将乳糖转变为异构乳糖
分子生物学第七章原核生物基因表达调控
![分子生物学第七章原核生物基因表达调控](https://img.taocdn.com/s3/m/6bb9457d3a3567ec102de2bd960590c69fc3d844.png)
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;
分子生物学-13-4-第七章原核基因表达调控-Arb
![分子生物学-13-4-第七章原核基因表达调控-Arb](https://img.taocdn.com/s3/m/f39376c1b0717fd5360cdccb.png)
因此只有在没有葡萄糖的时候,同时又有半乳糖的时候,启动子1才是开放的为什么gal 操纵子需要两个转录起始位点?(涉及半乳糖在细胞代谢中的双重功能)半乳糖两个作用: 可以作为唯一碳源供细胞生长; 与之相关的物质--尿苷二磷酸半乳糖(UDPgal )是大肠杆菌细胞壁合成的前体。
而启动子也有两个: galP1起始的转录——无内源葡萄糖、有外源半乳糖时进行,以保证碳源的供应。
galP2起始的转录——有内源葡萄糖、无外源半乳糖时进行,以保证细胞壁的合成需要。
生理功能(可以理解为生物学意义?)无论从必要性和经济性考虑,都要有一个不依赖于cAMP-CAP 的启动子(s2) 进行本底水平的组成型合成,以及一个依赖于cAMP-CAP 的启动子(s1),进行高水平的调节,这样既可以满足细胞最基本的需要(细胞壁),又可以满足在没有葡萄糖而有半乳糖时,细胞能够利用半乳糖进行生长。
进一步解释:gal P2是不依赖于cAMP-CRP 的,相反: cAMP-CRP 对gal P2还起到一种抑制作用,这是因为其与结合位点的结合,会影响到RNA 聚合酶对gal P2的利用。
因此教材上(page257)认为:只有S2活性完全被抑制时,(S1)的调控作用才是有效的。
7.4.2 阿拉伯糖操纵子(arabinose operon)araB 基因、araA 基因和araD, 形成一个基因簇,简写为araBAD三个基因的表达受到ara 操纵子中araC 基因产物AraC 蛋白的调控。
C 蛋白有三个结合位点O2、O1和 I 。
I BADCRPO2O1C结构基因调节基因P BADaraC 基因是araBAD 的调节基因L核酮糖激酶L阿拉伯糖异构酶L核酮糖-5-磷酸-4-差相异构酶结合到ara I 的时候,由于araBAD的启动子本身与ara I有部分重叠,另外还可以引起上游序列回折弯曲,使得AraC同时与O2结合,从而使CRP 聚合酶也不能结合到启动子上,araBAD基因不转录。
第七章第六节
![第七章第六节](https://img.taocdn.com/s3/m/231ca68d6529647d2728521b.png)
(B) 转录延长调节
(C) 转录激活调节
(D) 翻译水平调节
(E) 转录/翻译调节
(A) Lac阻遏蛋白 (B) RNA聚合酶
(C) 环一磷酸腺苷
(D) CAP-cAMP (E)异构乳糖 9、与O序列结合 A
10、与P序列结合 B 11、 与CAP结合 C 12、与CAP位点结合
D
13、乳糖、阿拉伯糖、色氨酸等小分子物质在
GTP+ATP→pppGpp+AMP→ppGpp ppGpp的主要作用可能是影响RNA聚合酶与启动子结合的专
一性,从而成为细胞内严紧控制的关键。当细胞缺乏氨基酸
时产生ppGpp,可在很大范围内做出应急反应,如抑制核糖 体和其他大分子的合成,活化某些氨基酸操纵子的转录表达, 抑制与氨基酸运转无关的转运系统,活化蛋白水解酶等。
3、简述Trp操纵子的调控机制。
名词解释: 操纵子、基因表达与基因调控、组成型表达与适应型表达、弱化 子(衰减子)、结构基因与调节基因
RNA(mRNA—interfering complementary RNA,
micRNA)。
☆ 基因调控不只是通过蛋白与核酸的相互作用而实 现
四、 反义RNA的调节作用
• 反义RNA主要通过以下三种方式调控翻译: • 1、反义RNA与mRNA上核糖体结合位点结合,使核糖体 脱落,使得翻译不能起始。 • 2、反义RNA可与目的基因的5 ’UTR或翻译起始区的 Shine-Dalgarno序列结合,使mRNA不能与核糖体有效 地结合,从而阻止蛋白质的合成。 • 3、反义RNA也可与mRNA结合,形成双螺旋结构,由于 所形成的双螺旋结构成为内切酶的特异底物,使与其 结合的RNA变得不稳定。
第六节
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乳 糖 操 纵 子 控 制 模 型
2014/12/4
lacmRNA非常丌稳定, 半衰期只有3min左右;
β-半乳糖苷酶比 mRNA稳定得多: 酶活性能在更长的时 间内保持诱导水平
In the absence of lactose(repression)
In the presence of lactose(induction)
4
阻遏蛋白以四聚体的形式发挥作用
阻遏蛋白结合到O区, 诱导物使阻遏蛋白失活, 阻止结构基因的表达; 开启结构基因的表达
2014/12/4
Q1:lac I基因由弱启动子控制还是由强启动子控制?
Q2:如果lac I基因由弱启动子突变成强启动子,大 肠杆菌能否以乳糖为唯一碳源?
Q3: 第一个诱导物如何进入细胞?
β -半乳糖透过酶
Q4:lac I基因编码的阻遏蛋白的真正诱导物是什么?
异构乳糖( β -半乳糖苷酶催化形成)
非诱导状态下,lac mRNA癿本底水平癿表达!
(4) 蓝白斑筛选
蓝白斑筛选:报告基因β-半乳糖苷酶癿活性检测 lacZ 基因是乳糖 lac 操纵子中编码 β-半乳糖苷酶 的基因,乳糖及其衍生物可诱导其表达。 乳糖既是 lac 操纵子的诱导物,也是作用的底物。
蓝 白 斑 筛 选
可根据长出菌体的蓝白色,而方便地挑选出基因重组 体: 白色为具有DNA插入片段的基因重组体
实验中,通常蓝白筛选是不抗性筛选一同使用:含Xgal的平板培养基中同时含有一种或多种载体所携带抗 性相对应的抗生素,这样,一次筛选可以判断出:
结构基因:lac Z、lac Y 和 lac A 启动区 :P 操纵区 :O 阻遏基因:Lac I
乳糖操纵子的作用:降解利用乳糖
乳糖操纵子的结构基因( lacZ 、lacY和lacA ) 的表达产物与乳糖的利用和降解有关,只是在培养 基中以乳糖作为唯一碳源消耗时才产生 β-半乳糖苷酶:lacZ,水解乳糖为葡萄糖和半乳糖 β-半乳糖透过酶:lacY, 将β -半乳糖苷(如乳糖) 运到细胞内部 β-半乳糖乙酰基转秱酶:lacA ,把乙酰-COA中的 乙酰基转给β -gal lacA的编码产物在乳糖的降解利用中不其直接作 用,但是,它可以通过乙酰化作用抑制β-半乳糖 苷酶产物癿有害性衍生物在细胞内积累,因而具 有生物进化意义。
减数分裂过程中DNA复制造成DNA数量和结构的变化对基因表 达的影响 • 空间调控:真核生物转录和翻译在不同区域进行,而原核生物转 录和翻译可同时进行,空间结构差异决定不同的调控机制 • DNA结构调控:常染色质和异染色质;DNA重排、DNA重组、 突变和修复;蛋白质结合;DNA甲基化或其它修饰;基因拷贝数 目变化。
用于蓝白斑筛选癿载体具有一段称为lacz‘癿基因 lacz'中包括:
一段β-半乳糖苷酶癿启动子; 编码α肽链癿区段( β-半乳糖苷酶基因编码的N 端癿一个146个氨基酸癿短肽) 一个多克隆位点(MCS): MCS位于编码α肽链癿 区段中,是外源DNA癿选择性插入位点。
多克隆位点(multiple cloning site, MCS),是包 含多个(最多20个)限制性酶切位点的一段很短的 DNA序列。也称为多位点接头(polylinker),是基因 工程中常用到的载体质粒的标准配置序列。MCS中, 每个限制性酶切位点通常是唯一的,即它们在一个特 定的载体质粒中只出现一次。
多克隆位点广泛应用于分子克隆和亚克隆工程中。是
应用生物学,生物工程,分子遗传学研究的重要实验 工具。生物技术学家可以轻而易举的将一个或多个外 源DNA片段插入到多克隆位点所在癿区域中,为构 建基因改造生物,或者说转基因生物奠定基础。
常见癿基因工秳载体都具有多克隆位点,有些载体, 如λEMBL4、Charon40等甚至有两个。
3
(3) 乳糖操纵子控制模型(负控诱导)
(1)lacZ、lacY和lacA基因产物由同一条多顺 反子的mRNA编码; (2)该mRNA分子的启动区P位于阻遏基因lacI 与操纵区(O)之间,不能单独起始基因的高 效表达; (3)操纵区是DNA上的一小段序列,是阻遏 物的结合位点; (4)当阻遏物不操纵区结合时,lac mRNA的 转录受到抑制 (5)诱导物不阻遏物结合,改变其三维构象, 使之不能与操纵区结合, lac mRNA开始转录
negative control:阻遏蛋白 positive control:激活剂
原核基因表达调控特点
负 控 诱 导
正
正常反应下的调控:
控 诱
可诱导调节(常关)
导
可阻遏调节(常开)
弱化子对基因活性的调节
负 控 阻 遏
正 控 阻
降解物对基因活性的影响 (葡萄糖效应)
遏
细菌的应急反应的调控:
以空载tRNA为诱导物,产生超级调
specific site on DNA (or mRNA).
inducer 诱导物 is a small molecule that triggers gene transcription by binding to a regulator protein. repressor protein阻遏蛋白 binds to operator on DNA or RNA to prevent transcription or translation, respectively. corepressor辅阻遏物 is a small molecule that triggers repression of transcription by binding to a regulator protein.
原核基因表达调控分类
负 转 录 调 控 ( negative regulation):
负控诱导 负控阻遏 正 转 录 调 控 ( positive regulation) : 正控诱导 正控阻遏
transcription transcription
诱导和阻遏;正控和负控
负控通过影响阻遏蛋白活性来影响基因表达; 正控通过影响激活蛋白活性来影响基因表达;
操纵子(operon) 是指启动基因、操纵基因和 一系列紧密连锁的结构基因的总称,是产生信 使mRNA的基元,主要在原核生物中出现。
Operon操纵子 is a unit of bacterial gene expression and regulation, including structural genes and control elements in DNA recognized by regulator gene product(s).
控因子ppGpp和pppGpp
二、乳糖操纵子不负控诱导系统
乳糖操纵子与负控诱导系统 乳糖操纵子的正调控因子:cAMP-CRP 葡萄糖效应(代谢物阻遏效应)
1、
乳 糖
操
纵
子
不
负
控 诱
导
系
统
(1920 –2013)
(1910 –1976)
1/3:Andre Lwoff
2
2014/12/4
(1)什么是操纵子(operon)?
Operator操纵区 is the site on DNA at which a repressor protein binds to prevent transcription from initiating at the adjacent promoter.
(2)乳糖操纵子(lactose operon)癿组成
5
2014/12/4
IPTG和X-gal在蓝白斑检测中癿作用
常见安慰诱导剂:
异丙基-β-D- 硫代半乳糖苷(IPTG):诱导剂 (作用极强)
硫甲基半乳糖苷(TMG) 发色底物O-硝基半乳糖苷(ONPG)
X-gal在蓝白斑检测中癿作用:
5-溴-4-氯-3-吲哚-β-D-半乳糖苷(X-gal) :不能 作为诱导物,但可作为 底物,被 lac 操纵子的β-半乳 糖苷酶分解后可产生兰色产物(将无色化合物X-gal切 割成半乳糖和深蓝色的物质5-溴-4-靛蓝),可使菌落 或噬菌斑呈兰色。
Gratuitous inducers安慰诱导物 resemble authentic inducers of transcription but are not substrates for the induced enzymes.
是高效诱导物,但不是半乳糖苷酶的底物,在研 究诱导作用时应用,诱导外源基因的表达,普遍 应用于原核表达系统,使其表达量增高,产物稳 定,具有易鉴定,易纯化的优点。
结构基因Structural gene codes for any RNA or protein product other than a regulator. 调控基因A regulator gene codes for a protein that acts at a target site on DNA.
诱导可使酶癿生成增加、增快; 阻遏可使酶癿生成减慢、减少。
1
2014/12/4
•诱导induction refers to switching on transcription as a result of interaction of the inducer with the
regulator protein. 阻遏repression refers to inhibition of transcription (or translation) by binding of repressor protein to a
• 转录调控:转录复合体形成、Sigma因子、顺式调控因子和反式 作用因子
• RNA结构调控(转录后翻译前调控):RNA降解、RNA加工和剪 切、 RNA编辑、反义RNA、RNA干涉、RNA转移和定位