直线的两点式截距式方程
直线方程公式大全
直线方程公式大全一、一般式方程直线的一般式方程表示为 Ax + By + C = 0,其中 A、B、C 为常数。
直线方程大全中的其他形式可以通过一般式方程推导得出。
二、斜截式方程斜截式方程是直线方程的另一种常见形式。
它表示为 y = mx + c,其中 m 为斜率,c 为截距。
三、截距式方程截距式方程也是直线方程的一种常见形式,表示为 x/a + y/b = 1,其中 a、b 分别为 x 轴和 y 轴的截距。
四、两点式方程两点式方程通过直线上的两个点来表示直线方程。
设直线上的两个点为 (x1, y1) 和 (x2, y2),则两点式方程表示为 (y - y1) = ((y2 - y1)/(x2 - x1))(x - x1)。
五、点斜式方程点斜式方程利用直线上的一个已知点的坐标和该直线的斜率来表示方程。
设已知点为 (x1, y1),斜率为 m,则点斜式方程表示为 y - y1 = m(x - x1)。
六、垂直线方程垂直线的特点是斜率不存在,所以其方程可以表示为 x = a,其中 a 为与 y 轴垂直的线在 x 轴上的截距。
七、水平线方程水平线的特点是斜率为零,所以其方程可以表示为 y = a,其中 a 为与 x 轴平行的线在 y 轴上的截距。
八、点式方程点式方程是直线方程中最简单的形式,利用直线上的一个已知点的坐标来表示直线方程。
设已知点为 (x1, y1),则点式方程表示为 (y - y1) = m(x - x1),其中 m 为直线的斜率。
九、角平分线方程角平分线是将一个角平分成两个相等的角的线段。
设角的两边斜率分别为 m1 和 m2,角平分线的斜率可表示为 m = (m1 + m2)/2,将平分线上的一个点坐标 (x1, y1) 代入点斜式方程可得到角平分线方程。
十、法线方程直线的法线是与该直线垂直的直线。
设直线的斜率为 m,法线的斜率可表示为-1/m,再通过已知点 (x1, y1) 可以得到法线方程。
直线的两点式方程、直线的一般式方程课件
___ax_+__by_=__1__ 不表示__垂__直__于____坐标轴的直 线及过___原__点_____的直线
[化解疑难]
1.要注意方程yy2--yy11=xx2--xx11和方程(y-y1)·(x2-x1)=(x- x1)(y2-y1)形式不同,适用范围也不同.前者为分式形式方程, 形式对称,但不能表示垂直于坐标轴的直线.后者为整式形式 方程,适用于过任何两点的直线方程.
②当 m≠0 时,l1∥l2,需m2 =m+3 1≠-42. 解得 m=2 或 m=-3.∴m 的值为 2 或-3. 法二:令 2×3=m(m+1),解得 m=-3 或 m=2. 当 m=-3 时,l1:x-y+2=0,l2:3x-3y+2=0, 显然 l1 与 l2 不重合,∴l1∥l2. 同理当 m=2 时,l1:2x+3y+4=0,l2:2x+3y-2=0,l1 与 l2 不重合,l1∥l2, ∴m 的值为 2 或-3.
解得ab11==43, 或ab22==19252,, 所以直线 l 的方程为 3x+4y-12=0 或 15x+8y-36=0.
(2)设直线 l 的方程为ax+by=1(a>0,b>0), 由题意知,ab=12,34a+2b=1, 消去 b,得 a2-6a+8=0, 解得ab11==43, 或ab22= =26, , 所以直线 l 的方程为 3x+4y-12=0 或 3x+y-6=0.
0.
[活学活用] (1)求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程; (2)求经过点A(2,1)且与直线2x+y-10=0垂直的直线l的方程.
解:(1)法一:设直线 l 的斜率为 k, ∵l 与直线 3x+4y+1=0 平行,∴k=-34. 又∵l 经过点(1,2),可得所求直线方程为 y-2=-34(x-1), 即 3x+4y-11=0.
直线的两点式方程(课件
ax+by=1
斜率存在且不为 0,不过原点
三.线段的中点坐标公式 若点 P1,P2 的坐标分别为(x1,y1),(x2,y2),设 P(x,y)是线段 P1P2 的中点,
x1 x2
y1 y2
则 x= 2 ,y= 2
.
思考 1: 过点(1,3)和(1,5)的直线能用两点式表示吗?为什么? 过点(2,3),(5,3)的直线呢? 不能,因为 1-1=0,而 0 不能做分母.过点(2,3),(5,3)的直 线也不能用两点式表示. 思考 2: 截距式方程能否表示过原点的直线?
二、经典例题
题型一 直线的两点式方程
例 1 如图,已知 A(1,2),B(-1,4),C(5,2). ①求线段 AB 中点 D 的坐标; ②求△ABC 的边 AB 上的中线所在的直线方程.
解
①因为 A(1,2),B(-1,4),所以线段 AB 中点 D 的坐标为1+
-1 2
,2+2 4,
即 D(0,3).
2.2 直线的方程 2.2.2 直线的两点式方程
一、自主学习
一.直线的两点式方程
名称
已知条件
示意图
两点式
P1(x1,y1),P2(x2,y2), 其中 x1≠x2,y1≠y2
方程
使用范围
yy2--yy11=xx2--xx11 斜率存在且
不为 0
二.直线的截距式方程
名称
已知条件
在 x,y 轴上的截距 截距式 分别为 a,b 且 a≠0,
三、当堂达标
1.(多选)下列说法正确的是( ) A.不经过原点的直线都可以表示为ax+by=1 B.若直线与两轴交点分别为 A、B 且 AB 的中点为(4,1)则直线 l 的方程为8x+2y=1 C.过点(1,1)且在两轴上截距相等的直线方程为 y=x 或 x+y=2 D.直线 3x-2y=4 的截距式方程为4x+-y2=1
7.2(2)直线的方程-两点式,截距式.ppt
直线 l 的斜率为 k
由点斜式方程 y y1 y 2 y1 x 2 x1
y 2 y1 x 2 x1
p2
( x x 1 ).
( y1 y 2 )
化简为
y y1 y2 y1
x x1 x2 x1
——直线方程的两点式
例1 、已知直线l于x轴交于点A(a,0), 于y轴 交于B(0, b), (a 0, b 0),求直线l的方程。
直线 l过点 P ( 4 ,1) 4 1 1 4 b a ab a b
2 4 ab 4 ab ab 16
P(4,1)
A
0
x
S
S min
1
ab 8 (当 a 4 b 即 a 8 , b 2时取等号)
2 x y 8 , 直线 l 方程为 1 x 4y 8 0 8 2
解:
(1)
y 1 3 1 y5 05 y 50
x2 02 x0 50
y 2 x 3.
(2)
y x 5.
5 4
(3)
x 42
y
x.
y y0 k ( x x0 )
应用范围
k存在 k存在
k存在 且k 0
k存在且 0 且不过原点
y kx b
y y1 y2 y1 x x1 x2 x1
x a
y b
1.
课堂练习
1 .求过下列两点的直线的 (1) P1 ( 2 ,1)、 P2 ( 0 , 3 ); ( 2 ) A ( 0 , 5 )、 B ( 5 , 0 ); ( 3 ) C ( 4 , 5 )、 D ( 0 , 0 ). 两点式方程,再化成斜 截式方程:
直线方程的两点式、截距式
例:已知角形的三个顶点是A(-5,0),
B(3,-3),C(0,2),求这个三角形三边 所在直线的方程.
记忆特点:
左边全为y,右边全为x 两边的分母全为常数 分子,分母中的减数相同
两点式方程的适应范围
是不是已知任一直线中的两点就 能用两点式 y y x x 写出直线方程呢?
1 1
y2 y1
1
x2 x1ຫໍສະໝຸດ 不是!当x=x2或y1= y2时,直线P1 P2 没有两点式方程.( 因为x1 =x2或y1= y2时, 两点式的分母为零,没有意义)
那么两点式不能用来表示哪些直 线的方程呢?
注意: 两点式不能表示平行于坐标轴或
与坐标轴重合的直线.
三、直线的截距式方程
y0 xa , b0 0a
即
x y 1. a b
x y 1. a b
截距式直线方程:
x y 1. a b
是不是任意一条直线都有其截距式方程呢?
7.5.2 两点式、截距式
一、复习、引入
复 习
1). 直线的点斜式方程:
y- y1 =k(x- x1 ) k为斜率, P1(x1 ,y1)为经过直线的点
巩 固
2). 直线的斜截式方程:
y=kx+b
k为斜率,b为截距
二、直线方程的两点式
代入点斜式得:
定义
方程可写为: 两点式:由直线上两点确定的直线方程叫做直线方程的两点式.
直线的方程-2两点式、截距式)PPT课件
THANKS FOR WATCHING
感谢您的观看
在交通领域,例如在道路规划中,可 以使用这两种方程形式来表示道路的 走向和交点。
在物理学中,例如在电场分析中,可 以使用这两种方程形式来描述电场线 的分布和方向。
04 练习与巩固
基础练习题
01
02
03
题目1
已知两点$P_1(x_1, y_1)$ 和$P_2(x_2, y_2)$,求直 线方程的两点式。
直线的方程。
截距式方程
截距式方程是另一种形式的直线方 程,它表示直线在x轴和y轴上的截 距。
直线方程的应用
了解直线方程在实际问题中的应用, 如几何、物理和工程问题。
学习心得体会
通过学习本章,我掌握了直线方程的两种形式,即两点式和截距式,并 了解了它们在实际问题中的应用。
学习过程中,我遇到了一些困难,如理解截距式方程的推导过程和如何 应用直线方程解决实际问题。但通过反复阅读教材和与同学讨论,我逐
在实际生活中,例如道路修建、桥梁设计等工程领域,常常需要使用到截距式直线 方程来描述道路或桥梁的走向。
在解析几何中,截距式直线方程也是一种重要的直线方程形式,用于解决一些特定 的问题。
03 两种直线方程的比较
异同点比较
相同点
两点式和截距式都是用来表示直线方 程的方法,它们都可以表示直线上的 点。
渐克服了这些困难。
学习本章后,我意识到数学在实际问题中的重要性,并计划在未来的学 习中更加注重数学知识的应用。
下一步学习计划
深入学习直线的其他方程形式, 如点斜式和斜截式。
学习如何利用直线方程解决更复 杂的实际问题,如解析几何和物
理问题。
复习和巩固已学过的直线方程知 识,确保自己能够熟练掌握和应
直线截距式、一般式
(
x1
x2 ,y1
y2)
两点
截距式
x a
y b
1a
,b
0
②什么叫二元一次方程?直线与二元一次方程有什么关系?
直线的一般式方程: Ax+By+C=0
(A,B不同时为0)
在方程Ax+By+C=0中,A,B,C为何值 时,方程表示的直线为:
(1)平行于x轴 A=0且B≠0且C ≠0 (2)平行于y轴 B=0且A≠0且C ≠0 (3)与x轴重合 A=0 且C=0且B≠0 (4)与y轴重合 B=0 且C=0且A ≠0
1、过点1(、0过,5)点,(0(,5)5,0,)(5,0)直线方程为:5x
y 5
1
2、过点(2、0,过3)点,((0,34),0,)(4,0)直线方程为:x y 1
,0)的直线方程(. 其中a 0,b 0)
ly
(0, b)
O (a,0) x
x y 1 ab
小结
1. 直线方程常见的几种形式及其特点和适 用范围.
2. 直线的一般式方程
P99 练习 1 P100习题3.2 A. 8,9
谢谢! 再见!
直线的截距式,一般式
复习引入
1.点斜式方程: y-y0=k(x-x0) (已知定点 (x0, y0)及斜率k存在)
2. 斜截式方程:y=kx+b [已知斜率k存在 及截距 b(与y轴交点(0, b)]
3. 两点式方程:
[已知两定点(不适合与x轴 或y轴垂直的直线)]
引入 已知下列条件,求直线方程
C
.
不
经
过
原
点
的
直
线都
可
以
用
两点式截距式方程
(2)方程的任意一个解是直线上点的坐标
(Ⅲ)两点式方程
思考:已知两点P1(x1,y1), P2(x2,y2), (其中x1≠x2,y1≠y2),
如何求出通过这两个点的直线方程呢?
l
y
P2(x2,y2)
P1(x1,y2)
O
x
注意:既不垂直x轴 ,也不垂直y轴!
中点
第三步:点斜式求方程
y 3 2(x 3)
y 2x 3
▪ 例6 直线l过点P(- 4,-1),且横截距是纵截 距的两倍,求直线l的方程.
▪ 解法1:设直线l的方程为y+1=k(x+4), ▪ 令x=0,得y=4k-1;令y=0,得x=(1/k)-4. ▪ 由(1/k)-4=2(4k-1),得8k2+2k-1=0. ▪ 可解得k=-1/2,k=1/4. ▪ 所求直线方程为:x+2y+6=0或x-4y=0.
例3 如图,已知直线l与x轴的交点为A(a,0),与y轴的 交点为B(0,b),其中a≠0,b≠0,求直线l的方程. y B(0,b)
l
A(a,0)
O
x
注意:既不垂直x轴
纵截距
横截距
,也不垂直y轴,且 不过原点!
a叫做直线在x轴上的截距;
b叫做直线在y轴上的截距.
截距式
P96例4
y
C(0,2)
A(-5,0)
▪ 作业
▪ B:P100 A1 (4)(6), A3, A4, A9.
▪ 例6 直线l过点P(- 4,-1),且横截距是纵截距的 两倍,求直线l的方程.
我们发现少了一条直 线!怎样发生的?
是由截距式方程形式限制 了直线不能过原点!
高中数学必修2直线与圆常考题型:直线的两点式方程、直线的一般式方程
直线的两点式方程、直线的一般式方程【知识梳理】1.直线的两点式与截距式方程(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示.(2)每个关于x ,y 的二元一次方程都表示一条直线. 3.直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.【常考题型】题型一、利用两点式求直线方程【例1】 三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程.[解] 由两点式,直线AB 所在直线方程为:y -(-1)0-(-1)=x -3-1-3,即x +4y +1=0.同理,直线BC 所在直线方程为: y -3-1-3=x -13-1,即2x +y -5=0. 直线AC 所在直线方程为: y -30-3=x -1-1-1,即3x -2y +3=0.【类题通法】求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.【对点训练】1.(1)若直线l 经过点A (2,-1),B (2,7),则直线l 的方程为________. (2)若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________.解析:(1)由于点A 与点B 的横坐标相等,所以直线l 没有两点式方程,所求的直线方程为x =2.(2)由两点式方程得,过A ,B 两点的直线方程为y -(-1)4-(-1)=x -2-3-2,即x +y -1=0.又点P (3,m )在直线AB 上,所以3+m -1=0,得m =-2.答案:(1)x =2 (2)-2题型二、直线的截距式方程及应用【例2】 直线l 过点P (43,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点.(1)当△AOB 的周长为12时,求直线l 的方程. (2)当△AOB 的面积为6时,求直线l 的方程.[解] (1)设直线l 的方程为x a +yb=1(a >0,b >0), 由题意知,a +b +a 2+b 2=12. 又因为直线l 过点P (43,2),所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎨⎧a 2=125,b 2=92,所以直线l 的方程为3x +4y -12=0 或15x +8y -36=0.(2)设直线l 的方程为x a +yb =1(a >0,b >0),由题意知,ab =12,43a +2b =1,消去b ,得a 2-6a +8=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎪⎨⎪⎧a 2=2,b 2=6, 所以直线l 的方程为3x +4y -12=0或3x +y -6=0. 【类题通法】用截距式方程解决问题的优点及注意事项(1)由截距式方程可直接确定直线与x 轴和y 轴的交点的坐标,因此用截距式画直线比较方便.(2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式. (3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.【对点训练】2.求经过点A (-2,2),并且和两坐标轴围成的三角形面积是1的直线方程. 解:设直线在x 轴、y 轴上的截距分别是a 、b , 则有S =12|a ·b |=1.∴ab =±2.设直线的方程是x a +yb=1.∵直线过点(-2,2),代入直线方程得-2a +2b =1,即b =2aa +2.∴ab =2a 2a +2=±2.当2a 2a +2=-2时,化简得a 2+a +2=0,方程无解;当2a 2a +2=2时,化简得a 2-a -2=0, 解得⎩⎪⎨⎪⎧ a =-1,b =-2,或⎩⎪⎨⎪⎧a =2,b =1.∴直线方程是x -1+y -2=1或x 2+y1=1,即2x +y +2=0或x +2y -2=0.题型三、直线方程的一般式应用【例3】 (1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值; (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?[解] (1)法一:由l 1:2x +(m +1)y +4=0. l 2:mx +3y -2=0.①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2, 需2m =m +13≠4-2. 解得m =2或m =-3.∴m 的值为2或-3. 法二:令2×3=m (m +1),解得m =-3或m =2. 当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, l 1与l 2不重合,l 1∥l 2, ∴m 的值为2或-3.(2)法一:由题意,直线l 1⊥l 2,①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1,所以a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 法二:由直线l 1⊥l 2,所以(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1.将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. 【类题通法】1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0,(1)若l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.【对点训练】3.(1)求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程; (2)求经过点A (2,1)且与直线2x +y -10=0垂直的直线l 的方程. 解:(1)法一:设直线l 的斜率为k , ∵l 与直线3x +4y +1=0平行,∴k =-34.又∵l 经过点(1,2),可得所求直线方程为y -2= -34(x -1),即3x +4y -11=0. 法二:设与直线3x +4y +1=0平行的直线l 的方程为3x +4y +m =0. ∵l 经过点(1,2),∴3×1+4×2+m =0,解得m =-11. ∴所求直线方程为3x +4y -11=0. (2)法一:设直线l 的斜率为k . ∵直线l 与直线2x +y -10=0垂直, ∴k ·(-2)=-1, ∴k =12.又∵l 经过点A (2,1),∴所求直线l 的方程为y -1=12(x -2),即x -2y =0.法二:设与直线2x +y -10=0垂直的直线方程为x -2y +m =0. ∵直线l 经过点A (2,1), ∴2-2×1+m =0, ∴m =0.∴所求直线l 的方程为x -2y =0.【练习反馈】1.直线x 3-y4=1在两坐标轴上的截距之和为( )A .1B .-1C .7D .-7解析:选B 直线在x 轴上截距为3,在y 轴上截距为-4,因此截距之和为-1. 2.直线3x -2y =4的截距式方程是( ) A.3x 4-y2=1 B.x 13-y 12=4 C.3x 4-y-2=1 D.x 43+y-2=1 解析:选D 求直线方程的截距式,必须把方程化为x a +yb =1的形式,即右边为1,左边是和的形式.3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________. 解析:由题意直线过两点,由直线的两点式方程可得:y -25-2=x -(-1)2-(-1),整理得x -y +3=0.答案:x -y +3=04.斜率为2,且经过点A (1,3)的直线的一般式方程为________. 解析:由直线点斜式方程可得y -3=2(x -1),化成一般式为2x -y +1=0. 答案:2x -y +1=05.三角形的顶点坐标为A (0,-5),B (-3,3),C (2,0),求直线AB 和直线AC 的方程. 解:∵直线AB 过点A (0,-5),B (-3,3)两点, 由两点式方程,得y +53+5=x -0-3-0.整理,得8x +3y +15=0.∴直线AB 的方程为8x +3y +15=0. 又∵直线AC 过A (0,-5),C (2,0)两点, 由截距式得x 2+y-5=1,整理得5x -2y -10=0,∴直线AC 的方程为5x -2y -10=0.。
2.2.2 直线的两点式方程(解析版)..
2.2.2直线的两点式方程知识梳理知识点直线的两点式方程和截距式方程名称两点式截距式条件两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2,y 1≠y 2)在x ,y 轴上的截距分别为a ,b (a ≠0,b ≠0)示意图方程y -y 1y 2-y 1=x -x 1x 2-x 1x a +y b=1适用范围斜率存在且不为0斜率存在且不为0,不过原点题型探究题型一、直线的两点式方程1.已知点(1,2)A 、(1,2)B --,则直线AB 的两点式方程是______.【答案】2142y x --=--【详解】直线的两点式方程为:112121y y x x y y x x --=--,将点(1,2)A 、(1,2)B --代入得:2142y x --=--.故答案为:2142y x --=--.2.已知ABC 的三个顶点分别为)(7,4A ,)(3,1B -,)(5,2C -.(1)求ABC 的三边所在直线的方程;(2)求ABC 的三条中线所在直线的方程.【答案】(1):54190AB x y --=;:3810BC x y +-=;:6170AC x y -+=;(2)BC 边上的中线716150x y -+=;AB 边上的中线20350x y +-=;AC 边上的中线250x y +-=【详解】(1)由)(7,4A ,)(3,1B -,)(5,2C -知直线AB 的方程为471437y x --=---,整理得54190x y --=直线BC 的方程为(1)32(1)53y x ---=----整理得3810x y +-=直线AC 的方程为472457y x --=---,整理得6170x y -+=(2)BC 的中点坐标为11,2⎛⎫- ⎪⎝⎭,又)(7,4A 所以BC 边上的中线所在的直线方程为1(1)217(1)42y x ---=---,整理得716150x y -+=AB 的中点坐标为35,2⎛⎫⎪⎝⎭,又)(5,2C -所以AB 边上的中线所在的直线方程为35235522y x --=---,整理得20350.x y +-=AC 的中点坐标为()1,3,又)(3,1B -所以AC 边上的中线所在的直线方程为311331y x --=---,整理得250x y +-=.3.已知直线经过点A (1,0),B (m ,1),求这条直线的方程.【详解】由直线经过点A (1,0),B (m ,1),因此该直线斜率不可能为零,但有可能不存在.(1)当直线斜率不存在,即m =1时,直线方程为x =1;(2)当直线斜率存在,即m ≠1时,利用两点式,可得直线方程为y -01-0=x -1m -1,即x -(m -1)y -1=0.综上可得,当m =1时,直线方程为x =1;当m ≠1时,直线方程为x -(m -1)y -1=0.题型二、直线的截距式方程1.回答下列问题:(1)任一条直线都有x 轴上的截距和y 轴上的截距吗?(2)如果两条直线有相同的斜率,但在x 轴上的截距不同,那么它们在y 轴上的截距可能相同吗?(3)如果两条直线在y 轴上的截距相同,但是斜率不同,那么它们在x 轴上的截距可能相同吗?(4)任一条直线都可以用截距式方程表示吗?【答案】(1)不是都有;(2)不可能相同;(3)不可能相同;(4)不都可以.【详解】(1)直线10x -=在x 轴上的截距为1,在y 轴上无截距.则任一条直线不是都有x 轴上的截距和y 轴上的截距.(2)如果两条直线有相同的斜率,但在x 轴上的截距不同,则这两条直线互相平行,那么它们在y 轴上的截距不相同.(3)假设两条直线在x 轴上的截距相同,又两条直线在y 轴上的截距相同,则这两条直线斜率相同,这与已知中两直线斜率不同矛盾.故如果两条直线在y 轴上的截距相同,但是斜率不同,那么它们在x 轴上的截距不可能相同.(4)直线10x -=在x 轴上的截距为1,在y 轴上无截距,不能用截距式方程表示.故任一条直线不都可以用截距式方程表示2.已知直线经过点)(2,5M -,且在x 轴上的截距等于在y 轴上的截距的2倍,求该直线的方程.【答案】520x y +=或280x y ++=【详解】若直线经过原点()0,0,满足题意要求,此时直线方程为52y x =-,整理得520x y +=.若直线不经过原点,不妨设直线方程为12x ya a+=,又其过点()2,5M -,故可得151a a -=,解得4a =-,故此时直线方程为184x y -=-,整理得280x y ++=;综上所述,所求直线方程为:520x y +=或280x y ++=.3.已知不过原点的直线l 过点()3,2-且在两个坐标轴上的截距互为相反数,则直线l 的方程是______.【答案】50x y -+=【详解】l 不过原点且在两个坐标轴上的截距互为相反数,∴可设其方程为1x ya a-=,又l 过点()3,2-,321a a ∴--=,解得:5a =-,:155x yl ∴-+=,即l 方程为:50x y -+=.故答案为:50x y -+=.4.若直线1,(0,0)x ya b a b+=>>过点()2,4,则2a b +的最小值为___________.【答案】16【详解】因为直线1(00)x y a b a b +=>>,过点()2,4,所以241a b+=,因为0,0a b >>所以()24821622448216a b a b a b a b a b b a b a ⎛⎫+=++=+++≥+⋅= ⎪⎝⎭,当且仅当82a bb a=,即4,8a b ==时取等号,所以2a b +的最小值为16故答案为:165.求经过点()1,4P ,且分别满足下列条件的直线方程:(1)在两坐标轴上的截距相等;(2)在两坐标轴上的截距都是正的,且截距之和最小.【答案】(1)5x y +=或4y x =;(2)260x y +-=【详解】(1)①当过(0,0)O 时,两坐标轴上截距为0,40410k -==-,所以直线方程为:4l y x =;②当直线不过原点时,设直线方程为1x ya a+=,即x y a +=,过点(1,4)A ,14a ∴+=,5a =,∴直线方程:5l x y +=.综上:直线方程:5l x y +=或4y x =(2)设直线的方程为1(0,0)x ya b a b +=>>,则有141a b+=,144()1()()5549b aa b a b a b a b a b∴+=+⨯=+⨯+=+++= ,当且仅当4b aa b=,即3a =,6b =时取“=”.∴直线方程为260x y +-=.跟踪训练1.已知三角形的三个顶点(5,0),(3,3),(0,2)A B C --,求BC 边所在直线的方程,以及该边上中线所在直线的方程.【答案】5360x y +-=;1350x y ++=.【详解】过(3,3),(0,2)B C -的两点式方程为203230y x --=---,整理得5360x y +-=.即BC 边所在直线的方程为5360x y +-=,BC 边上的中线是顶点A 与BC 边中点M 所连线段,由中点坐标公式可得点M 的坐标为3032,22+-+⎛⎫⎪⎝⎭,即31,22⎛⎫- ⎪⎝⎭.过(5,0)A -,31,22M ⎛⎫- ⎪⎝⎭的直线的方程为05130522y x -+=--+,即11350222x y ++=.整理得1350x y ++=.所以BC 边上中线所在直线的方程为1350x y ++=.2.(1)已知直线l 经过点()()2,1,2,7A B -,求直线l 的方程;(2)已知点(3,)P m 在过点()()2,1,3,4A B --的直线上,求m 的值;(3)三角形的三个顶点分别是()()()1,0,3,1,1,3A B C --,求三角形三边所在直线的方程.【答案】(1)2x =;(2)2m =-;(3)AB :410x y ++=;BC :250x y +-=;AC :3230x y -+=.【详解】(1)因为点A 与点B 的横坐标相等,故直线的斜率不存在,故所求直线方程为2x =.(2)由两点式方程,得过A ,B 两点的直线方程为(1)24(1)32y x ---=----,即10x y +-=.又因为点(3,)P m 在直线AB 上,所以310m +-=,得2m =-.(3)由两点式,得边AB 所在直线的方程为(1)30(1)13y x ---=----,即410x y ++=.同理,边BC 所在直线的方程为311331y x --=---,即250x y +-=.边AC 所在直线的方程为310311y x --=---,即3230x y -+=.3.判断命题“如果直线l 在x 轴、y 轴上的截距分别为a ,b 且0a ≠,则l 的斜率是ba”的真假.()【答案】错误【详解】由直线l 在x 轴、y 轴上的截距分别为a ,b 且0a ≠,可得直线过点()(),0,0,a b ,∴直线的斜率为00b bk a a-==--.∴命题“如果直线l 在x 轴、y 轴上的截距分别为a ,b 且0a ≠,则l 的斜率是ba”为假命题.故答案为:错误.4.求下列直线的方程:(1)通过(2,3),(1,2)A B --的直线;(2)通过(4,5),(0,0)M B 的直线;(3)在x 轴上的截距是2-,在y 轴上的截距是5-的直线;(4)在x 轴与y 轴上的截距都是12-的直线.【答案】(1)5310x y --=;(2)540x y -=;(3)52100x y ++=;(4)2210x y ++=【详解】(1)(2,3),(1,2)A B --,235123k --∴==--,∴直线方程为53(2)3y x -=-,即5310x y --=.(2)(4,5),(0,0)M B ,505404k -∴==-,∴直线方程为54y x =,即540x y -=.(3)在x 轴上的截距是2-,在y 轴上的截距是5-的直线,∴直线的方程为125x y +=--,即52100x y ++=.(4)在x 轴与y 轴上的截距都是12-∴直线的方程为11122x y +=--,即2210x y ++=.5.已知直线l 过点()2,1,且在x 轴上的截距是在y 轴上截距的两倍,则直线l 的方程为___________.【答案】20x y -=或240x y +-=【详解】当截距为0时,设直线方程为y kx =,直线l 过点()2,1,所以12k =,解得12k =,直线方程为12y x =,即20x y -=;当截距不为0时,设直线方程为12x ya a +=,直线l 过点()2,1,所以2112a a+=,解得2a =,直线方程为142x y+=,即240x y +-=;故直线l 的方程为20x y -=或240x y +-=.故答案为:20x y -=或240x y +-=.6.求过点(1,2)且与两坐标轴正半轴围成的三角形面积为92的直线方程.【答案】30x y +-=或460x y +-=.【详解】依题意,设直线在x ,y 轴上的截距分别为,a b (0,0a b >>),则此直线的方程为1x ya b+=,因直线过点(1,2),则121a b +=,又1922ab =,解得33a b =⎧⎨=⎩或326a b ⎧=⎪⎨⎪=⎩,于是有133x y +=或1362x y+=,即30x y +-=或460x y +-=,所以所求直线方程为30x y +-=或460x y +-=.高分突破1.已知0a b >>0,,直线x y b a+=在x 轴上的截距为1,则9a b +的最小值为()A .3B .6C .9D .10【答案】B【详解】因为直线x y b a+=在x 轴上的截距为1,所以10b a+=,即1ab =,因为0a b >>0,,所以9296a b ab +≥=,当且仅当9a b =,即13,3a b ==时取等号,所以9a b +的最小值为6,故选:B2.直线221x ya b-=在y 轴上的截距是()A .||b B .2b -C .2b D .b±【答案】B【详解】根据直线的截距式可知直线咋y 轴上的截距为-b 2故选:B3.(多选)过点(2,3)P ,并且在两轴上的截距互为相反数的直线方程为()A .320x y -=B .10x y -+=C .50x y +-=D .4250x y -+=【答案】AB【详解】若直线l 过原点,则直线的方程为y kx =,将点(2,3)P 代入得32k =,所以直线方程为32y x =,即320x y -=;若直线l 不过原点,根据题意,设直线方程为1x ya a-=,将点(2,3)P 代入得1a =-,故直线l 的方程为10x y -+=;所以直线l 的方程为:320x y -=或10x y -+=.故选:AB .4.(多选)下列说法中不正确的是()A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)来表示B .经过定点A (0,b )的直线都可以用方程y =kx +b 来表示C .不与坐标轴重合或平行的直线其方程一定可以写成截距式D .不与坐标轴重合或平行的直线其方程一定可以写成两点式【答案】ABC5.已知直线l 过点()1,3G -,()2,1H -,则直线l 的方程为__________.【答案】4350x y ++=【详解】由直线方程的两点式可得123112y x -+=--+,化简得4350x y ++=,故答案为:4350x y ++=.6.设m 为实数,若直线:210l x y m -+-=在y 轴上的截距为12,则m 的值为______.【答案】2【详解】直线:210l x y m -+-=,令x =0,则12m y -=,根据题意可知11,222m m -==,故答案为:27.已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.【答案】3【详解】直线AB 的方程为x 3+y4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3.即当P 点坐标为32,2时,xy 取得最大值3.8.已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),(1)求AB 边所在的直线方程;(2)求AB 边的高所在直线方程.【答案】(1)6110x y -+=;(2)6220x y +-=【详解】(1)因为A (-1,5)、B (-2,-1),所以由两点式方程可得511521y x -+=---+,化为一般式可得:6110x y -+=;(2)直线AB 的斜率为51612+=-+.所以由垂直关系可得AB 边高线的斜率为16-,故AB 边的高所在直线方程为()1346y x -=--,化为一般式可得:6220x y +-=.9.若直线l 与两坐标轴围成一个等腰直角三角形,且此三角形的面积为18,求直线l 的方程.解∵直线l 与两坐标轴围成一个等腰直角三角形,∴直线l 在两坐标轴上的截距相等或互为相反数且不为0,若l 在两坐标轴上的截距相等,且设为a (a ≠0),则直线方程为x a +ya =1,即x +y -a =0.∵12|a |·|a |=18,即a 2=36,∴a =±6,∴直线方程为x +y ±6=0.若l 在两坐标轴上的截距互为相反数,不妨设在x 轴上的截距为a ,则在y 轴上的截距为-a (a ≠0),故直线方程为xa +y -a =1,即x -y -a =0.∵12|-a |·|a |=18,即a 2=36,∴a =±6,∴直线方程为x -y ±6=0.综上所述,直线l 的方程为x +y ±6=0或x -y ±6=0.10.已知直线l 过点()2,1P .(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)若直线l 与x ,y 轴分别交于A ,B 两点且斜率为负,O 为坐标原点,求OA OB +的最小值.【答案】(1)12y x =或3x y +=;(2)223+【详解】(1)当直线l 过原点时,则直线l 的方程为12y x =在两坐标轴上的截距相等;当直线l 不过原点时,设直线l 的方程为1x ya a+=,将点()2,1P 代入得211a a+=,解得3a =,所以直线l 的方程为3x y +=,综上所述直线l 的方程为12y x =或3x y +=;(2)设直线l 的方程为()12,0y k x k -=-<,当0x =时,21y k =-+,当0y =时,12x k=-+,故()()1123223223OA OB k k k k ⎛⎫⎛⎫+=-+-+≥-⋅-+=+ ⎪ ⎪⎝⎭⎝⎭,当且仅当()12k k⎛⎫-=- ⎪⎝⎭,即22k =-时取等号,所以OA OB +的最小值为223+.11.在△ABC 中,已知A (5,-2),B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标;(2)直线MN 的截距式方程.【详解】(1)设C (x 0,y 0),则AC 边的中点为M x 0+52,y 0-22,BC 边的中点为N x 0+72,y 0+32,因为M 在y 轴上,所以x 0+52=0,解得x 0=-5.又因为N 在x 轴上,所以y 0+32=0,解得y 0=-3.即C (-5,-3).(2)由(1)可得M 0,-52,N (1,0),所以直线MN 的截距式方程为x 1+y -52=1.12.已知直线l 过点()1,2P ,与两坐标轴的正半轴分别交于A ,B 两点,O 为坐标原点.(1)若OAB 的面积为254,求直线l 的方程;(2)求OAB 的面积的最小值.【答案】(1):250l x y +-=或8100x y +-=;(2)4【详解】(1)法一:(1)设直线():1,0x y l a b a b +=>,则12112524a b ab ⎧+=⎪⎪⎨⎪=⎪⎩解得552a b =⎧⎪⎨=⎪⎩或5410a b ⎧=⎪⎨⎪=⎩,所以直线:250l x y +-=或8100x y +-=.法二:设直线():21l y k x -=-,0k <,则21,0A k ⎛⎫- ⎪⎝⎭,()0,2B k -.则()21225122178024S k k k k ⎛⎫=--=⇒++= ⎪⎝⎭,∴12k =-或﹣8所以直线:250l x y +-=或8100x y +-=.(2)法一:∵121212a b a b =+≥⋅,∴8ab ≥,∴142S ab =≥,此时2a =,4b =.∴ABC 面积的最小值为4,此时直线:24l x y +=.法二:∵0k <,∴()()()121414124424222S k k k k k k ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--=+-+-≥+-⋅-=⎢⎥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦,此时2k =-,∴ABC 面积的最小值为4,此时直线:24l x y +=.。
直线的两点式方程 课件
1.已知 A(-3,2),B(5,-4),C(0,-2),在△ABC 中, (1)求 BC 边的方程; (2)求 BC 边上的中线所在直线的方程.
解析:(1)∵BC 边过两点 B(5,-4),C(0,-2), ∴由两点式得-y-2---4 4=x0- -55, 即 2x+5y+10=0. 故 BC 边的方程为 2x+5y+10=0(0≤x≤5).
解得ab11==43,,
a2=152, b2=92,
所以直线 l 的方程为 3x+4y-12=0
或 15x+8y-36=0.
(2)设直线 l 的方程为ax+by=1(a>0,b>0), 由题意知,ab=12,34a+b2=1, 消去 b,得 a2-6a+8=0, 解得ab11==43,, ab22= =26, , 所以直线 l 的方程为 3x+4y-12=0 或 3x+y-6=0.
[错因与防范] 本题易误认为截距是正值导致漏解.直线 y=kx+b 在 y 轴上的截距是直线与 y 轴交点的纵坐标,不是直线与 y 轴的交点到原点 的距离,截距的值可能是正数,也可能是零或者负数.
用截距式方程解决问题的优点及注意事项: (1)由截距式方程可直接确定直线与 x 轴和 y 轴的交点的坐标,因此用截 距式画直线比较方便. (2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题 时,经常使用截距式. (3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时, 两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中 要注意分类讨论.
探究二 利用截距式求直线方程
[典例 2] (1)过点 A(1,2),且在 x 轴上的截距和在 y 轴上的纵截距相等 的直线方程是____________. [解析] 分两种情形:若直线过原点,则方程为 y=2x;若直线不过原 点,则可设直线的方程为ax+ya=1,将(1,2)代入,得 a=3,则直线的方 程为 x+y=3. [答案] x+y=3 或 y=2x
直线的方程第二课时两点式、截距式
变题1:上题中改为求截距的绝对值相 等的直线方程,结果如何? 变题2:求过点P(2, 3),并且在x轴上的 截距是在y轴上的截距2倍的直线的方程。
例5、求过点P( 2, 1)的直线与两坐标轴正
半轴所围成的三角形的面积最小时的直
线方程
练习3: 1、直线ax+by=1 (ab≠0)与两坐标轴围成的面 积是___________; 2、已知一直线在x轴上的截距比在y轴上的截 距大1,并且经过点P (6, -2),求此直线的方程。
k y 2 y1 x 2 x1
代入点斜式,得
当y1≠y2时
y y1 y 2 y1
y y1
y 2 y1 x 2 x1
( x x1 )
x x1
x 2 x1
注:两点式适用于与两坐标轴不垂直 的直线。
练习1:课本第41页 1
2、直线方程的截距式 若直线L与x轴交点为 (a, 0),与y轴交点
直线的两点式、截距式方程
北师大版必修2第二章
§7.1 一、复习
直线的方程(2)
1、什么是直线的点斜式方程?
2、求分别过以下两点直线的方程
(1)A(8, -1) (2) C (x1, y1) B (-2 , 4) D (x2 ,y2) (x1≠x2, y1≠y2)
二、新课 1、直线方程的两点式 若直线L经过点P1(x1,y1)、P2(x2,y2),并 且x1≠x2,则它的斜率
§7.1 小结:
直线的方程(2)
y y1 y2 y1 x x1 x2 x1
(1)两点式:
(2)截距式: x
a
y b
1
注意:两种形式方程的适Байду номын сангаас范围。
直线的两点式方程 课件
若将本例中的条件“在坐标轴上的截距互为相反数”变为: “在 x 轴上的截距是 y 轴上截距的 2 倍”,其他条件不变, 如何求解? 解:(1)当直线 l 在两坐标轴上的截距均为 0 时,方程为 y= 25x,即 2x-5y=0 适合题意.
(2)设 BC 的中点为 D(x0,y0), 则 x0=5+2 0=52,y0=(-4)+2 (-2)=-3.
所以 D52,-3,
又 BC 边上的中线经过点 A(-3,2). 所以由两点式得-y-3-22=x52--((--33)), 即 10x+11y+8=0. 故 BC 边上的中线所在直线的方程为 10x+11y+8=0.
(2)对两点式方程形式的两点说明 ①方程yy2--yy11=xx2--xx11也可写成yy1--yy22=xx1--xx22,两者形式有异 但实质相同.但不与xy- -yx11=xy22- -yx11或(x2-x1)·(y-y1)=(y2- y1)(x-x1)等价.两点式方程有它的局限性,而(x2-x1)(y-y1) =(y2-y1)(x-x1)则可表示过平面内的任意不同两点的直线. ②要注意方程两边分式的分子、分母四个减式的减数为同一 点的横、纵坐标.
ab=12, 由题意可知34a+b2=1,
解得a=4,或a=2, b=3 b=6.
所以所求直线的方程为x4+3y=1 或x2+6y=1, 即 3x+4y-12=0 或 3x+y-6=0.
直线方程与三角形的面积、周长之间的关系 解决直线与坐标轴围成的三角形面积或周长问题时,一般选 择直线方程的截距式,若设直线在 x 轴,y 轴上的截距分别 为 a,b,则直线与坐标轴所围成的三角形面积为 S=12|a||b|, 周长 c=|a|+|b|+ a2+b2.
直线两点式截距式方程
第11页/共24页
复习
直线的方程—一般式
1、直线的倾斜角、斜率
2、直线方程的点y斜 y式 1 k( x x1 )
3、直线方程的斜y截 式 kx b
4、直线方程的两yy2点 y式 y11
x x1 x2 x1
5、直线方程的截x距 式 y 1 ab
新课
以上的四种直线方程形式都是 方程,但都有局限性。
第15页/共24页
2、过点 P(0,1) 的直线 l,它在两直线 l1 : x 3 y 10 0与 l2 : 2x y 8 0 间截得的线段被点P 平分,求直线l 的方程
3、两直线 A1 x B1 y 1 0 (A12 B12 0)和
A2 x
B2
y
1
0 (A22
B
2 2
0)相交于点P(3,2),
变式2、求过点B 且在两坐标轴上截距 互为相反数的直线方程
第7页/共24页
练习
直线的方程—两点式、截距式
2、求过点 P(2,4)在两坐标轴上的 截距之和为15的直线方程
变 式1、 求 过P (2,4)且 与 两 坐 标 轴正 方 向 围 成 面 积 为18的 三 角 形 的 直 线 方 程
第8页/共24页
b0 0a
直线方程的截距式
x y 1 ab
直线方程的截距式不能表示哪些直线?
截距式适用于的_横__、__纵__截__距__都__存__在__且__都__不__为__0__直线.
第6页/共24页
练习
1、三角形的顶点A(5,0),B(3,3), C (0,2),求这个三角形三边所在 的直线方程
变 式1、 求AB边 上 的 中 线 所 在 的 直 线方 程 和ABC的 重 心 坐 标
直线的方程(2)——两点式、截距式最新版
一、复习 1、什么是直线的点斜式方程? 2、求分别过以下两点直线的方程 (1)A(8, -1) B (-2 , 4) (2)(2) C (x1, y1) D (x2 ,y2) (x1≠x2, y1≠y2)
Hale Waihona Puke §7.1 直线的方程(2)
二、新课 1、直线方程的两点式
若直线L经过点P1(x1,y1)、P2(x2,y2), 并代且入x点1≠斜x2式,则,它得的y斜y率1yx22k xy11yx(22xxyx111)
变题1:上题中改为求截距的绝对值相 等的直线方程,结果如何? 变题2:求过点P(2, 3),并且在x轴上 的截距是在y轴上的截距2倍的直线的 方程。
§7.1 直线的方程(2)
例5、求过点P( 2, 1)的直线与两坐标轴 正半轴所围成的三角形的面积最小时的 直线方程
§7.1 直线的方程(2)
练习3: 1、直线ax+by=1 (ab≠0)与两坐标轴围成的 面积是___________; 2、已知一直线在x轴上的截距比在y轴上的 截距大1,并且经过点P (6, -2),求此直线的 方程。
不负今生 曾经有人说,成大事者必经以下三种境界:“昨夜西风凋碧树,独上高楼,望尽天涯路”,此第一境界也;“衣带渐宽终不悔,为伊消境界也。我想说的是:事无大小,只要你还在坚持,成功的曙光终会毫不吝啬地照向你有这样一个小故事。 1987年,她14岁,在湖南益阳的一个小镇卖茶,1毛钱一杯。因为她的茶杯比别人大一号,所以卖得最快,那时,她总是快乐地忙碌着。她17岁,她把卖茶的摊点搬到了益阳 市,并且改卖当地特有的“擂茶”。擂茶制作比较麻烦,但能卖个好价钱,她也总是忙忙碌碌。她20岁,仍在卖茶,不过卖茶的地点又变了,在省城长沙,店面也由摊点变成 了小店。客人进门后,必能品尝到热乎乎的香茶,在尽情享用后,他们或多或少会掏钱再带上一两袋茶叶。1997年,她24岁,长达十年的光阴,她始终在茶叶与茶水间滚打。 这时,她已经拥有37家茶庄,遍布于长沙、西安、深圳、上海等地。福建安溪、浙江杭州的茶商们一提起她的名字莫不竖起大拇指。她的最大梦想实现了。“在慢慢习惯于喝 咖啡的潮流下,也有洋溢着茶叶清香的茶庄出现,那就是我开的……”说这句话时她已经把茶庄开到了故事虽短,内涵颇深,一件事,只有始终坚韧不拔地去做,无谓任何艰 难险阻,不左右摇摆,不顾左右而言它,才能披荆斩棘,在一千次的跌倒后又一千零一次地站起来。事实上,我们在做一件事的时候,总是不自觉地放大困难,使得我们产生 畏惧之心,没有了乘风破浪的豪情与气魄。困难并不可怕,可怕的是我们没有直面困难的勇气。面对着被自己放大了的困难,我们需要有的就是坚持的精神,或许只是一瞬间 的坚持我们就挖掘了自身潜能,造就了一个全新的自己。有时做一件事就像是跑400米,当你已经跑过300米,面对着那已出现在眼前的终点线时,你实际上并不需要多想, 要做的就是再加把劲,冲过去,得到真正属于自己的成绩。坚持是一种信念,让你有不怕困难、奋勇向前的勇气;让你有乘风破浪、直击沧海的豪情;让你有不达目的誓不罢休
3两点式与截距式
3、求经过点P(2,1),且在两坐标 轴的正半轴所围成的面积为9/2的直线 方程。 x+y-3=0或x+4y-6=0 4、求过点P(2, 1),并且在两坐标轴 上的截距相等的直线的方程。
5、直线ax+by=1 (ab≠0)与两坐标轴围成 的面积是_______y轴上 的截距大1,并且经过点P (6, -2),求此直 线的方程。
直线的方程(2) 1、直线方程的两点式 若直线L经过点P1(x1,y1)、P2(x2,y2), 并且x1≠x2,则它的斜率
y2 y1 k y2 y1x2 x1 代入点斜式,得 y y1 x x ( x x1 ) 2 1
当y1≠y2时
y y1 x x1 y2 y1 x2 x1
注:两点式适用于与两坐标轴不垂直 的直线。 练习:课本第97页 1
2、直线方程的截距式 若直线L与x轴交点为 (a, 0),与y轴交 点为 (0, b), 其中a≠0,b≠0,由两点式 ,
得
y0 xa 即 b0 0a
a 叫做直线在x轴上的截距; b 叫做直线在y轴上的截距.
x y 1 a b
注:截距式适用于与两坐标轴不垂直
且不过原点的直线。
练习2:课本第97页 2
练习: 1、求满足下列条件的直线方程: (1)直线在x轴上的截距为3,与y轴交点 为(0,-2) (2)直线在x轴上的截距为-3,与y轴平 行 2、已知直线ax/3-2y=4a(a≠0)在x轴上 的截距是y轴上截距的3倍,求a的值。
直线的两点式和截距式方程
直线的两点式和截距式方程(导学案)知识目标:1•能根据点斜式方程推导两点式方程、根据两点式方程推导截距式方程2.掌握直线的两点式方程和截距式方程,会应用两点式方程和截距式方程解决相关问题(重点)3.能已知条件的特点,恰当选取方程的形式来求方程探究1写出下列经过A、B两点的直线的方程:(1) A (8,- -1), B (-2, 4)解:(2) A (6,- -4), B (-1, 2)解:y) B (X2, y2),其中X1M x2 , y M y(3) A (X1,解:思考1:上面问题的求解过程可以简化吗?已知两点Pg , y i) , P2 ( X2 , y2),其中x i丰X2 , y i丰目2,则经过这两点的直线方程为思考2:若P1 , P2中有x1 = x2或y1 = y2,此时过这两点的直线方程是什么?综上所述,在运用两点式公式时应注意什么?探究2 已知直线I与x轴的交点为A (a,0),与y轴的交点为B (0,b),其中aM 0, bM 0,求直线I的方程。
思考3:应用截距式公式时应注意什么问题?y — y 0 = k(x-x 0)适用于不垂直于x 轴的任意直线;②斜截式y= kx + b 适用于不垂直x 轴的任意直线;x-計1适用于不垂直x轴的任意直线. 伊严 例4已知三角形的三个顶点A (— 5, 0), B (3,— 3), C (0 , 2), 求BC 边所在直线的方程,以及该边上的中线所在直线的方程。
例2根据下列条件,写出直线的方程(1) 倾斜角为30°,经过A (8,— 2);(2) 经过点B ( — 2, 0),且与x 轴垂直;(3) 斜率为一4,在y 轴上的截距为7;(4) 经过点 A (— 1, 8), B (4,— 2);(5) 在y 轴上的截距是2,且与x 轴平行;(6) 在x 轴,y 轴上的截距分别是4,— 3;例5经过点A (1, 2)并且在两个坐标轴上的截距的绝对值相等的直线有 几条?请求出这些直线方程。
截距式斜截式两点式一般式
截距式斜截式两点式一般式平面直线表达式1:一般式:Ax+By+C=0(A、B不同时为0)适用于所有直线,A1/A2=B1/B2≠C1/C2←→两直线平行A1/A2=B1/B2=C1/C2←→两直线重合横截距a=-C/A,纵截距b=-C/B2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线,表示斜率为k,且过(x0,y0)的直线3:截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线,表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线4:斜截式:y=kx+b适用于不垂直于x轴的直线,表示斜率为k且y轴截距为b的直线5:两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1) (x1≠x2,y1≠y2)适用于不垂直于x轴、y轴的直线,表示过(x1,y1)和(x2,y2)的直线这些都是平面几何中直线的表达式,从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。
常用直线向上方向与X 轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。
直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。
直线在平面上的位置,由它的斜率和一个截距完全确定。
在空间,两个平面相交时,交线为一条直线。
因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、过原点O的一条直线与函数y log 8 x 的图像交于A, B,两点过点A, B分别作 y 轴的平行线与函数y log 2 x 的图像 交于C , D 两点, (1)证明点 C , D和原点O 在同一直线上 ( 2)当 BC平行于 x 轴,求点 A 的坐标
4、 (1)曲线 | x | | y | 1 所围成的 图形面积是 4、 ( 2)曲线 | x 1 | | y 1 | 1 所围成的 图形面积是
变式2、求过点B 且在两坐标轴上截距 互为相反数的直线方程
练习
直线的方程—两点式、截距式
2、求过点 P ( 2,4)在两坐标轴上的 截距之和为 15的直线方程
变式1、求过P ( 2,4)且与 两坐标轴正方向围成 面积为18的三角形的直线方程
练习
直线的方程—两点式、截距式
2、求过点 P ( 2,4)在两坐标轴上的 截距之和为 4的直线方程
4、已知点P (6,4),l:y 4 x,点Q在 直线 l上(Q在第一象限)直线 PQ交 x 轴正半轴于点M,要使 OMQ 的面积最小,求点Q 的坐标
复习
直线的方程—一般式
1 、直线的倾斜角、斜率
斜 y1 k ( x x1 ) 2 、直线方程的y 点 式
y y1 x x1 4 、直线方程的两点式 y 2 y1 x 2 x1 x y 5 、直线方程的截 式 距 1 a b
kx b 3 、 直 线 方 程 的y 斜 截 式
新课
以上的四种直线方程形 式都是
方程,但都有局限性。
那么是否存在某种形式 的方程能表示任意的一 条直线? 二元一次方程的一般形 式是
Ax By C 0
新课
直线的方程—一般式
Question:方程 Ax By C 0 总是表示直线吗?
思考、若方程( 2m 2 m 3) x ( m 2 m ) y 4m 1 表示一条直线,求实数 m 的取值范围
2、过点 P (0,1) 的直线 l,它在两直线 l1 : x 3 y 10 0与 l 2 : 2 x y 8 0 间截得的线段被点P 平分,求直线l 的方程
练习
直线的方程—一般式
4、对于直线l 上任意点( x , y ),点 (4 x 2 y , x 3 y ) 仍在直线 l 上,求直线l 的方程
5、 (1)设 x 2 y 1,x 2 y 2 的最小值是 1 ( 2) P (a , b)在直线y x 2上, 2 2 a 4 b 的最小值是
A C (1)若B 0,则y x B B (2)若B 0,则Ax C 0
C 1)若A 0,则x A
2)若A 0,则0 x C 0 若C 0,则表示整个平面 结论 当A, B不全为0时,方程 Ax By C 0 表示直线
若C 0,与C 0矛盾
直线方程的截距式不能 表示哪些直线?
横、纵截距都存在且都不为0 直线. 截距式适用于的___________________________
x y 1 a b
练习
1、三角形的顶点 A( 5,0),B( 3,3), C (0,2),求这个三角形三边所 在 的直线方程
变式1、求AB边上的中线所在的直线 方程 和ABC 的重心坐标
x = x0 当k不存在时,直线方程为___________
y = kx + b 2.直线的斜截式方程__________________
斜率为k,在y轴上的截距为b 的直线. 它表示__________________________ 斜率存在的直线 3.点斜式与斜截式的适用范围是__________________ 特殊情况 4.斜截式是点斜式的___________________
8、若动点 A( x1 , y1 ), B( x2 , y2 ) 分别在 直线 x y 7 0 和x y 5 0 上,求 AB 中点 M 到原点距离的 最小值
9、画出方程 x y 0表示的曲线的图形
2 2
变式、证明方程 3 x 10 xy 3 y 9 x 5 y 12 0
复习
直线的方程—两点式、截距式
1 、直线的倾斜角、斜率 2 、直线方程的点斜式
y y1 k ( x x 1 )
3 、直线方程的斜截式
y kx b
注意:有缺陷!
【复习回顾】
y - y0 = k (x - x0 ) 1.直线的点斜式方程______________________
经过点P0(x0 ,y0) , 斜率为k 的直线. 它表示__________________________
(1)求点 D 和 C 的坐标,用 t 表示 OMN 面积
y
D C
B
x
练习
直线的方程—一般式
12、 l 1 :y 2 x 1, l 1 与 l 2 关于 x 轴 对称,求直线 l 2 的方程
变式1、关于 y 轴对称
变式2、关于点A(1,1) 对称
13、在直角坐标平面内以A(4,1), B( 1,6), C ( 3,2) 为顶点的三角形区域, 当点 M ( x , y )在此区域变动时,求函 数 F 4 x 3 y 的最值
2 2
表示的曲线是两条直线
12、已知点A( 2,5),B(4,7),试在 y 轴上求一 点P,使得| PA | + | PB | 的值最小
13、已知点A(2,5),B(4,7),试在 y 轴上求一 点P,使得| PA | | PB | 的值最大
14、 已 知 点 P (6,4),l:y 4 x, 点Q在 直 线l上 (Q在 第 一 象 限 )直 线 PQ交 x 轴 正 半 轴 于 点 M, 要 使 OMQ 的 面 积 最 小 , 求 点 Q 的坐标
3、两直线 A1 x B1 y 1 0 (A1
2 2 2 B1
0)和
A2 x B2 y 1 0 (A 2 B 2 , 2 0)相交于点 P ( 3,2) 求过点 P1 ( A1 , B1 ),P2 ( A2 , B2 ) (P1 P2 不重合) 的直线方程,并证明
新课
直线的方程—两点式、截距式
y 2 y1 由方程 y y1 ( x x1 ) x 2 x1 y y1 x x1 可推得 y 2 y1 x 2 x 1
上面的两个方程等价吗?
新课
直线的方程—两点式、截距式
直线方程的两点式
y y1 x x1 y 2 y1 x 2 x1
新课 Question: 我们知道两点可以确定 一条直 线,那么经过 P1 ( x1 , y1 ),P2 ( x 2 , y 2 )两 点的直线方程是什么?
直线的方程—两点式、截距式
当 x1 x 2 时,直线方程为x x1
y 2 y1 当 x1 x 2 时 , 直 线 的 斜 率 为 k x 2 x1 y 2 y1 直线的方程为y y1 ( x x1 ) x 2 x1
练习
直线的方程—一般式
11、已知OBCD是平行四边形, | OB | 1, | OD | 2, BOD 3 分别交平行四边形两边于不同的两点 M , N S 的函数 解析式 S ( t ) ( 2)当 t 为何值时,S ( t ) 有 最大值?并求最大值
O
,动直线 x t 由 y 轴起向右平移,
A1B2 A2 B1 0
且A1C 2 A2C1 0 A1B2 A2 B1 0 且A1C 2 A2C1 0
A1 A2 B1B2 0 A1B2 A2 B1 0
【两条直线的几种位置关系】
直线 l : y k x b l1 : A1 x B1பைடு நூலகம்y C1 0 1 1 1 位置 方程 l2 : A2 x B2 y C 2 0 l : y k x b 2 2 2 关系
重 平 垂 相
合 行 直 交
k1 k2且b1 b2 k1 k2且b1 b2 k1k2 1 k1 k2
y y1 x x1 不包括坐标轴以及与 y 2 y1 x 2 x1 坐标轴平行的直线
不包括过原点的直线 x y 1 及与坐标轴平行的直 a b 线
一般式 A、B不同时为零 Ax+By+C= 0
1、已知直线l 的方程 ( 2m 2 m 3) x ( m 2 m ) y 4m 1 (1)当 m ( 2)当 m ( 3)当 m 时,l 的倾斜角是 45 时,l 在 x 轴上的截距是 1 时,l 平行于 y 轴
直线方程的两点式不能 表示哪些直线?
怎么弥补缺陷?
我 们 推 导 两 点 式 是 通点 过斜 式 的 , 还有其他推导方法吗?
利用三点共线,斜率相等 或 共线向量
直线方程的两点式和截 距式
新课
直线的方程—两点式、截距式
直线方程的截距式
特殊地,当直线 l 经过点 A(a ,0),B(0, b) y0 xa 时的方程为 b0 0a
变式2、求过P ( 2,4)且与 两坐标轴正方向围成 的三角形面积最小的直 线方程 变式3、过P ( 2,4)的直线 l,在 两坐标轴上的截 距都为正值,求截 距之和最小时的直线方 程
练习
直线的方程—两点式、截距式
3、已知点 A( 2,5),B(4,7),试在 y 轴 上求一点P,使得 | PA | + | PB | 的 值最小
方程 Ax By C 0( A、B不同时为0) 叫做直线方程的一般式
新课
名称
直线方程的五种形式
已知条件 方 程
直线的方程—一般式
说 明
点斜式 点P1(x1,y1)和斜 率k