高中数学 频率分布直方图教案 苏教版必修3

合集下载

苏教版必修三第13课时《频率分布表》word教案

苏教版必修三第13课时《频率分布表》word教案

11:问题:怎样通过上表中的数据,分析比较两时间段内的高温()状况?11111 1 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为 100的身 高样本,如下(单位:cm )•作出该样本的频率分布表. 并估计身高不小于170 的同学的所占的百分率.1例下表给出了某校名岁男孩中用随机抽样得出的人的身高单位): )列出样本频率分布表; (2)估计身高小于134cm 的人数占总人数的百分比.巩固练习1 •有一个容量为45的样本数据,分组后各组的频数如下:(12.5,15.5,3;(15.5,18.518;(18.5,21.5],9;(21.5,24.5],11;(24.5,27.5】,10;(27.5,30.5,4.由此估计,不大于27. 5的数据约为总体的()A . 91%B . 92%C . 95%D . 30%2 •已知样本 10 , 8 , 6 , 10 , 8 , 13 , 11 , 10 , 12 , 7 , 8 , 9, 11, 9 , 11 , 12 ,9 , 10 , 11, 12,那么频率为0.2的范围是 ___________________________ .1 13.列出情境中近年来北京地区7月25日至8月10日的气温的样本频率分布表.课堂小结总体分布的频率、频数的概念;编制频率分布表的一般步骤.课后训练班级:高二(_)班姓名:______________ —■基础题1在用样本频率估计总体分布的过程中,下列说法中,正确的是()A .总体容量越大,估计越精确;B .总体容量越小,估计越精确;C .样本容量越大,估计越精确;D .样本容量越小,估计越精确.2•—个容量为20的样本数据,数据的分组及各组的频数如下:10,20 ,2; 20,30 ,3; 30,40 ,4; 40,50 ,5; 50,60 4; 60,70 , 则样本在区间(_::, 50)上的频率为()A . 0.5B . 0.7 . C. 0.25 D. 0.053•—个容量为32的样本,已知某组样本的频率为0.125,那么该组样本的频数为__________ .4.一个容量为n的样本,分成若干组,已知某数的频数和频率分别为50和0.25 ,贝H n = _________ .5•已知样本7,10,14,8,7,12,11,10,8,10,13,10,8,11,8,9,12,9,13,12 那么这组数据落在8.5〜11.5内的频率为_______________ .二提高题6.某电子元件厂生产一批同型号的电子元件,今从中随机地抽取40个测得其电阻值(单位:11)如下:101,93,97,87,102,97,108,105,101,102,106,95,96,110,102,98,107,98,103,99,94,103,102,97,92,99,101,100,107,101,98,100,99,113,90,103,94,103,94,101 .试作出频率分布表.7并且知道第组的频率是第组频率的两倍,问第组的频率是多少?。

高中数学 622(频率分布直方图和折线图)教案 苏教版必修3 教案

高中数学 622(频率分布直方图和折线图)教案 苏教版必修3 教案

第20课时频率分布直方图和折线图【学习导航】知识网络学习要求1.频率分布直方图的作法,频率分布直方图更加直观形象地反映出总体分布的情况;2.频率分布折线图的作法,优点是反映了数据的变化趋势,如果样本容量足够大,分组的组距足够小,则这条折线将趋于一条曲线,称为总体分布的密度曲线。

【课堂互动】自学评价案例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.(1)在EXCEL工作表中输入数据,光标停留在数据区中;(2)选择“插入/图表”,在弹出的对话框中点击“柱形图”;(3)点击“完成”,即可看到如下频数条形图.案例2 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,数据如下(单位:cm)。

试作出该样本的频率分布直方图和折线图. 【解】上一课时中,已经制作好频率分布表,在此基础上, 我们绘制频率分布直方图.(1)作直角坐标系,以横轴表示身高,纵轴表示组距频率;(2)在横轴上标上150.5,153.5,156.5,…,180.5表示的点。

(为方便起见,起始点150.5可适当前移);(3)在上面标出的各点中,分别以连结相邻两点的线段为底作矩形,高等于该组的组距频率至此,就得到了这组数据的频率分布直方图,如下图频率同样可以得到这组数据的折线图.频率【小结】1.利用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图(frequency histogram),简称频率直方图。

2. 频率直方图比频率分布表更直观、形象地反映了样本的分布规律。

3.如果将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图(frequency polygon)4.频率分布折线图的的首、尾两端如何处理: 取值区间两端点须分别向外延伸半个组距,并取此组距上的x轴上的点与折线的首、尾分别相连5.如果将样本容量取得足够大,分组的组距取得足够小,则这条折线趋于一条曲线,这一曲线称为总体分布的密度曲线。

高中数学 2.2.1 频率分布表教案 苏教版必修3(2021年整理)

高中数学 2.2.1 频率分布表教案 苏教版必修3(2021年整理)

江苏省徐州市高中数学2.2.1 频率分布表教案苏教版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省徐州市高中数学2.2.1 频率分布表教案苏教版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省徐州市高中数学2.2.1 频率分布表教案苏教版必修3的全部内容。

2.2。

1 频率分布表教学目标1.了解频数、频率的概念,了解全距、组距的概念;2.能正确地编制频率分布表;会用样本频率分布去估计总体分布;教学重难点重点:用样本频率分布估计总体分布;难点:对总体分布概念的理解;频率分布表的绘制.教学参考教材、教参授课方法自读提示教学辅助手段多媒体专用教室教学教学二次备课过程设计一、问题情境如下样本是随机抽取近年来北京地区7月25日至8月24日的日最高气温:(表见课本P50-51)二、建构数学一般地:当总体很大或不便获取时,用样本的频率分布去估计总体频率分布;把反映总体频率分布的表格称为频率分布表.三、数学运用例1 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).作出该样本的频率分布表.并估计身高不小于170的同学的所占的百分率.(表见课本P50-51)解:(1)在全部数据中找出最大值180与最小值151,它们相差(极差)29,确定全距为30,决定组距为3;(2)将区间[150.5,180.5]分成10组;问题:怎样通过上表中的数据,分析比较两时间段内的高温(33C)状况?教学教学二次备课过程设计分别是[150.5,153.5),[153.5,156.5),…,[177.5,180.5)(3)从第一组[150.5,153.5)开始分别统计各组的频数,再计算各组的频率,列频率分布表:例2 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)(1)列出样本频率分布表﹔(2)估计身高小于134cm的人数占总人数的百分比.分析根据样本频率分布表、频率分布直方图的一般步骤解题.四、要点归纳与方法小结本节课学习了以下内容1.总体分布的频率、频数的概念;2.绘制频率分布表的一般步骤.编制频率分布表的步骤:1、求全距,决定组数和组距.全距是指整个取值区间的长度,组距是指分成的区间的长度2、分组:通常对组内的数值所在的区间取左闭右开区间,最后一组取闭区间;3、登记频数,计算频率,列出频率分布表课外作业课本第52~53页练习第1、3题.。

苏教版高中数学必修3-2.2《频率分布直方图与折线图》参考学案

苏教版高中数学必修3-2.2《频率分布直方图与折线图》参考学案

总课题总体分布的估计
分课题频率分布直方图与折线图分课时第 2 课时
教学目标能列出频率分布表,能画出频数条形图、频率分布直方图及折线图;会用样本频率分布去估计总体分布.
重点难点绘制频率直方图、条形图、折线图.
引入新课
1.列频率分布表的一般步骤是什么?能否根据频率分布表来绘制频率直方图?2.作频率分布直方图的方法为:
3.如果将频率分布直方图中各相邻矩形的上底边中点并顺次连结起来,就得到_________,简称___________.
4.频率折线图的优点是:_________________________.如果样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑的曲线,我们称这条光滑的曲线为总体分布的___________.
例题剖析
例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.
例2 作出例1中数据的频率分布直方图.
例3 为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得。

2019-2020年高中数学 6.2.1《频率分布表》教案 苏教版必修3

2019-2020年高中数学 6.2.1《频率分布表》教案 苏教版必修3

2019-2020年高中数学 6.2.1《频率分布表》教案 苏教版必修3学习要求1.感受如何用样本频率分布表去估计总体分布;2.自己亲自体验制作频率分布表的过程,注意分组合理并确定恰当的组距;【课堂互动】自学评价案例1 为了了解7月25日至8月24日北京地区的气温分布状况,我们对往年份这段时间的日最高气温进行抽样,并对得到的数据进行分析.我们随机抽取近年来北京地区7月25日至【分析】要比较两时间段的高温状况,最直接的方法就是分别统计这两时间段中高温天数.如果天数差距明显,则结论显然,若天数差距不明显,可结合其它因素再综合考虑.上面两样本8月8日至8月24日.上例说明,当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.案例2 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,数据如下(单位:cm)。

试作出该样本的样本的频率分布表。

【分析】该组数据中最小值为151,最大值为180,它们相差29,可取区间[150.5,180.5],并将此区间分成10个小区间,每个小区间长度为3,再统计出每个区间内的频数并计算相应的频率,我们将整个取值区间的长度称为全距,分成的区间的长度称为组距。

【解】(1)在全部数据中找出最大值180和最小值151,则两者之差为29,确定全距为30,决定以组距3将区间[150.5,180.5]分成10个组;【小结】编制频率分布表的步骤如下:(1)求全距,决定组数和组距,组距=全距/组数;(2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表.在分组时,为了容易看出规律,一般分组使每组的长度相等,组数不宜太多也不宜太少.一般地,称区间的左端点为为下组限,右端点为上组限。

我们可以采用下组限在内而上组限不在内的分组方法,也可采用下组限不在内而上组限在内的分组方法。

数学苏教版必修3教案:2.2.1频率分布表 Word版含解析

数学苏教版必修3教案:2.2.1频率分布表 Word版含解析

2.2总体分布的估计2.2.1频率分布表整体设计教材分析“频率分布表”这一节主要通过探究“北京地区的气温分布状况问题”逐步引入频率分布表.用例题说明分布表的编制过程.在实际应用中,很多问题的解答需要总体分布的信息,而总体分布则需要用样本来估计,在“北京地区的气温分布状况问题”中,要解决的是怎样通过已知数据分析比较两时间段的高温状况.频率分布是总体分布的一种近似,频率分布表具有如下特性:(1)教科书中只给出了样本容量不超过100时,分组数k在5~12组之间的情形.(2)频率分布表中的数字与分组数(组距)有关.(3)通过样本的改变让学生体会频率分布表的随机性.(4)由于随着样本容量的增加,频率分布表中的各个频率会稳定在总体相应分组的概率之上,要让学生体会频率分布表的这种随样本容量增加的规律性.(5)由于频率分布表编制的工作量一般很大,课本介绍了利用Excel制作频率分布表的方法和步骤.三维目标1.通过实例体会分布的意义和作用;学会列频率分布表;体会频率分布表的特点.2.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的概率分布估计总体分布.3.能根据实际问题的需求合理地选取样本,并作出合理的解释,会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.4.在教学过程中,通过学生的相互交流,来加深对频率分布表概念的理解,增强学生数学交流能力,培养学生倾听、接受别人意见的优良品质.5.通过引导学生欣赏蕴含在我们生活中与频率分布表有关的实际问题,使学生感受数学、走进数学.重点难点教学重点:用样本频率分布估计总体分布.教学难点:1.对总体分布概念的理解;2.频率分布表的编制.课时安排1课时教学过程导入新课设计思路一:(实例导入)教师出示投影胶片1:为了了解7月25日至8月24日北京地区的气温分布状况,我们对以往年份这段时间的日最高气温进行抽样,并对得到的数据进行分析.我们随机抽取近年来北京地区7月25日至8月24日的日最高气温,得到如下样本(单位:℃):7月25日至8月10日41.937.535.735.437.238.134.733.733.3 32.534.633.030.831.028.631.528.88月828.631.528.833.232.530.330.229.833.132.829.425.624.730.030.129.530.3日至8月24日怎样通过上表中的数据,分析比较两时间段的高温(≥33 ℃)状况呢?上面两样本中的高温天数的频率用下表表示:时间总天数高温天数(频数)频率7月25日至8月10日17110.6478月8日至8月24日1720.118由此表可以发现,近年来,北京地区7月25日至8月10日的高温天气的频率明显高于8月8日至8月24日.上例说明,当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.引入课题,板书课题——用样本频率分布估计总体分布.设计思路二:(情境导入)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某城市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准为a,用水量不超过a的部分按平价收费,超出部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较为合理地确定出标准,需要做哪些工作?分析:如果标准太高,会影响居民的日常生活;如果标准太低,则不利于节水.为了确定一个较为合理的标准a,必须了解全市居民的日常用水量的分布情况.比如月均用水量在哪个范围内的居民最多,他们占全市居民的百分比情况等.由于城市的居民较多,不可能也没有必要一一调查,那如何处理呢?可以采用随机抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.假设通过抽样我们获得了100位居民某年的月均用水量(单位:吨).推进新课新知探究(给出投影胶片2:100位居民的月均用水量)100位居民的月均用水量(单位:吨).分析:上面这些数字能告诉我们什么呢?可以看出居民月均用水量的最小值为0.2,最大值为4.3,其他在0.2到4.3之间.除此以外,很难发现这100位居民的用水量的其他信息了.实际上,我们很难从随意记录下来的数据中直接看出规律.为此,我们需要对统计数据进行整理和分析.分析研究:分析数据的一种基本方法是用紧凑的表格改变数据的排列方式.或者用图形将它们画出来.表格可以改变数据的构成形式,为我们提供了解释数据的新方式.作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.这就是我们初中学过的频数分布图和频数分布表,在此基础上我们从各个小组数据在样本容量中所占比例大小的角度进一步研究频率分布表.1.首先求极差,如何求?是多少?求极差即一组数据中的最大值与最小值的差.4.3-0.2=4.1,说明样本数据的变化范围是4.1.2.如何选定适当的组距与组数?组数是越多越好吗?通常是就样本的量而定,抽取样本的量也要视实际问题的需要来确定,并非越多越好.本例样本量是100,组数为8~12组比较适当,组距力求取整.在此问题中,如果取组距为0.5,那么有:组数=2.85.01.4==组距极差 因此可以将数据分为9组.3.选定组距与组数后为进一步分析数据还需要确定分点,将数据分组.进行数据分组后可以详细地记录每组数据在所抽取的样本中占的频数及频率.组数少了,频数及频率就有可能相应的变大,因此,样本的频率分布表可随组数的变化而改变.第N 组的频率=样本容量组频数第N 上例说明,当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表(frequency distribution table ).一般地,编制频率分布表的步骤如下:(1)求全距,决定组数和组距,组距=组数全距; (2)分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;(3)登记频数,计算频率,列出频率分布表.其中,整个取值区间的长度称为全距;分成的区间的长度称为组距.频率分布表的优点是:能直接反映数据在各范围内的频率和频数;其缺点是:不能直观地反映数据的频率分布.应用示例例1 从规定尺寸为25.40 mm 的一堆产品中任意抽取100件,测得它们的实际尺寸如下:制作频率分布表.分析: 根据编制频率分布表的步骤完成.解:如果把这对产品的尺寸的全体看作一个总体,则上面数据就是从总体抽取的一个容量为100的样本.在这组数据中,最小值为25.24,最大值为25.56,他们相差0.32,可取区间[25.235,25.565].我们可将此区间分成11个区间,每个区间的长度为0.03,计出每个区间内的频数,并计算相应的频率,将结果填入下表:分组 频数累计 频数 频率[25.235,25.265) 1 1 0.01[25.265,25.295) 3 2 0.01[25.295,25.325) 8 5 0.05[25.325,25.355) 20 12 0.12[25.355,25.385) 38 18 0.18[25.385,25.415)63250.25[25.415,25.445)79160.16[25.445,25.475)92130.13[25.475,25.505)9640.04[25.505,25.535)9820.02[25.535,25.565]10020.02合计100 1.00点评:这张表给出了产品尺寸处于各个区间内的个数和频率,由此可估计这一堆产品的尺寸分布情况,这就是该样本的频率分布表.在表中频数是指落在各小组内的数据的个数.频率是各组的频数与数据总数的比值.由上面的制表过程可得编制频率分布表的步骤如下:(1)计算数据中最大值与最小值的差,算出了这个差就可以知道这组数据的变动范围有多大.(2)决定组数与组距.将这一组数据分组,目的是要描述数据的分布规律,要根据数据的多少来确定分组的数目.一般来说,数据越多,分的组也越多.(3)决定分点.要使分点比数据多一位小数,并且把第一组的下限略去或把第一组的起点稍减小一点.(4)列频率分布表.登记频数,计算频率,列出频率分布表.频率分布表能反映数据在某一范围内出现的可能性.如果这一范围是由几组数据组成的,则其出现的可能性为这几组数据的频率之和.在编制频率分布表时,若题目已给出了组距和组数,可以直接列出频率分布表.例2 在编制频率分布表时,①组距不变时,不同的起始点不影响分组数;②组距不变,分组数不变时,不同起始点对应的频率分布表中的各组频率一定是不同的;③分组数越多,频率分布表就越准确地反映总体的情况.以上结论中正确的共有()A.0个B.1个C.2个D.3个分析:①错,不同的起始点可能会引起组数的增加;②错,有可能相同;③错,只能是更准确地反映样本的情况,而不是总体.答案:A点评:使学生更好地理解频率分布表的制作.例3 有一个容量为100的样本,数据的分组及各组的频数如下:[12.5,15.5),6;[15.5,18.5),16;[18.5,21.5),18;[21.5,24.5),22;[24.5,27.5),20;[27.5,30.5),10;[30.5,33.5],8.(1)列出样本的频率分布表;(2)估计数据小于30.5的可能性是百分之几?分析:此题已给出了组距和组数,可以直接列出频率分布表.解:(1) 样本的频率分布表如下:分组频数频率[12.5,15.5)60.06[15.5,18.5)160.16[18.5,21.5)180.18[21.5,24.5)220.22[24.5,27.5)200.20[27.5,30.5) 10 0.10[30.5,33.5] 8 0.08合计 1001.00 (2)数据大于等于30.5的频率是0.08,所以小于30.5的频率是0.92,所以数据小于30.5的可能性是92%.点评:解决总体分布估计问题的一般精简程序如下:(1)先确定分组的组数(最大数据与最小数据之差除以组距得组数);(2)分别计算各组的频数及频率(频率=组数频数). 例4 根据中国银行的外汇牌价,2005年1季度的60个工作日中,欧元的现汇买入价(100欧元的外汇可兑换的人民币)的分组与各组频数如下:[1 050,1 060),1;[1 060,1 070),7;[1 070,1 080),20;[1 080,1 090),11;[1 090,1 100),13;[1 100,1 110),6;[1 110,1 120],2.(1)列出欧元的现汇买入价的频率分布表;(2)估计欧元的现汇买入价在区间1 065~1 105内的频率;(3)如果欧元的现汇买入价不超过x 的频率的估计为0.95,求此x.分析:第1问学生已无障碍,下面两问要结合对频率分布表中分布意义的理解.解:(1)欧元的现汇买入价的频率分布表为分组 频数 频率[1 050,1 060) 1 0.017[1 060,1 070) 7 0.117[1 070,1 080) 20 0.333[1 080,1 090) 11 0.183[1 090,1 100) 13 0.217[1 100,1 110) 6 0.100[1 110,1 120] 2 0.033合计 601.00 (2)欧元的现汇买入价在区间1 065~1 105内的频率的估计值为 0.117×1060107010651070--+0.333+0.183+0.217+0.100×1100111011001105--=0.84. (3)因为0.017+0.117+0.333+0.183+0.217=0.867<0.95,0.017+0.117+0.333+0.183+0.217+0.100=0.967>0.95,所以x 在区间[1 100,1 110)内,且满足0.867+0.100×110011101100--x =0.95,所以x≈1 108.3.即欧元的现汇买入价不超过1 108.3的频率的估计为0.95.点评:通过对生活实例的分析,使学生更好地体会分布的意义和作用.频率分布表能反映数据在某一范围内出现的可能性.如果这一范围是由几组数据组成的,则其出现的可能性为这几组数据的频率之和.知能训练对某电子元件进行寿命追踪调查,情况如下:寿命(h ) 100~200 200~300 300~400 400~500 500~600 个数 20 30 80 40 30(1)列出频率分布表;(2)估计电子元件寿命在100 h ~400 h 以内的概率;(3)估计电子元件寿命在400 h以上的概率.解:(1)频率分布表:寿命频数频率100~200200.1200~300300.15300~400800.40400~500400.20500~600300.15合计2001(2)频率分布表可以算出,寿命在100 h~400 h的电子元件出现的频率为0.65,所以我们估计电子元件寿命在100 h~400 h的概率为0.65.(3)由频率分布表可知,寿命在400 h以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h以上的概率为0.35 .点评:结合例题配套练习,让学生熟练掌握解题过程.课堂小结总体分布情况可以通过样本来估计,频率分布是总体分布的一种近似.频率分布表编制步骤:①求极差;②决定组距与组数;③将数据分组;④列频率分布表.频率分布表具有如下特性:①分组的变化可以引起频率分布表的结构的变化.②随机性:频率分布表是由样本决定的,因此它们会随样本的改变而改变,而样本是随机抽取的.③规律性:由于频率趋近于概率的原则,若固定分组,随着样本容量的增加,频率分布表中的各个频率会稳定在总体相应分组的概率之上.作业1.课本习题2.2 1.2.现实生活中,很多问题的解决需要总体分布的信息,而总体分布需要用样本来估计.如身高、体重、考试成绩、农作物产量、某种特定新产品的各种质量指标、股票价格等.请自己查阅资料做进一步的调查了解,作出分析判断,提出建议.要注意抽样的合理性与可操作性.设计感想研究分布规律的方法应在解决实际问题的过程中探索出来,所以制作频率分布表的过程或步骤应该是在结合实例的基础上,一边实践一边总结,因此一开始例题的解决过程应是探索过程.。

高中数学 2.2.2《频率分布直方图与折线图》教案 苏教版必修3

高中数学 2.2.2《频率分布直方图与折线图》教案 苏教版必修3

频率分布直方图与折线图学习目标能列出频率分布表,能画出频率分布的条形图、直方图、折线图;会用样本频率分布去估计总体分布.学习重点、难点绘制频率直方图、条形图、折线图.会根据样本频率分布或频率直方图去估计总体分布.教学过程一、问题情境1.问题:(1)列频率分布表的一般步骤是什么?(2)能否根据频率分布表来绘制频率直方图?(3)能否根据频数情况来绘制频数条形图?二、建构数学1.频数条形图例1.下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.星期一二三四五件数 6 2 3 5 1累计 6 8 11 16 172.频率分布折线图在频率分布直方图中,取相邻矩形上底边的中点顺次连结起来,就得到频率分布折线图(简称频率折线图)例2的频率折线图如图:3.密度曲线如果样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑的曲线,称这条光滑的曲线为总体的密度曲线.例2.为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表135 98 102 110 99 121 110 96 100 103125 97 117 113 110 92 102 109 104 112109 124 87 131 97 102 123 104 104 128105 123 111 103 105 92 114 108 104 102129 126 97 100 115 111 106 117 104 109111 89 110 121 80 120 121 104 108 118129 99 90 99 121 123 107 111 91 10099 101 116 97 102 108 101 95 107 101102 108 117 99 118 106 119 97 126 108123 119 98 121 101 113 102 103 104 108(1)编制频率分布表;(2)绘制频率分布直方图;(3)估计该片经济林中底部周长小于100cm 的树木约占多少,周长不小于120cm的树木约占多少.2.练习:(1)第57页第1题.(2)一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭万盒.课堂小结1.什么是频数条形图、频率直方图、折线图、密度曲线?2.绘制频率分布直方图的一般方法是什么?3.频率分布直方图的特征:(1)从频率分布直方图可以清楚的看出数据分布的总体趋势.(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.。

高中数学 频率分布直方图课件 苏教版必修3

高中数学 频率分布直方图课件 苏教版必修3

0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
(1)居民月均用水量的分布是“山峰”状的,而且是“单峰”的;
(2)大部分居民的月均用水量集中在一个中间值附近,只有少数 居民的月均用水量很多或很少; (3)居民月均用水量的分布有一定的对称性等.
频率 组距 0.5 0.4 0.3 0.2 0.1
O
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
各小长方形的面积=频率 各小长方形的面积之和=1
思考3:频率分布直方图非常直观地表明了样本数据的分布 情况,使我们能够看到频率分布表中看不太清楚的数据模 式,但原始数据不能在图中表示出来.你能根据上述频率分 布直方图指出居民月均用水量的一些数据特点吗? 频率 组距
第二步,确定分点,将数据分组. 第三步,统计频数,计算频率,制成表格. (频数=样本数据落在各小组内的个数, 频 率=频数÷样本容量)
分 组 [0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5] 合计
频数 4 正 8 正 正 正 15 正 正 正 正 22 正 正 正 正 正 25 正 正 14 正 一 6 4 2 100
思考4:样本数据的频率分布直方图是根据频率分布表画出 来的,一般地,频率分布直方图的作图步骤如何? 第一步,画平面直角坐标系. 第二步,在横轴上均匀标出各组分点,在纵轴上标出单 位长度. 第三步,以组距为宽,各组的频率与组距的商为高,分 别画出各组对应的小长方形.

高中数学 2.2.2频率分布直方图与折线图导学案 苏教版必修3

高中数学 2.2.2频率分布直方图与折线图导学案 苏教版必修3

2.2.2《频率分布直方图与折线图》导学案学习目标:(1)根据频率分布表,能画出频率分布的条形图、直方图、折线图;(2)会用样本频率分布去估计总体分布.学习重点:绘制频率直方图、条形图、折线图.学习难点:会根据样本频率分布或频率直方图去估计总体分布.学习过程:一、问题情境1.问题:(1)列频率分布表的一般步骤是什么?(2)能否根据频率分布表来绘制频率直方图?(3)能否根据频数情况来绘制频数条形图?二、建构数学引例1.下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.____________________________________________________________________________ ____________________________________________________________________________ 引例2.下表是1002名学生身高的频率分布表,根据数据画出频率分布直方图.2_____________________________________________________________________________ _____________________________________________________________________________ 3.频率分布折线图________________________________________________________ 4.密度曲线________________________________________________________________ 三、数学运用1.例题例3.为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm)小于100cm的树木约占多少,周长不小于120cm的树木约占多少.0.5 时间(小时)0 1.0 1.5 2.02.练习(1)教材57页第1题.(2)一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭 万盒.(3)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示。

江苏省盐城市文峰中学高中数学 第二章 第5课时 频率分布直方图与折线图教案 苏教版必修3

江苏省盐城市文峰中学高中数学 第二章 第5课时 频率分布直方图与折线图教案 苏教版必修3

高中数学教学案教学案
第二章统计
第5课时频率分布直方图与折线图
教学目标:
能列出频率分布表,能画出频率分布的条形图、直方图、折线图;会用样本频率分布去估计总体分布.
教学重点:
绘制频率直方图、条形图、折线图.
教学过程:
Ⅰ.问题情境
Ⅱ.建构数学
1.频率分布直方图
2.频率分布折线图
Ⅲ.数学应用
P例1的数据作出频率分布直方图。

例1.根据课本
51
练习:根据例1的频率分布直方图作出频率分布折线图。

例2:为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数
P表2-2-6
据表〔单位:cm〕见
55
〔1〕编制频率分布表;〔2〕绘制频率分布直方图;〔3〕估计该片经济林中底部周长小于100cm的树木约占多少,周长不小于120cm的树木约占多少.
练习: 有一容量为50的样本,数据的分组及各组的频数如下:
20
[ 10 )
,
25
[ 11
[ 5 )
25
30
,
,
)
15
10
15
[ 4 )
20
,
[ 8 )
45
40
35
[ 3
,
40
35
,
,
)
30
[ 9 )
画出频率分布直方图.
Ⅳ.课时小结
绘制频率分布直方图与折线图的一般方法.
Ⅴ.课堂检测
Ⅵ.课后作业
书本P56 1,2。

江苏省徐州市高中数学2.2.2频率分布直方图与折线图教案苏教版必修3

江苏省徐州市高中数学2.2.2频率分布直方图与折线图教案苏教版必修3

2。

2.2 频率分布直方图与折线图教学目标1.根据频率分布表,能画出频率分布的条形图、直方图、折线图;2.会用样本频率分布去估计总体分布.教学重难点绘制频率直方图、条形图、折线图.会根据样本频率分布或频率直方图去估计总体分布.教学参考教材、教参授课方法启发、引导教学辅助手段多媒体专用教室教学过程设计教学二次备课一、问题情境1.列频率分布表的一般步骤是什么?2.能否根据频率分布表来绘制频率直方图?3.能否根据频数情况来绘制频数条形图?二、建构数学1.频数条形图.例 1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.星期一二三四件数6235累计681116解:学生活动:讨论如何作图.五117教学过程设计教学二次备课象这样表示每一天频数的柱形图叫频数条形图.2.频率分布直方图:例2 下表是1002名学生身高的频率分布表,根据数据画出频率分布直方图.3.频率分布折线图.在频率分布直方图中,取相邻矩形上底边的中点顺次连结起来,就得到频率分布折线图(简称频率折线图)例2的频率折线图如图:4.密度曲线.如果样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑的曲线,称这条光滑的曲线为总体的密度曲线.例 3 为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm)(图见P55页)三、要点归纳与方法小结本节课学习了以下内容1、频数条形图、频率直方图、折线图、密度曲线;2、绘制频率分布直方图的一般方法。

作频率分布直方图的方法为:把横轴分成若干段,每一段对应一个组的组距,以此线段为底作矩形,高等于该组的频率/组距,这样得到一系列矩形,每一个矩形的面积恰好是该组上的频率.这些矩形构成了频率分布直方图.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

高中数学新苏教版精品教案《苏教版高中数学必修3 2.2.1 频率分布表》

高中数学新苏教版精品教案《苏教版高中数学必修3 2.2.1 频率分布表》

教学设计:2.频率分布表教学目标:1、了解频数、频率的概念,了解全距、组距的概念;2、了解频率分布的意义和作用;3、掌握频率分布表的编制及其应用;4、通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法.学情分析:学生初中通过历史上比较有名的抛硬币实验学习过制作比较简单的频率分布表。

重难点:重点:能正确地编制频率分布表;难点:会用样本频率分布去估计总体分布.教学过程:一、情境引入:北京著名风景图片及暑假气温数据二、自主学习:1.频数是指落在各个小组内数据的________,频率是指________与______________的比值.2.反映________频率分布的表格称为频率分布表.3.编制频率分布表的步骤:1求全距,决定________和________,2分组,通常对组内数值所在区间取_______________,最后一组取________,3登记频数,计算________,列出________.4.全距也叫________,它实际上是所取的全部样本数据中__ ________ ______的差.三、典型例题:例 1.从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下单位:分:[40,50,2;[50,60,3;[60,70,10;[70,80,15;[80,90,12;[90,100],81列出样本的频率分布表含累计频率;2估计成绩在[60,90分的学生比例;3估计成绩在85分以下的学生比例.例2.为检测某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,二级品8件,三级品13件,次品4件.1作出样本的频率分布表;2根据上述结果,估计此产品为二级品或三级品的百分比约是多少?四、课堂小结:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省连云港市灌云县四队中学高中数学必修三教案:频率分布直方图
中国书法艺术说课教案
今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:
本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

书法作为中国特有的一门线条艺术,在书写中与笔、墨、纸、砚相得益彰,是中国人民勤劳智慧的结晶,是举世公认的艺术奇葩。

早在5000年以前的甲骨文就初露端倪,书法从文字产生到形成文字的书写体系,几经变革创造了多种体式的书写艺术。

1、教学目标:
使学生了解书法的发展史概况和特点及书法的总体情况,通过分析代表作品,获得如何欣赏书法作品的知识,并能作简单的书法练习。

2、教学重点与难点:
(一)教学重点
了解中国书法的基础知识,掌握其基本特点,进行大量的书法练习。

(二)教学难点:
如何感受、认识书法作品中的线条美、结构美、气韵美。

3、教具准备:
粉笔,钢笔,书写纸等。

4、课时:一课时
二、教学方法:
要让学生在教学过程中有所收获,并达到一定的教学目标,在本节课的教学中,我将采用欣赏法、讲授法、练习法来设计本节课。

(1)欣赏法:通过幻灯片让学生欣赏大量优秀的书法作品,使学生对书法产生浓厚的兴趣。

(2)讲授法:讲解书法文字的发展简史,和形式特征,让学生对书法作进一步的了解和认识,通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!(3)练习法:为了使学生充分了解、认识书法名家名作的书法功底和技巧,请学生进行局部临摹练习。

三、教学过程:
(一)组织教学
让学生准备好上课用的工具,如钢笔,书与纸等;做好上课准备,以便在以下的教学过程中有一个良好的学习气氛。

(二)引入新课,
通过对上节课所学知识的总结,让学生认识到学习书法的意义和重要性!
(三)讲授新课
1、在讲授新课之前,通过大量幻灯片让学生欣赏一些优秀的书法作品,使学生对书法产生浓厚的兴趣。

2、讲解书法文字的发展简史和形式特征,让学生对书法作品进一步的了解和认识通过对书法理论的了解,更深刻的认识书法,从而为以后的书法练习作重要铺垫!
A书法文字发展简史:
①古文字系统
甲古文——钟鼎文——篆书
早在5000年以前我们中华民族的祖先就在龟甲、兽骨上刻出了许多用于记载占卜、天文历法、医术的原始文字“甲骨文”;到了夏商周时期,由于生产力的发展,人们掌握了金属的治炼技术,便在金属器皿上铸上当时的一些天文,历法等情况,这就是“钟鼎文”(又名金文);秦统一全国以后为了方便政治、经济、文化的交流,便将各国纷杂的文字统一为“秦篆”,为了有别于以前的大篆又称小篆。

(请学生讨论这几种字体的特点?)古文字是一种以象形为主的字体。

②今文字系统
隶书——草书——行书——楷书
到了秦末、汉初这一时期,各地交流日见繁多而小篆书写较慢,不能满足需要,隶书便在这种情况下产生了,隶书另一层意思是平民使用,同时还出现了一种草写的章草(独草),这时笔墨纸都已出现,对书法的独立创作起到了积极的推动作用。

狂草在魏晋出现,唐朝的张旭、怀素将它推向顶峰;行书出现于晋,是一种介于楷、行之间的字体;楷书也是魏晋出现,唐朝达到顶峰,著名的书法家有欧阳询、颜真卿、柳公权。

(请学生谈一下对今文字是怎样理解的?),教师进行归纳:它们的共同特点是已经摆脱了象形走向抽象化。

B主要书体的形式特征
①古文字:甲骨文,由于它处于文明的萌芽时期,故字形错落有致辞,纯古可爱,目前发现的总共有3000多字,可认识的约1800字。

金文,处在文明的发展初期,线条朴实质感饱满而丰腴,因它多附在金属器皿上,所以保存完整。

石鼓文是战国时期秦的文字,记载的是君王外出狩猎和祈祷丰年,秦篆是一种严谨刻板的纯实用性的字体,艺术价值很小。

②今文字:隶书是在秦篆严谨的压抑下出现的一种潇洒开放型的新字体,课本图例《张迁碑》结构方正,四周平稳,刚劲沉着,是汉碑方笔的典范,章草是在隶书基础上更艺术化,实用化的字体,索靖《急就章》便是这种字体的代表作,字字独立,高古凝重,楷书有两大部分构成:魏碑、唐楷魏碑是北魏时期优秀书法作品的统称。

《郑文公碑》和《始平公造像》是这一时期的代表,前者气势纵横,雄浑深厚,劲健绝逸是圆笔的典型;唐楷中的《醴泉铭》法度森严、遒劲雄强,浑穆古拙、浑厚刚健,《神策军碑》精练苍劲、风神整峻、法度谨严,以上三种书体分别代表了唐楷三个时期的不同特点。

《兰亭序》和《洛神赋》作者分别是晋代王羲之、王献之父子是中国书法史上的两座高峰,前者气骨雄骏、风神跌宕、秀逸萧散的境界,后者在技法上达到了由拙到巧、笔墨洗练、丝丝入扣的微妙的境界。

他们都是不拘泥于传统的章法和技能,对后世学书者产生了深远的影响;明代文征明的书法文雅自如,现代书家沈尹默在继承传统书法方面起到了不可魔灭的作用。

3、欣赏要点:
先找几位同学说一下自己评价书法作品的标准或原则是什么?[或如何来欣赏一幅书法作品?]学生谈完后,对他们的观点进行归纳总结。

然后自己要谈一下自己的观点:书法艺术的欣赏活动,有着不同于其它艺术门类的特征,欣赏书法伤口不可能获得相对直接的印象、辨识与教益,也不可能单纯为了使学生辨识书写的内容,去探讨言词语汇上的优劣。

进而得出:书法主要是通过对抽象的点画线条、结构形态和章法布局等有“情趣意味“的形式,从客观物象各种美的体态,安致这些独有的特性中,使人们在欣赏时得到精神上健康闲静的愉悦和人们意念境界里的美妙享受(结合讲授出示古代书法名作的图片,并与一般的书法作品进行比较,让学生在比较中得出什么是格调节器高雅,什么是粗庸平常)。

书法可以说是无声的音乐,抽象的绘画,线条流动的诗歌。

四、课堂评价:
根据本节课所学的内容结合板书。

让学生体会到祖国书法艺术的博大精深,着重分析学生在书体形式特点和审美欣赏方面表现出的得失。

让学生懂得在欣赏书法时主要是通过对抽像的点画线条、结构形态和章法布局等有“情趣意味“的形式,从客观物象各种美的体态,安致这些独有的特性中,使人们在欣赏时得到精神上健康闲静的愉悦和人们意念境界里的美妙享受。

相关文档
最新文档