大一下高数练习题
大一下册高数习题册附标准答案
重积分§ 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D⎰⎰+=22其中D 为:422≤+y x( dxdy y x I D⎰⎰+=22=πππ3162.4..312.4.=-) 2、设D 为圆域,0,222>≤+a a y x 若积分dxdy y x a D⎰⎰--222=12π,求a 的值。
解:dxdy y x a D⎰⎰--222=3.34.21a π81=a3、设D 由圆,2)1()2(22围成=-+-y x 求⎰⎰Ddxdy 3解:由于D 的面积为π2, 故⎰⎰Ddxdy 3=π64、设D :}10,53|),{(≤≤≤≤y x y x ,⎰⎰⎰⎰+=+=DDdxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系解:在D 上,)ln(y x +≤2)][ln(y x +,故1I ≤2I5、设f(t)连续,则由平面 z=0,柱面,122=+y x 和曲面2)]([xy f z =所围的立体的体积,可用二重积分表示为⎰⎰≤+=1:222)]([y x D dxdy xy f V6、根据二重积分的性质估计下列积分的值⎰⎰Dydxdy x 22sin sin ππ≤≤≤≤y x D 0,0: (≤0⎰⎰Dydxdy x 22sin sin 2π≤)7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求⎰⎰→Da dxdy y x f a ),(1lim20π解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim820f f dxdy y x f a a D a ==→→⎰⎰ηξπ§ 2 二重积分的计算法1、设⎰⎰+=Ddxdy y xI 1,其中D 是由抛物线12+=x y 与直线y=2x ,x=0所围成的区域,则I=()A :212ln 3ln 87+-- B :212ln 3ln 89-+C :212ln 3ln 89-- D :412ln 3ln 89--2、设D 是由不等式1≤+y x 所确定的有界区域,则二重积分⎰⎰+Ddxdy y x )(为()A :0B :31C :32D : 13、设D 是由曲线xy=1与直线x=1,x=2及y=2所围成的区域,则二重积分⎰⎰Dxy dxdy ye 为()A :e e e 212124-- B :21242121e e e e -+-C :e e 21214+ D :2421e e -4、设f(x,y)是连续函数,则二次积分dy y x f dx x x ⎰⎰++-2111),(为()A dx y x f dy dx y x f dy y y ⎰⎰⎰⎰----+112111102),(),( B dx y x f dy y ⎰⎰--1110),( C dx y x f dy dx y x f dy y y ⎰⎰⎰⎰-----+112111102),(),( D dx y x f dy y ⎰⎰---11202),(5、设有界闭域D 1、D 2关于oy 轴对称,f 是域D=D 1+D 2上的连续函数,则二重积分⎰⎰Ddxdy y x f )(2为()A ⎰⎰1),(22D dxdy y x f B ⎰⎰22),(4D dxdy y x fC ⎰⎰1),(42D dxdy y x f D⎰⎰22),(21D dxdy y x f 6、设D 1是由ox 轴、oy 轴及直线x+y=1所围成的有界闭域,f 是域D:|x|+|y|≤1上的连续函数,则二重积分⎰⎰Ddxdy y x f )(22为()A ⎰⎰1),(222D dxdy y x f B ⎰⎰1),(422D dxdy y x fC ⎰⎰1),(822D dxdy y x f D⎰⎰1),(2122D dxdy y x f7、.设f(x,y)为连续函数,则⎰⎰a xdy y x f dx 0),(为( )A ⎰⎰a a ydx y x f dy 0),( B ⎰⎰a yadx y x f dy 0),(C ⎰⎰a y dx y x f dy 0),( D ⎰⎰a xdx y x f dy 0),(8、求⎰⎰=Ddxdy yx I 22,其中:D 由x=2,y=x,xy=1所围成. (49)9、设I=⎰⎰31ln 0),(xdy y x f dx ,交换积分次序后I 为:I=⎰⎰31ln 0),(xdy y x f dx =⎰⎰3ln 03),(y edx y x f dy10、改变二次积分的次序:⎰⎰⎰⎰-+4240200),(),(xx dy y x f dx dy y x f dx =⎰⎰21221xxdx ydx x11、设 D={(x,y)|0≤x ≤1,0≤y ≤1} ,求⎰⎰+Dy x dxdy e 的值解:⎰⎰+Dyx dxdy e=⎰⎰⎰⎰-==+121101)1())((e dy e dx e dy edx y xl yx12设 I=⎰⎰--Ddxdy y x R 222,其中D 是由x 2+y 2=Rx 所围城的区域,求I (331R π)13、计算二重积分⎰⎰-+Ddxdy y x |4|22,其中D 是圆域922≤+y x解:⎰⎰-+Ddxdy y x |4|22==-+-⎰⎰⎰⎰rdr r d rdr r d ππθθ2032220202)4()4(241π 14、计算二重积分⎰⎰Dy xdxdy e },m ax{22,其中D={(x,y)| 0≤x ≤1,0≤y ≤1}解:⎰⎰Dy xdxdy e }22,max{=1101022-=+⎰⎰⎰⎰e dx e d dy e dx yy xx y15、计算二重积分⎰⎰++Ddxdy yx yx 22,D :.1,122≥+≤+y x y x 解:⎰⎰++D dxdy yx y x 22=24)sin (cos 201sin cos 12πθθθπθθ-=+⎰⎰+rdr r r d§ 3 三重积分1、设Ω是由x=0,y=0,z=0及x+2y+z=1所围成的空间有界域,则⎰⎰⎰Ωxdxdydz 为( )A ⎰⎰⎰--12101y x y xdz d dx B ⎰⎰⎰---2102101y yx xdy dz dxC ⎰⎰⎰---2102101x yx xdz dy dx D ⎰⎰⎰10110xdz dy dx2、设Ω是由曲面x 2+y 2=2z,及z=2所围成的空间有界域,在柱面坐标系下将三重积分⎰⎰⎰Ωdxdydz z y x f ),,(表示为累次积分,I=()A ⎰⎰⎰120202ρπθρθρρθz)dz ,sin ,cos f(d d B ⎰⎰⎰2020202ρπρθρθρρθdz z),sin ,cos f(d dC ⎰⎰⎰2022202ρπρθρθρρθdz z),sin ,cos f(d d D ⎰⎰⎰2220dz z),sin ,cos f(d d ρθρθρρθπ3、设Ω是由1222≤++z y x 所确定的有界闭域,求三重积分⎰⎰⎰Ωdv e z ||解:⎰⎰⎰Ωdv e z ||=⎰⎰⎰--≤+111||222)(z y x z dz dxdy e =2⎰=-122)1(ππdz z e z 4、设Ω是由曲面z=xy, y=x, x=1 及z=0所围成的空间区域,求⎰⎰⎰Ωdxdydz z xy 32(1/364)5、设Ω是球域:1222≤++z y x ,求⎰⎰⎰Ω++++++dxdydz z y x z y x z 1)1ln(222222 (0) 6、计算⎰⎰⎰+Qdxdydz y x )(22其中Ω为:平面z=2与曲面2222z y x =+所围成的区域(π564) 7、计算⎰⎰⎰Qzdxdydz x 2其中Ω是由平面z=0,z=y,y=1以及y=x 2所围成的闭区域(2/27))8、设函数f(u)有连续导数,且f(0)=0,求dxdydz z y x f t tz y x t )(1lim 222222240⎰⎰⎰≤++→++π解:dxdydz z y x f t t z y x t ⎰⎰⎰≤++→++222222240(1limπ=)0(')(4limsin )(1lim 42022040f t drr f r dr r r f d d ttt tt ==⎰⎰⎰⎰→→ϕϕθπππ§4 重积分的应用1、(1)、由面积22y x +=2x, 22y x +=4x,y=x,y=0所围成的图形面积为()A )2(41+πB )2(21+πC )2(43+π D 2+π(2) 、位于两圆θρsin 2=与θρsin 4=之间,质量分布均匀的薄板重心坐标是( )A (0,35)B (0,36)C (0,37)D (0,38)(3)、由抛物面x y z 422=+和平面x=2所围成的质量分布均匀的物体的重心坐标是()A (0,0,34)B (0,0,35) C (0,0,45) D (0,0,47)(4)、质量分布均匀(密度为μ)的立方体所占有空间区域:}10,10,10|),,{(≤≤≤≤≤≤=Ωz y x z y x ,该立方体到oz 轴的转动惯量I Z =( )A 31μB 32μC μD 34μ2、求均匀上半球体(半径为R)的质心解:显然质心在z 轴上,故x=y=0,z=⎰⎰⎰Ω=831R zdv V 故质心为(0,0,R 38)4、曲面2213y x z --=将球面25222=++z y x 分割成三部分,由上至下依次记 这三部分曲面的面积为s 1, s 2, s 3, 求s 1:s 2:s 3解:π102559222=--=⎰⎰≤+dxdy y x y x 1S π2025516222=--=⎰⎰≤+dxdy y x y x 3Sπ70=2S5、求曲面xy Rz =包含在圆柱222R y x =+内部的那部分面积 解:3)122(2222222R dxdy R y x R R y x π-=++=⎰⎰≤+S6、求圆柱体Rx y x 222≤+包含在抛物面Rz y x 222=+和xoy 平面之间那部分立体的体积解:43)(2132222R dxdy y x R Rx y x π=+=⎰⎰≤+V 第九章自测题一、选择题: (40分) 1、⎰⎰-x dy y x f dx 1010),(=( )A ⎰⎰-1010),(dx y x f dy x B ⎰⎰-xdx y x f dy 1010),(C ⎰⎰11),(dx y x f dy D ⎰⎰-ydx y x f dy 101),(.2、设D 为222a y x ≤+,当=a ( )时,π=--⎰⎰Ddxdy y x a 222. A 1D 321 3、设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B ).A 40220a rdr a d aπθπ=⎰⎰ B 4022021a rdr r d aπθπ=⋅⎰⎰; C 3022032a dr r d a πθπ=⎰⎰ D 402202a adr a d a πθπ=⋅⎰⎰.4、设Ω是由三个坐标面与平面z y x -+2=1所围成的空间区域,则⎰⎰⎰Ωxdxdydz =( ).A481 B 481- C 241 D 241- .5 、设Ω是锥面,0(222222>+=a by a x c z )0,0>>c b 与平面c z y x ===,0,0所围成的空间区域在第一卦限的部分,则⎰⎰⎰Ωdxdydz z xy=( ). A c b a 22361 B b b a 22361 C a c b 22361D ab c 361. 6、计算⎰⎰⎰Ω=zdv I ,1,222=+=Ωz y x z 为围成的立体,则正确的为( )和()A ⎰⎰⎰=101020zdz rdr d I πθ B ⎰⎰⎰=11020rzdz rdr d I πθC ⎰⎰⎰=11020rrdr dz d I πθ D ⎰⎰⎰=zzrdr d dz I 02010πθ.7、曲面22y x z +=包含在圆柱x y x 222=+内部的那部分面积=s ( )A π3B π2C π5D π22.8、由直线2,2,2===+y x y x 所围成的质量分布均匀(设面密度为μ)的平面薄板,关于x 轴的转动惯量x I =( ).A μ3B μ5C μ4D μ6二、计算下列二重积分:(20分)1、⎰⎰-D d y x σ)(22,其中D 是闭区域:.0,sin 0π≤≤≤≤x x y (9402-π)2、⎰⎰Dd xyσarctan ,其中D 是由直线0=y 及圆周1,42222=+=+y x y x ,x y =所围成的在第一象限内的闭区域 . (2643π) 3、⎰⎰+-+Dd y x y σ)963(2,其中D 是闭区域:222R y x ≤+ (2494R R ππ+)4、⎰⎰-+Dd y x σ222,其中D :322≤+y x . (.25π) 三、作出积分区域图形并交换下列二次积分的次序: (15分)1、⎰⎰⎰⎰-+yydx y x f dy dx y x f dy 30312010),(),( (⎰⎰-xxdy y x f dx 3220),()2、⎰⎰-+2111),(x xdy y x f dx (⎰⎰⎰⎰-+2220211),(),(y y y dx y x f dy dx y x f dy )3、⎰⎰θθθθ0)sin ,cos (rdr r r f d a (⎰⎰θθθθ0)sin ,cos (rdr r r f d a)四、计算下列三重积分:(15分)1、Ω+⎰⎰⎰Ω,)cos(dxdydz z x y :抛物柱面x y =2,,π=+==z x o z o y 及平面所围成的区域 (21162-π) 2、,)(22⎰⎰⎰Ω+dv z y 其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围 (π3250) 五、(5分)求平面1=++czb y a x 被三坐标面所割出的有限部分的面积 .(22222221a c c b b a ++) 六、(5分)设)(x f 在]1,0[上连续,试证:310101])([61)()()(⎰⎰⎰⎰=dx x f dxdydz z f y f x f x y x 0)0(,)()()()(,)()(1==='=⎰⎰F dx x f t F x f x F dt t f x F x且则=⎰⎰⎰101)()()(x yx dxdydz z f y f x f =-⎰⎰dy x F y F y f dx x f x11)]()()[()(dx x F F x F x F F x f )}()1()()]()1((21){[(2122⎰+--=)1(21)1(61)1(21333F F F -+=)1(613F。
华北水利水电大学大一下学期高数期末考试
华北水利水电大学大一下学期高数期末考试一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1、已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P()A、在⊙O外B、在⊙O上C、在⊙O内D、不能确定2、已知△ABC中,∠C=90°,AC=6,BC=8,则cose的值是()A、0.6B、0.75C、0.8D、0.853、△ABC中,点M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是()A、1B、2C、3D、44、既是中心对称图形又是轴对称图形的是()A、1B、-1C、2D、-25、已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2=cm,则⊙O1和⊙O2的位置关系是()A、外离B、外切C、内切D、相交6、某二次函数y=ax2+bx+c的图像,则下列结论正确的是()A、ao,b0,c0B、a0,b0,c;0C、a0,b0,c0D、a0,b0,c07、下列命题中,正确的是()A、平面上三个点确定一个圆B、等弧所对的圆周角相等C、平分弦的直径垂直于这条弦D、与某圆一条半径垂直的直线是该圆的切线8、把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是()A、y=-(x+3)2-2B、y=-(x+1)2-1C、y=-x2+x-5D、前三个答案都不正确二、填空题(本题共16分,每小题4分)9、已知两个相似三角形面积的比是2∶1,则它们周长的比_____。
10、在反比例函数y=中,当x0时,y随x的增大而增大,则k的取值范围是_________。
11、水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________。
12、已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为_________cm。
大一高数练习题(打印版)
大一高数练习题(打印版)### 大一高数练习题(打印版)#### 一、选择题1. 函数 \( f(x) = x^2 + 3x - 2 \) 的导数是:- A. \( 2x + 3 \)- B. \( 3x^2 + 2 \)- C. \( x^2 + 3 \)- D. \( 2x - 3 \)2. 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是: - A. 0- B. 1- C. \( \frac{\pi}{2} \)- D. 不存在3. 若 \( \int_{0}^{1} x^2 dx \) 等于:- A. \( \frac{1}{3} \)- B. \( \frac{1}{2} \)- C. \( \frac{1}{4} \)- D. \( \frac{1}{6} \)4. 函数 \( y = \ln(x) \) 的定义域是:- A. \( x > 0 \)- B. \( x < 0 \)- C. \( x \geq 0 \)- D. \( x \leq 0 \)5. 函数 \( y = x^3 - 6x^2 + 9x + 2 \) 的极值点是:- A. \( x = 1 \)- B. \( x = 2 \)- C. \( x = 3 \)- D. 无极值点#### 二、填空题1. 函数 \( f(x) = \sin x + \cos x \) 的导数为 \(f'(x) =________ \)。
2. 函数 \( y = x^3 - 5x^2 + 6x \) 的拐点是 \( x = ________ \)。
3. 定积分 \( \int_{1}^{2} (2x - 1) dx \) 的值为 \( ________ \)。
4. 函数 \( y = \ln x \) 的泰勒展开式在 \( x = 1 \) 处的前三项是 \( y = ________ \)。
大一下学期高数期末试题及答案
大一下学期高数期末试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)=x^2-4x+3,求f(x)的最小值。
A. 0B. -1C. -4D. 12. 已知数列{an}的前n项和为S_n=n^2,求a_5。
A. 10B. 11C. 12D. 133. 极限lim (n→∞) (1 + 1/n)^n 的值是:A. eB. 1C. 2D. 34. 曲线y=x^3-3x^2+2x在点(1,0)处的切线斜率是:A. 0B. 1C. -2D. 25. 函数f(x)=sin(x)+cos(x)的周期是:A. πC. π/2D. π/46. 已知f(x)=2x-1,求f'(2)的值。
A. 3B. 2C. 1D. 07. 曲线y=x^2与直线y=4x-5的交点坐标是:A. (1,3)B. (2,3)C. (1,1)D. (2,7)8. 定积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 19. 若f(x)在[a,b]上连续,且∫(a到b) f(x) dx = 0,则f(x)在[a,b]上:A. 恒等于0B. 至少有一个零点C. 恒为正D. 恒为负10. 函数y=ln(x)的原函数是:A. x-1C. x^2D. xln(x) - x + C二、填空题(每题2分,共20分)11. 函数f(x)=x^3的导数是________。
12. 微分方程dy/dx + 2y = 4x的解是________。
13. 已知∫(0到1) x dx = 1/2,那么∫(1到2) x dx =________。
14. 函数f(x)=x^2+1的二阶导数是________。
15. 利用导数求函数f(x)=x^3-2x^2+3x-4在x=2时的切线方程是________。
16. 函数y=e^x的泰勒展开式在x=0处的前三项是________。
17. 定积分∫(0到π/2) sin(x) dx的值是________。
大一高数下考试题及答案
大一高数下考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)的极限为L,是指对于任意给定的正数ε,存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<ε。
这个定义描述的是()。
A. 函数在某点的连续性B. 函数在某点的可导性C. 函数在某点的极限D. 函数在某点的间断性答案:C2. 以下哪个函数是偶函数?()A. f(x) = x^2 + xB. f(x) = x^3 - xC. f(x) = cos(x)D. f(x) = sin(x)答案:C3. 以下哪个积分是收敛的?()A. ∫(1/x)dx 从1到∞B. ∫(1/x^2)dx 从1到∞C. ∫(1/x^3)dx 从1到∞D. ∫(1/x)dx 从0到1答案:B4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 1/2 + 1/3 + 1/4 + ...答案:D5. 以下哪个是二阶导数?()A. f''(x) = 2xB. f'(x) = 2xC. f(x) = x^2D. f'(x) = 2答案:A二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x在x=0处的导数是________。
答案:02. 函数f(x) = e^x的不定积分是________。
答案:e^x + C3. 函数f(x) = sin(x)的不定积分是________。
答案:-cos(x) + C4. 函数f(x) = x^2在区间[0,1]上的定积分是________。
答案:1/35. 函数f(x) = x^2 + 2x + 1的极值点是________。
答案:x = -1三、计算题(每题10分,共30分)1. 计算极限:lim(x→0) [(x^2 + 1) / (x^2 - 1)]。
大一下学期高等数学考试题
一、单项选择题(6×3分)1、设直线,平面,那么与之间的夹角为( )A.0B.C.D.2、二元函数在点处的两个偏导数都存在是在点处可微的()A.充分条件B.充分必要条件C.必要条件D.既非充分又非必要条件3、设函数,则等于()A. B.C. D.4、二次积分交换次序后为()A. B.C. D.5、若幂级数在处收敛,则该级数在处()A.绝对收敛B.条件收敛C.发散 C.不能确定其敛散性6、设是方程的一个解,若,则在处()A.某邻域内单调减少B.取极小值C.某邻域内单调增加D.取极大值二、填空题(7×3分)1、设=(4,-3,4),=(2,2,1),则向量在上的投影=2、设,,那么3、D为,时,4、设是球面,则=5、函数展开为的幂级数为6、=7、为通解的二阶线性常系数齐次微分方程为三、计算题(4×7分)1、设,其中具有二阶导数,且其一阶导数不为 1,求。
2、求过曲线上一点(1,2,0)的切平面方程。
3、计算二重积分,其中4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。
5、求级数的和。
四、综合题(10分)曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。
五、证明题 (6分)设收敛,证明级数绝对收敛。
一、单项选择题(6×3分)1、 A2、 C3、 C4、 B5、 A6、 D二、填空题(7×3分)1、22、3、 4 、5、 6、0 7、三、计算题(5×9分)1、解:令则,故2、解:令则所以切平面的法向量为:切平面方程为:3、解:===4、解:令,则当,即在x轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则===5、解:令则,即令,则有=四、综合题(10分)解:设曲线上任一点为,则过的切线方程为:在轴上的截距为过的法线方程为:在轴上的截距为依题意有由的任意性,即,得到这是一阶齐次微分方程,变形为: (1)令则,代入(1)得:分离变量得:解得:即为所求的曲线方程。
大一下学期高等数学期中考试试卷及答案
大一下学期高等数学期中考试试卷及答案一、选择题(共40题,每题2分,共80分)1. 计算∫(4x-3)dx的结果是:A. 2x^2 - 3x + CB. 2x^2 - 3x + 4C. 2x^2 - 3x + 1D. 2x^2 - 3x答案:A2. 曲线y = 2x^3 经过点(1, 2),则函数y = 2x^3的导数为:A. 2x^2B. 6x^2C. 6xD. 2x答案:D3. 若a,b为实数,且a ≠ 0,则 |a|b 的值等于:A. aB. abC. 1D. b答案:B4. 设函数f(x) = x^2 + 2x + 1,g(x) = 2x - 1,则f(g(-2))的值为:A. 19B. 17C. 16D. 15答案:C5. 已知√2是无理数,则2-√2是:A. 有理数B. 无理数C. 整数D. 分数答案:A二、填空题(共5题,每题4分,共20分)1. 设函数f(x) = 3x^2 - 2x + 1,则f'(1)的值为____。
答案:42. 已知函数f(x) = 4x^2 + ax + 3,若其图像与x轴有两个交点,则a的取值范围是____。
答案:(-∞, 9/4) ∪ (9/4, +∞)3. 三角形ABC中,AB = AC,角A的度数为α,则角B的度数为____。
答案:(180°-α)/24. 若函数y = f(x)在点x = 2处的导数存在,则f(x)在点x = 2处____。
答案:连续5. 若直线y = kx + 2与曲线y = x^2交于两个点,则k的取值范围是____。
答案:(-∞, 1) ∪ (1, +∞)三、解答题(共5题,每题20分,共100分)1. 计算∫(e^x+1)/(e^x-1)dx。
解:令u = e^x-1,则du = e^xdx。
原积分变为∫(1/u)du = ln|u| + C = ln|e^x-1| + C。
2. 求函数y = x^3 + 2x^2 - 5x的驻点和拐点。
大学大一高数试题及答案
大学大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^2-4x+3,若f(a)=0,则a的值为()。
A. 1B. 3C. -1D. 2答案:B2. 极限lim(x→0) (sin x)/x的值为()。
A. 0B. 1C. ∞D. -1答案:B3. 若函数f(x)在点x=a处可导,则()。
A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处的导数为0答案:A4. 设数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,n∈N*,则a_3的值为()。
A. 5B. 7C. 9D. 11答案:C二、填空题(每题5分,共20分)1. 计算定积分∫(0到1) x^2 dx的值为______。
答案:1/32. 若矩阵A=\[\begin{pmatrix}1 & 2\\3 & 4\end{pmatrix}\],则A 的行列式det(A)为______。
答案:-23. 设函数f(x)=x^3-6x^2+11x-6,f'(x)=3x^2-12x+11,则f'(1)的值为______。
答案:24. 函数y=ln(x)的反函数为______。
答案:e^y三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-12在x=2处的切线方程。
答案:首先计算f'(x)=3x^2-6x+4,代入x=2得到f'(2)=6,然后计算f(2)=0,所以切线方程为y-0=6(x-2),即y=6x-12。
2. 计算级数∑(1到∞) (1/n^2)的和。
答案:该级数为π^2/6。
3. 已知函数f(x)=x^3-3x^2+2,求f(x)的极值点。
答案:首先求导f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。
然后计算二阶导数f''(x)=6x-6,代入x=0和x=2,得到f''(0)<0,f''(2)>0,所以x=0是极大值点,x=2是极小值点。
大一高数试题及答案
大一高数试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)的值。
A. 3x^2-3B. x^2-3C. 3x^2+3D. x^3-3答案:A2. 求极限lim(x→0) (sinx/x) 的值。
A. 0B. 1C. 2D. -1答案:B3. 设曲线y=x^2+1与直线y=2x+3相交于点A和点B,求交点的横坐标。
A. -2, 1B. 1, 2C. -1, 2D. 1, -2答案:C4. 计算定积分∫(0,1) x^2 dx。
A. 1/3B. 1/2C. 2/3D. 1/4答案:B二、填空题(每题5分,共20分)5. 设函数f(x)=x^2-4x+3,求f(2)的值。
答案:-16. 求不定积分∫(1/x) dx。
答案:ln|x|+C7. 设函数f(x)=e^x,求f'(x)的值。
答案:e^x8. 计算定积分∫(0,π) sinx dx。
答案:2三、解答题(每题10分,共60分)9. 求函数f(x)=x^3-6x^2+11x-6的极值点。
解:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
当x<1或x>11/3时,f'(x)>0,函数单调递增;当1<x<11/3时,f'(x)<0,函数单调递减。
因此,x=1为极大值点,x=11/3为极小值点。
10. 求曲线y=x^3-3x^2+2在点(1,0)处的切线方程。
解:首先求导数y'=3x^2-6x,代入x=1得y'|_(x=1)=-3。
切线方程为y-0=-3(x-1),即y=-3x+3。
11. 计算二重积分∬D (x^2+y^2) dxdy,其中D是由x^2+y^2≤4所围成的圆域。
解:将二重积分转换为极坐标系下的形式,即∬D (x^2+y^2) dxdy = ∫(0,2π) ∫(0,2) (ρ^2) ρ dρ dθ = 8π。
大一高数习题含答案
大一高数练习题第八章一、选择题1、若二元函数()y x f ,在()00,y x 处可微,则在()00,y x 点下列结论中不一定成立的是( ) A 、连续 B 、偏导数存在 C 、偏导数连续 D 、切平面存在2、函数22x z y +=在(0,0)处( )A 、 不连续B 、 偏导数存在C 、 任一方向的方向导数存在D 、可微 3、已知()()2y x ydy dx ay x +++为某函数的全微分,则a 等于( )A 、 -1B 、 0C 、1D 、24、函数),(y x f 在点),(00y x P 处两个一阶偏导数存在,是),(y x f 在该点可微的( )A 、充要条件B 、必要但非充分条件C 、充分但非必要条件C 、无关条件 5、函数()y x ln 1z +=的定义域是( )A. 0y x ≠+B.0y x +C. 1y x ≠+D. 1y x 0y x ≠++且 二、填空题1、设()⎪⎭⎫ ⎝⎛+=x y x y x f 2ln ,,则 ()(2,1'=y f ) 2、()du u z y x ,223+-==( )3、函数22y xy x z +-=在(1,1)处的梯度为( )4、Z=ylnx, 则"xx z =( )5、函数z=()xy x +ln 的定义域( )6、设zyxu =,则 ()(1,,1,1=du )7、已知:(){}θθsin ,cos ,,22=+-=l e y xy x y x f ,求在(1,1)点沿方向L 的方向导数( ) 三、解答题1、已知曲面:221y x z --= 上的点P 处的切平面平行于平面 122=++z y x ,求点P 处的切平面方程2、设:()yx y x z ++=2 ,求','y x z z3、设()y x z z ,=是由方程()0,=--z y z x f 所确定的隐函数,其中()v u f ,具有连续偏导数且,0≠∂∂+∂∂v fu f 求yz x z ∂∂+∂∂的值。
(完整版)大一下学期高等数学期末考试试题及答案
高等数学A(下册)期末考试试题【A卷】院(系)另寸___________ 班级___________ 学号 _______________ 姓名_________________ 成绩_____________、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上.)r r r r r1、已知向量a、b满足a b o, a 2,b 2,则a b __________ .32、设z xln(xy),贝H ----- _____________ .x y3、曲面x2 y2 z 9在点(1,2, 4)处的切平面方程为_________________________________________ .4、设f (x)是周期为2的周期函数,它在[,)上的表达式为f(x) x,贝U f (x)的傅里叶级数在x 3处收敛于____________ ,在x 处收敛于_________ .5、设L为连接(1,0)与(0,1)两点的直线段,则Jx y)ds __________ .※以下各题在答题纸上作答,答题时必须写出详细的解答过程一…,并在每张答题纸写上:姓名、学号、班级. 、解下列各题:(本题共5小题,每小题7分,满分35分)2x2 3y2 z29 亠 _1、求曲线 2 2 2 在点M o (1, 1,2)处的切线及法平面方程.z 3x y2 2 2 22、求由曲面z 2x 2y及z 6 x y所围成的立体体积.n 13、判定级数(1)n ln 是否收敛?如果是收敛的,是绝对收敛还是条件收敛?n 1 n2x z z4、设z f (xy, ) sin y,其中f具有二阶连续偏导数,求,•y x x y5、计算曲面积分dS,其中是球面x2 y2 z2 a2被平面z h (0 h a)截出的顶部.三、(本题满分9分)抛物面z x y被平面x y z 1截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)计算曲线积分L(e x siny m)dx (e x cosy mx)dy,其中m为常数,L为由点A(a,0)至原点0(0,0)的上半圆周x2 y2 ax (a 0).五、(本题满分10分)n求幕级数的收敛域及和函数.n 13n n六、(本题满分10分)计算曲面积分| 2x3dydz 2y3dzdx 3(z21)dxdy,其中为曲面z 1 x2 y2(z 0)的上侧.七、(本题满分6分)设f (x)为连续函数,f(0) a , F(t) [z f(x2 y2 z2)]dv,其中t 是由曲面z •, —y2tF(t)与z t2x2y2所围成的闭区域,求limt 0备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交; 不得带走试卷。
大一第二学期高数期末考试题(含答案)
大一第二学期高数期末测验一.单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不成导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无限小,但不是等价无限小; (B )()()x x αβ与是等价无限小;(C )()x α是比()x β高阶的无限小; (D )()x β是比()x α高阶的无限小. 3. 若()()()02xF x t x f t dt=-⎰,个中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得微小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不曲直线()y F x =的拐点.(A )22x (B )222x +(C )1x - (D )2x +.二.填空题(本大题有4小题,每小题4分,共16分) 4. =+→xx x sin 2)31(lim .5.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则. 6.lim(coscos cos )→∞-+++=22221n n nnnn ππππ .7. =-+⎰21212211arcsin -dx xx x .三.解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=肯定,求'()y x 以及'(0)y . 9.设函数)(x f 持续,=⎰1()()g x f xt dt,且→=0()lim x f x A x ,A 为常数.求'()g x 并评论辩论'()g x 在=0x 处的持续性.10. 求微分方程2ln xy y x x '+=知足=-1(1)9y 的解. 四. 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴.y 轴.直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五.解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x轴围成平面图形D.(1) 求D 的面积A;(2) 求D 绕直线x = e 扭转一周所得扭转体的体积V .六.证实题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上持续且单调递减,证实对随意率性的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上持续,且)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证实:在()π,0内至少消失两个不合的点21,ξξ,使.0)()(21==ξξf f (提醒:设⎰=xdxx f x F 0)()() 解答一.单项选择题(本大题有4小题, 每小题4分, 共16分) 1.D 2.A 3.C 4.C二.填空题(本大题有4小题,每小题4分,共16分)5.6e . 6.cx x +2)cos (21 .7. 2π. 8.3π.三.解答题(本大题有5小题,每小题8分,共40分)9. 解:方程双方求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:10330()x f x dx xe dx ---=+⎰⎰⎰12.解:由(0)0f =,知(0)0g =.02()()lim ()lim22xx x xf x f u duA A g x A x→→-'==-=⎰,'()g x 在=0x 处持续.13. 解:2ln dy y xdx x +=1(1),09y C =-=,11ln 39y x x x=- 四. 解答题(本大题10分)14.解:由已知且02d xy y x y'=+⎰,将此方程关于x 求导得y y y '+=''2特点方程:022=--r r 解出特点根:.2,121=-=r r其通解为x x e C e C y 221+=-代入初始前提y y ()()001='=,得 31,3221==C C故所求曲线方程为:xx e e y 23132+=-五.解答题(本大题10分)15.解:(1)依据题意,先设切点为)ln ,(00x x ,切线方程:)(1ln 000x x x x y -=-因为切线过原点,解出e x =0,从而切线方程为:x e y 1=则平面图形面积⎰-=-=1121)(e dy ey e A y(2)三角形绕直线x = e 一周所得圆锥体体积记为V 1,则2131e V π=曲线x y ln =与x 轴及直线x = e 所围成的图形绕直线x = e 一周所得扭转体体积为V 2D 绕直线x = e 扭转一周所得扭转体的体积)3125(6221+-=-=e e V V V π六.证实题(本大题有2小题,每小题4分,共12分)16.证实:1()()qf x d x q f x dx -⎰⎰1()(()())qqqf x d x q f x d x f x dx =-+⎰⎰⎰故有:1()()≥⎰⎰q f x d x q f x dx证毕.证:结构帮助函数:π≤≤=⎰x dt t f x F x0,)()(0.其知足在],0[π上持续,在),0(π上可导.)()(x f x F =',且0)()0(==πF F由题设,有⎰⎰⎰⋅+===ππππ0)(sin cos )()(cos cos )(0|dxx F x x x F x xdF xdx x f ,有⎰=πsin )(xdx x F ,由积分中值定理,消失),0(πξ∈,使0sin )(=ξξF 即0)(=ξF综上可知),0(,0)()()0(πξπξ∈===F F F .在区间],[,],0[πξξ上分离运用罗尔定理,知消失),0(1ξξ∈和),(2πξξ∈,使0)(1='ξF 及0)(2='ξF ,即0)()(21==ξξf f .。
大一下高等数学期末试题精确答案
一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续 B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ).4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x ∂∂,zy ∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量1322l i j =+方向的方向导数。
大一高数试题及答案
大一高数试题及答案一、选择题(每题3分,共15分)1. 函数f(x) = x^2 + 3x - 2在x=1处的导数是:A. 0B. 4C. 6D. 82. 曲线y = x^3 - 2x^2 + x - 5在点(1, -7)处的切线斜率是:A. -1B. 0C. 1D. 23. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/5D. 1/64. 函数f(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. π/2D. 4π5. 以下哪个级数是收敛的:A. 1 - 1/2 + 1/3 - 1/4 + ...B. 1 + 1/2 + 1/3 + 1/4 + ...C. 1 - 1/2 + 1/4 - 1/8 + ...D. 1 + 2 + 3 + 4 + ...二、填空题(每题2分,共10分)6. 函数f(x) = x^3 - 2x^2 + x - 5在x=2时的值是________。
7. 函数f(x) = e^x的导数是________。
8. 定积分∫(1, e) 1/x dx的值是________。
9. 函数y = ln(x)的反函数是________。
10. 函数f(x) = x^2 + 2x + 3的最小值是________。
三、解答题(共75分)11. 求函数f(x) = x^3 - 6x^2 + 11x - 6的极值点。
(10分)12. 证明函数f(x) = x^3在R上是单调递增的。
(10分)13. 求定积分∫(0, 2) (2x + 1)^2 d x,并求出其几何意义。
(15分)14. 解不等式:x^2 - 4x + 3 < 0。
(15分)15. 利用泰勒公式展开e^x在x=0处的前三项,并计算其近似值。
(25分)四、附加题(10分)16. 假设你有一个函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 2,求其在区间[0, 1]上的最小值。
大一高数下期末数学试卷
一、选择题(每题5分,共20分)1. 下列函数中,定义域为实数集R的是:A. f(x) = √(x - 2)B. f(x) = |x|C. f(x) = 1/xD. f(x) = x^2 - 12. 函数f(x) = x^3 - 3x在x=0处的导数为:A. 0B. 1C. -1D. -33. 设函数f(x) = 2x^2 + 3x + 1,若f(x)在x=1处的切线斜率为:A. 2B. 3C. 5D. 74. 下列级数中,收敛的是:A. ∑(n=1 to ∞) 1/n^2B. ∑(n=1 to ∞) nC. ∑(n=1 to ∞) (-1)^nD. ∑(n=1 to ∞) e^n5. 设向量a = (1, 2, 3),向量b = (4, 5, 6),则向量a与向量b的点积为:A. 11B. 13C. 15D. 17二、填空题(每题5分,共20分)1. 若函数f(x) = x^2 - 3x + 2在x=1处的切线斜率为k,则k=______。
2. 若数列{an}的通项公式为an = n^2 - n + 1,则数列{an}的前n项和Sn =______。
3. 设向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的叉积为______。
4. 若级数∑(n=1 to ∞) (-1)^n n^2是收敛的,则其收敛半径R = ______。
5. 设矩阵A = [[1, 2], [3, 4]],求矩阵A的行列式|A| = ______。
三、解答题(每题20分,共80分)1. (20分)求函数f(x) = x^3 - 3x + 2在区间[-1, 2]上的最大值和最小值。
2. (20分)证明:若数列{an}满足an = (1/a_{n-1}) + (1/a_{n-2}),且a1 = 1,a2 = 2,则数列{an}是收敛的。
3. (20分)设向量a = (2, 3),向量b = (-1, 2),求向量a与向量b的夹角θ。
大一高数练习题
大一高数练习题一、选择题(每题2分,共20分)1. 函数f(x)=x^2+3x-2的定义域是:A. RB. (-∞, +∞)C. [0, +∞)D. (-∞, 0) ∪ (0, +∞)2. 极限lim(x→0) (sin x)/x的值是:A. 0B. 1C. 2D. 不存在3. 函数f(x)=x^3-2x^2+x-6在x=1处的导数是:A. -4B. 0C. 4D. 84. 若函数f(x)=x^2+1在区间[-2,2]上是增函数,则下列说法正确的是:A. 函数f(x)在R上是增函数B. 函数f(x)在R上是减函数C. 函数f(x)在R上既不是增函数也不是减函数D. 函数f(x)在R上是减函数5. 函数y=x^2-4x+4在x=2处的切线斜率是:B. 4C. -4D. 86. 曲线y=x^3-6x^2+9x的拐点是:A. (1,2)B. (2,2)C. (3,0)D. (0,0)7. 曲线y=e^x与直线y=x相切的点的坐标是:A. (0,1)B. (1,e)C. (1,1)D. (0,0)8. 函数f(x)=ln(x)在x=1处的导数值是:A. 1B. 0C. -1D. 无穷大9. 函数f(x)=sin(x)在[0, 2π]上的值域是:A. [-1, 1]B. [0, 1]C. [-1, 0]D. [1, 2]10. 函数f(x)=x^2在[-1, 1]上的最大值是:A. 0C. -1D. 4二、填空题(每题2分,共20分)11. 函数f(x)=x^3的一阶导数是________。
12. 函数f(x)=x^2+1的二阶导数是________。
13. 极限lim(x→+∞) (1/x)等于________。
14. 函数f(x)=x^3-3x^2+2x的极小值点是________。
15. 函数f(x)=sin(x)的周期是________。
16. 函数f(x)=x^2-4x+4在x=2处的函数值是________。
大一高数试题及答案
大一高数试题及答案一、选择题1. 设函数 f(x) = x^2 + 3x + 2,下面哪个选项是其导函数?A. f'(x) = 2x + 3B. f'(x) = 2x + 6C. f'(x) = x^2 + 3x + 2D. f'(x) = 3x^2 + 2x + 32. 已知函数 f(x) 连续,则 f(x) = 3x 的解集为:A. x ∈ RB. x = 3C. x = 0D. x = -33. 设函数 y = x^3 - 2x^2 + 3x + 4,求其极值点。
A. (1, 6)B. (-1, -3)C. (0, 4)D. (2, 2)二、计算题1. 求函数 f(x) = 2x^2 + 5x - 3 的两个零点。
2. 求函数 f(x) = x^3 - 3x^2 + 2x - 4 在 x = 2 处的导数值。
三、解答题1. 求函数 f(x) = x^2 + 3x + 2 的顶点坐标及对称轴方程。
2. 求函数 f(x) = x^3 - 3x^2 + 2x - 4 在整个定义域上的单调区间。
答案解析:一、选择题1. A解析:由 f(x) = x^2 + 3x + 2,对 x 进行求导得到 f'(x) = 2x + 3。
2. A解析:由 f(x) = 3x,函数 f(x) 直接写出,解集为整个实数集 R。
3. B解析:求导得到 f'(x) = 3x^2 - 4x + 3,令 f'(x) = 0 解得 x = -1,代入原函数求得 y = -3,故极值点为 (-1, -3)。
二、计算题1. 首先,通过求根公式或配方法可得到两个零点 x1 = 1 和 x2 = -1.5。
2. 对函数 f(x) = x^3 - 3x^2 + 2x - 4 进行求导得到 f'(x) = 3x^2 - 6x + 2,将 x = 2 代入得到 f'(2) = 8。
大一高数考试试题
大一高数考试试题一、选择题(每题3分,共30分)1. 下列函数中,哪一个不是周期函数?A. y = sin(x)B. y = cos(x)C. y = e^xD. y = tan(x)2. 微积分基本定理表明,定积分可以通过什么方法求得?A. 极限B. 导数C. 积分D. 微分3. 如果函数f(x)在点x=a处连续,那么lim (x→a) f(x)等于:A. f(a)B. 0C. 1D. ∞4. 下列哪个选项是罗尔定理的前提条件?A. 函数在区间[a,b]上可导B. 函数在区间(a,b)内连续C. 函数在区间[a,b]上单调递增D. 函数在点a和点b处的值相等5. 曲线y = x^2在点(1,1)处的切线斜率是:A. 0B. 1C. 2D. -16. 以下哪个级数是收敛的?A. ∑(1/n^2)B. ∑(1/n)C. ∑((-1)^n)/nD. ∑(n)7. 函数f(x) = x^3 - 6x^2 + 11x - 6的零点个数是:A. 0B. 1C. 2D. 38. 以下哪个函数是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)9. 如果一个函数在某区间内可导,且导数恒大于0,则该函数在该区间内是:A. 单调递增的B. 单调递减的C. 有界D. 无界的10. 曲线y = ln(x)的水平渐近线方程是:A. y = 0B. y = 1C. y = xD. y = -x二、填空题(每题4分,共20分)11. 定积分∫(0,1) x^2 dx 的值是 _______。
12. 函数f(x) = 2x - 3在区间[1,4]上的最大值是 _______。
13. 利用导数研究函数f(x) = x^3 + x^2 - x - 1的单调性,可以得出在区间 _______ 上单调递增。
14. 利用洛必达法则计算极限lim (x→0) [sin(x)/x] 的结果是_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单项选择题(6×3分)
1、设直线,平面,那么与之间的夹角为
( )
B. C. D.
2、二元函数在点处的两个偏导数都存在是在点处可微的()
A.充分条件
B.充分必要条件
C.必要条件
D.既非充分又非必要条件
3、设函数,则等于()
A. B.
C. D.
4、二次积分交换次序后为()
A. B.
C. D.
5、若幂级数在处收敛,则该级数在处()
A.绝对收敛
B.条件收敛
C.发散 C.不能确定其敛散性
6、设是方程的一个解,若,则在处()
A.某邻域内单调减少
B.取极小值
C.某邻域内单调增加
D.取极大值
二、填空题(7×3分)
1、设=(4,-3,4),=(2,2,1),则向量在上的投影
=
2、设,,那么
3、D为,时,
4、设是球面,则=
5、函数展开为的幂级数为
6、=
7、为通解的二阶线性常系数齐次微分方程为
三、计算题(4×7分)
1、设,其中具有二阶导数,且其一阶导数不为 1,求。
2、求过曲线上一点(1,2,0)的切平面方程。
3、计算二重积分,其中
4、求曲线积分,其中是沿曲线由点(0,1)到点(2,1)的弧段。
5、求级数的和。
四、综合题(10分)
曲线上任一点的切线在轴上的截距与法线在轴上的截距之比为3,求此曲线方程。
五、证明题 (6分)
设收敛,证明级数绝对收敛。
一、单项选择题(6×3分)
1、 A
2、 C
3、 C
4、 B
5、 A
6、 D
二、填空题(7×3分)
1、2
2、
3、 4 、
5、6、0 7、
三、计算题(5×9分)
1、解:令则,故
2、解:令
则
所以切平面的法向量为:
切平面方程为:
3、解:===
4、解:令,则
当,即在x轴上方时,线积分与路径无关,选择由(0,1)到(2,1)则===
5、解:令则
,
即
令,则有
=
四、综合题(10分)
解:设曲线上任一点为,则
过的切线方程为:
在轴上的截距为
过的法线方程为:
在轴上的截距为
依题意有
由的任意性,即,得到
这是一阶齐次微分方程,变形为:
(1)
令则,代入(1)
得:
分离变量得:
解得:
即
为所求的曲线方程。
五、证明题 (6分)
证明:
即
而与都收敛,由比较法及其性质知:
收敛
故绝对收敛。
一,单项选择题(6×4分)
1、直线一定 ( )
A.过原点且垂直于x轴
B.过原点且平行于x轴
C.不过原点,但垂直于x轴
D.不过原点,但平行于x轴
2、二元函数在点处
①连续②两个偏导数连续③可微④两个偏导数都存在
那么下面关系正确的是()
A ②③① B. ③②①
C. ③④①
D. ③①④
3、设,则等于()
B.
C. D.
4、设,改变其积分次序,则I=()
A. B.
C. D.
5、若与都收敛,则()
A.条件收敛
B.绝对收敛
C.发散 C.不能确定其敛散性
6、二元函数的极大值点为()
A.(1,0)
B.(1,2)
C.(-3,0)
D.(-3,2)
二、填空题(8×4分)
1、过点(1,3,-2)且与直线垂直的平面方程为
2、设,则=
3、设D:,,则
4、设为球面,则
=
5、幂级数的和函数为
6、以为通解的二阶线性常系数齐次微分方程为
7、若收敛,则=
8、平面上的曲线绕轴旋转所得到的旋转面的方程为
三、计算题(4×7分)
1、设可微,由确定,求及。
2、计算二重积分,其中。
3、求幂级数的收敛半径与收敛域。
4、求曲线积分,其中是由所围成区域边界取顺时针方向。
四、综合题(10分)
曲线上点的横坐标的平方是过点的切线与轴交点的纵坐标,求此曲线方程。
五、证明题 (6分)
设正项级数收敛,证明级数也收敛。
一、单项选择题(6×4分)
1、 A
2、 A
3、 C
4、 B
5、 B
6、 D
二、填空题(8×4分)
1、2、3、 4 4、
5、6、7、1 8、
三、计算题(4×7分)
1、解:令
2、解:==
===
3、解:令对于,
当时=发散
当时,=也发散所以在时收敛,在该区间以外发散,即
解得
故所求幂级数的收敛半径为2,收敛域为(0,4)
4、解:令,则
,由格林公式得到
==
==4四、综合题(10分)
解:过的切线方程为:
令X=0,得
依题意有:即 (1)
对应的齐次方程解为
令所求解为
将代入(1)得:
故(1)的解为:
五、证明题 (6分)
证明:由于收敛,所以也收敛,而
由比较法及收敛的性质得:收敛。