1连续时间信号分析
信号与系统第二章第一讲
![信号与系统第二章第一讲](https://img.taocdn.com/s3/m/1780b0a40029bd64783e2c5d.png)
则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
信号与系统§1-2 常用信号介绍
![信号与系统§1-2 常用信号介绍](https://img.taocdn.com/s3/m/2a016c2dbe23482fb5da4c54.png)
x(t)(t) x(0)(t)
x(t)
t
(1) (1)
0
t0
t
x(t)(t t0 ) x(t0 )(t t0 )
(x(t0 )) (x(0))
0
t0
t
x(t)(t)dt x(0) (t)dt x(0)
x(t)(t t0)dt x(t0 ) (t t0 )dt x(t0 )
t
2
2
u(t ) u(t )
2
2
2、单位斜变信号:R(t)
R(t)
函数式:
R(t)
t 0
t 0 t 0
波形图:
1 01
t
tu(t)
平移: R(t t0 ) (t t0 )u(t t0 )
R(t t0 )
1
0 t0 1 t0
t
•与单位阶跃信号的关系:
⑵ 偶函数:
(t) (t)
(t t0 ) [(t t0 )] (t0 t)
•单位冲激信号的导数(微分):
单位冲激信号的各阶导数(微分)表示为:
(t) d(t) dt
(t) d(t) dt
(t)
d(t) dt
•由阶跃信号表示的典型信号:
⑴ 符号函数信号: sgn(t)
sgn(t
)
1 1
t 0 t0
u(t) u(t)
2u(t) 1
sgn(t)
1
0
t
1
⑵ 矩形脉冲信号: G (t)--门函数信号
信号与系统实验一连续时间信号分析实验报告
![信号与系统实验一连续时间信号分析实验报告](https://img.taocdn.com/s3/m/6e10a97eae1ffc4ffe4733687e21af45b307fe6f.png)
实验一 连续时间信号分析一、实验目的(一)掌握使用Matlab 表示连续时间信号1、学会运用Matlab 表示常用连续时间信号的方法2、观察并熟悉常用信号的波形和特性(二)掌握使用Matlab 进行连续时间信号的相关运算1、学会运用Matlab 进行连续时间信号的时移、反褶和尺度变换2、学会运用Matlab 进行连续时间信号微分、积分运算3、学会运用Matlab 进行连续时间信号相加、相乘运算4、学会运用Matlab 进行连续时间信号卷积运算二、实验条件装用Matlab R2015a 的电脑。
三、实验内容1、利用Matlab 命令画出下列连续信号的波形图。
(1))4/3t (2cos π+ 程序:t=-3:0.01:3; ft=2*cos(3*t+pi/4); plot(t,ft)图像:(2))t (u )e 2(t--程序:t=-6:0.01:6; ut=(t>=0);ft=(2-1*exp(-t)).*ut; plot(t,ft)图像:(3))]2()(u )][t (cos 1[--+t u t π 程序:t=-6:0.01:6; ut=(t>=0); ut2=(t>=2);ft=(1+cos(pi*t)).*(ut-ut2); plot(t,ft)图像:2、利用Matlab 命令画出复信号)4/t (j 2e )t (f π+=的实部、虚部、模和辐角。
程序:t=0:0.01:20;ft=2*exp(1j*(t+pi/4));subplot(2,2,1);plot(t,real(ft));title('ʵ²¿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,2);plot(t,imag(ft));title('Ð鲿');axis([-0.5,20,-2.5,2.5]); subplot(2,2,3);plot(t,abs(ft));title('Ä£');axis([-0.5,20,-0.5,2.5]); subplot(2,2,4);plot(t,angle(ft));title('·ø½Ç');axis([-0.5,20,-3.5,3.5]);图像:3、已知信号的波形如下图所示:试用Matlab 命令画出()()()()2332----t f t f t f t f ,,,的波形图。
连续时间信号与系统的S域分析课件
![连续时间信号与系统的S域分析课件](https://img.taocdn.com/s3/m/f9a5d7133a3567ec102de2bd960590c69fc3d86f.png)
VS
频谱分析
在信号处理中,频谱分析是了解信号特性 的重要手段。通过s域分析,可以将时域 信号转换为频域信号,实现对信号的频谱 分析,了解信号的频率成分和功率分布等 特性。
THANKS.
系统的实现与仿真
控制系统硬件实现
根据系统设计要求,选择合适的硬件设备,如 传感器、执行器、控制器等,搭建控制系统。
控制系统软件实现
编写控制算法程序,实现控制系统的软件部分。
系统仿真
通过仿真软件对控制系统进行模拟实验,验证系统设计的正确性和有效性。
s域分析的用
05
在通信系统中的应用
信号传输
在通信系统中,信号经常需要经过长距离传输。在传输过程中,信号会受到各种 噪声和干扰的影响,导致信号质量下降。通过s域分析,可以对信号进行滤波、 均衡等处理,提高信号的抗干扰能力,保证信号的传输质量。
调制解调
在通信系统中,调制解调是实现信号传输的关键技术。通过s域分析,可以对信 号进行调制和解调,将低频信号转换为高频信号,或者将高频信号转换为低频信 号,实现信号的传输和接收。
在控制系统中的应用
系统稳定性分析
在控制系统中,系统的稳定性是非常重要的。通过s域分析,可以对系统的极点和零点进行分析,判断系统的稳 定性,以及系统对外部干扰的抑制能力。
稳定性分类
根据系统对输入信号的响应速度 和超调量,可以将系统的稳定性 分为渐近稳定、指数稳定和超调 稳定等类型。
系的s域
04
系统的状态空间表示
状态空间模型
描述系统的动态行为,包括状态方程和输出 方程。
输出方程
描述系统输出与状态变量和输入之间的关系。
状态方程
描述系统内部状态变量的变化规律。
《信号与系统》课程讲义1-2
![《信号与系统》课程讲义1-2](https://img.taocdn.com/s3/m/39da6e0202020740be1e9bfe.png)
ii)抽样特性: (t ) f (t )dt f (0)
证明: (t ) f (t )dt ( ) f ( )d ( ) ( ) f 0 d f 0
iv)延时抽样: v)关系:
t t f t dt f (t )
1 t
-1 0 f(-t-2) 1 -3 -2 0 t 2 t
0 1
1 -1
2 3
f(-3t-2)
0
t
§1.3信号的运算
②已知f(t)定义域为[-1,4],求f(-2t+5)的定义域 解:
i)方法一:f(t)→f(-t) [-4,1];f(-t)→f(-t+5) [1,6];
ii)方法二: 1 2t 5 4 6 2t 1
f (t ) f 1 ( t ) f 2 ( t )
§1.3信号的运算
7.信号相乘 ① f (t ) f1 (t ) f 2 (t )
②常用在调制解调中 8.卷积
f (t ) f1 (t ) f 2 (t )
f1 ( ) f 2 (t )d
9.相关
a
Ke at (a 0)
③特性:微积分后仍为指数信号
§1.2 信号描述分类和典型示例
2.正弦信号 ①表达式:
f (t ) K sin(t )
②参数:K振幅, 角频率, 初相位 f(t) ③特性 i)周期信号, 0 2 1 T f ii)微积分后仍为正弦信号
3 8
t
t
f(t)
t
0 ln 2 2 ln 2 3 ln 2
3
练习
第五章1-连续LTI系统频域分析
![第五章1-连续LTI系统频域分析](https://img.taocdn.com/s3/m/0638a742a417866fb84a8e48.png)
连续时间LTI系统的频域分析 离散时间LTI系统的频域分析 信号的幅度调制和解调
时域分析的要点是,以冲激函数为基本信号,
任意输入信号可分解为一系列冲激函数;而系统零 状态响应yzs(t) = x(t)*h(t)。 由单位冲激函数δ (t)所引起的零状态响应称为单位 冲激响应,简称冲激响应,记为h(t)。
解: 利用H(j)与h(t)的关系
H ( j) F[h(t)] 1 1 j 1 j 2
1
( j)2 3( j) 2
只有当连续系统是稳定的LTI系统时,才存在H(j), 且可以由h(t)计算出H(j)。
电路系统的频率响应:
分析电路系统的频率响应,主要有两种方法。
H ( j) Yzs ( j)
( j) 3
X ( j) ( j)2 3( j) 2
在实际应用中, 只有当连续系统是稳定的LTI系统时,
才存在H(j),且频响函数才有意义。
例 已知某LTI系统的冲激响应为
h(t) = (e-t-e-2t) u(t),求系统的频率响应H(j)。
vR (t) RiR (t)
VR ( jw) R IR ( jw)
ZR
VR ( IR(
jw) jw)
R
vL
(t)
L
diL (t) dt
VL ( jw) jwLIL ( jw)
ZL
VL ( jw) IL ( jw)
jwL
iC
(t)
C
d
vC (t) dt
IC ( jw) jwCVC ( jw)
例 已知某LTI系统的动态方程为 y"(t) + 3y'(t) + 2y(t) = x(t),
信号分析实验一内容
![信号分析实验一内容](https://img.taocdn.com/s3/m/5fe9812049649b6649d74759.png)
实验一连续时间信号的时域和频域分析一. 实验目的:1. 熟悉MATLAB 软件平台。
2. 掌握MATLAB 编程方法、常用语句和可视化绘图技术。
3. 编程实现常用信号及其运算MATLAB 实现方法。
4. 编程实现常用信号的频域分析。
二. 实验原理:1、连续时间信号的描述:(1)向量表示法连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点之外,信号都有确定的值与之对应。
严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。
当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。
矩阵是MATLAB 进行数据处理的基本单元,矩阵运算是MATLAB 最重要的运算。
通常意义上的数量(也称为标量)在MATLAB 系统中是作为1×1 的矩阵来处理的,而向量实际上是仅有一行或者一列的矩阵。
通常用向量表示信号的时间取值范围,如t = -5:5,但信号x(t)、向量t 本身的下标都是从1 开始的,因此必须用一个与向量x 等长的定位时间变量t,以及向量x,才能完整地表示序列x(t)。
在MATLAB 可视化绘图中,对于以t 为自变量的连续信号,在绘图时统一用plot 函数;而对n 为自变量的离散序列,在绘图时统一用stem 函数。
(2)符号运算表示法符号对象(Symbolic Objects 不同于普通的数值计算)是Matlab 中的一种特殊数据类型,它可以用来表示符号变量、表达式以及矩阵,利用符号对象能够在不考虑符号所对应的具体数值的情况下能够进行代数分析和符号计算(symbolic math operations),例如解代数方程、微分方程、进行矩阵运算等。
符号对象需要通过sym 或syms 函数来指定, 普通的数字转换成符号类型后也可以被作为符号对象来处理.我们可以用一个简单的例子来表明数值计算和符号计算的区别: 2/5+1/3 的结果为0.7333(double 类型数值运算), 而sym(2)/sym(5)+sym(1)/sym(3)的结果为11/15, 且这里11/15 仍然是属于sym 类型, 是符号数。
工程测试与信号处理第二章信号分析基础1
![工程测试与信号处理第二章信号分析基础1](https://img.taocdn.com/s3/m/93c4a2a8c5da50e2534d7f4c.png)
(a) 拉氏变换:
(s) (t)est dt 1
(b) 傅氏变换:
( f ) (t )e j2ft dt 1
第二章 信号分析的基础
中原工学院 机电学院
2.sinc函数
sinc(t)函数又称为抽样函数、滤波函数或内插函数,在许多场合
下频繁出现.其定义为
sin c(t) sin t , or, sin t , ( t )
离散时间信号:在若干时间点上有定义
采样信号
第二章 信号分析的基础
中原工学院 机电学院
离散时间信号可以从试验中直接得到,也可能从连续时间信 号中经采样而得到。
典型离散时间信号有单位采样序列、阶跃序列、指数序列等.
单位采样序列用δ(n)表示,定义为:
(n)
0, n 0 1, n 0
此序列在n=0处取单位值1,其余点上都为零(图2-3 (a ) ).单位采样序
物理信号具有如下性质: (1)必然是能量信号.即时域内有限或满足可积收敛条件; (2)叠加、乘积、卷积运算以后仍为物理信号.
第二章 信号分析的基础
中原工学院 机电学院
六、信号分析中常用的函数
1. 脉冲函数—函数
函数表示一瞬间的脉冲. 狄拉克(Dirac)于1930年在量子力学中
引入了脉冲函数.从数学意义上讲,脉冲函数完全不同于普通函数,
第二章 信号分析的基础
二、能量信号与功率信号 1.能量信号
中原工学院 机电学院
在所分析的区间(-∞,∞),能量为有限值的信号称为 能量信号,满足条件:
x 2 (t )dt
一般持续时间有限的瞬态信号是能量信号。
第二章 信号分析的基础
中原工学院 机电学院
2. 功率信号
信号与系统基础-第1章
![信号与系统基础-第1章](https://img.taocdn.com/s3/m/e24bcb24ba0d4a7303763a72.png)
(t) 1
0
t
图1-12 单位阶跃信号
K
E 1V uR (t) (t) R
图1-13 单位阶跃信号实例
(t)
def
0, 1,
(t 0) (t 0)
确知信号虽然不用于通信,但可以作为基本信号对系统的特性进行分析研究, 其研究方法和结果可以直接推广或借鉴到随机信号的分析中去,这就是研究确知信号 的意义所在。
23
1.3 基本连续信号
现实生活中,信号的种类繁多,要想逐个研究是不可能的。因此,人们从各 种信号中挑选出一些基本信号加以研究。主要原因是
(1)基本信号可以通过数学手段去精确或近似表征其他信号,比如傅里叶级数 的基本形式是正弦和余弦信号,但它们可以表示绝大多数不同形式的周期信号( 详见第4章)。
11
1.2 信号的分类
S
f (t)
yS (t)
p(t)
0
t
0 Ts
t
0
t
(a)抽样概念示意图
F ( / f ) 低通型信号频谱
F ( / f ) 带通型信号频谱
0
fL
fH
/ f 0
fL fH
/ f
(b)低通、带通信号示意图
图1-4 抽样及低通、带通信号概念示意图
12
1.2 信号的分类
离散信号有以下主要特点: (1)虽然自变量取离散值,但因变量(幅值) 的取值可以是连续的(即有无穷个可能的取值), 也可以是离散的。 (2)其图形是出现在离散自变量点上的一系列 垂直线段。
1 2
实验一__信号、系统及系统响应lx
![实验一__信号、系统及系统响应lx](https://img.taocdn.com/s3/m/bfbcddf7f705cc1755270970.png)
北华大学数字信号实验实验项目:信号、系统及系统响应班级:信息10-1姓名:张慧学号:36实验一 信号、系统及系统响应一.实验目的1.熟悉理想采样的性质,了解信号采用前后的频谱变化,加深对采样定理的理解。
2.熟悉离散信号和系统的时域特性。
3.熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。
二.实验原理1.连续时间信号的采样)()()(ˆt M t x t xa a = 其中)(ˆt xa 是连续信号)(t x a 的理想采样,)(t M 是周期冲激脉冲 ∑+∞-∞=-=n nT t t M )()(δ它也可以用傅立叶级数表示为:∑+∞-∞=Ω=n tjm s e T t M 1)(其中T 为采样周期,T s /2π=Ω是采样角频率。
设)(s X a 是连续时间信号)(t x a 的双边拉氏变换,即有:⎰+∞∞--=dt e t x s X sta a )()( 此时理想采样信号)(ˆt x a 的拉氏变换为 ∑⎰+∞-∞=+∞∞--Ω-===m s a sta ajm s X T dt e t x s X )(1)(ˆ)(ˆ作为拉氏变换的一种特例,信号理想采样的傅立叶变换[]∑+∞-∞=Ω-Ω=Ωm s a a m j X T j X )(1)(ˆ∑+∞-∞=-=n nzn x z X )()(以ωj e 代替上式中的z ,就可以得到序列)(n x 的傅立叶变换 ∑+∞-∞=-=n nj j en x e X ωω)()(具有如下关系:Tj a e X j X Ω==Ωωω)()(ˆ信号卷积∑+∞-∞=-=*=m m n h m x n h n x n y )()()()()()()()(z H z X z Y =)()()(ωωωj j j e H e X e Y =三.实验内容及步骤1, 分析理想采样的特性。
第一章 信号与系统
![第一章 信号与系统](https://img.taocdn.com/s3/m/9b93c03d0912a216147929ff.png)
第一章信号与系统1、已知一连续时间信号x(t)如下图所示,画出并标明信号x(2t+2)的图形。
解:2、已知一连续时间信号x(t)如下图所示,画出并标明信号x(2-t/3)的图形。
解:3、画出信号te tf -=)(,+∞<<∞-t 的波形。
解:由题意知,0(),0t te tf t e t -⎧≤<∞⎪=⎨-∞<<⎪⎩由此绘出波形4、画出信号)(sin )(t t f ε=的波形,其中)()(t t t r ε=为斜升函数。
解:由()t ε定义,可知当sin 0t >时,()1f t =;sin 0t <时,()0f t =。
先画出sin t 的波形,再根据响应的时间区域绘出()(sin )f t g t =的波形,如下图所示()(sin )f t tε=5、画出信号)()1()(k k k f ε+=的波形,其中)()(t t t r ε=为斜升函数。
解:根据)(k ε的定义,可将)(k f 写为⎩⎨⎧<≥+=0,00,1)(k k k t f ,由此绘其波形如下图所示6、画出信号)2()1(3)1(2)(-+--+=t t t t f εεε的波形,其中)()(t t t r ε=为斜升函数。
解:由时移阶跃函数的特点,知⎪⎪⎩⎪⎪⎨⎧><<-<<--<=2,021,111,21,0)(t t t t t f,由此绘其波形,如下图所示7、画出信号=)(k f 2)2(--k ε(k-2)的波形,其中)()(t t t r ε=为斜升函数。
解:⎩⎨⎧<≥=--2,02,2)()2(k k k f k ,8、写出下图所示波形的表达式。
解:)(t f 是阶梯波形,从左到右有三个跃变时间点,则可推知)(t f 是由三个阶跃函数构成,并且向上跳跃阶跃函数的系数为正,向下跳跃阶跃函数的系数为负,跳跃幅值决定系数的值的大小,据此,图中)(t f 的表达式为)2()1()1(2)(----+=t t t t f εεε 9、写出下图所表示序列的闭合形式表达式。
信号处理与系统分析-第1章信号与系统的基本概念
![信号处理与系统分析-第1章信号与系统的基本概念](https://img.taocdn.com/s3/m/b33e9c8e83d049649b66583f.png)
E
n
| x[n] |
2
本书由天疯上传于世界工厂网-下载中心
连续时间信号的总的平均功率(Average Power)定义为:
1 P lim T 2T
T
T
| x(t ) | dt
2
离散时间信号的总平均功率定义为:
1 2 P lim N| x[n] | N 2 N 1 n
N
本书由天疯上传于世界工厂网-下载中心
典型的能量有限信号
面积有限
本书由天疯上传于世界工厂网-下载中心
功率有限,总能量无限。
本书由天疯上传于世界工厂网-下载中心
功率无限,总能量无限。
本书由天疯上传于世界工厂网-下载中心
1.2自变量的变换
信号自变量的变换就是函数自变量的变换。
它既基础又简单,但同时也是最容易出错 的地方,需要读者细心体会。
最小正周期
T 2 / | 0 |
本书由天疯上传于世界工厂网-下载中心
正弦信号(Sinusoidal Signals)
角频率
相位
x(t ) A cos(0t )
幅度
本书由天疯上传于世界工厂网-下载中心
量纲
Rad/s
rad
x(t ) A cos(0t )
s
本书由天疯上传于世界工厂网-下载中心
本课程主要讨论一维信号的处理。
虽然信号的自变量决不局限于时间,但是 若无特殊声明,函数的自变量都可以理解 为时间变量。
本书由天疯上传于世界工厂网-下载中心
如果用来表示信号的函数的自变量的定义 域是实数域,所表示的信号称为连续时间 信号(Continuous-Time Signal),或者称为 模拟信号(Analog Signal或者Simulated Signal),
§1-1 常用信号介绍
![§1-1 常用信号介绍](https://img.taocdn.com/s3/m/1462ce7648d7c1c708a14513.png)
工程类院校电子信息技术、机电控制等专
业必设的理论基础课之一
是相关专业研究生入学考试课程 是随机信号分析、通信原理、图象处理、
自动控制原理等后续课程的基础课
其基本原理和方法可直接应用来解决实际
问题
1
课程任务
《信号与系统Ⅱ》由传统的“信号与系统”
的全部内容,以及“数字信号处理”的一部 分内容构成。
n (n=1~128) 100 120
0.05 0 -0.05
80
60
40
-0.2 0 5 1 t (ms) 1 20
20
0
0
2
4
6
8
10 τ(ms)
12
14
16
5
学习方法1
•注重物理概念与数学分析之间的对照,不要盲目计 算; •注意分析结果的物理解释,各种参量变动时的物理 意义及其产生的后果; •同一问题可有多种解法,应寻找最简单、最合理的 解法,比较各方法之优劣; •在学完本课程相当长的时间内仍需要反复学习本课 程的基本概念。
+ U(t) -
x ( t ) dt
2
1 lim 平均功率: P = T →∞ T
∫
T /2 −T / 2
x( t ) dt
2
2
DTS: 能量:
E=
n =-∞
∑
∞
x ( n)
N 1 2 lim ∑ x ( n) 平均功率: P = 2 N + 1 N →∞ n =− N
如果0 < P < ∞ ,且 E = ∞ 如果0 < E < ∞ ,且P=0
……
9
第一章 信号与系统的基本概念
1.1 1.2 1.3 1.4 1.5 信号及其分类 常用信号及其基本特性 信号时域运算 系统及其表示 系统的分类
信号与系统§1-2 常用信号介绍
![信号与系统§1-2 常用信号介绍](https://img.taocdn.com/s3/m/42ce940f650e52ea5518989a.png)
平移: R(t t0 ) (t t0 )u(t t0 )
R(t t0 )
0t01 Fra bibliotek t0t
•与单位阶跃信号的关系: 是单位阶跃信号的积分:
R(t )
u(t )
1
u()d
t
0
t
R(t )
1
所以
dR (t ) u (t ) R(t ) dt
0
1
t
• 三角脉冲的表示:
1 G (t ) 0 t 2 t 2
G (t )
1
2
0
2
t
u (t ) u (t ) 2 2
2、单位斜变信号:R(t )
t 函数式:R(t ) 0 t 0 t 0
R(t )
波形图:
1
tu (t )
1
0
1
t
还有一个类似的函数,sinc(t) sin t sin c(t ) t
8、高斯函数信号(钟形脉冲):
0.78 A
x(t )
A
A e
x(t ) Ae
t )2 (
0
2
t
高斯函数信号,也称高斯脉冲,因其形似悬挂的金钟而 称为钟形脉冲。由于它的时宽频宽积较小,而备受青睐。
1
uc (t )
t
1 R
i (t )
t 0 t0
t
减小电阻R
R
i (t )
t (1 e R ) t 0 uc (t ) t 0 0
u(t )
c 1F
uc (t )
1
uc (t )
连续时间和离散时间信号
![连续时间和离散时间信号](https://img.taocdn.com/s3/m/b9670f52763231126fdb1106.png)
A/D x(n) 数字信号 y(n) D/A
模拟 y(t)
器 滤波器 变换器 处理器
变换器 滤波器
图8-2 数字信号处理系统的示意图
本书的 封面
走信息路 读北邮书
8.1.2 确定性信号与随机信号
1、确定性信号
在任何时刻都有确定值的信号
2、随机信号
随机信号不具有确定值。
走信息路 读北邮书
本书的 封面
4、采样数据的平滑处理
(1)简单平均法
y(t) 1
N
x(t n)
2N 1 nN
(2)加权平均法
N
y(t) h(t)x(t) h(n)x(t n) n N
本书的 封面
走信息路 读北邮书
8.3
信号时域分析
8.3.1 时域波形分析 8.3.2 时域平均 8.3.3 信号卷积 8.3.4 相关分析 8.3.2 概率密度函数与概率分布
走信息路 读北邮书
本书的 封面
8.3.3 信号卷积
1、卷积的定义
y(t) x(t) h(t) x( )h(t )d
或 y(t) h(t) x(t) x(t )h(t)d 本书的 封面 走信息路 读北邮书
2、卷积和的图解机理
例8.1已知离散信号
1
f1 (k )
3 2
0
k 0 k 1 k 2 其他
走信息路 读北邮书
本书的 封面
8.3.1 时域波形分析
1、周期信号的幅值分析 (1) 均值和绝对均值
1
x mx T0
T0 x(t)dt
0
x m x
1 T0
T0 x(t)
0
dt
本书的
封面
走信息路 读北邮书
数字信号处理实验:利用FFT分析连续信号频谱
![数字信号处理实验:利用FFT分析连续信号频谱](https://img.taocdn.com/s3/m/ba0f7edb58f5f61fb6366607.png)
数字信号处理课程实验实验报告实验一 利用FFT 分析连续信号频谱一、 实验目的1、 进一步加深离散傅里叶变换DFT 原理的理解;2、 应用离散傅里叶变换DFT (实际应用FFT 计算)分析连续信号的频谱;3、 深刻理解利用DFT 分析连续信号的频谱的原理,分析工程中常出现的现象及解决方法。
二、 实验原理1、 利用DFT 分析连续时间周期信号的频谱周期为Tp 的周期性连续时间信号)(t x p 的频谱(傅里叶级数的系数))(Ωjk x p 是非周期离散谱,定义为)(Ωjk x p =dt e t x p1tjk p p 0Ω-⎰)(T T 其中f 2p2ππ==ΩT 为信号的基频,Ωk 为信号的谐频,谱线间隔为Ω。
通过时域采样就可以利用DFT 分析连续周期信号的频谱。
其步骤为: ① 确定周期信号的基本周期Tp ;② 计算一个周期内的采样点数N ,若周期信号的最高频谱为Ωp ,则频谱中有2p+1 根谱线;若周期信号的频谱无限宽,则认为集中信号90%以上(或根据实际需要)能量的前p+1 个谐波为近似的频谱范围,其余的谐波忽略不计。
取N ≥2p+1; ③ 对连续周期信号以采样间隔NT T p=进行采样 ; ④ 利用FFT 计算采样信号的N 点DFT ,得到()k X ; ⑤ 最后求出连续周期信号的频谱为)(Ωjk x p =N1()k X 。
因为对连续周期信号按采样间隔NT T p=进行采样,每个周期抽取N 点时,则有 t=nT ,Tp=NT那么 )(Ωjk x p =dt et x p 1tjk p p 0Ω-⎰)(T T =∑-=-10n n p 2jk e n x p N T T T T T π)( =∑-=-1n n N 2jk e n x N 1N T π)(=)(k N 1X若能按照满足采样定理的采样间隔进行抽样,并且采取整周期为信号分析的长度,则利用FFT 计算得到的离散频谱值等于连续周期信号频谱)(Ωjk x p 的准确值。
信号与系统实验报告实验一 信号与系统的时域分析
![信号与系统实验报告实验一 信号与系统的时域分析](https://img.taocdn.com/s3/m/8d08dc7aaf45b307e87197b9.png)
实验一信号与系统的时域分析一、实验目的1、熟悉与掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间与离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MA TLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。
基本要求:掌握用MA TLAB描述连续时间信号与离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换与运算,并且以图形的方式再现各种信号的波形。
掌握线性时不变连续系统的时域数学模型用MA TLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。
二、实验原理信号(Signal)一般都就是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都就是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就就是随着海拔高度的变化而变化的。
一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴与纵轴,因此,图像信号具有两个或两个以上的独立变量。
在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量就是否就是时间变量。
在自然界中,大多数信号的时间变量都就是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力与声音信号就就是连续时间信号的例子。
连续时间系统的复频域分析
![连续时间系统的复频域分析](https://img.taocdn.com/s3/m/fda0c82359fb770bf78a6529647d27284b7337a4.png)
信号与系统实验报告实验题目: 实验三:连续时间系统的复频域分析实验仪器: 计算机,MATLAB 软件101b s b a s a ++++++称为系统的特征多项式,征根,也称为系统的固有频率(或自然频率)。
为将个特征根,这些特征根称为()F s 极点。
根据求函数21()(1)F s s s =-的拉氏逆变换。
源代码:num = [1]; 结果为:r =-1 1 1 a=conv([1 -1],[1 -1]);den = conv([1 0], a); p =1 1 0 [r,p,k] = residue(num, den); k=03.示例3:求函数2224()(4)s F s s -=+的拉氏逆变换源代码:num = [1 0 -4];den = conv([1 0 4], [1 0 4]); [r,p,k] = residue(num, den);结果为:r =-0.0000-0.0000i 0.5000+0.0000i -0.0000+0.0000i 0.5000-0.0000ip =-0.0000+2.0000i -0.0000+2.0000i -0.0000-2.0000i -0.0000-2.0000i k=04.示例4:已知系统函数为:321()221H s s s s =+++,利用Matlab 画出该系统的零极点分布图,分析系统的稳定性,并求出该系统的单位冲激响应和幅频响应。
源代码: num=[1];den=[1 2 2 1]; sys=tf(num,den); poles=roots(den); figure(1);pzmap(sys);xlabel('Re(s)');ylabel(' Im(s)');title('zero-pole map'); t=0:0.02:10;h=impulse(num,den,t); figure(2);plot(t,h);xlabel('t(s)');ylabel('h(t)');title('Impulse Response'); [H,w]=freqs(num,den);figure(3);plot(w,abs(H));xlabel('\omega(rad/s)');ylabel('|H(j\omega)|');title('Magenitude Response'); 结果为:poles =-1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i (2) 已知象函数,试调用residue 函数完成部分分式分解,并写出逆变换。