初中数学_分式方程教学设计学情分析教材分析课后反思
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时课题:第五章 第四节 分式方程 第二课时
课 型:新授课
授课人:学
授课时间:2015年5月7日 星期四 第二节课
教学目标
1.能将实际问题中的等量关系用分式方程表示,掌握解分式方程的一般步骤.
2.经历探索分式方程的概念,分式方程的解题过程,了解解分式方程验根的必要性. 教学重点
熟练掌握解分式方程的一般步骤,明确解分式方程验根的必要性.
教学难点
明确分式方程验根的必要性,探讨分式方程的增根问题.
教法、学法指导
在教学中我采用诱思探究式教学法并采用多媒体等现代教学手段,从问题情境导入新课,引入本节课的研究对象:分式方程的解法;然后依据学生的学情,在一元一次方程解法的基础上类比得出分式方程的解法,达到由整式方程到分式方程的转变.学习过程中,注重以学生为中心,使其在“生动活泼、民主开放、自主探索、合作交流、动手实践”的氛围中愉快地学习,让学生从“学会”到“会学”,使学生真正成为学习的主人.教学中加强引导启发、探究交流、学法指导;启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法,得出分式方程解法的一般步骤.
教学准备
课前制作多媒体课件 实物投影
教学过程
一、创设情境,导入新课
【师】同学们喜不喜欢旅游?
【众生】喜欢.
【师】小明同学今年暑假想去北京旅游,可是他正为如何选择交通工具发愁呢?下面,我们一起来帮帮他吧!
(出示多媒体课件)
【师】同学们说说自己的看法.
小明从家里出发去北京,总路程大约660千米,有两种方法去北京,一是乘坐高铁,二是乘坐特快列车,已知高铁的速度是特快的3倍,能提前4个小时到达北京,但是高铁的费用是特快的2倍,特快140元/人,到底是乘高铁去呢,还是乘特快去?
【生1】乘高铁去,可以节约2小时的时间,能多看看北京的风光.
【生2】乘特快去,这样能节约一部分钱.
【生3】可以根据自己出行的时间来定,网上查询一下,发车时间表.
【生4】晚上乘特快去,既节省时间,又节约金钱.
……
【师】同学们考虑的很全面,如果你是小明同学,你一定根据自己的实际情况,选择合理的出行方式.
【设计意图】通过生活中的实际问题导入新课,一是激发学生学习的兴趣,二是具体问题具体分析,多方位考虑问题,开发学生思维,极大的调动了学生探求问题的积极性.
【师】你能求出特快的时速是多少吗?
(同学们思考,然后回答)
【生5】老师,我来列方程.
解:设特快的速度每小时x km/h ,则高铁的速度为3x km/h , 根据题意得:.43660660=x x - 【师】你会解这个方程吗?
【众生】不会.
【师】今天,我们就来解这类方程.
【板书课题5.4分式方程的解法(2)】
二、新课探究,合作交流
1.分式方程解法的探究
【师】我们会不会解一元一次方程?解题步骤是什么?
【众生】会解.
【生6】解一元一次方程的步骤是:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;
(5)未知数的系数化为1 .
【师】回答的真好,我们来看一道解方程的题目.
乘高铁去? 乘特快去? 解方程:.1232=+x x -
【师】做对的同学请举手.
(大多数的同学举起了手)
【师】同学们对一元一次方程的解法掌握的不错,我们来看如何解下面的方程.
(出示多媒体)(小组合作交流完成,师提问相关问题)
【师】这是一个什么样的方程?
【生8】分母中含有未知数,是分式方程.
【师】方程中含有分母怎么办?
【生9】去分母,乘以最简公分母.
【师】最简公分母是什么?
【生10】x (x -2).
【师】谁来说说这个方程的解法?
【生11】先乘以最简公分母,去掉分母,解方程;就可以了.
【师】谁来解一下这个方程呢?
【生12】老师,我来做.
【师】这个方程和我们以前学习的方程有何不同?
【生13】分母中含有未知数. 【师】对,那还需要什么步骤呢? 【生14】检验,看看x =3是不是原方程的解. 【师】这位同学回答的非常棒,我们要鼓励一下!
(众生鼓掌)
【师】我们要写,经检验知,x =3是原方程的根
我们一起来看,上课前的问题吧!
变式训练:
【生7】我来解.
解:去分母,得2(x -2)+3x =6
去括号,得 2x -4+3x =6
移项,得 2x +3x =6+4
合并同类项,得 5x =10
未知数的系数化为1,得x =2.
【师】你会解这个方程方程吗?
【众生】会解了.
【师】哪位同学来解一下.
【生15】我来做.
(众生在下面做,一生上黑板)
.43660660=x x -解方程
解:去分母,得3×660-660=4×3x
解这个方程,得x =110
经检验知,x =110是原方程的解.
(师巡视检查学生做题情况,小组交流答案)
【师】谁来总结一下解分式方程的步骤?
【生16】1.去分母,化分式方程为整式方程;2.解这个整式方程;3.检验.
【师】这位同学总结的非常好,谁来用简洁的语言总结一下.
【生17】我来说,1去;2解;3验.
【师】总结分式方程的解题步骤:
【设计意图】通过一个例题和变式训练,让多数学生通过自主探究合作交流,弄明白分式方程的解题步骤:1去;
2解;3验.
掌握分式方程的解题方法,为下一步学习打下基础. 三、巩固基础,重点落实
2.分式方程增根的检验
【师】既然同学们已经掌握了分式方程的解题步骤,我们一起来看下面的问题吧!
(出示多媒体)
(众生讨论后发表自己的见解)
【生18
】我认为3步都是正确的.
【师】我们看看其他同学的意见.
【生19】我认为第3步不正确.